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Preface 

The design and development of electrical devices involves choosing from 
many possible variants that which is the best or optimum according to one or 
several criteria. These optimization criteria are usually already clear to the 
designer at the statement of the design problem. The methods of optimization 
considered in this book, allow us to sort out variants of the realization of a 
design on the basis of these criteria and to create the best device in the sense 
of the set criteria. 

Optimization of devices is one of the major problems in electrical engi­
neering that is related to an extensive class of inverse problems including 
synthesis, diagnostics, fault detection, identification, and some others with 
common mathematical properties. When designing a device, the engineer ac­
tually solves inverse problems by defining the device structure and its pa­
rameters, and then proceeds to deal with the technical specifications followed 
by the incorporation of his own notions of the best device. Frequently the so­
lutions obtained are based on intuition and previous experience. New meth­
ods and approaches discussed in this book will add mathematical rigor to 
these intuitive notions. 

By virtue of their urgency inverse problems have been investigated for 
more than a century. However, general methods for their solution have been 
developed only recently. An analysis of the scientific literature indicates a 
steadily growing interest among scientists and engineers in these problems. 
As a result, there has been an increase in the number of publications of new 
methods of solution of inverse problems as well as their active application in 
practice. It is essential that methods of solution of inverse problems find ap­
plication not only for the development of new devices, but also for the mod­
ernization of existing equipment with the purpose of improving its character­
istics or the extension of its operational life. 

Inverse problems that are significant for practical purposes are, as a rule, 
solved numerically. The increase in efficiency of computers has allowed us 
to put into practice many new and effective methods of solution of inverse 
problems. Therefore we have focused the book on an account of methods 
oriented towards numerical solutions. We have not included analytical 
methods because they are not so effective for optimization of designs of real 
devices or physical properties of materials. Furthermore, an exposition of 
analytical methods would substantially expand the volume of this book and 
would result in excessive complication. 
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Inverse problems in the theory of electric circuits and in electromagnetic 
field theory have some particular features. We, however, notice numerous 
common features of these problems that allow their exposition to be com­
bined within the limits of one book. In particular, the solution of inverse 
problems in the theory of circuits and in field theory is based on the same 
mathematical apparatus, namely, methods of solution of incorrect problems 
and methods of optimization. This material is presented throughout the book 
from a general point of view. 

Together with well-known methods of solution of inverse problems that 
have been widely used in practice, we have described some methods based 
on ideas borrowed from various areas of science. Generic methods of mini­
mization of functionals, or methods based on the application of neural net­
works can be treated among them. The method of Lagrange multipliers ex­
plicitly considered in the book was found to be very effective for the solution 
of optimization problems in electromagnetic field theory. 

In the first chapter a classification of inverse problems is given with an 
analysis of their properties, and we describe the basic methods for the nu­
merical solution of inverse problems in electrical engineering. In the second 
chapter methods of searching for local and global minima of functionals are 
discussed, as well as methods of searching for the minima of functionals in 
the presence of constraints on the parameters to be optimized. In the third 
chapter we discuss methods of solution of inverse problems in the theory of 
electric circuits. Special attention is given to the solution of stiff inverse 
problems, in particular problems of identification that are characterized by 
the presence of measurement errors. The fourth chapter is concerned with a 
systematic account of the Lagrange Method of continuous multipliers, which 
is applied to optimization in an electromagnetic field characterized by quite a 
large number of parameters. The fifth chapter presents examples that demon­
strate the solution of practical inverse problems in the theory of electric cir­
cuits and in electromagnetic field theory, thus illustrating the effectiveness of 
methods considered in this book. 

Alongside the classical methods of solution of inverse problems in electri­
cal engineering, up-to-date methods have also been investigated by the au­
thors themselves within the limits of their scientific activities, as well as by 
their colleagues: A.Adalev, A.Potienko, T.Minevich, A.Plaks, M.Eidmiller 
and others. The authors have also used the results of scientific studies of re­
search workers of the faculty of Fundaments of Theoretical Electrical Engi­
neering in the State Polytechnic University, St.-Petersburg (Russia) con­
cerned with the solution of problems involving the analysis of electric 
circuits and electromagnetic fields. These include using the method of the 
scalar magnetic potential for the analysis of direct current magnetic fields 
(K.S.Demirchian). The authors are very grateful to professor K.S.Demirchian 
and professor P.A.Butyrin for useful discussions and valuable advice that 
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helped improve the book and the understanding of distinctive features of the 
solution of inverse problems in electrical engineering. 

The authors express their appreciation to Mr. R.Hogg, Mr. D.Bailey, and 
Mr. M.Repetto for helpful discussion of optimization problems in electro­
magnetics, as well as to Mr. Kh.Partamyan and Mr. B.DeCarlo for their help 
during the writing of the book. 

The authors thank professors I.G.Chernorutski and E.B.Soloviova, whose 
scientific ideas have helped us with the preparation of this work. 

The authors believe that this book will be useful for engineers, scientific 
researchers, postgraduate students and students major in electrotechnology, 
electrical power systems, and other specialties. 

It is hoped that this book will promote further interest in inverse problems 
in electrical engineering among university students, lecturers and research 
workers. 



Chapter 1. Inverse Problems in Electrical Circuits 
and Electromagnetic Field Theory 

1.1 Features of inverse problems in electrical engineering 

When analyzing electric devices, their parameters are assumed to be known. 
To analyze an electric circuit, its topology, element parameters, and charac­
teristics of sources must be specified. Circuit currents and voltages, as well as 
other derived quantities such as real or reactive power, can then be deter­
mined. Similarly, the frequency-dependent or transient characteristics of the 
circuit can be determined. 

In the analysis of electromagnetic fields, the sources (e.g. currents and 
charges), their distribution in space and their time dependences are typically 
specified. Furthermore, such functions as /jix,y,z) (magnetic permeability), 
s{x,y,z) (dielectric permittivity) and (j[x,y,z) (electric conductivity), which 

describe the spatial dependence of the properties of ferromagnetic, dielectric 
and conducting mediums, must be specified. Based upon the system geome­
try, the sources and material properties, the differential or integral character­
istics of the field (such as field intensity, flux density) and integral properties 
(such as capacitance, inductance) as well as forces, moments of forces and 
pressures can be determined. 

Electrical engineering problems where the system structure and the proper­
ties of its constituent elements must be determined in order to achieve a 
specified performance are referred to as inverse problems. For electric cir­
cuits, the solution of the inverse problem is the topology of the circuit, values 
of circuit elements parameters, and time-dependent variations of sources re­
quired to achieve a specified circuit behavior [1]. In the case of electromag­
netic fields, an inverse problem would be to determine the spatial distribution 
of sources and materials to achieve a specified field distribution [2]. 

In inverse problems, the parameters of devices are determined from the 
conditions (criteria) contained in the formulation of the problem. These crite­
ria express the desired optimal behavior and/or optimal characteristics of the 
system. Some examples of such criteria are listed below: 

• the reactive power consumed by an electric circuit should have a preset 
value; 
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• the voltage between the nodes of an electric circuit during a transient 
should be less than a preset value; 

• the distribution of the magnetic field strength within a given spatial region 
should be as close as possible to uniform; and 

• the geometry of a conductor cross-section should produce minimum losses 
in the conductor. 

The variables of an inverse problem, i.e. variables which describe the 
characteristics of the device for which the problem is specified, are interre­
lated according to the following operator equation: 

A(p)w = v , (1.1) 

where A is a matrix, a differential operator or any nonlinear operator, 

p = (/?j ,/?2' * • * A ) ŝ ^^ unknown vector subject to definition (e.g. the vector 

of the device optimized parameters or a vector v of sources), 

w = (w, ,^2, • • • ,w^ ) is the vector of variables, and v = (Vj ,V2, • • • ,v^ ) is the 

vector of sources. 
Equation (1.1) provides a means to calculate the variables w of the inverse 

problem for any p. In most cases, a transformation from the variables w to 
some other variables y is necessary to simplify expressions for the criteria of 
the inverse problem. The vector y shall further be referred to as the vector of 
characteristics. The transformation to the vector of characteristics y can be 
presented in the following form: 

y(w,p) = f (w,p), 
where f is frequently a nonlinear vector function. 

When formulating and solving inverse problems the concept of a func­
tional may be used. A functional / is defined as a scalar function determined 
on some set of functions. The terms "functional" and "objective function" 
will be used interchangeably in this discussion [3]. 

As an example, a functional might be the definite integral of the function 

XKA"-^^ (P ,W) or its maximum value in a certain interval. In electrical en-
k 

gineering a typical functional specifies the proximity of the required variable 
y to the function y: 

^(P.w) = | |y-y(p,w)| | . 

Any of the following generally used norms may be applied to characterize 
the proximity of functions y and y [3]: 
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1 
; jh\t)dt 

1/2 \k 

or = max |//(0l, 

where h{t) is an arbitrary function and q - 2,4,-••. Note that when using the 

norm ||-||^, the functional /(p,w) is non-differentiable since the function 

"max" is generally not continuous. 
Let us assume that a vector y of an inverse problem defines the optimal 

characteristics of a device. Then the criterion of this inverse problem can be 
expressed as: 

^ ( P , w ) — ^ m i n . 

Let's consider examples. In the theory of linear DC circuits, the vectors of 
currents I and voltages U in circuit branches correspond to the vector of vari­
ables w, whereas the vectors of current sources J and voltage sources V in 
circuit branches correspond to the vector of sources v. Kirchhoff s equations 
and Ohm's law DI = -DJ , CU = CV, RI = U , can be written as: 

[D 

0 

R 

0] 
c 
- 1 

1 
TI 

zz 

^ - v - ^ ' 

r-D oi 
0 C 

0 0 

J 
V 

w 

where C and D are the matrixes of contours and cutsets of the circuit graph 
and R is a diagonal matrix of the circuit branches resistances. Let objective 
variables be the resistance of the first and second circuit branches; then 
p=(^i,7?2/. Ifthe inverse problem involves finding of such a vector p, which 
makes the voltage transfer factor i^^^''^(p) = L^^//7. closest to a prescribed 

value y = X"//''̂ , then the vector of characteristics of the inverse problem con­

tains only one element y (p) = Kfj''"* (p) , i.e. it is a scalar. The criterion of the 

inverse problem can be written down, for example, as: 

| 4 ' "» -A:<*">(p) | ^^min . 

Let's consider an electrostatics problem. The vector w is formed by the po­
tential (p of the electrostatic field created by electric charges in nodes of the 
grid. Then the vector v is formed by charges with density p located in the 
grid nodes. These quantities are connected by the equation: 

div(6'grad^) = - p . 
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where 6r(x,j^,z) characterizes the medium distribution. The operator A in 

this problem is represented by div(6:grad) . Let the problem be finding of an 

6-(x,j^,z) value, which makes the electric field intensity vector flux, 

j ;(p) = ^ ^ = |(-grad^)<is through a surface S, reach its maximum. Hence, 
s 

the vector p is formed by 6* values in each mesh of the grid. Then the criterion 
of this inverse problem can be expressed as: 

- | ; ^ ( p ) | - ^ ^ m i n . 

In the circuit theory, and in the electromagnetic field theory, inverse prob­
lems of various types have to be solved [1,2]. Their definitions may differ es­
sentially. Problems of each type have features that should be taken into ac­
count in their solving. 

Let's examine in more detail different types of inverse problems that can 
be solved in electrotechnics. These problems can be divided into groups of 
synthesis and identification problems. Furthermore, the synthesis problems 
involve problems of structural and parametrical synthesis. Problems of diag­
nostics, macromodeling and defectoscopy are related to the group of identifi­
cation problems. 

Synthesis Problems 

An electric circuit synthesis problem, i.e. creation of an electric circuit with 
given properties, includes two stages: searching of the circuit structure and 
searching of parameter values of its elements (the vector p). A known prob­
lem of such type is the synthesis of electric filters when the structure and pa­
rameters of the filter are determined according to a given ideal gain-
frequency characteristic K(co). Since construction of a filter with ideal char­
acteristic K{co) is not possible, search for electric circuits that have character­
istics close to the ideal by one or several criteria of proximity is necessary. 

In the electromagnetic field theory, the synthesis problem involves finding 
a source characterized by the value v, which creates a field closest to the 
sought field. For example, the required field should be uniform within some 
area or generally have a prescribed distribution in space and/or in time along 
a line, on a surface, or in a volume. In this case, the required currents or 
charges form the vector p. Similarly, the search problems of media distribu­
tions generally determine structures and body shapes, which make the field 
or some of its integrated characteristics least of all differ from the prescribed 
quantities. In that case, the vector p is formed by the sought distribution of 
the media characteristics. 

In electromagnetic field synthesis problems, sometimes the forms of do­
main and subdomain boundaries can be sought. Such problems are referred to 
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as mobile boundary problems. Finding of a body form for a prescribed struc­
ture can also be considered as a problem with an unknown, or as a mobile 
boundary problem. 

In many problems of electric circuits or electromagnetic field synthesis 
that can be solved in practice, usually a prototype of the required circuit or 
the electrical device is known. In the problem of improvement of prototype 
properties, the search of its optimal (best) parameters is referred to as a prob­
lem of optimization or optimal design. 

The same problem can be considered either as a problem of optimization, 
or as a synthesis problem. Usually the term "synthesis" is used in electric cir­
cuits theory and the term "optimization" is more often applied in the electro­
magnetic field theory. 

Identification Problems 

An identification problem is in finding of mathematical models of electric 
devices. They are usually built on the basis of a known data set, connecting 
the input and output characteristics of the object. In most cases, the set of 
such data is limited, so the resulting mathematical model describes the device 
with an error. 

Problems of diagnostics of electric circuits are related to the identification 
problems. In this case, the problem is in finding the kind of defect and its lo­
cation in the circuit on the basis of the measured currents and voltages, as 
well as in finding of the deviations of parameters of circuit elements from 
their prescribed values. 

In macromodeling problems, it is necessary to construct mathematical 
models of the electric devices on the basis of available sets of input and out­
put signals of the devices. In macromodeling the device is considered as a 
multiterminal network. The macromodel handles only "external" variables, 
whereas the behavior of "internal" variables is not reproduced. 

Solving an identification problem in the electromagnetic field theory re­
quires distinguishing the unknown distribution of sources or media, on the 
basis of data of field measurements at some surface. In such problems, one 
must suggest about properties of media and the sources located in areas inac­
cessible to measurements, on the basis of field characteristics obtained by 
measurements on an accessible surface. 

Such problems should be solved, for example, in geological prospecting 
when the distribution of electric potential measured on the ground surface al­
lows identifying the media structure under the ground surface. In crack detec­
tion problems (nondestructive testing), the cracks in the metal are identified 
by the measured distribution of eddy currents and induced voltages. 
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1.1.1. Properties of inverse problems 

Despite the wide variety of inverse problems in the electric theory, they can 
be characterized by some general properties, which we shall discuss further. 
Some of these properties are close to the properties of analysis problems. At 
the same time, inverse problems possess a number of inherent features 
[4,5,6]. 

Restrictions 

One of the most important properties discussed below is related to the avail­
ability of conditions imposed on the problem's desired solution. For inverse 
problems, the presence of restrictions of technical and geometrical character 
is typical. The former are defined by the allowable values of parameters and 
characteristics of circuit elements. For example, resistance, inductance, and 
capacity of elements can be within certain limits. Parameters of real electric 
circuit elements cannot be lower or higher than some values. The loss power 
W in resistors and field strength E on surfaces of conducting bodies should 
not exceed allowable values. The dielectric permittivity of substances, as 
well as their other physical properties, lay within certain limits. It cannot be 
less than absolute dielectric permittivity of vacuum and practically cannot 
exceed a certain value. Due to restrictions of geometrical character, the sizes 
of bodies cannot go beyond set limits. 

Non-uniqueness 

Inverse problems can have non-unique solutions. For example, a voltage gain 
coefficient K(S) = 1/(TS-^l) can belong to electric circuits with series con­
nected r, L, as well as with series connected r, C (here ^ is a Laplace operator 
and r is a constant). 

As an illustration of properties of the inverse problems, let's consider the 
problem of finding a spatial current distribution which provides the desired 
magnetic field on the surface S of ideal (ju = oo,cr = 0) ferromagnetic half-
space (Fig. 1.1). ^^ S, J^^^y^^ 

Fig. 1.1. Search of current distribution in the area Sj which provides the strength 
Hy(x) of the magnetic field on the line;^=0 
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It is required to allocate the electric current within the area Sj so that the 
normal to the line y = 0 component H^ of the plane-parallel magnetic field 

strength has to vary under the laŵ  H^ (x) . 

This problem has a non-unique decision. Let, for example, the desired field 

H^ (x) be the field created by a linear current located at the point with coor­

dinates XQ, ĵ o inside the area Sj. Then electric currents regularly distributed 

on any conductor of circular section, with the center located at the point with 

coordinates XQ,yQ inside the area Sj, can create on the line y = 0 exactly the 

same field as the said linear current. 
Let Vj be the allowable area of distribution of a current with density 

j(^x,y,z). We can prove that the problem of synthesis of a magnetic field in 

the area K,, limited by the surface 5„ has a non-unique decision. Let's sup­
pose that the areas Vj and Vt do not intersect and the current distributed 
within the area F/, which creates the desired field in the area K„ is known. It 
can be added up with such a current Jo distributed in Vj, which does not cre­
ate any fields in the area Vj. Then the sum of currents with densities J and Jo 
is also a solution. Hence, there is an infinite number of ways of assigning 
sources which are not creating any fields in the area Vi. At any distribution of 
current To within the area Vj, it is always possible to zero the tangent compo­
nent of the magnetic field strength Tf̂  created by this current on the surface 
Si, by placing a layer of current on a surface enclosing Vj. 

Stability 

Alongside with non-uniqueness, the inverse problems in electrical engineer­
ing are characterized by poor stability of solutions, just as in many analysis 
problems. Here, the stability is understood in the sense that for any solution 
of equation type A(p)w = v there is a constant K, so that ||p|| < ^ | |v | | . 

Thus, if for the stable equation A(p)w = v some approximate solution p 

of the equation A(p)w = v is found (owing, for example, to the errors of the 

numerical solution), then ||p - p|| < i^||v - v||. 

In case of poor stability, there are significant changes of the solution for 
small changes of inputs because of a large constant K compared to ||v||. 

Let's consider the problem of solution stability for the problem of finding 
the current density J{x,y) discussed above (see Fig. 1.1), to change the 

magnetic field strength H^ [x). We can write down an equation connecting 

the density J of the sought current with the field H^ (x) on the y = 0 line. 
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The magnetic field strength at points (x,0), created by the current 

di = j{xQ^yQ)dSj, is equal (according to the Biot-Savart law and the method 

of images): 

Ttr 

where r^ -{x-x^ -^yl- The equation for finding of the current density 

J(XQ,J^Q) becomes 

/ nr 

The solution of this equation, which is a Fredholm equation of the first kind 
with a kernel {X-X^JKY'^ -K{X^X^ , is unstable. Indeed, let required func-

h 

tion g{q) in the Fredholm equation of the first kind \K(Qc,(^g(ci)dq = H^[x) 
a 

receive disturbance /\g{q) - exp[jcoq) . We then have: 
h h 

AH^(x)= JK(x,q)Ag(q)dq= ^K(x,q)exp{jcDq)dq = 

-\j(oY exp{j0q)K{x,q)\^'^-{j0Y 
h. 

~dq 

For a large coXhQ quantity AH^ = 0(0'^) is small and, hence, at small dis­

turbances AH^(^X) we obtain large disturbances of the solution Ag(^x). 

Thus, the discussed inverse problem of magnetic field synthesis is character­
ized by instability of its solution. 

Stiffness 

It has been noted above that the solution of inverse problems is reduced to 
finding of extrema of functional. In practice, for the majority of cases the 
search of extrema is carried out numerically. Frequently, any satisfactory so­
lutions cannot be found for comprehensible periods of time even with the use 
of very powerful computers. Such difficulties may occur because of a spe­
cific property of functional under minimizafion, referred to as "stiffness", 
which is discussed below. 

Let's consider an inverse problem aiming to search a vector 

p = {Pi,P2) e n representing the parameters of an electric circuit at which 

its full power S(p) = yjp^ (p) + Q^ (p) at the set sources is minimal. Here P 
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and Q are the active and reactive powers, and 11 is the area of allowable val­
ues for the vector of parameters p. We assume that for all pGn the inequality 
|J2| » P is feasible, that is typical of electric power devices. Then the crite­
rion of the inverse problem can be written as: 

/(p)=p^(p„p,)+eM/',>A)- Px,P2^Y\ ->mm 

Let the expression QiPx^Vi)-^ define some line p, -qi^p-^ (Fig. 1.2). 
As | g | » P, then the rate of change of the /(p) functional along the line 
Pi-^iPi) is much less than along the line perpendicular to it. Therefore, 
the functional value will grow quickly when moving away from this line. 
Functional, which have equal level surfaces of similar form, are referred to 
as ravine or rigid surfaces. It can be shown that the matrixes of second de­
rivatives (Hesse matrixes) of such functionals have eigenvalues with strongly 
differing absolute values. 

The minimum /(p) should be searched along the line p^=q{p2) ^ which 
determines the so-called bottom of the ravine. In the case of using a gradient 
method for searching of the /(p) minimum, the process of minimization 

quickly results to the bottom of the ravine. Due to the inequality \Q\ » P, 
the gradient near to the line p^ =q(^p^^ is almost perpendicular to this line. 
Therefore the further motion to a minimum at the ravine bottom (along the 
line p, = ̂ (^2)) occurs very slowly. 

Fig. 1.2. Level lines of a ravine functional representing an electric circuit having re­
active power considerably higher than its active power 
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In this example the equation of the bottom of the ravine is known and 
therefore can be used to accelerate the search of /(p) minimum. However, 
generally this equation is not known. Therefore, there are serious obstacles to 
using gradient methods for minimization of ravine functionals. 

Determination of the stiff functionals will be discussed further in Chap­
ter 2. As previously noted, the Hesse matrix of a rigid functional has strongly 
differing eigenvalues. Let's consider the properties of these matrices in more 
detail. 

The sensitivity of the equation Aw = v solution to the change of Av of its 
right-hand member, is determined by the relative change ||AW||/||W^|| of the 
solution w norm at the relative change of the norm of the right-hand member 
||AV||/||V||, where w,v is the exact solution of the equation Aw = v. By use of 

inequality IIAW|| < A"i||Av||, one may come to the following relationship: 

llAvll M< 

cond(A)= 

This shows that the sensitivity of the equation solution to the change of its 
right-hand member depends on the quantity of cond(A) = ||AA|| A"' , re­
ferred to as the conditionality number of the matrix A. For symmetric matri­
ces: 

Un,a.(A)| 
U.JA)!' 

where Z^^^ (A) and X^.^ (A) are the largest and the least of matrix A eigen­
values, respectively. In inverse problems, the conditionality number of the 
Hesse matrix of the functional under minimization or of the equation 
A(P)W = V, obtained by digitization of the problem operator, can lie within 
the limits from 10̂  up to 10̂ .̂ The large conditionality number of the Hesse 
matrix frequently is the reason for the poor stability of inverse problems. 

Multicriterion 

Inverse problems solved in practice are, as a rule, multicriterion problems. 
This property is typical when optimizing the device as a whole, considering 
not only its electrical parameters, but also such properties as, for example, 
weight, operational reliability, costs, etc. It is desirable to create a device that 
has extreme values for each of these properties. For example, the power con­
sumption ĵ i of a designed electromagnet shall be minimal whereas the devel­
oped electromagnetic force y2 simultaneously shall be close to a set value y^. 
Formally, these criteria can be written down as: 
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ll̂ i(W'P)||—r->™n, 

By virtue of contradictory of separate criteria, it is impossible to create de­
vices for which each of them equals its extreme value. 

Discreteness 

One of the important properties of inverse problems in electrical engineering 
is that sought parameters of circuit elements, as well as desired distributions 
of the medium, are not described by, continuous functions. Indeed, a calcu­
lated electric circuit can be realized only using elements with nominal values 
of parameters. The solution of inverse problems in the electromagnetic field 
theory can result in a sectionally homogeneous medium, with non-continuous 
characteristics ju[x,y,z), s[x,y,z), cr(x,j^,z). Therefore, the search of solu­
tions for conditions of discrete-type behavior for the vector p parameters de­
mands taking proper account the non-differentiability of sought after func­
tions. 

For numerical solution of inverse problems, the continuous operators are 
replaced by their discrete analogues. At such transition, it is necessary to take 
into account properties of the discrete equations, which can differ from prop­
erties of the corresponding continuous equations. In some cases, the inverse 
problem which is described by the continuous equation A(p)w = v has a 

unique solution, however the solution of the corresponding discrete equation 
can be non-unique. For example, at a small number of measured values the 
discrete equation A(p)w = v can have some solutions. In other cases, it may 
have not any solutions at all. 

Work content 

Inverse problems are characterized by high work content during their solu­
tion by iterative methods. Each step of iterations includes a solution of analy­
sis problems for some intermediate value of the vector p of parameters. The 
number of parameters, i.e. the number of vector p components can reach tens 
of thousands, which is typical for problems concerning the search of medium 
distributions in the electromagnetic field. 

Incorrectness 

Above-mentioned properties of the inverse problems in electrical engineering 
allow concluding, that in majority they belong to a class of so-called incorrect 
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problems. The solution of the equation A(p)w = v is a correct problem if 

the following conditions are true: a) the solution of the equation exists for 
any right-hand member, b) the solution is unique, and c) the solution depends 
continuously of the initial data, i.e. the right-hand member v of the equation 
[6]. This implies that for the above-considered problems, these conditions 
can be violated. Therefore, their solution requires application of special 
methods. 

1.1.2. Solution methods 

In electrical engineering, inverse problems are solved by both analytical and 
numerical methods. The opportunity of an analytical solution is attractive be­
cause it does not require (or required only at the final stage of the solution) 
carrying out time-consuming numerical calculations. In some elementary 
cases, it is possible to establish analytic connections betw^een the sought after 
parameters of the device and criteria of the inverse problem. Then the inverse 
problem becomes essentially simpler, as the analytical solution of the equa­
tion A ( P ) W = V is actually used. An example of such a problem is the search 

of field sources distributed in a homogeneous linear medium. If relations be­
tween density of the source and the strength of the field created by it are 
known, then the so-called direct methods can be applied. 

Furthermore, we shall examine only numerical methods of solution of in­
verse problems in electrical engineering. 

Narrowing of the solution searching area 

Let's consider an approach which allows narrowing of the area of required 
solutions with the purpose of reducing the initial inverse problem to such one 
that has a unique solution. This approach uses a priori data concerning the 
properties of solutions. These data usually appear as restrictions for the solu­
tion search area and allow achieving its uniqueness in many cases. 

For example, the problem of choice of the unique solution for the above 
considered synthesis problem of circuit voltage gain coefficient 

K(s) = could be solved by comparison of its possible solufions. There-

fore, if from the technical point of view it is expedient to construct electric 
circuits without inductive elements, then the area of solutions in view of this 
criterion is narrowed. As a result, it is possible to find a circuit with resistors 
and capacitors. To obtain a unique solution it is expedient to also impose an a 
priori condition of minimality of the number of its elements. 
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The restrictions of integrated characteristics, such as the volume of used 
materials, e.g. the copper in wires or iron in magnetic cores, the losses power, 
weights of the devices, etc. can be attributed to a priori data for narrowing 
the area of possible solutions. Let, in the above considered problem (see 
Fig. 1.1), the required field H^^i^x) be a linear current field. It has been 

shown that this problem has a non-unique solution. However, it becomes a 
unique solution under the additional condition of minimum cross-sections Sj 
for current-carrying wires. 

In some problems, when searching for a particular substance distribution 
in an electromagnetic field, the area of possible solutions can be narrowed by 
entering restrictions on the accuracy of processing of bodies' surfaces. 

Thus, narrowing the search area of the solution by use of the information 
related to its properties in some cases allows obtaining unique solutions of 
inverse problems. 

Methods of regularization 

Let's examine inverse problems relating to the search of a distribution of 
sources forming the vector v. In electric circuits, they are represented by cur­
rent and voltage sources, and in the electromagnetic field, by densities of 
electric charges and currents distributed in space and time. In this case, in the 
equation Aw = v we accept p = v , and the vector w is considered a preset 
value. For the equation Aw = v we shall write it down as: Bp = w , where 

B = A ^ The right-hand member w in the last equation is a preset value, 
whereas the quantities p included in its left-hand member should be found. 

As it has been shown above in the study of stability properties of the in­
verse problems, a small error in calculation of w can result in large errors of 
the solution or even to its absence. In particular, for diagnostics problems the 
right-hand member of the equation Bp = w is determined according to re­
sults of measurements with some error. In such cases, it is expedient to 
search not the exact, but the approximate solution. 

Under the approximate solution of the equation Bp = w , referred to as 

generalized or quasi-solution, the solution is assumed at which the norm of 

discrepancy ||Bp - w|| of the equation reaches its exact limit. The quasi-

solution of the equation Bp = w , at the approximate right-hand member w 
always exists, as against its exact solution. It simultaneously delivers a mini­
mum to the functional 

h 

l{p)=l[Bp{q)-y/iq)fdq, 
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where q - are time (for electric circuits) and/or spatial (for electromagnetic 
fields) coordinates. 

Methods of regularization are applied to find stable quasi-solutions for in­
verse problems. It is well-known that the problem of the solution of the op­
erational equation Bp = w can be reduced to the problem of search of a 

minimum for the functional / (p ) . Applying the method of weighed least 

squares results in the functional 
h 

/(P) = |[Bp(?) - <N{q)-f p{q)dq, p{q) > 0 , 
a 

where p[q)>0 is positive on an interval a, and b is the weighting function. 
During regularization of the problem, it is necessary to write down and 

minimize the so-called Tikhonov's functional [6] 
h 

T(p,a) = j[Bp(5) - vfis)fp(s)ds + aQ(p), 
a 

where Q(p) is a specially selected positive functional, referred to as the sta­

bilizer, a>0 An particular, it can be the functional 0(p) = |p| = X | A | • 
k 

As it was noted above, at the numerical solution of inverse problems con­
tinuous operators shall be replaced by their discrete analogues. After this re­
placement, we come to a system of algebraic equations having the form 
Bp = w . Let's consider an application of the regularization procedure when 
solving this type of system of discrete equations in which the vector p is the 
sought quantity. 

When using the regularization procedure for solution of the equation 
Bp = w, a search of a vector p from the condition 

/(p) = ||Bp-w|| +<^||p-Po|| >min shall be carried out. Here, a is the 

regularization parameter; po is some given vector that, in particular, can be 
equal to zero if there are not any reasons for its choice. Under such stated 
conditions the so-called normal solution of the problem can be found, which 
is an approximate solution. At a «0 vector p will differ little from the 
sought quantity. In this case, the finding of p is reduced to the solution of the 
linear system of equations (B + al)p = w + ap^. Here, 1 is the unity matrix. 

The component a\{a > O) makes the last system well conditional, so it can 

be solved, for example, by the Gauss method. However, in case of large val­
ues for a its solution can strongly differ from the solution of the initial sys­
tem. Therefore, it is necessary to choose those least values for the parameter 
a, at which the conditionality of the regularized systems of equations be­
comes comprehensible. 
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There are various methods for finding the parameter a. In particular, it can 
be sought by the discrepancy of the equation; after calculation of the discrep­
ancy r ( a ) = Bp(a) - w , its norm shall be compared with the known error of 
the right-hand member w of the equation and with the margin error of ma­
trixes ( A B ) P . If the discrepancy norm is larger than these errors, then the 

parameter a is large and needs reducing. Otherwise, it should be increased. 
Generally, the search procedure for parameter a is not so easy and its finding 
more resembles an art, which in order to master is only possible after solving 
numerous types of these problems. 

Methods of solution of underdetermined and overdetermined problems 

When solved numerically, the analysis problems reduce to systems of alge­
braic equations with a square matrix. For the solution of inverse problems, in 
some cases it is necessary to solve systems of equations with a rectangular 
matrix where the number of rows is not equal to the number of columns. 

As an example let's consider the problem of finding of currents /i, 12,..., im 
of the coaxial circular contours creating magnetic induction on their axis z, 
which must change by a set law B{^z) . 

Let's assume the values of a magnetic induction in m points on the z-axis 
are set or obtained by measurements. The system of equations Bv = w con­
necting the magnetic induction (w) in z-axis points and currents of contours 
(v), is a nonsingular square matrix B of the size mxm and with elements 

'^^ 2.m+{z^-z,n 
where p,k = l,m and z^, ẑ  are the coordinates of a point on the z-axis with 

a set magnetic induction, and of the contour k having current 4, accordingly, 
RQ is the contour radius (Fig. 1.3). 

+'1 
t 

+I2 

T 

^ 0 

z 

Fig. 1.3. Search of radii and coordinates of loops with currents which provide a 
given distribution of the magnetic induction along the z-axis 
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The solution of the system Bv = w can be written down as v = Aw, (note, 
that B = A-'). 

The number of points on the axis (q - by designation) can be both more or 
less than the number m of contours. If the currents are found by results of 
measurements of the magnetic induction, then the proportion between num­
bers q and m is determined by availability of axis points for measurements. In 
such problems, usually q>m An practice, sometimes it is required to obtain 
prescribed dependence B{z) on the axis z, having a limited number of con­
tours with currents. For those cases the criteria is the same q>m . The ma­
trix B in the equation Bv = w for q>m is rectangular and vertically ex­
tended. If the measurement error of the magnetic induction can be neglected, 
the system of equations Bv = w for q>m has an exact solution. However, 

in the case of setting arbitrary values for magnetic induction 5(z ) at ^ points 
on the axis z, the system of the algebraic equations at g > m may lack any 
solutions. For example, at m=l, i.e. when we have only one contour with a 
current, at ^ = 2 it is not possible to find a satisfactorily accurate solution, if 

on two points of the axis the magnetic induction should have different signs. 
In the cases where the number of contours m with the sought currents is 

more than the number of points q of axis, at which the induction should have 
preset values (^ < w), the matrix B of the equations system is also rectangu­
lar, but is extended horizontally. The system Bv = w will thus have infinitely 
many solutions, so it is possible to add them up with equations imposing addi­
tional conditions for the choice of sources (for example, on radii of contours or 
distances between them). Such conditions allow us to obtain a unique solution. 

If the matrix B is square and nonsingular, i.e. its determinant is not equal to 
zero, then there is an inverse matrix to it and the sought vector can be found by 
the expression v = Aw. For the rectangular matrix B, the inverse matrix does 
not exist. When solving equations with rectangular matrices the so-called gener­
alized or pseudo-solutions must be sought. If the number of rows of the matrix B 
is more than the number of columns, the generalized solution can be found as the 

solution of the system of equations B^ Bv = B^w , (v = ( B ^ B ) B^W ), derived 

by multiplication of the initial system from the left by the transposed matrix B^, 
since in inverse problems the matrix B^B is usually nonsingular. 

On the other hand, if the matrix B is rectangular with a number of rows 
less than the number of columns, then the matrix B^B is a singular matrix 
and the above-considered method of solution cannot be applied. In this case, 
obtaining a solution for the so-called pseudo-inverse matrix B^ should be 
used. It can be shown that the matrix B^ is uniquely determined by its follow­
ing properties. BB B=B, B BB =B , (BB )^=BB , (B B)^=B B. 
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With the use of a pseudo-inverse matrix, the solution of the system of 
equations Bv = w can be represented as: 

v ^ B V + a -B- 'B)^ , (1.2) 

where ^ is an arbitrary vector. The first term of the solution v^ = B^w corre­
sponds to the solution v with the minimal Euclidean norm; therefore, this so­
lution is frequently referred to as the solution by the least-squares method. 

Note that the form of Eq. (1.2) for the solution is rather general. So, if B^B 
is a nonsingular matrix, then at ^ = 0 Eq. 1.2 gives the earlier obtained solu­
tion v=(B^B)'^B^w. If B is a square nonsingular matrix, then the solution is 
V = Aw. 

Methods of search for global and local minima 

One of the features of inverse problems in electrical engineering is that the 
objective functions have, as a rule, a non-unique minimum. In most cases, it 
is impossible to assert a priori the existence of several minima. Therefore 
finding of a parameters vector delivering a minimum to the functional does 
not mean that there is no other parameters vector at which the objective func­
tion has a still smaller value. 

Methods used for finding of the global minimum demand much more time 
than methods for finding of a local minimum. Indeed, at the worst it is neces­
sary to find all local minima, and then by their comparison allocate the global 
minimum. To reduce the search time for the global minimum, methods of 
casual search or entering elements of randomness in the search algorithm can 
be applied. The most widely used methods of search of the global extremum, 
namely the method of simulated annealing and the evolutionary method, are 
discussed in Chapter 2. 

Solution methods of multlcriterlon problems 

Each of the criteria of an inverse problem should be complied with as a result 
of search for the optimum parameters, and can be considered as a component 
of some vector. As stated above, by virtue of discrepancy of some criteria 
finding of parameters at which all components of a vector simultaneously ac­
cept extreme values is impossible. Therefore, for a found solution one or sev­
eral criteria can be complied with, while the others cannot. 

To compare several solutions that comply with various criteria the following 
reasoning can be used. The solution is considered effective, if at improvement of 
any criterion there will be at least one other criterion, which thus will worsen. In 
others words, if for a given vector of parameters the improvement of any of crite-
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ria results to worsening of any other criterion, then this vector of parameters 
gives an effective solution. The area of all effective solutions is defined by the 
solution of the problem of multiobjective optimization. The finding of the area of 
all effective solutions demands a great deal of calculations. Therefore, in practice 
usually only some points belonging to it are found which then are regarded as the 
sought solution. To find these points the vector of criteria shall be reduced by 
means of various methods to a scalar for solving the subsequent unicriterion in­
verse problem by known methods. Further examination of the problems of mul­
tiobjective optimization shall be discussed in Section 2.5. 

In conclusion, let's summarize the basic features of the inverse problems 
in electrical engineering. 

The basic types of inverse problems are the problems of synthesis and 
identification. The synthesis problems include stages of structural and para-
metrical synthesis that are referred to as parametrical optimization. Problems 
of identification include macromodeling and diagnostics. 

Inverse problems are characterized by the following properties: they are 
multicriterion problems with non-unique solutions, poor stability, discrete­
ness of sought values and large work content. In mathematics, they are re­
lated to incorrect problems. 

1.2 Inverse problems in electric circuits theory 

Inverse problems in electric circuits theory are usually referred to as synthe­
sis problems [7, 8, 9]. Standard synthesis problems involve creating a circuit 
possessing a set of specified properties. In this section basic types and fea­
tures of inverse problems encountered in practical electric circuits theory are 
considered. Macromodeling and identification problems are also discussed. 

Furthermore, the inverse problems of electric circuits theory are consid­
ered in the following sequence: 

• structural synthesis; 
• parametric synthesis (parametric optimization); 
• macromodeling; 
• parameters identification. 

1.2.1. Formulation of synthesis problems 

Let's consider an electric circuit with N inputs and M outputs. Let 

v = (v,,V2, ...v^) be the vector of input signals (actions) and 

W = (W, ,W2 ' - "^M) ^^^ vector of output signals (circuit responses). We as-
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sume that the vector v belongs to the set of allowable input signals Sy, and the 
vector w to the set of output signals s^. Signal transformation by the electric 
circuit will be presented by the operator/ carrying out mapping of the set ̂ v 
onto the set v̂̂ : (f: Sy-^s,,). 

Let us for example say that the input and output signals are sine waves of 
the same frequency. Then their sets represent spaces of vectors of complex 
amplitudes and dimensions N and M, respectively. The operator/in this case 
can be characterized by a complex matrix A, such that: 

VvG^^, w e 5̂^ Aw = v . 

The last relationship does not impose any restrictions on whether the ma­
trix A will be realized in a class of linear, nonlinear or passive electric cir­
cuits. It does not limit the number and types of constituent elements of the 
synthesized circuit. That is, it allows using bipolar, tripolar and/or two-port 
(e.g. transformers) elements, etc. at synthesis. Similarly, the amplitudes of 
the input and output signals are not limited. 

To formulate synthesis problems, sets v̂, s^ and the operator / should be 
characterized more comprehensively. Thus, for the example presented above 
within the sets v̂ and 5*̂ , subsets Sy and S^ of sine wave signals with ampli­
tudes K _ < F ' < F and «^_ </^ < ^ ^ ^ . where F _ , F , ̂ _ , W^̂ ,, are 

min max min max " mm " max ' mm " max 

given quantities, can be allocated. Further on within the set O of operators / , 
carrying out the transformation/: S^-^S^, a subset F of operators that are real­
ized, for example, by linear circuits, containing only bipolar elements and not 
containing inductance coils, can be allocated. 

This process that involves narrowing v̂, •s'w, ^ to S^, Sy^,, F represents the 
"engineering" phase of the synthesis problem solution. At this stage any re­
quirements concerning the designed circuit, including inconsistent ones, can 
be formulated. 

In electrical engineering it is customary to group devices according to their 
functional purposes. Transformers, generators, amplifiers, rectifiers, inverters, 
filters, etc. can be treated as examples of such groups. Assignment of a device 
to one or another group allows simplifying the synthesis problems considera­
bly. Specific features of devices in each group allow offering sufficiently nar­
row sets of input and output signals and reducing the element basis (i.e. de­
scribing the operator F properties in greater detail). So, for example, for the 
synthesis of filters, the set of elements used can consist only of resistors, con­
densers, plus current and voltage controlled sources. At synthesis of rectifiers 
only nonlinear elements with switch type voltage-current characteristics can be 
considered, etc. At the same time, the operator F simplifies limits to the range 
of circuits that can be obtained as a result of solving the synthesis problem. 

Let's assume that the "engineering" phase of the synthesis problem solution 
is completed and sets S^, S,, and the operator F have been determined. Then the 
problem of synthesis of the required electric circuit can be formulated as fol-
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lows: to find the structure and parameters of an electric circuit, which imple­
ments the operator F mapping the set Sv onto the set S^ (F: Sv -^S^). 

Thus, the formulated synthesis problem has the properties of inverse prob­
lems indicated in Section 1.1. In particular, the operator F implementing the 
required mapping, as a rule, is not unique. Let's consider definitions of in­
verse problems in more detail. 

Structural synthesis of electric circuits 

The problem of structural synthesis involves finding of the form of operators 
F that allows carrying out the required mapping F: Sy->Syi; for the sets of in­
put and output signals. One of the important and intricate challenges arising 
at structural synthesis involves providing the realizability of the operator F 
for a class of devices that are available to the designer. 

Let's consider an example. Let sets of input and output signals contain one 
element each: S^:v(t) = \(t), and S^/.w(t), where w(t) is a given function of 

time. We shall assume that v(t) and ^ ( 0 = ^^(0 ^^^ input and output 
voltages of a circuit. It is required to synthesize an operator F that is carrying 
out the transformation Sy-^S^ in a class of linear RLC circuits (Fig. 1.4). The 
specific type of circuit and its parameters are not stipulated at the definition 
of the problem and has been represented as the so-called black box. 

v(t) i Linear RLC circuit 
« n|w(f,p) 

Fig. 1.4. RLCc'ircuit, realizing linear transformation of signals 

Due to the circuit linearity, the input v(/) = l(^) and the output 

w(r,p) = Uj^ (/̂ ,p) signals are connected by the following operator expression: 

A ( P K ( ^ P ) = ^-1(0, 

d" d"~ d 

df ^"-'dr' ^'dt ^' 

where p is the vector of parameters of the operator A and 11 is a space of vec­
tors with positive components. Here it is supposed that in the synthesized cir­
cuit there will be no contours, which are passing only through condensers and 
voltage sources, as well as sections, which are passing only through coils and 
current sources. 
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The circuit output voltage W/̂ (̂ ) can be presented as 

Uj^{t,p) = w{t,p) = A'~\p)'q. The criterion at which the synthesized circuit 

carries out the transformation S^-^S,, can be presented as: 

^^R (0 - ^R Ml ^̂  pen >™"- (1.3) 

Realization of the operator A within the class of linear RLC circuits also 
requires the fulfillment of Roth-Hurwitz conditions [10]: 

p„_,>0, det p«-l 
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•• 0 

•• 0 

•• Po 

>0. (1.4) 

Thus, the first part of the structural synthesis problem is solved; the form 
of the operator that implements the required transformation and fulfills its re-
alizability conditions is found. 

On the following step of structural synthesis we search for the electric cir­
cuit topology and types of elements realizing this operator. Let n=l, then 

P = i^^Po) ' ^^^ ^^^ operator A is given by: 

A ^ (1.5) 

To realize this operator any of the circuits shown on Fig. 1.5 can be used. 
Obviously, other circuits can also be offered. In this example, the choice of 
the operator form is obvious enough because of the simplicity of the prob­
lem; its operator is linear, there are no restrictions on amplitudes of input and 
output signals ordinarily used in practice, and sets of signals contain only one 
element each. Nevertheless, even in this simplified example the solution of 
structural synthesis problem is ambiguous. Experience shows that it is am­
biguous in most cases. 

HZZ} 

^ ( ^ ) | 

X ̂ i w{() 

^ ^ Y Y V ^ 

Fig. 1.5. Electric circuits showing the operator (1.5) 
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The result of the structural synthesis is a set of circuits or operators with 
unknown parameters. Therefore, the feature of structural synthesis problems 
is their incompleteness in the sense that the quality of a solution becomes 
clear only after the solution of the parametric synthesis problem. 

Parametric synthesis of electric circuits (parametric optimization) 

At parametric synthesis it is presumed that the topology of a circuit and types 
of its constituent elements are known. It is required to determine parameters 
of these elements on the basis of inverse problem criteria. As noted above, 
these criteria describe the best, in the accepted sense, of the characteristics of 
a synthesized circuit, and also establish restrictions on the ranges of change 
for its elements, parameters. 

Parametric synthesis can be carried out in time, frequency or operator do­
mains. Solutions of problems in various domains have specific features, 
however their formulations are close enough. 

Let's consider a problem of parametric synthesis in the time domain. Let 
processes in a circuit be described by a system of state equations (the method 
of state variable analysis) 

d\ 
—- = f(r,x,p), te[t^Jl 
at 
y(0 = g(^x,p), x(ro) = Xo, 

(1.6) 

where x(t) is the vector of state variables, p e n is the vector of device pa­
rameters subject to definition, y(t) is the vector of optimized characteristics 
of the circuit which can be calculated by state variables, and f and g are gen­
erally nonlinear vector functions. Numerical or analytical solutions of the 
system of Eq. (1.6) at a certain vector of parameters p allow determining 
x(r,p) in the whole interval [^o'^] • 

Vector y{t) defines the engineering characteristics of an optimized circuit 
accepted at the problem's formulation - e.g. maximal voltages between some 
nodes of the circuit in the whole interval [^o>^]' ^^^ power of electromag­
netic radiation created by the circuit in the surrounding space, sections of the 
conductors connecting the circuit elements, or circuit losses. In some cases 
these characteristics can be time-independent. They can always be found if 
the vector x( / ,p) , r6[^Q,r] is known. 

Let the vector y(/) = (J;, (/), y^ (t),... ,j;,„ (t)) correspond to the best, in the 

accepted sense, of the characteristics of an optimized circuit. Then the de­
pendences 
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y(/,x(^p)) = (;;^(/,x(/,p)), y^(t,x{t,p)l •••, ;;^(/,x(/,p)))' 

can be found from Eq. (1.6) in the interval [tQ,T] at an arbitrary vector p 

(similar to the statement in the last sentence of the previous paragraph). The 
problem of parametrical synthesis w îll consist in determining the vector p 
from the conditions: 

1:^,(0-;^,(^,x(^p))|| p̂ „ >min, k = l,m, t e [t,J]. (1.7) 

It is apparent that the problem of parametrical synthesis is reduced to a 
problem of vector or multicriterion optimization. Criteria (see Eq. (1.7)) can 
be inconsistent. So, for example, at synthesis of an amplifier, y^ (t) can de­
fine the allowable value of the dissipated power, and ^2(0 ? the lower limit of 
the amplifier output power. Both conditions are justified from the engineer­
ing point of view, but are inconsistent, as the increase of output power results 
in a rise of dissipated power. 

The parametrical synthesis problem formulation in the frequency domain, 
as a whole, is close to its formulation in the time domain. Parametrical syn­
thesis in the frequency domain assumes the description of circuit properties 
by means of frequency characteristics; therefore it can only be carried out for 
linear circuits without internal sources of electromagnetic energy. This condi­
tion, on the one hand, considerably reduces the generality of the approach. 
However, on the other hand, it simplifies the parametrical synthesis problem. 

Linear electric circuit's frequency characteristics are defined as follows: 

X(/' ,̂p) = ( ,̂(/'6;,p),Z2(/* ,̂p), •••,X^(/-^,p)y , 

Y(^,p) = (];(^,x(/-^,p)),r2(^,x(/-6;,p)), ...,};(^,x(/-^,p)))'. 
Here o) is the circular frequency, p e n is the vector of electric circuit pa­

rameters subject to definition, Gk and Hk are polynomials of r and q degree 
from 0, with coefficients depending on elements of the vector p; Y is the 
vector of circuit optimized characteristics which can be calculated from 
^k (7^?p)?^ = l,m . The vector Y includes those of the circuit characteristics 
which are defined by technical or economic requirements to the synthesized 
circuit. 

Let the vector Y(6^) = (f;(6;), Y^{co)), '"J^^{co)^ define the best, in the 

accepted sense, of the circuit characteristics in the frequency range [COI,CD^] . 
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Parametrical synthesis problems in the frequency domain involve defining 
the vector p fi-om the conditions: 

||^^(^)-^^(^^P)|| pen >™ >̂ k = \,m, 0e[o)i,O)J. (1.8) 

Apparently, the parametrical synthesis problem (see Eq. (1.7)) in the fre­
quency domain is also reduced to a vector or multicriterion optimization 
problem. 

Elements X,^(jco,p) of the vector X are generally complex functions. 

Elements of vectors Y and Y in Eq. (1.8) and further are assumed real. Such 
assumption does not reduce the generality of the problem formulation. In­
deed, for example, let the following X^(ja),p) = g(o),p)-Jb(o),p) represent 

the circuit input conductivity. Let some optimal values yi{t) = g{o)) and 

y^(^t) = b(o))also be known. Then, in this case the condition of optimality 

(see Eq. (1.8)) can be expressed through real functions: 

n|^(^)-^(^,P)|| pen > ™^ 
1 1 1 - II ,(DG[CDJ,0)J. 

\jb(coyb(cD,p)\\——^ mm 
Due to the linearity of the synthesized circuit, analytical dependences of 

frequency characteristics X^ {jco,p), k = \,m, from the parameters of opti­
mization p and frequencies CD, can be derived. Advanced programs of electric 
circuits symbolic analysis allow obtaining these expressions rapidly and in 
compact forms [11,12]. This feature of the optimization problem solution in 
the frequency domain allows us to speed up the calculation of Eq. (1.8) func-
tionals considerably and to obtain for them, and their gradients rather simple 
analytical expressions. 

Let us consider parametrical synthesis problems in operator domain. As is 
well-known, a formal replacement s <r^ jco allows changing over from fre­
quency characteristics to their images and back. Similarly, a Laplace trans­
formation allows changing over from differential equations in time domain to 
their images. Therefore, the features of synthesis problems considered above 
for time and frequency domains are valid for synthesis problems in operator 
domain. 

It is expedient to carry out parametrical synthesis in operator domain for 
obtaining analytical solutions of inverse problems for rather simple circuits 
and target functions. Such a simple T-shaped circuit has been considered 
above (see Fig. 1.4). Let n = \. The vector p = (̂ ,/>o) of parameters, in­
cluded in the operator A, can be found from the problem is (see Eq. (1.3)) so-
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lution under the limiting conditions (see Eq. (1.4)). Let the solution be vector 

p = (2,4) , then the equation A(p)w;^(/,p) = ^ becomes: 

—ŵ  (0 + 4^^(0 = 2, 
at 

which results in, 

s{s + 4) 
Figure 1.5 shows diagrams of electric circuits that realize the operator A. 

Let's determine the parameters r, R, C of the circuit elements (shown on Fig. 
1.5a) by solving the parametrical synthesis problem for this circuit. The volt­
age on the resistor R is given by 

"" s[sC{r + R) + 2r^-R] 

Comparing Uj^ (^) and Uj^ [s), we obtain a system of equations 

^R = 2, 

C(r + 7?) = 1, 

2r + î  = 4, 

one of the solutions being R=2, r= l , C=l/3. Other solutions are also possi­
ble. As stated above, a typical parametrical synthesis problem has non-unique 
solutions in most cases. 

It was assumed above that required parameters change continuously. It is 
not always true, because in many practical cases they can have only discrete 
values. Rigidly defined series of possible values are typical, for example, for 
electronic circuits parameters. 

The parametrical synthesis problems on a discrete set of parameters can be 
solved beginning with the assumption that all parameters are continuous. 
Then the obtained values can be replaced by the nearest in the series of 
nominal values. Such replacement will worsen the quality of the solution. 
Perhaps, accomplishing a search of extremums in the domain of parameters' 
discrete values, it would be possible to find another, better solution than the 
one obtained by replacement of the optimum parameters by the nearest pa­
rameters in the series of nominal values. 

Another possible way of finding a solution of the parametrical synthesis 
problem with discrete parameters is the use of methods of minimization that 
do not demand differentiation of the functional. Particularly, methods based 
on genetic algorithm [13], related to such methods, are discussed further 
[14,15]. 
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1.2.2. The problem of construction macromodels 
(macromodeling) of devices 

Macromodeling or, equivalently, construction of integrated models of electric 
devices, is close to the above-considered synthesis problems, but it has a 
number of specific features. Integrated models (macromodels) are a conven­
ient and commonly used means for describing functions of complex devices 
and systems. When the equivalent circuit of a device or the system of equa­
tions describing its behavior are rather complex or not sufficiently accurate, 
solving of the analysis problem is impossible. To analyze systems including 
such devices, integrated models are used which allow approximate represen­
tation of signal transformation in the "input - output" mode without detailed 
elaboration of the internal processes. All this, while assuming that macro-
models will be substantially simpler than full models, which are taking into 
account processes running inside the devices. 

a b 

w,{t) 

wAt) 

WM{t) 

W,{t) 

wM 

Fig. 1.6. Modeled subject (electric circuit) a) and its macromodel b) 

Macromodeling is an actual problem, especially for objects lacking full 
descriptions. It can be, for example, a new device without sufficiently inves­
tigated properties. Macromodeling of such devices is sometimes the sole op­
portunity to describe their performance. 

Let the electric circuit for which we intend to construct a macromodel in 
time domain be a multiport with Â  inputs and M outputs (Fig. 1.6). Each 

element v(r) = (vj(/̂ ),V2 (/),..., v^(/^)) of the set v̂ of input signals, and each 

element w(/^) = (w, (r),W2(^),.--,>^A^(0) of the set S^; of time-dependent 

output signals, represents a N- and M-dimensional vector, respectively. 
In general, a circuit macromodel is presented by an operator, mapping the 

set Sy of admissible input (test) signals v on the set S^ of output signals w, F: 
Sv-^Syv. We shall emphasize again the importance of the fact that numerous 
internal variables of the initial circuit do not participate in the macromodel 
synthesis. Therefore, dimensions of vectors v and w used for the solution of 
the macromodeling problem can be much less than the necessary number of 
variables for a full circuit description. 
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The problem of creating a macromodel involves synthesizing an operator 
F and defining its parameters p, which delivers the solution of the system of 
inequalities: 

W = (M;,(0,^2(0, •••, >^M(0)^ v = (vi(0,V2(0, ••', v^(Of, (1.9) 

w = F(v), VGiS,, we5', , , we*S,,, 

where w and S^ are the output signal and the set of output signals gen­

erated by the electric circuit subject to macromodeling, and Sj^,k=- 1,M is the 

error by which the macromodel reproduces the real object properties. 
To reveal the macromodeling object properties one can feed test input sig­

nals v(0 and simultaneously measure the output signals w(0. This is referred 
to as testing of the macromodeling object. To solve a macromodeling prob­
lem the following steps shall be taken: 

• setting the form of the mathematical description of the macromodeling ob­
ject (defining the type of the operator F)\ 

• developing the method of operator F parameters definition by testing re­
sults; and 

• finding the minimal set Sy of test signals, sufficient for definition of opera­
tor parameters with specified accuracy. 

The distinction of macromodeling from synthesis is that the operator F can 
be physically unrealizable. A macromodel should reflect with adequate accu­
racy only the link between input and output signals. Any requirements for its 
realization as a physical device may not be imposed. The freedom of choice 
of the operator F allows offering various general description forms establish­
ing analytical dependence of output signals from the inputs when creating 
macromodels of nonlinear circuits. The most investigated ways of description 
of these operators are Volterra functional series [16,17,18,19,20], Volterra -
Picard series [21] or polynomials of split signals [8]. The relationship be­
tween input and output signals is searched in the form of functional series. 
They can be considered as multivariate polynomial expansion of output sig­
nals. 

Let us consider a simplified case when input v(^) and output w{t) signals 

are scalar functions of time. Then the Volterra functional series gives an un­
equivocal link between input and output signals in nonlinear stationary cir­
cuits with zero initial conditions (on the assumption that the series converge) 
is given by: 
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00 °" °" k 

^(0 = Z \"'\ >̂t(̂ P 2̂' •••' T,^)Y[v(t-T^)dT,dT^...dT^, (1.10) 

where //^(rpr2v, ^A:) is the Volterra kernel of A: order. 
The first summand (^=1) of a Volterra series is the linear convolution in­

tegral corresponding to a linear circuit with a kernel (or pulse response) hi{x). 
The subsequent summands (A:>1) represent nonlinear (with respect to input 
signals) convolutions with kernels hf^^T^.r^^.-.^Tf^), which are the nonlinear 
circuit multivariate pulse responses of A: order. 

When macromodeling nonlinear circuits representations of a Volterra se­
ries kernel in the domain of Fourier-images are frequently used: 

00 CX) 

—00 —00 

k 

where Hj^i^jco^Jco^, —J^k) ^^ ̂ ^̂  Volterra series kernel in the frequency 
domain. 

Links between input and output variables can also be described by means 
of polynomials of split signals [9]: 

w(o=£ i...i;Q,^..,,„[v,(o]^'[v,(o]r.. [vAt)T' ( U D 

where Vj [t), V2 (/̂ ), ..., v̂  (t) are the so-called split signals. The main prop­
erty of these signals is that they are not vanishing, intersecting, self-
intersecting or tangent in any point within their definitional domain. Usually 
values K., i = \,m and m are not very large and do not exceed 10. Higher 
values of these parameters signify a fast increase of model dimensionality 
and complexity of the approximation problem. 

Eqs. (1.10) and (1.11) define the type of macromodel operator F. Coeffi­
cients /ẑ  (r,,r2,..., r^) and C^^..^ are required macromodel parameters 
forming the vector p. Then macromodel creating will include determining 
these parameters by means of measuring (or calculating) circuit responses to 
test signals Vf[t)eS^, ^ = 1,2, • • • (i.e. functions w^ (t) € 5^,^ = 1,2,• • •). 
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Equation (1.10) gives a more general form of a macromodel in comparison 

with Eq. (1.11) since its use allows definition of kernels \(^T^,T2,..., r^) at 

any test signals in the frequency or time domain. When using polynomials of 
split signals, it would be assumed that a set of input signals close to the set of 
signals at which the modeled device works shall be considered. 

One of the remarkable properties of the approach considered above is to 
create macromodels where the required parameters of macromodels are line­
arly included into Eqs. (1.10, 1.11). Indeed, let's assume that the integral of 
the squared difference of the device and model output signals 

CX) 

\h (t) - w, (Oil = |( w* (0 - w, iOf dt 
0 

is used as a norm in the macromodeling problem (see Eq. (1.9)). Then, due to 
the above-mentioned linearity, this functional is quadratic. Since any quad­
ratic functional is non-negative everywhere and has a unique minimum, then 
the problem (see Eq. (1.9)) always has a unique solution. 

This approach to create macromodels has much in common with construc­
tion of so-called neural networks that will be discussed later, in Section 2.4. 
Here, we shall note that the neural network, which approximates a nonlinear 
operator, consists of nonlinear parameters. 

Thus, the process of solving the problem (see Eq. (1.9)) becomes essen­
tially complicated, since it may have (and frequently has) local minima. 

A macromodel must reflect with specified accuracy the object properties 
on a wider class of signals than testing signals. Usually this requirement is 
difficult to make feasible, since there is little a priori information about the 
object. Therefore, it is necessary to be content with the hypothesis that the 
chosen model is adequate. Then an a posteriori check of this hypothesis shall 
be carried out. After acceptance, the model is tested by means of signals that 
are different from those used for its construction. The same signals are used 
for testing the object. Then the congruence degree between model and object 
responses are estimated. This is the same approach as used in neural net­
works. 

1.2.3. Identifying electrical circuit parameters 

Electrical circuit identification is the means of definition of its equivalent cir­
cuit parameters according to measurements of circuit responses to set actions. 
Let's assume that the structure of the circuit (or the type of operator F) is 
known. Then the identification problem turns to a problem of finding of sets 
of input (test) Sy, and output (measured) S,, signals that allow unique identifi­
cation of the circuit parameters. 
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If there are no restrictions imposed upon the sets Sv and iS'̂ , the identifica­
tion problem is solvable and has a unique solution. Indeed, if it were possible 
to apply any test signals to all circuit elements and carry out all necessary 
measurements then the finding of electric circuit parameters would be a triv­
ial problem. To formulate nontrivial identification problems we shall first 
analyze its features. 

Let's consider properties and features of identification for problems regard­
ing passive DC linear circuits. It is assumed that the structure of the circuit, 
that is the circuit graph, is also known. For experimental determination of the 
circuit's elemental parameters, the following is required: 

• to choose a tree in the circuit graph; 
• to connect a voltage or current source to the circuit in an arbitrary point; 
• to measure the voltages (by means of voltmeters) of all branches, corre­

sponding to the circuit graph tree and to calculate voltages of all remaining 
branches; 

• to measure the currents (by connecting ammeters) of all branches, corre­
sponding to circuit graph links and to calculate currents in all remaining 
branches; and 

• to determine the resistance of each of the branches as the ratio of the 
branch voltage to its current. 

In most practical cases using this algorithm for a solution is unacceptable. 
The main difficulty is the necessity to connect ammeters into circuit 
branches. For the majority of devices (for example, printed-circuit boards) 
the connection of ammeters is difficult or even impossible. In most cases 
only the circuit nodes are accessible for measurement. Therefore only the 
voltages between circuit nodes can be measured. So for solving an identifica­
tion problem, several voltage measurements must be performed and circuit 
parameters shall be calculated by the results of the measurements. 

Let's consider an example of the identification problem solution for the 
circuit shown in Fig. 1.7a. Circuit nodes accessible for connection of measur­
ing instruments are indicated as numerated points. The following experi­
ments shall be performed: 

• by connecting a voltage source Kto the node 1 (Fig. 1.7a.), the current 7,̂ '̂  

and the voltage V^^^ can be measured (Fig. 1.7b.). In this case the problem 

of ammeter connection does not arise, as it is connected in a branch, exter­
nal with respect to the identified circuit; 

• by connecting a known current source J to the node 2, the voltages 
F/Ô ^ and V^Q^ can be measured (Fig. 1.7c.). 
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Fig. 1.7. Measured electric circuit a) and circuit diagrams for connection of measur­
ing instruments and sources b), c) to determine parameters of its elements 

Values Ri and i?3 are determined from the following system of equations 
(assuming that ammeters and voltmeters are ideal): 

' i?l R, ^° 

R, '" R, '" 

Hence, 7?i and R^ are found and then R2 is determined from the relation: 

To solve this problem, other circuits for connection of sources and measur­
ing instruments can be used that are different from the ones considered 
above. That will change the calculation algorithm of circuit parameters ac­
cordingly. This example shows that identification of parameters, even in such 
elementary cases, requires statement and performance of a series of experi­
ments, as well as finding an algorithm to calculate circuit parameters by ex­
perimental results. 

In practice various restrictions are imposed upon the choice of sources, 
measuring instruments and their connection circuits. Here are some examples 
of the most general rules and restrictions: 

• sources should be such that at their connection, currents and voltages could 
not damage the circuit; 

• the calculation algorithm of circuit parameters should be numerically sta­
ble for the use of experimental data; and 

• experiments and the number of used instruments should be as few as pos­
sible. 

Properties of measuring instruments also highly affect the results. There­
fore, one of the features of these problems is the use of instrument mathe­
matical models. Specific problems at identification arise when measuring in­
struments are nonideal and their readouts are inconsistent, which results in 
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ambiguity of the solution. Additional engineering information frequently al­
lows removing solution ambiguities [22]. Let's consider an example. 

In the circuit shown in Fig. 1.8 let it be necessary to determine values of 
resistors Ri and R2 on the basis of known voltage Vo of the source and read­
ings of ammeters I, ,1^ and I3. Readings of ammeters are inconsistent: 

Ij +12^13. Furthermore, there is a priori information that ammeter A3 is a 

high-precision instrument, and ammeters Ai and A2 have identical accuracy 
ratings and their readings are less valid. 

R^ i, 

Fig. 1.8. Circuit diagram illustrating the connection of ammeters for different classes 
of accuracy 

Taking into account that ammeter A3 is a high-precision instrument, for the 
currents z'l, /2 in the circuit we can write down: 

/, + / 2 = l 3 - (1.12) 

Eq. (1.12) can be supplemented by the condition of minimum mean devia­
tion of required currents /i, 12 from readings of ammeters I,,l2: 

1 - ^ 
\ 2 

->mm. (1.13) 
V ^2 7 

Combined solution of Eqs. (1.12) and (1.13) allows us to find currents /i, 
^2: 

1 ~ 1 T2 . T2 ' 2̂ ~ h T2 . T2 I ' + I ' 2 -2 j2 j2 (1.14) 

Let's estimate the effect of using Eq. (1.14). Let z\ =5 A, Zj =1 A be the 
true values of currents. Measured values by ammeters are Ii=5.3 A, 
l2=1.05 A, and l3=5.95 A (I, +I2 :?^l3). Currents /, =4.92 A, /̂  =1.03 A 
are calculated from Eq. (1.14) and they are essentially closer to the true val-
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ues than originally measured currents. Using thus found /i, /i values, resis­
tances R\ and R2 can be calculated: 

^ \ - \ h -\(h + 2̂) D _ ^0 - W i -\ih + 2̂) 
^ 1 : — ^ 5 ^ - : 5 

z, ^2 

where r. ,r. ,r. are the resistances of ammeters. 

Use of a priori information allows us to remove ambiguous interpretations 
of experimental results and to obtain more accurate solutions. 

When solving problems of this type the way of using available additional 
information is important. Its correct use and good mathematical description 
allow us to obtain correct solutions. Examples of such additional information 
can be: 

• nameplate data of the electric circuit elements, such as maximum devia­
tions of the elements' parameters from their nominal values, aging rate of 
elements, temperature-dependence of parameters, etc.; 

• for periodical measurements - results of previous measurements; or 
• understanding of the devices' operation principle. If, for example, there is 

a priori information that the device is a properly functioning filter, then 
the condition Uin» Uout is valid within its stopband. 

In summary, let's note the basic features of inverse problems in electric 
circuits theory. In electric circuits synthesis problems it is possible to allocate 
phases of structure synthesis of a circuit and synthesis of its elements' pa­
rameters. The structural synthesis phase is reduced to the search of circuit to­
pology. The characteristic feature of this phase is the solution ambiguity. The 
interrelation of synthesis phases is apparent by the fact that the structural syn­
thesis can be estimated only after finding of the circuit elements' parameters, 
i.e. after the conclusion of the parametrical synthesis phase. 

1.3 Inverse problems in electromagnetic field theory 

Field synthesis and identification problems in electromagnetic field theory 
are regarded as inverse problems. As noted above in Section 1.1, synthesis 
problems are frequently referred to as problems of optimization. 

Statement and solution of inverse problems in connection with calculation 
of electromagnetic fields are of interest for designing, manufacturing and 
modernization of electrical devices such as electrophysical facilities, electri­
cal machines and equipment, high-voltage installations, induction heating 
apparatus, etc. [2]. 

Inverse problems to be solved in these areas can be divided into two 
groups: search of spatial and time-dependent distributions of field sources. 
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and search of shapes and structures of bodies affecting electromagnetic field 
distribution. Examples of problems of both groups are discussed below. 

Designing active shields intended for reducing field strength is a typical 
problem for finding spatial distributions of sources. Another similar type of 
problem is the search for the forms of current coils in order to obtain a speci­
fied field within a certain area. 

Problems of finding the bodies' shapes and structures arise when defining 
the shapes for pole faces in electric machines and devices, or when searching 
for optimal shapes for high-voltage electrodes, electromagnetic shields, and 
waveguides. So-called moving boundary problems when determining only 
the shape of interface between mediums with various properties, without tak­
ing interest in their inner structure are also related to problems of this type. 

In this section, the features of inverse problems in electromagnetic field 
theory will be examined on the basis of general statements given in Section 
1.1. Particularly, characteristic types of minimized functionals and operators 
associating vectors of input and output variables will be discussed as well as 
features arising from the solution of inverse problems for static and quasi-
static electromagnetic fields. 

For inverse problems in electromagnetic field theory, similar to electric 
circuits theory, input and output influences (or quantities) can be defined. 

The vector v = (vj,V2,...,v^) of input actions defines densities of extraneous 

sources of currents J[x,y,z,t) and charges/7(x,j^,z,^). The vector 

w = (wj,W2,...,w^) of output quantities defines field potentials or strength. 

In the equation Aw = v connecting these quantities, the operator A can be 
both differential and integral. This operator's type depends on the selected 
way the electromagnetic field analysis problem is described. 

Output quantities depend on both the input vector v, and on the parameters 
vector p that defines medium properties and its spatial distribution. In par­
ticular, this vector of parameters p can define the spatial distribution of di­
electric permittivity 6*(x,>',z), magnetic permeability//(x,j^,z), or specific 

electric conductivity (T(X,;;,Z) of media. These quantities are designated be­

low as^(x,j^,z). In the equation Aw = v, vectors of parameters p and input 

actions v appear in different ways; vector p is a part of operator A whereas 
vector V is not. Furthermore, finding p and v vectors are problems which 
have different degrees of complexity. As a rule, searching for the spatial dis­
tributions of media is more difficult than finding the input actions vector, i.e. 
densities of currents J(^x,y,z,t) and charges p[x,y,z,t) of extraneous 
sources. 
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In practice, it is necessary to solve both types of problems, i.e. searching 
for spatial distributions of media characteristics ̂ (x,;;,z) and distributions of 
extraneous sources (currents and charges). In some cases searching for only 
media distributions cannot satisfy inverse problems criteria. These problems 
require simultaneous finding of the media characteristics 6;//, cr and densities 
of currents y(x,j;,z,r) and charges/7(x,j^,z,r) of extraneous sources. 

1.3.1 Synthesis problems 

As noted in the previous section, synthesis problems in electric circuit theory 
can be divided into two groups of structural and parametrical synthesis. Simi­
lar divisions can be applied for synthesis problems in electromagnetic field 
theory. Problems of structural synthesis involve finding the general form of 
the parameters vector p. 

Structural synthesis 

Let's consider the stage of structural synthesis at solution of the inverse prob­
lem of finding vector p which describes the media spatial distribution. Search 
of this solution can be performed for various classes of media. If the purpose 
of the inverse problem is only to find the bodies' shapes, then solutions can 
be searched in the class of homogeneous media. When looking not only for 
shapes, but also for structures of bodies, it may be necessary to search for so­
lutions in piece wise homogeneous or non-homogeneous media classes [23]. 
Then both linear and nonlinear isotropic or anisotropic media can be used. In 
the latter cases the parameters vector p includes the quantity (^(x,j ,̂z), which 

describes the media properties. It can be a scalar or tensor constant, depend­
ing on field strength. Selection of medium type to be used at synthesis de­
pends on the requirements of the device, as well as on practical realizability 
of the solution. Defining a media class subsequently used for finding a solu­
tion can be considered as a problem of structural (topology) synthesis. 

The structural synthesis stage also should be realized when searching the 
input actions vector v. 

For example, when searching for currents to obtain a specified distribution 
of magnetic induction on the axis of a magnetic system (see Fig. 1.3) the type 
of magnetic field sources should first be defined. They can be separate cur­
rent-carrying coils, coaxial solenoids having finite lengths with various radi­
uses, or sets of permanent magnets. 

At the first stage of an active screen design, the winding type (for example, 
concentrated or distributed coils) and its spatial layout (single-layer or multi­
layer) should be selected. 
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As distinct from problems of structural synthesis in electric circuits theory, 
similar problems in electromagnetic field theory, anticipating the search for 
parameters vector p and actions vector v, are frequently solved on the basis 
of available experience. 

At the second stage of synthesis which, just as in the case of electric cir­
cuits theory can be referred to as parametrical synthesis, optimum parame­
ters, namely distributions of media characteristics, as well as densities and 
coordinates of field sources should be determined. 

Parametrical synthesis 

The process of searching for the parameters vector p, as well as actions vec­
tor V generally is a multistep problem. At each step, it is necessary to solve a 
field analysis problem for some intermediate i.e. non-optimum values of vec­
tors p and V. The solution of analysis problems is usually extensively time-
consuming. This stage is very important since the effectiveness of field 
analysis substantially determines the efficiency of the initial inverse problem 
solution. 

Field analysis problems can be formulated in the form of differential or in­
tegral equations. Differential equations are written down with respect to scalar 
or vector potentials or to the field intensity. For example, at static field analysis 
the equation div(6-grad^) = -p should be solved for the scalar potential (p. At 

direct current magnetic field analysis, the equation rot(//~Vot/4j = / should be 

solved for the magnetic field vector potential A (here p and / are cubic densi­
ties of charges and electric currents, respectively). 

Integral equations are written down with respect to densities p and / of 
sources located on the surfaces or within volumes of bodies of required shape 
and structure. Since at introduction of these sources the medium is reduced to 
be homogeneous, then field potentials and strength can be expressed by ana­
lytic relationships with respect to extraneous sources, and sources found as a 
result of integral equafions solution. Therefore, the criteria of inverse prob­
lems can also be expressed through the densities p and / of the sources. 

Let's further consider the character of the restrictions imposed on the re­
quired solutions of inverse problems in electromagnetic field theory, as well 
as types of the characteristics vector y(w,p) . 

Restrictions 

For the solving of an inverse problem, restrictions of both geometrical and 
physical nature should be taken into account. Geometrical restrictions are de­
fined by the admissible sizes / of areas in which the required sources and 
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bodies can be located. They are caused by constructive reasons, reasons of 
mechanical strength and serviceability of the device, and can be expressed by 

a set of inequalities /,,̂ j„ <l<h,m..^ ^here If^mrn^h^m^.^ k = lm are accord­

ingly minimal and maximal admissible sizes. High-low bias restrictions can 

be imposed on the materials physical properties (^^.^ < ̂  < ̂ âx • One-sided re­

strictions can be imposed on quantities describing the electromagnetic field, 

i.e. field strengths E < E^^^, H < H^^^, power losses Q < Q^^^ , magnetic in­

duction B < B^^^ , current density / < J^^^ , electromagnetic force F < F^^^, 

inductance L<L^^^, etc. One-sided restrictions can also be used when 

maximum admissible weight P < P^^^, cost K < K^^^ , mechanical stress 

a < (7^^^, temperature T < T^^^, etc. are known. These restrictions can be 

written down as systems of inequalities gk{p)<0, k = \,m or systems of 

equations h. (p) = 0 , / = \,q . Note that in many cases these restrictions show 

nonlinear dependence on field vectors. 
In multicriterion problems, there is freedom of choice for the objective 

function and its restrictions. Therefore, one of the restrictions can be consid­
ered as a criterion function. For example, let's assume that two requirements 
are imposed to search for the optimum shape for a ferromagnetic screen: a) 
the field in the shielded area should not exceed a specified value [B^f^ ^ ^w) 
and b) the weight of the screen should be less than an admissible 
value P < P^^^. If particularly the screen weight /(p) = P is assumed to be 

the criterion function, then the restriction condition will become ^ ( p ) ^ B^ . 

Such choices usually occur when solving multicriterion problems of opti­
mization that will be discussed in Section 2.5. 

Characteristics of inverse problems 

Inverse problem characteristics y(w,p), intended for writing down its crite­
ria, are expressed through field potentials and strength obtained as a result of 
solution of electromagnetic field equations Aw = v . There are two types of 
characteristics: local and integral. Inverse problem local characteristics are 
expressed through the field potential or its derivative at a point. Examples of 
such characteristics are the module of electric field strength;; = E = |grad^J , 

and electric field energy cubic density j ; = Ĥ / = 0.56:|gradpJ . Magnetomo­

tive force between points a and b y = F^j^= cp^^ - cp^^, electric voltage 
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y = U^^f^ = (p^^ - (p^f^, and the local electromagnetic force component along the 

ort A: y-f^- [/,rot4]^ are also local characteristics. 

Inverse problem integral characteristics are usually connected to the field 
potentials or strength through linear, surface or volume integrals. For exam­
ple, field strength vector flux, resistance, inductance, capacitance, field en­
ergy, powder losses, etc. can be considered as integral characteristics. Some 
examples of such characteristics are shown below. 

Magnetic flux through surface S can be expressed through scalar or vector 

magnetic potential :y-O-- \ju—^ds, y = 0 = diAdl, where n is normal 
s '̂̂ ' / 

to the surface S and / is the bounding contour of this surface. A body's elec­

tric capacitance is: C = — = —Q Psds, where q and (pe, respectively, are the 

body charge and potential, and p^ is the surface charge density. Therefore, 

y = C = Os—'kis. Magnetic field energy can be expressed as 

W^ = 0.5 JBHdV, so the inverse problem characteristic becomes 

y = 0.5\ju[gY3.d(p^) dV or>' = 0.5j—(rot4) dV. Similar relations can ex-
V V M 

press other integral characteristics of inverse problems. 
Definition of inverse problem characteristics y(w,p) allows us to write 

down the problem as 
l|y-y(W'P)||—i^irr^™^, 

which requires preliminary definition of IT - the parameter p domain, and se­
lection of the norm of difference between required y and obtained y(w,p) 
characteristics of the problem. 

Functionals 

Let's consider typical functionals for inverse problems in electromagnetic 
field theory. Further on, when discussing examples of static and quasistatic 
fields, concrete types of included inverse problems characteristics y(w,p) 
will be defined. 

In some problems the functional determines maximal values of local char­
acteristics y(w,p) : /(p) = maxy(w,p). For their solution it is required to 
find shapes of bodies at which the maximal value of a parameter, for exam­
ple, the field strength, obtains its minimum value. 
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In many problems the functional determines the deviation of the problem's 
characteristic y(w,p) from its required characteristic y , specified in the do­
main V, which can be a line segment, a surface or a volume. Usually a func­
tional is given by 

/(p)=J[y-y(w,p)J dv. 
V 

If the characteristic y(w,p) is integral and the problem involves finding 
the parameters vector p that minimizes the difference betw êen y and 
y(w,p), then the following functional is used: 

^(p)=[y-y(w,p)J. 
Furthermore, some typical inverse problems in various kinds of electro­

magnetic fields and their features will be discussed. 

Inverse problems of electrostatics 

For the solution of inverse problems in electrostatic fields the medium is usu­
ally regarded as linear homogeneous or piecewise homogeneous. The elec­
trostatic field potential satisfies to the equation div(6rgrad^^) = -p or to the 

equation div(6:grad^^,) = 0. 

In typical electrostatics problems, shapes of electrodes are searched at 
which the electric field in some area is homogeneous or is distributed accord­
ing to a specified law [24]. Homogeneous fields are required for testing insu­
lation materials, as well as for obtaining air gaps with maximal electric 
strength. In problems of electro-optics finding specified distributions of elec­
tric field, strength is required within crystals with dielectric permittivity 
£[x,y,z) dependent on the field strength. In such problems the inverse prob­
lem characteristic y(w,p) defines some component E,^ (p) of electric field 
strength. Taking into account that y = E^= const, the functional becomes 

/(p)=p„-£,(p)J dV. 
V 

The included vector p defines the shape of the electrodes' surface. 
One of the typical problems in electrostatics is finding of shapes of elec­

trodes (conductors) that provide specified electric strength, i.e. a specified 
level of electric field strength on their surfaces. In the case of optimal shaped 
electrodes, the voltage of an electric discharge is maximal. 

Electric field strength on the surfaces of high-voltage elements electrodes 
is usually a function of surface points coordinates. As a rule it increases at the 
edges of electrodes. Violations of the condition E < E^^^ lead to dielectric 
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breakdown and loss of the device serviceability. Therefore, to find the opti­
mal shape for electrodes the following condition must be met: E^^ < E^^^. 

Then electrodes' shapes should be found which provide minimal values for 
the fields' maximal strength on their surface, i.e. the condition min(maxE) 
must be fulfilled. In this case, criterion function can be written down 
as/(p) = max|grad^(p)|. Electrodes of shapes satisfying this condition al­
low increasing voltages at set device sizes or reduced sizes at constant volt­
ages. 

Solution of such problems is usually very difficult. Their simplification is 
possible if the position of the point (or points) in which E = E^^^ can be 
specified a priori. 

When searching of high-voltage electrodes shapes it is sometimes conven­
ient to change from a min-max problem to a problem of maintaining a con­
stant EQ in points on the electrode surface S. In these cases the following ob­
jective function is used: 

l{p)=j[E,-\gmdp(p)\Jds. 
S 

Inverse problems of magnetostatics 

When designing electric machines, devices, and other electric equipment, 
several parameters of interest are searched for, such as windings geometry, 
current distribution, and in some cases the spatial arrangements of permanent 
magnets. Problems involving the search for shapes and structures of ferro­
magnetic bodies usually have solutions that are more complex. 

Problems of finding of windings, currents, and configurations, as well as 
layouts of contours with currents, are common in practice [25, 26]. They 
should be solved when designing active screens providing reduction of mag­
netic fields to a required level, or for obtaining change of magnetic induction 
by a specified law within a domain. 

Devices of materials magnetization require specified fields within a certain 
volume. If a high accuracy solution is required, it is reached by relating dis­
tribution not only of conductors with currents, but also of ferromagnetic bod­
ies. 

There are problems of search of poles shapes for obtaining maximal mu­
tual attraction force, or maximal magnetic flux (its concentration) within a 
certain area. 

The magnetic fields of direct currents and permanent magnets can be de­
scribed by means of scalar magnetic^^ or vector magnetic potentials A. 
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These potentials satisfy the equations div(//grad^^) = -0 and 

rot(ju~\otA) = /*", respectively. 

The basic feature of an optimization problem when searching for structures 
of bodies in a magnetic field, is related to the nonlinearity of the depend­
ence//(5). As experience demonstrates, medium nonlinearity can substan­
tially affect the results of inverse problems solution. For example, when find­
ing optimum shape for a pole made of ferromagnetic material and providing 
uniform magnetic induction or its change by sine wave law along a given 
line, the solution result depends on the degree of saturation of the pole mate­
rial. 

The characteristic problem when searching of a pole optimum shape, usu­
ally is the magnetic induction B^ (/) component normal to the line ab, where 
/ is the coordinate of a point on this line. The objective functional can be 
given as 

l{p)=j[B,Jl)-B{p,l)Jdl. 

Here, the parameters vector p defines the spatial distribution of medium 
magnetic permeability, i.e. the function ju [x,y,z) ,B^[l) is the required 
magnetic induction along ab. 

Problems involving the search of permanent magnets layouts to obtain re­
quired distribution of magnetic induction vector in some area are also nonlin­
ear. This fact is due to nonlinearity of ju = JU[H) not only for ferromagnetic 
media in magnets field, but also to nonlinearity of permanent magnets prop­
erties. 

Similar to electrostatics problems, when searching for optimum shape of 
ferromagnetic shield, criterion function/(p) = max|grad^^(p)|, as well as 

the function 

^(p)=J[grad^.(p)]j5, 
s 

are used, i.e. a min-max problem is solved. 
Here, (p^ is the magnetic field scalar potential and S is a, surface enclosing 

the screen. The magnetic field's potential (p^ and its strength //=-grad^^ 
are calculated in the points of surface S. As noted above, the parameters vec­
tor p[x,y,z) defines the spatial distribution of the ferromagnetic material, i.e. 

the function//(x,3;,z). 
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Inverse problems of quaslstatlcs 

The problem of finding of optimal forms of coils to obtain required distribu­
tion of eddy currents in conducting bodies with the purpose of finding their 
uniform heating is typical for optimization in quasistatic electromagnetic 
fields changing by harmonic law. In other problems of this kind either cur­
rents or media distributions should be found, at which, for example, electro­
magnetic forces or moments of forces, exerted on constructional elements, 
take on their extreme values [27]. 

To calculate electromagnetic fields, differential equations should be solved 
with respect to complex quantities, namely the vector magnetic potential A 
and scalar electric cp^ potentials: 

Yot(/u~^rotA) = jcocrA - jcoagr^dg?^ + 7^, div(grad^^) = div^ , 

or with respect to complex function of current T (vector potential of electric 
current) and scalar magnetic potential (pm.-

rot(//"Votr) = JCOCTT -grad^^, div(//grad^^) = divT. 

The feature of solution of problems of this type involves the necessity of 
calculation of complex quantities that results in doubling of the number of un­
knowns in comparison with the problems of static magnetic fields calculation. 

In such problems restrictions on medium specific electric conductivity 
(0 < cr < a^^ ), on emitted power and temperature (T < T^^^) are usually im­
posed. 

There are very few solved optimization problems of quasistatic electro­
magnetic fields varying in time by an arbitrary law. There are, for example, 
problems of induction heating of conducting bodies by means of eddy cur­
rents flowing within their volume or on their surface [28]. The shapes and 
layouts of coils with currents as well as current time-dependence are deter­
mined, which provide uniform heating of the conducting body during a speci­
fied time interval, i.e. the dependence J(^x,y,z,t) is found. 

The calculation of current density J(^x,y,z,t) to achieve the required pur­
pose of optimization is similar to the problem of search of optimum control 
of a system with distributed parameters. Though methods of solution of these 
problems are well-known, finding these solutions is complicated further by 
the necessity to look towards a ladder-field problem. If windings are fed from 
a voltage source, then the required law of current variation can be obtained 
only by joint solution of the electric circuit and electromagnetic field equa­
tions. Electric circuit equation i{t)R-\-dOldt = u{t) , 0= {Bds (0 is the 

magnetic flux linked to a winding, R is the circuit resistance) is supplemented 
with electromagnetic field equations: 
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^ A 

rot(ju~\otA) = -a crgrad 
dt St 

div ( grad^^) = divA , B = rotA . 

At numerical calculations the number of optimized parameters, or, in other 
words, the number of components of the vector p, is a factor affecting the so­
lution efficiency. It depends on the required solution accuracy and can vary 
over a wide range - from units up to hundreds of thousands. In the case for 
low desired accuracy, when the maximal relative deviation of design value 
from the required value is of order 10"̂ -̂  10"̂ , the number of optimization pa­
rameters can be 10-̂ 15. At deviations of the order of 10"*-̂  10'̂  this number 
can increase significantly. Especially large numbers of parameters occur 
when searching medium structure and its distribution within a volume. 

1.3.2 Identification problems 

Alongside with synthesis problems, there are well-known identification prob­
lems concerning definition of shapes (in some cases, also structures) of bod­
ies that disturb the uniformity of media, as well as problems of diagnostics 
(defectoscopy). In diagnostics problems, shapes and structure of defects (es­
pecially cracks) are determined by means of analyzing the distribution of 
eddy currents in conducting bodies. 

Presence of minerals in the ground breaks its electric or magnetic uniform­
ity that results in fields being distorted in the earth's stratum and to redistri­
bution of potentials of electrodes used to feed current into the ground. Analy­
sis of the potential distribution on the ground surface allows one, as a result 
of the inverse problem solution, to determine the character of infringement of 
the ground medium uniformity and judging which minerals are present. This, 
in turn, enables us to draw a conclusion on expediency of investments in the 
mining of certain deposits that can considerably cut down expenses for costly 
well boring. In a similar fashion, by using the inverse problem solution, one 
may find the position of a hidden, e.g. underwater, object by measuring elec­
tric potentials on the water's surface produced by field sources distributed in 
the water. 

Let's write down the identification problem's equation, its characteristics 
and the minimized functional. The electric field in a conducting medium (for 
example, in the ground) with specific electric conductivity o'(^x,y,z) satisfies 

the equation div(crgrad^) = -/7. The quantity p[x,y,z) defines the density 

of the electric current fed into the medium, and the potential (p{x,y) is the 

potential available for measurement on the surface. Vectors of inputs v and 



44 Inverse Problems in Electric Circuits and Electromagnetics 

outputs w in the inverse problem operator equation A(p)w = v are the quan­

tities p[x,y,z) and (p{x,y), accordingly. The parameters vector p defines the 

required distribution of <j(x,y,z) and the expression divcrgrad is the differ­

ential operator A(p ) . 

The inverse problem characteristic y(w,p) is the potential (p{x,y) in the 

points of the grounds' surface. In view of >̂  = ^(x,y), the minimized func­

tional becomes 

I{p)= f^^{x,y)-(p{p^,y))J dS, 
s 

Devices of so-called eddy current defectoscopy are commonly used in 
practice. They use electromagnetic signals as a source of a time-dependent 
test (probe) field. They induce eddy currents in conducting bodies (for exam­
ple, pipes or metal bands) searching for defects. The character of eddy cur­
rents distribution depends on presence of cracks and on their shapes. Detect­
ing a crack and determining its shape is possible by measuring the emf 
received by sensors located on the surface of the conducting body and com­
paring it with the emf of sensors located on bodies without defects 
[29,30,31]. 

Identification problems in the electromagnetic field theory, similar to elec­
tric circuits theory, become complicated in connection with the necessity for 
the search of a source, which is optimally arranged, and on account of meas­
urement errors. 

In summary, let's note the basic features of inverse problems in electro­
magnetic field theory. 

Two basic types of problems can be emphasized: search of spatial distribu­
tion and time-dependence of densities of field sources and search of spatial 
distribution of media. Problems of search of media distribution are character­
ized by large numbers of parameters and demand much more time to find a 
solution. 

Inverse problems characteristics can be divided into local and integral. The 
latter are rather various and define such quantities as conductivity, capaci­
tance, inductance and mutual inductance, electromagnetic force, magnetic 
fiux, power losses, electric and magnetic fields energy, etc. 

For inverse problems in electrostatics, a min-max statement is typical 
when searching shapes of conductors' surfaces that provide minimal value for 
the maximal field strength. 

Typical problems in magnetostatics, that involve finding of media distribu­
tions providing magnetic field uniformity in a certain area or its change ac­
cording to a specified law, demand taking into account nonlinear dependence 
of media properties from the magnetic induction. 
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Inverse problems in quasistatic electromagnetic fields require joint solving 
of circuit and field equations. 

Inverse problems in electromagnetic field theory are rather time-
consuming, as the number of parameters, when determining the media prop­
erties by numerical optimization, can reach tens to hundreds of thousands. 

Practical inverse problems in electromagnetic field theory can demand 
finding solutions with high accuracy when the local relative error of devia­
tion between the inverse problem characteristic and the required one is of or­
der 10•^-10•^ 

For successful solution of inverse problems in electromagnetic field theory 
the use of effective methods of electromagnetic field numerical calculation is 
necessary. 
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Chapter 2. The Methods of Optimization Problems 
Solution 

2.1 Multicriterion inverse problems 

Any design electric device should satisfy several criteria, and each individual 
criteria k is associated with an objective functional /̂  (p). Therefore in most 
practical cases when simultaneous fulfilment of conditions 
min/^(p), k = hN is desirable, solving of multicriterion (multiobjective) 

inverse problems may be required [1]. Hence various criteria may have in­
consistent character; individual objective functional /̂  (p) cannot simulta­
neously take on their minimal values at the same vector p. 

Let's consider some examples. When designing an electromagnet, it is de­
sirable that its winding dissipate minimal power, whereby maximizing the 
force developed by the electromagnet. From the engineering point of view 
both conditions are justified, but on the other hand they are inconsistent, as 
increasing the magnetic force demands an increase of current density and, 
hence, gives rise to losses. 

At magnetic field synthesis, desire to provide maximum field density 
within a certain area conflicts with attempts to reduce the current and power 
consumption in the circuit that produces this field. 

Condition to provide maximum rate of pulse rise on the output of a circuit 
usually contradicts the desire to have pulses with as flat a top as possible. 

At synthesis of electric filters several inconsistent requirements can be 
produced, such as minimal deviation of its gain-frequency characteristic K(co) 
from a specified one, minimal number of elements, minimal dissipation 
power, minimal delay at signal transmission, etc. 

Let's consider an example of an inverse problem with two objective func-
tionals. The problem includes finding of the shape of a polar tip at which its 

weight is minimal and the magnetic flux O^ = -JUQ \—^-^l (here (p^ is the 

scalar magnetic potential), entering the area abcde (Fig.2.1) through the line 
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ab, it is focused on the line de at the opposite side of this area. For the scalar 
magnetic potential, homogeneous boundary conditions of the first type 
(̂ m ~ 0) at the line cde and homogeneous boundary conditions of the second 

type 
dn 

• 0 at lines ega and cfb are assumed. 

0a 

<Pm=0 

Fig, 2.1. Search of media distribution for focusing the magnetic flux on the segment de 

A static magnetic field is assumed to be plane-parallel. Scalar magnetic 
potential satisfies the equation div^grad^^ =0 over all area abce. The area 
of the pole forming material location is confined within the contour abfg. 

To solve this problem for the most elementary case it is necessary to find 
the function ju(x,y) in the specified area occupied by the pole material with 
typical constraints on material magnetic permeability ju^.^ = ju^ and 

/̂max - M • Then the pole shape will be defined as the boundary of media hav­
ing minimum and maximum magnetic permeability. Components of parame­
ters vector p will be magnetic permeability values within portions, into which 
abfg area is divided. 

Here, we have two partial objective functionals. One of these is equal to 

I^(JU) = JUQ \—^l and is proportional to the magnetic flux through the line 

de. The second objective functional I2=P is the pole weight which depends 
on its sectional area shown in Fig. 2.1 as the shaded portion. 

Objective functionals /] and h are interconnected. Let's assume, for exam­
ple, that the pole's shape provides maximum magnetic flux through the line 
de. Reducing the pole weight P, the magnetic flux through the line de de-
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creases and at the limit I^ = P = 0 when there is no pole, we have 
/j =-0Q/2 (at de=cd), that is field focusing does not occur. Therefore ob­

jective functionals /i and I2 are inconsistent and cannot reach their minimal 
values at the same vector p, i.e. at a certain pole shape. Solutions can satisfy 
one or both criteria but not in full measure. 

Situations similar to the above are considered typical for parametrical syn­
thesis problems with purpose of designing maximum lightweight, power-
saving and reliable devices - requirements that are formulated in partial crite­
ria of inverse problems. Similar to the example discussed above, there are 
usually no solutions which simultaneously satisfy all criteria. 

The area n , where search of solutions parameters vector p is carried out, 
can be divided into three parts: the area of effective solutions Ai, of weakly 
effective solutions A2 and the remaining part A^=n\A^\A,, which can be 

named as the area of ineffective solutions. 
The main feature of effective solutions area (set) A\ is that none of the in­

verse problem criteria can be improved in this area without the worsening of 
another criterion. 

The main feature of weakly effective solutions area (set) A2 is that in this 
area simultaneous improvement of all criteria of the inverse problem is im­
possible. That is, one or several criteria can be improved simultaneously 
without worsening any of the others. Correspondingly, in area A3 simultane­
ous improvement of all criteria is possible. 

Solution of a multicriterion inverse problem with inconsistent criteria involves 
finding the effective solutions area. Obviously, weakly effective solutions repre­
sent considerably less interest for practice in comparison with the effective ones. 
Application of weakly effective solutions is justified, because they frequently 
turn out as a result of solution of multiextremal problems. 

A solution p is regarded as optimal by Pareto (W. Pareto, 1897) if a vector pi 

can be specified, for which /^ (pj) < /^ (p), k = l,N , where at least one of the 

inequalities is strict. That is, a solution belongs to the area of effective or Pareto-
optimal solutions if it is impossible to improve any of the individual criteria by its 
change, not having worsened another criterion at the same time. 

The concept of Pareto-optimal set of vectors p does not provide the algo­
rithm of its construction. Yet finding of boundaries for this set of solutions is 
highly interesting for practical purposes. Knowledge of a device Pareto set 
allows discarding all other solutions at further designing and thus reducing 
expenses for search of the best on the basis of any additional, frequently in­
tuitive and badly formalizable criteria. In other words, it can be asserted that 
any solution Popt belongs to the area A1 of effective solutions. 

Let's examine the disposition of areas Ai, A2 and A3 in the space of two in­
consistent objective functionals /] and h. By lying off I\ and I2 values along 
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plane coordinate axes, the areas Ai, A2 and A3 of solutions can be graphically 
represented (Fig. 2,2). Here the line be defines the area A] of effective solu­
tions. Indeed, when moving from a point on the line be to another point on 
the same line, i.e. when reducing one of the objective functional, the other 
objective functional apparently grows. Lines ab and ed define the area A2 of 
weakly effective solutions, as the solution at the point b is preferable to the 
solution at the point a, and the solution at the point e is preferable, to the so­
lution at the point d. 

A<l2 

Fig, 2.2. Areas of effective, weakly effective and non-effective solutions of the opti­
mization problem 

The solution at the point/can be simultaneously improved for both objec­
tive functional and, therefore, the line df defines the area A3 of solutions. 
Adjacent points can be connected by curves - either concave or convex. Gen­
erally, in case of a large number of criteria, the set of Pareto-optimal solu­
tions may consist of several disconnected subsets and finding of their 
boundaries may be a difficult task. 

Hence, in many practical cases precise computations of effective solutions 
area demand too much time; simplified approaches must be applied that al­
low finding of approximate sets of effective and weakly effective solutions. 

Let's consider some approaches of estimation of solutions sets Ai, A2 and 
A3. These approaches involve reducing the vector of partial objective func­
tional /̂  (p), k = 1,Â  to a scalar and searching for a vector p, at which this 
scalar functional reaches its minimum. 

In linear convolution method, partial objective functional are united in a 
scalar by means of weighting coefficients â  > 0, k = 1,N. Thus, the prob­
lem is reduced to a search for the minimum of the scalar functional: 
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'^'^ll^k\\yryk('^^p)\\' (2.1) 

Relationships between the coefficients a^ can be defined by our concep­

tions with regard to importance of either one or another criterion. 
This approach transforms the problem with a vector objective functional to 

a problem of selection of coefficients a^, which essentially determine the de­
rived solution. Note that criteria included in Eq. (2.1) need preliminary nor­
malizing to provide their comparison and, in particular, their summation. 

In the above discussed problem of magnetic flux focusing, let's assume that 
the coefficient ai at the objective function /, = -0 is equal to 0.7, and the co­
efficient a2 at the objective function l2 = P is equal to 0.3. Then the scalar 
functional, formed by the method of linear convolution, becomes 
/ = 0.7/j + 0,3/2 • The pole shape found by minimization of this functional cer­
tainly will differ from the pole shape found at use, for example, of the scalar 
functional / = 0.8/j -H 0.212. Thus, it is necessary to solve the problem of 
choice of coefficients af, values. 

This approach for construction of scalar objective functionals has a built-in 
contradiction that is shown below by an example. Assume that a problem of 
designing an electromagnet should be solved by inconsistent partial criteria 
having minimum dissipated power P(p) and maximum developed magnetic 
force F(p). Putative (desired) values of these quantities PQ and FQ may expe­
diently be used as normalizing values. Then the scalar functional (see Eq. 
(2.1)) for this problem is given by 

min{aiP(p)/Po +<^2^(P)/^o} = min{a/i(p)4-a2/2(p)}. (2.2) 

Assume that both criteria are equally important. Then a^=a2= 0.5 . After 
solving Eq. (2.2) and evaluating the results, we find /i(Pop^)» ^2(Pc;/;/) • ̂ ^is 
means that criterion /^ did not make any essential impact upon the solution 
of Eq. (2.2) that does not correspond to our notion about the importance of 
this criterion. The reason of this discrepancy is in the wrong choice of nor­
malizing values. However, to know their "correct" values it is necessary to 
know the solution of Eq. (2.2) which, in turn, depends on these values. 

Though the choice of coefficients a^, k = l,N presents certain difficul­

ties, the method considered above of reducing of vector criterion to scalar is 
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widely used. This fact in many respects relates to the work by prototypes in 
engineering practice, when the new device is close to a previously developed 
or well investigated one that allows setting good approximations for normal­
izing values. 

Another approach to introduce the scalar objective functional is based on 
the principle that some objective functional' values are regarded as optimum 
if they belong to some range, acceptable to the designer, that frequently oc­
curs in technical problems. Assuming, for example, that the weight of a mag­
net pole cannot exceed a certain value P^^ , the problem of magnetic flux fo­
cusing can be formulated as follows: to find a vector p, delivering minimum 
to the functional /̂  = -O, provided that the pole weight P<P^p, 

If in a multicriterion problem one of criteria, for example /i, can be as­
signed as the main criterion, then other criteria can be considered as con­
straints of the form /̂  </?^. Then criteria /^,/: = 2,Â  will be fulfilled ap­
proximately, since exact, i.e. minimal values of j3k are unknown. Lower 
estimations J3^^^.^ for /?̂  can be derived, solving, by turns, problems of 

minimization of partial functional 

P., min = arg min /, (p), A, .m = ̂ . (P., .m )' ^ = 2,7V . (2.3) 
pen ' 

Here at minimization of the k-ih functional remaining, Â  -1 criteria are 
not taken into account. It needs to be emphasized that as a result of the solu­
tion of "single-criterion" problems (see Eq. (2.3)), only lower estimations for 
/?̂  are found, whereas their values remain undetermined. 

Let the first criterion be the main criterion. Then the multiextremal prob­
lem can be written down as follows: 

min|y,-y,(w,p)|, ^ ^̂ ^̂ ^ 

||y,-y,(w,p))||<;5„ k = W. 

This method of reducing the vector criterion to a scalar one, referred to as 
the method of the main criterion, has several advantages in comparison with 
the method considered above. However, the choice of coefficients 

/?^, k-2,N is as intricate as the choice of normalizing values. Generally, 

various sets of constraints I3,,,k- 2,N result in various solutions of Eq. (2.4). 
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Choice of the most "rigid" constraints Pk-Pk.mn^ k = 2,N will most 

probably lead to the absence of any solutions for the problem (see Eq. (2.4)). 
That is, no solution will be found which simultaneously satisfies all con­
straints. Easing of constraints fi,^ =^)tA,min' ^k ^^^ k = 2,N by means of 
introduction of coefficients a,^ reverts to the problem of their choice dis­
cussed above in connection with the method of linear convolution. 

The condition of best choice of /? ,̂ k = 2,N requires that all constraints 
become equalities at the point of solution. Indeed, if one of the constraints 
(for example the k-th) in the solution of Eq. (2.4) holds as an inequality, then 
the value yĈ  can be reduced and thereby an optimum solution of Eq. (2.4) 
will be derived. On the whole, use of this approach is effective if there is ad­
ditional information on the optimal values of y5̂ , k = 2,N , i.e. when a proto­
type of the design device is available. Therefore, methods ensuring choice of 
normalizing coefficients or coefficients ŷ ,̂ k = 2,N during the problem so­
lution are of more interest. 

Let's consider the following maximization problem: 

F = max*f lg(4), 
^^ k=l 

where all partial criteria (see Eq. (2.1)) are regarded as constraints. Here an 
increase of the maximized functional F is accompanied by tightening the 

constraints. Quantities yko>0, k = hN are normalizing coefficients. Un­

certainty of choice of normalizing coefficients y,^^, k = \,N in Eq. (2.5) 
does not have a strong impact on the solution, and errors of some 1-2 order of 
magnitude at their choice are not of any crucial importance. It should be 
noted that this approach gives good results at other forms of maximized func-

tional, in particular at F = max ̂  /^^ . 
'̂ ^ k=\ 

To reduce a vector objective functional to a scalar one the so-called mini-
max method or method of minimax convolution can be applied. In this 
method, similar to the first of the methods discussed above (of linear convo­
lution), coefficients cif̂  are used but all functionals 

aJy^-y^(v» ,̂p .̂) , k = hN are considered equivalent without assigning 
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any main criterion. Desired parameters vector p̂ ^̂  is found at the condition of 

minimum for one of the functionals a^ ly^-y^tC'^'Py) h k = \,N having the 

maximal value, i.e. from the condition 

Thus, in the minimax method the maximal objective functional takes on its 
least value at the desired parameters vector p̂ ^̂ . 

Apparently, application of the minimax method also requires introduction 
of coefficients a,^, determining the degree of importance for each criterion. 

Therefore, when choosing either one or another set of coefficients a,^, vari­
ous parameters vectors p will be found which are considered the best within 
the limits of the minimax method. 

Each of the above considered methods of search of multicriterion problems 
solution, based on reducing a vector objective functional to a scalar, allows 
finding, at least, a weakly effective solution. In the case for two-criterion 
problems these methods permit graphic interpretation. Such interpretation al­
lows clarification of what problems all areas Ai, A2 and ^3 of solutions can be 
found, by means of these methods. 

In the linear convolution method lines of constant values of scalar objec­
tive functional I = aj^ +^2^2 ^^^ straight lines (Fig. 2.3) with angular coef­
ficients k = -aJa2. 

I2 

Fig. 2.3. Geometrical interpretation of the linear convolution method 

In Fig, 2.3 lines 1 and 2 are shown, corresponding to constant values of /. 
Minimal values of / correspond to the points of line 1. For a pair of assumed 
values a^ and ^2 the problem solution is determined by the point A, at 
which the straight line 1 and the solid curve bmcy defining the area of effec­
tive solutions, are tangent. Evidently, choice of other coefficients a^ and ^2 
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will lead to change of / constant values lines slope and, correspondingly, to 
repositioning of the point of contact. Therefore, in this case the finding of all 
points of effective solutions area is possible by means of coefficients a^ and 
a^ variation. 

However, in some cases the linear convolution method does not allow 
finding all effective solutions. Let, for example, effective solutions area be 
defined by the concave dashed line bmc (Fig. 2.3). At any relation of coeffi­
cients a^ and a^ determining the slope of scalar functional constant values 
line, only angular points belonging to the effective solutions area can be ob­
tained. Thus, there are problems for which the linear convolution method 
does not allow finding of the whole area of effective solutions. Therefore, in 
the general case this method allows evaluating only the area of weakly effec­
tive solutions. 

The main criterion method allows finding all effective solutions. Let, in 
the above example of magnetic flux focusing, the criterion /j = -O be cho­
sen as the main criterion. As can be seen from Fig. 2.4, setting various 
P<P^p, which determine the upper limit of the objective functional I2, any of 

effective or weakly effective solutions can be obtained. 

/2 

Fig, 2.4. Search of effective solutions using the main criterion method 

The minimax method, as well as the main criterion method, enables find­
ing all effective solutions of a multicriterion problem by searching of all pos­
sible values of coefficients a^. This can also be confirmed by the following 
example of a two-criterion problem with scalar criterion 
/ = min mdixiaj^^a^l^)' Let's plot the line 1 according to equation 

12 - [cc^ loCi)^ (Fig- ^•5)- ^ t ^^^h point of this line, aj^ - 6̂ 2/2 and the func­

tion mdi\{aj^, ^2^) is decreasing when approaching to the coordinate ori­

gin. For any specified coefficients a^ and ^2, this function takes minimum 
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value at the intersection of the straight line 1 with the curve be of effective 
solutions area, i.e. at the point A. Evidently, all effective solutions of this 
problem can be found by changing coefficients a^ and ^2. 

/2 

Fig. 2,5, Search of effective solutions using the minimax method 

Finding effective solutions areas demands a great amount of calculations, 
in particular, for large numbers of criteria. Such calculations are required 
when designing expensive equipment. 

Let's further consider solution methods of multicriterion problems where 
some objective functionals are given within specified ranges instead of hav­
ing precise values. When solving inverse problems, constraints can be di­
vided into weak and rigid. Rigid constraints are the constraints of physical 
character determined by the properties, for example - mechanical or electro­
magnetic, of used materials. Properties of materials can be chosen only 
within certain, frequently rather narrow ranges. A rigid constraint is also the 
condition of positivity of parameters of electric circuit elements such as resis­
tance, capacitance and inductance. Quantities determined by weak constraints 
can vary over wide ranges. 

Similarly, some objective functionals should necessarily reach minimal 
possible values, whereas others can fall into some range and, hence, the latter 
can be specified not quite definitely, i.e. ambiguously. Then the desired solu­
tion is not necessarily classed among feasible or infeasible solutions, but by 
virtue of indistinctness of constraints - among desirable or undesirable ones. 
In some cases indistinct descriptions of criteria and constraints can even lead 
to solutions more adequate to reality than definitely specified ones. 

Not quite distinctly defined sets of criteria and constraints relate to so-
called fuzzy sets [2,3]. For their analysis, suitable mathematical tools should 
be applied and rules for processing of fuzzy sets and logic rules for indistinct 
propositions (fuzzy logic), etc. should be established. Fuzzy sets mathemati­
cal tools can also be applied for calculating parameters that optimally satisfy 
inconsistent criteria. 
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There are means of quantitative evaluation for each indistinct proposition. 
The so-called membership function //, defining the closeness of a proposition 
to the truth, can serve as an evaluation of this proposition truth degree. 

In ordinary logic, 0 is assigned as value of a false proposition and 1 is as­
signed as value of a true proposition, so the membership function can be only 
0 or 1. At fuzzy propositions the membership function can have intermediate 
values between 0 and 1. Function // value can be used to estimate either ob­
jective functional /̂  minimization degree, or constraint R^ fulfilment degree. 
Let, for example, losses W be acceptable if they are not to exceed 50 kW and 
are not acceptable if they are more than 60 kW. The membership function 
ju(W), shown in Fig. 2.6a, indicates the measure of various W values' accept­
ability within the range 0<W<60 kW. The condition of closeness of current 
density / to the value 2A/mm^ can be expressed, for example, by the mem­
bership function / / ( / ) shown in Fig. 2.6b. 

In this way, membership functions can be constructed not only for objec­
tive functionals h, but also for constraints Rj,. It should be noted that mem­
bership functions can be not only piecewise linear, as shown in above fig­
ures, but also nonlinear. 

60 60 1.8 2.0 2.2 

Fig. 2.6. Examples of losses membership function a) and current density b) 

Sets of objective functionals /j(p),/2(p),..., as well as con­

straints 7?j(p),/?2(p),... values can be considered as equivalent fuzzy sets char­

acterized by membership functions //(/^(p)) and //(/?^(p)). 

If at p = p̂ . one or more membership functions ju become zero, it means 

that either some optimization objectives have not been achieved or some con­
straints have not been fulfilled. Therefore, such a vector py of parameters 
cannot belong to the set of desired solutions. At the same time existence of a 
set of vectors p is possible, for which membership functions ju of objectives 
and constraints are positive, and which can be considered as a desired one. 
The vector p^pt that is preferable among the others should be chosen from this 
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set. To search for the optimum parameters vector, various strategies can be 
used. 

Let's consider an example of membership functions assigning and solution 
search strategy. Let, for example, there be partial criteria concerning device 
voltage and losses power, expressed by the following fuzzy propositions: 
voltage U should be close to 220 V, and losses power W should be equal ap­
proximately to 100 W. In addition, there is a rigid constraint on device 
weight g, which should not exceed 200 G. Permissible spreads of I^=U and 
I^=W can be specified as AC/= A/j =±10 V, AW = AI^=±20W , Let 

membership functions values jU\=jU2=JU3=\ correspond to values 

U = 220 V, W=100 W and g = 200 G. By use of piecewise linear represen­

tation, the membership functions /^i(/i) , Miih) ^^^ l^i{^) ^^^ ^^ of the 

type shown in Fig. 2.7. 

1 

210 220 230 100 120 200 

Fig. 2.7. Different forms of the membership function of voltage a), losses b), and 
weight c) 

Let desired scalar parameter/? have discrete values p^ =1,2...10. For each 

value of parameter pj, j = 1,10 values of voltage U -lAp."), losses power 

ly = /2(/?y) and weight G = R(^Pj^ can be found. Assume that membership 

functions ju^i^I^ipj)^ Mii^i^Pj^) ^^^ /^3(^(Py)) correspond to some value 

Pj. Grade of membership of this set to the desired one can be estimated in 

various ways. For example, either by the minimal value of 

/̂ min(P7) = ™n{//j(/i(p.)),//2(/2(P;))'/^3(^0^;)))' ^r on somc average 

from these values of the membership function. By means of choosing the 

minimum of jU\, jUi, ju^ values for each of the possible values of parameters, a 

piecewise linear dependence JUgiob-UmmiPj) can be constructed shown, in 

Fig. 2.8. It is referred to as the global membership function. 
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The vector of parameters that provides maximal value of the global mem­
bership function jUgiot is considered as the vector i^opt of optimal parameters. 

Similarly, by calculation, e.g., of root-mean-square values 

/̂ flv(Py) = 'iE^/^*^Py^ ^^ ^^ ^^^ ^^^ '̂ number of criteria and constraints), 

l^av^Vj) dependence can be constructed and the vector p^̂ ,̂ at which the 

function ju^^iPj) reaches its maximum, can be determined. 

A/^glob 

Mglob.mt 

1 2 3 4 5 6 7 8 9 10' 

Fig. 2.8. Global membership function as a function of parameter pj 

Mathematical methods used for the solution of multicriterion problems 
generally allow narrowing of solutions area and only in special cases they 
lead to a unique solution. The fuzzy sets method also allows narrowing of op­
timal solutions area. If, as a result of application of known mathematical 
methods, there remains although narrow, but nevertheless a finite region of 
acceptable solutions in the range of parameters p, then so-called expert esti­
mations are used. In many cases estimations by comparison of several solu­
tions to one another cannot be formalized. In some cases experts give only 
intuitive solutions. However, this circumstance does not make mathematical 
methods less valuable. Their application allows narrowing the area of possi­
ble solutions by rejecting the worse ones. Then remaining solutions turn to be 
approximately equivalent. 

2.2 Search of local minima 

The majority of inverse problems discussed in Chapter 1 can be reduced to 

search of functional / (p ) lower boundary with constraints g.(p)<0,/ = l,m, 

hi(p) = 0, / = l,q, i.e. the so-called constrained minimization (optimization) 

problems. Actually finding a solution for unconstrained optimization prob­
lems is much simpler in comparison with constrained optimization problems. 
Therefore, problems of constrained minimization are frequently reduced to 
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unconstrained problems. For this equality type, constraints are multiplied by 
scalar factors and added to the minimized functional. As for the inequality 

type, conditions such as g, (p) < 0, / = l,m, should be transformed to equali­
ties by introduction of additional variables, and also included in the mini­
mized functional. Thus, we arrive at problems of unconstrained optimization 
of a different type: the so-called expanded functional. Methods of transition 
to the expanded functional will be considered in Section 2.3 in more detail. In 
this section, we assume that such transitions have already been executed and 
consequently we consider problems of unconstrained optimization [4]. 

When studying methods of search for a functional /(p) minimum its con­
stant level surfaces, i.e. surfaces on which the functional /(p) has constant 
values, are used. If the dimensionality of parameters' vector p is n, then its 
constant level surfaces will be of n-\ dimension. They can be visually repre­
sented when the vector p has two components p\ and pi (Fig. 2.9). In that 
case the constant level surfaces are lines. Frequently it is expedient to illus­
trate the minimum search process by projection of constant level lines on the 
plane pi, pi, as shown in Fig. 2.9. 

The configuration of level lines, as a rule, is unknown before optimization. 
They can be of various kinds, for example, circles (if li^p^,p^) = pi + p^) or 

ellipses (if l(p^,p^) = apf + bpl, ai^b, a,b >0) . In the latter case, the func­
tional will change more slowly along the larger main axis of the ellipse than 
along the smaller one. If lengths of the main axes are substantially different, 
we have a ravine type functional, which changes rather slowly when moving 
along its axis. 

/(Pi.P2)4 

Constant level lines 
of the functional 

l(Pv Pd 

Pi 

/ = Ci > C: 

Projections of the 
constant level lines 

on plane p^, p^ 

/ = C2 < Ci 

Fig. 2.9. Equal level lines of the objective function and their projection onto the 
plane/7i,/72 
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Search of the parameters' vector p = (Pi,/?2'-"»P^,) » which provides a 
minimal value of the functional, is carried out by means of the following it­
erative procedure: 

where k is the number of iteration, ê  is a vector determining the direction of 
change of optimization parameters, and / is the step of parameters change in 
the direction set by the vector ê . The step / can be both constant, and chang­
ing from iteration to iteration. 

Methods of minimum search can be divided into two groups depending on 
the means of choice of the vector ê : those using derivatives of the functional 
in the point p^ for finding ê  (so-called gradient methods) and those not using 
them. 

Let's consider methods of functional minimum search that do not require 
calculating its derivatives. In the simplest method, movement to a minimum 
is carried out by successive changes of optimization parameters' vector p 
components /?/. In this case vector e components are basis vectors (orts) of 
coordinates, therefore change of vector p i-ih component is equivalent to 
change of the i-th coordinate. Each coordinate is changed, while keeping all 
other coordinates constant until the functional decreases. Then one must pro­
ceed to change the next coordinate. Change step dimension in the direction of 
each ort is determined by the method of one-parameter optimization. 

This approach is realized in the Hook and Jeeves method. This method 
consists of two stages - the first stage to carry out so-called investigating 
search, and the second stage to search by a sample. Let p^ be the initial value 
of the variables' (coordinates) vector. On the i-ih step of investigating search, 

p^. = p^ +ApiJ = \,n. If the functional decreases for the coordinate / at 

Ap. > 0 then p] is selected as the new value with subsequent proceeding to 

change the next coordinate. In case of increase of the functional, the value 

pl = p^-Ap. should be accepted. The stage of investigating search is 

completed when changes of the functional at consecutive change of all coor­
dinates are determined. At the stage of search by a sample the direction of 

perspective minimization vector Ap = (A/7j,A/?2v..,A/? )̂ shall be found, 

which then becomes the direction of change of the Ap value as long as the 
functional decreases. Further on, stages of investigating search and search by 
a sample shall be iterated. 

Random search methods are also considered among methods of search of 
functional minimum without calculating its derivatives. These methods are 
simple in realization and they have low sensitivity to occurrence of errors 
during calculations. Random search iterative procedure is given by 
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p/:+i =: p^ _|_ Qĵ  ^ where a* is a vector, having random variables as its compo­

nents, with a given law of probability density distribution. 
Random search methods differ by assumed (or corrected on each step of 

search) law of distribution of a . The extent of its change should be limited as 
points p^^^ should not be far from the points p^. In one modification, named 
the best probe method, m vectors a are generated for each condition p^, and 
m values of the functional near the point p^ are calculated. Further, a vector 
a is allocated, which provides maximum decrease of the functional to make 
a step in the direction of this vector a . Substantially, the functional gradient 
direction is statistically determined in this approach (interestingly, the num­
ber of tests m can be less than the number of coordinates n). 

Algorithms of search methods, not using derivatives of the functional, are 
simple to understand and to realize. However, for the search for a minimum 
they require greater amounts of calculations of the functional in comparison 
with methods using functional derivatives, which shall be discussed below. 

In the method of quickest descent the direction of the vector e is opposite 
to the functional gradient direction (or, equivalently, it is in the line of the 
functional antigradient). In this direction the functional / (p ) decreases with 
the maximal speed. The well-known, antigradient vector 

e = -V/(p) = -
^ dl dl 3/ 

M' 9/?/ '3p, . 

is normal to the level surface / ( p ) = const, in the point of its calculation. 

Correspondingly, its projection is perpendicular to projections of constant 
level lines, as shown in Fig. 2.1. 

Using a normalized vector of gradients, so that it has a unit length, we then 

assume that ê  =--V/(p^)/V/(p^) . In this case the norm of increment 

Ap^ = ^^e^ is defined by the size of the step / , which is assumed to be con­
stant or chosen by a definite algorithm. In the method of quickest descent, 
steps / are found by the solution of the one-parametric problem: 

/ ( p ' + / e ' ) — ^ ^ m i n . (2.6) 

It is desirable to calculate the gradient vector A/(p) components dl/dpi 

analytically, but at the absence for such opportunity the following expression 
can be used: 

dp, 2e, 
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This seemingly effective method has not been used expansively in practice 
because of its slow convergence at the minimization of ravine functional. 
Figure 2.10 shows a fragment of ravine functional constant level lines projec­
tions (Rosenbroke) with a typical trajectory of descent to the minimum, ob­
tained by the method of quickest descent. The antigradient vector e direction 
does not coincide with the direction of the ravine floor. Speed of change of 
the functional on ravine walls is much higher than the speed of its change 
along the ravine floor. Therefore, movement along the ravine floor in the 
method of quickest descent occurs slowly as it requires carrying out a large 
number of rather small steps. 

Fig, 2.10. Projections of ravine functional level lines and path of descent to its 
minimum, according to the gradient method 

The choice of variables scales included in the functional significantly af­
fects the speed of minimum search. Indeed, by means of changing the scales 
of variables it is possible to change the relief of functional constant level sur­
faces. If, for example, in the functional /(p) = p^ -^b^pl» which has ellipses 
as level lines, by changing the scale of the variable p2 we can obtain a func­
tional /, (p) = /7f+ /?2. Its minimum is reached at the same values of vari­
ables /7j = ^2 =0, however level lines represent circles instead of ellipses. A 
good choice of variables scales provides reduction of length of functional ra­
vines, speeding up the search of minimum significantly. 
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Taking into account that the functional dependence from variable p is 
nonlinear, when searching of a minimum it is expedient to take into consid­
eration not only its first (V/(p)), but also second derivative. Expanding 

/(p) in Taylor's series about the point p = p* and keeping only the expan­
sion components containing the first and second derivatives yields: 

/(p)^(p^)+V/(p^)^ Ap^+0.5(Ap )̂̂ VV(p )̂ Ap^ (2.7) 

where Ap* = p - p \ and V^/(p^) = //(p^) is the Hesse matrix with ele­
ments that are the second derivatives of the functional by variables 
/?p/?2,...,p„. In the two variables case, for example, p^,P2^ we have 

H(p) = 
3pf 9p,ap2 

3^/(p) 9V(p) 
3^,9^2' dpi 

It is necessary to choose such Ap* so as to reach a minimal value of / (p) 

at p = p**'. The necessary condition of minimum / (p) is given by 

rf(Ap*) 
= 0. 

Substituting Eq. (2.7) into the last expression and performing differentia­
tion, we have: 

V/(p*) + H-'(p*).ApH , , = 0 . 

Then, taking into account that Ap̂  = p - p*, we find: 

p'^*=p'-H-^(p').V/(p') . (2.8) 

The last expression determines both search direction and step dimension. 
If the functional dependence of variable p is by square-law, then at such di­
rection and a step of search the point of functional /(p) minimum is reached 

by one step at any initial approximation p^. Generally, /(p) dependence of 
the variable p is not by square-law and hence the number of steps to reach a 
minimum increases. Then parameter / (the step length) may be expediently 
introduced to rewrite the iterative Eq. (2.8) as 
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p/:-M ^ p/: ^ /H"^ (p ' ) . V/(p ' ) = p ' + S'e' . 

Analysis shows that the stated method, named the Newton method, con­

verges to the solution p* if the matrix H~̂  (p) is positive-definite (i.e. has 

positive eigenvalues) over the whole domain of minimum search. The Hesse 

matrix H(p)is positive-definite if / (p ) is a strictly convex function. Gener­

ally, this condition does not always hold. Therefore the Newton method itera­

tive procedure sometimes can diverge or lead not towards the point of / (p ) 

minimum, but away from it. 
Distinctions in definition of search direction vector ê  by the method of 

quickest descent and Newton method can be seen in the following example 
regarding search of minimum of a square-law functional / (p ) = pf +b^pl. 

On the condition that b»\, this functional has a ravine stretched along the 
^2, 0 ^ 

It has strongly differing eigenvalues /l̂  = 2 and /î  = 2b', When moving 

from a point A (Fig. 2.11), the search direction in the method of quickest de­

scent is characterized by the vector - V / ( p ^ ) , directed along the normal to a 

level line (not necessary to a minimum point), whereas at use of the Newton 
method the vector. 

variable p\ (Fig. 2.11). The Hesse matrix of the functional is H: 
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- b ^ 
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Fig. 2.11. Directions of movement by the method of quickest descent and by the 
Newton method 
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obviously, is directed to the point 0. Thus, during minimization the Newton 
method, as distinct from the method of quickest descent, allows faster 
movement along the ravine. 

Difficulties when using the Newton method involve, firstly, the necessity 
of calculation and inversion of the Hesse matrix and, secondly, possible loss 
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of its positive definiteness resulting in failure of convergence to a minimum 
by this method. 

There are so-called quasi-Newtonian methods, in which the time-
consuming calculation of the Hesse inverse matrix is replaced by a simpler 
calculation of its approximate value. Calculation of the matrix 

T|(pM = H~^(pM, approximating H"^(p^), is possible without calculating 

second derivatives of the functional, but only finding variables p\p^~^ and 

gradients V/(p^'),V/(p^~^). 

Matrix ii(p^) is written down as iî  =I](P^~^)H-Ai](p^"^) = i]^"'4-At]^"\ 

with a given initial matrix ^[p^) (usually a unitary one) and calculating 

AT|(P) on each iteration by increments Ap*=p^-p*"', 

g* =V/(p^)-V/(p^"') according to a selected algorithm. 

In BFGS method (Broyden-Fletcher-Goldfarb-Shanno), a more precise de­
scription of the matrix i]* can be given by the following recurrent depend­
ence: 

^'=^'-' + iHg'fn'~V Ap'(Ap')^ Ap'(g')V-^+n'-V(Ap'/ 
(Ap^)'g' (g')'Ap^ (g')'Ap^ 

and in DFP method (Davidon-Fletcher-Powell) - by the dependence 

n" ^n*-' I V ( V ) ' n(p'"')g*(g*)'¥p*'') 
(Ap*)V (g*f¥P*'')g' 

For minimization of square-law functionals or those close to them the 
method of conjugate directions, according to which direction of search on k-

th iteration is determined by the expression fe^) Qe^"' = 0, where Q is a 

positive-definite square matrix (for example, the Hesse matrix Q = H), can be 
effectively applied. The step / in the method of conjugate directions is selected 
the same way as in other gradient methods, for example, from the Eq. (2.1). 

If Q = 1, i.e. it is a unitary matrix, the condition (e^) lê "̂  = 0 shows that 

vectors e* and e "̂' are mutually orthogonal. For an arbitrary matrix Q under 

the condition (e^) Qe^"' = 0, the vector ê  is always orthogonal to the vec­

tor Qe^~'. Therefore, e* and ê "' are called conjugate vectors. Thus, in this 

method the descent to the point of a minimum is carried out on conjugate, in­

stead of orthogonal directions, as it is done in the method of quickest descent. 
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The number of linearly independent directions conjugated in relation to 
positive-defined matrix Q of order n, is equal to n. By execution of single 
descents along each of the conjugate directions the minimum of square-law 
functional of n variables will be found after n descents. As vectors of conju­
gate directions, eigenvectors of the matrix H = Q , which form a linearly in­
dependent system of n vectors, can be selected. At that, the order of choice of 
directions (eigenvectors) is of no importance. 

This method can also be applied for search of the minimum for non-square-
law functionals, however in that case the number of iterations will be infinite. 

In the method of conjugate gradients the search direction ê  is determined 

by the expression e* = -V/(pM+6;*e^~^, where co is a scalar. It should be se­

lected so that directions ê  and ê ~̂  were conjugated i.e. to satisfy the condi­

tion (e^"^) He^ = 0. This requirement results in the following expression: 

e^^^=-V/(p'"^) + e' 
(V/(p^)fv/(p^) 

Note that both methods of direct search (Hook and Jeeves method), and -
to a greater extent - gradient, particularly, quasi-Newtonian methods, which 
have the property of fast convergence to a minimum, have found application 
for solution of optimization problems in electrical engineering. 

Above discussed methods of numerical integration are poorly effective 
when searching of minima of rigid functionals. At the same time, as it will be 
shown further, rigidity is a characteristic property of inverse problems in 
electrical engineering. To search minima of such functionals special methods 
should be used. These methods will be discussed in Chapter 3. 

As shown in Section 1.1, the Hesse matrix H(p) = V^/(p) of a rigid func­

tional / (p ) is weakly conditioned and, because of this, its equal level surfaces 
have specific ravine structure. Graphic representation of equal level lines al­
lows showing only one-dimensional ravines (Fig. 2.3) for two-variable func­
tionals. Generally, a ravine may be multidimensional. By definition [5] a dou­
bly continuously differentiable functional /(p), p e l l is called r-ravine, if 

eigenvalues of the matrix H = /''(p) satisfy the following inequalities: 

/i,>->A_»|;i_„|>->|A„|, 
for all p e n . The number r defines the dimensionality of the functional ra­

vine in the domain n . The quantity S = X^^^ (H)/|/l^j„ (H)|, Ji^.^ (H) ^ 0 can 

serve as a degree of the functional "ravinity". 
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2.3 Search of objective functional minimum in tlie presence 
of constraints 

When solving inverse problems it is necessary to take into consideration the 
conditions imposed on desired parameters, i.e. constraints of geometrical and 
physical character. Alongside with such "natural" constraints, introducing 
additional constraints is required in some problems, as a rule, inequalities 
having the form /^ (p) > 0 or /^ (p) < 0 ; for example, when one criterion is 

assumed to be the main one (i.e. the objective functional), and others are con­
sidered as conditions (see Section 2.1). 

Sometimes these additional conditions (constraints) are introduced to im­
prove inverse problem characteristics. So, as discussed in Chapter 1, the 
problem of field synthesis in a domain Vi has non-unique solutions because a 
zero field within V/ can be created in an infinite number of ways by the intro­
duction of sources on the limiting surface of this domain. However, the solu­
tion becomes unique at the condition of minimality of the volume with the 
sources that provide the required field. 

To find a minimum functional in problems with constraints on parameters' 
vector p is much more complex than in problems without constraints. A func­
tional at the presence of constraints may not become its minimal value on the 
optimum vector p. At the presence of constraints one must proceed to more 
complex conditions from the necessary condition dl/dp = 0 of extremum of 
functionals without constraints. Moreover, in some cases with constraints the 
functional extremum may become non-unique though in their absence it was 
unique. 

To simplify their solution, problems with constraints should be converted 
to problems without constraints, i.e. to problems of unconstrained optimiza­
tion. The most widely used methods of reduction of functionals minimization 
problems with constraints to problems of unconstrained optimization are 
methods of penalty functions and of Lagrange multipliers [4,6]. These meth­
ods are discussed below. 

Penalty functions method 

Let the parameters' vector p satisfy the condition /z(p) = 0 at the minimiza­

tion of the functional /. In the elementary variant of penalty functions 

method, an expanded functional F(p) = /(p)-f-cr/z^(p) is created where the 

positive factor oO is a parameter. Apparently, searching of functional F 
minimum is a problem of unconstrained optimization. The component 
<j/z^(p)to be added to the functional / ( p ) , and increasing its value, is con-
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sidered a "penalty" which gets smaller as the constraint/z(p) = 0 holds more 

accuracy. Sometimes for more exact consideration of the constraint 

/z(p) = 0, the problem should be solved several times by increasing values of 

the factor a . This will certainly complicate the problems solution. 

If a constraint is given in the form of inequality g ( p ) > 0 , a function 

^(p) , which becomes zero in the case of its validity, can be expediently 

used. Function ^(p) = g"(p)[l-signg(p)] is an example of ^(p) . As de­

scribed above, the expanded functional F(p) can be written down, adding a 

component (j^(p),(7>0 to the functional / ( p ) . 

At set constraints of the type g (p) > 0, /z(p) = 0, the following can be ac­

cepted as the expanded functional: 

F (p) = / (p ) + (7{/i^(p) + g^-(p)[l-signg(p)]}. 

The factor ^ ( p ) = /i^(p) + g^(p)[l-signg(p)] at the coefficient <J be­

comes zero if constraints are valid. Indeed, expressions in square and curly 

brackets become zero only if /z(p) = 0 and g ( p ) > 0 . At violation of con­

straints, i.e. at g ( p ) < 0 (then sign g(p) = - l ) and /z(p)?tO, we have 

^(p)>0. Then larger violations of constraints cause more increase of the 

functional /^(p) • 

If there are several constraints g. (p) ^ 0 (/ = W^ ), h. (p) = 0 (/ = \,N^), 

the expanded functional in penalty functions method becomes 

F(p,^)./(p) + .T|f/.f(p) + '|gf(p)[l-signg,.(p)]|. 

Function ^(p) can be assumed to be 

^(p) = l~tanh(ag(p)) or ^(p) = - 7—7—7> « > 0 . 
l + exp(ag(p)) 

As opposite to function <2?(p) = g^(p)[l-signg(p)] , these functions are 

differentiate on p. 
The minimum of the expanded functional F can be located both inside the 

domain 11 of allowed values of parameters p (where the minF and min/ coin­
cide as in this case cr(^(p) = 0), and outside the domain of 11. In the latter 

case the lower limit of functional F is reached on the boundary of domain 11. 
If the minimum of F is inside the domain 11, then the solution is found by a 
one step search of minF. Otherwise, repetitive steps of search are required. 



70 Inverse Problems in Electric Circuits and Electromagnetics 

increasing crat each step until the function y/{p) = 0 is close to zero within 

the specified error. 
Outside the domain FI where constraints are not valid, and inside the do­

main n where they are valid, the functional F(p,cr) derivatives are essen­

tially different. This difference is especially strong for large values of a 

Therefore, computing generally becomes more complex by increasing a As 

a result, finding the minimum F(p,a ' ) located near the surface i^(p) = 0 is 
inconvenient using this method. The method of Lagrange multipliers lacks 
this disadvantage. 

Lagrange multipliers method 

This method is extensively used in solving optimization problems with the 
presence of constraints. Therefore, we shall discuss it in more detail. 

In this method, constraints on optimization parameters are written down in 
the form of constraints-equalities. Therefore, a transition from constraints-
inequalities (if they are present at the problem specification) to constraints-
equalities is required. For example, the constraint p. > a. becomes equality 

Pj -a.-zf =0 whcnp.=a.+zf (here Zi is a new variable). Constraint 

p. > Pj becomes an equality when pj = Zj, p, = a. + zf. The double ine­

quality a. < p. <b. becomes an equality when p. <b. +(a. -Z?.)sin^z.. Simi­

larly, by use of auxiliary variables, other transformations from constraints-

inequalities to constraints-equalities are possible. 
Let's consider the method of Lagrange multipliers used for search of the 

functional / (p ) extremum at constraints-equalities /z. (p) = 0 , i = \^N^, 

where p = (/?p p^, ••• ,P;vJ » Â ;, < A^̂ . As variables pp p^, •••, p^^ are 

connected by Â^ relationships, then the number of independent variables ap­

pears to be Np-N^. Therefore, the problem can be reduced to a problem of 

extremum search for a functional / ( p ) , not of Â ^ , but of Np - N^ variables. 

For this purpose, it is possible in the beginning to express Nh variables from the 

relations /z. (p) = 0; for example - the first Â^̂  parameters Pp P2'"''P/v 'by 

remaining variables p^+p P/^+a' "*' PN • Further, it will be necessary to 

substitute the obtained expressions for /?p p^, •••, p^ in the functional 

/(/?p /?2, '".PN^) to derive the functional /I(P;V,+P PN,+2^ "^ p ^ ) , which 

will be dependent only from N^ - N^ variables. Then, variables at which func-
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tional / j , and, hence, the functional / under condition of constraints reach their 
extreme value, can be found from the equation 

However, this is a rather complicated way to account for constraints on the 
vector p components. To find explicit dependences p^, p^, "•, Pj^ from 

PÂ  +PP/V +2' ' " ' PN ' '̂  î  necessary to find an analytical solution of the sys­

tem of nonlinear equations /i.(p) = 0, i-X^N^ . This problem is solvable 
only in rare instances. 

The Lagrange method allows us to overcome these difficulties. It involves the 
introduction of parameters X. {i = \,N^) - the so-called Lagrange multipliers, 

and transition from minimization of the functional / (p) to minimization of the 
expanded functional 

L(p,A) = /(p)+X^^^^(P)-

Multipliers /^,/i2, "s/̂ yv ^̂  ^^" ^̂  variables /?p 2̂̂  " s P/v ^̂ ^ ^^8^" 
ments of the expanded functional. Thus, the number of unknowns becomes 
N^-\- Np. To find them, the necessary condition of the expanded functional 

L(p,/l) minimum is written down on variables included in the vector p, ap­

pended with equations h. (p) = 0, (i = \,N^). For calculating the derivatives 

included in the system of N^^ + N^ equations 

M 
variables A are considered as independent values. The vector of variables p 
found from these equations delivers an extremum to the functional /(p) for 

constraints /z. (p) = 0, (/ = 1, A ;̂,). 
Thus, the method of Lagrange multipliers reduces the problem of finding 

the conditional extremum of the functional /(p) to a problem of finding the 

unconditional extremum of the expanded functional L(p,A). 
Let's apply the Lagrange multipliers method for the search of extremum for 

the functional l[p^,p^), dependent on two variables given the constraint 

^{Pi^Pi)-^' The equation h[p^,p^) = 0 determines a curve on the plane of 

parameters /?p /?2» shown by the dashed line (Fig. 2.12). Here, the continuous 



72 Inverse Problems in Electric Circuits and Electromagnetics 

lines show projections of the equal level lines (constant values) of the func­

tional / (pj ,p2) on the same plane Pi, /?2 • 

In the absence of constraints, the functional l[p^,p^) extremum is reached 

at the point A, however coordinates of this point do not satisfy the condition 

/i (Pi, /72) = 0 as they do not belong to the curve L Therefore, the point A is not 

a point of conditional extremum and, accordingly, not a solution of this prob­
lem. The solution is the point B with coordinates pio, /?20- At this point, the 
curve i is tangent to the line of least values of the functional l[p^,p^). 

i = c,<c. 

h{p,.P2) = 0 

Fig. 2.12. Search of functional extremum under the constraint h(puP2)=0 

According to the Lagrange multipliers method an expanded functional 

L(pp/?2,/l) = /(/?p/?2) + '^^(PpP2) should be introduced, and coordinates 

P\o^ Pio^ at which the functional L^p^^p^./i) reaches its extremum, can be found 

from the equations ^ ^ = 0, ̂ ^ =0,h{p^,p^) = 0 , 

Solutions for some conditional extremum problems, constraints can also be 

given as inequalities g^^(p)>0, i = hNg defining a domain in the iV-

dimensional space. For such a definition of constraints, the extremum can be 
reached both inside this domain and on its boundary. If inside the domain an 
extremum can be searched as an unconditional one, then to find the function 
/ (p ) extreme value on the boundary, the above considered method of La­
grange multipliers can be applied, since conditions g,(p) = 0, i = hN^ are 

valid on the domain boundary. 
This reasoning may be used for search of the extremum for the func­

tional/(/7p ;?2) c>f two variables at the constraint g[p^,p2)>0. If the ex-
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pression l[p^,p^) determines the domain limited by a closed curve £, then 

the extreme value of li^p^.p^) inside this domain can be found by solving 

the equations dljdp^ = 0, dl/dp^ = 0. On the line i we have equations 

dL/dp,=0, dL/dp,=0, g{p,,p,) = 0, 

where L{p^,p,,Ji) = l{p^,P2) + Jig{p^,p^), 
Problems of extremum search at presence of constraints are solved as well 

when components of the parameters' vector p are represented by unknown 
functions and their derivatives. In the simplest cases the vector p contains a 
single component which is a function of multiple variables, for example, a 
function of coordinates x^,X2,...,Xj^. Problems of finding of function 

/?(;CpX2,...,;c )̂, delivering a minimum for the functional /(/?), are referred to 
as variational problems. Let's consider features of application of the Lagrange 
multipliers method at the solution for such problems. Assume, for simplifica­
tion, that the desired function p[x) depends on a single coordinate x. 

Let the minimized functional contain not only the function p{x), but also 
its derivative. For such problems, called isoperimetric, the search for an ex­
tremum of the functional 

b 

I(p)= jf(p(x),pjdx 
a 

at a constraint on the function p[x), given as 
b 

^h(p(xXp'^)dx = d, 
a 

where /?̂  = dp(x)/dx and J is a given number, is required. The expanded func­
tional L(p,/l) can be written down as 

b fb \ 
L(p,Ji)= jf(p(xXp[)dx + /l\ jh(p(xXp[)dx-d . 

a \a J 

The desired function p[x) is found from the necessary condition of its 
minimum. That is the condition of equality to zero of the expanded functional 
variation, i.e. SL = 0, on the function p{x). Variation of a functional (see 
Appendix B) is defined as the main (linear) part of its increment at the given 
variation Sp(x) of the desired function p{x). 

Let's consider an example introducing an expanded functional and finding 
of the Lagrange multipliers for search of density (7(s) of electric charge q, 
distributed on the surface 5 of a charged conductor. It is well-known that be-
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cause of charge distribution on a conductor surface, the electric field energy 

îV̂  =—^(p^o'(s)ds created by it becomes its minimal value (here cp^ is the 

electric potential). The objective functional can be written down as 

I{(7) = W^= —\i<p^a(s)ds . The electric charge of a conductor is connected to 

its surface density as q = \ia(s)ds . Considering this relation as a constraint, 
.y 

the expanded functional can be given as: 

L(a) = -[j(p^(7(s)ds + A[j(7(s)ds. 
s s 

From the necessary condition of its extremum (the stationary condition) 
SL((7) = \j{(p^(s)-\- X)(S(7)ds = 0, 

by virtue of arbitrariness of the variation S<7, we find ̂ ^ (s) = -A = const. 
Thus, we arrive at the conclusion that distribution of a charge (̂  on a con­

ductor surface results in constant potential on the conductor surface. And the 
Lagrange multiplier appears to be proportional to the conductor potential. 

In this problem the Lagrange multiplier becomes a constant. Generally, the 
multipliers Ji=^/i(X\,X2^"-^^N^ ^^^ functions of coordinates. Isoperimetric 
variational problems are the simplest ones. In other problems the constraints 
on desired function p[x) are taken into account similarly by the introduction 
of expanded functional which are included in the given constraints. 

Thus, for search of the objective functional minimum in the presence of 
constraints on optimization parameters, both in the method of penalty func­
tions and in the Lagrange method, an expanded functional with included con­
straints is introduced and minimized by methods of unconditional minimiza­
tion considered in the previous paragraph. In practice for optimization 
problems, expanded functional frequently include, simultaneously, penalty 
functions as well as Lagrange multipliers, taking into account some con­
straints by means of penalty functions, and others - by means of Lagrange 
multipliers. 

Let's consider an example of the solution of an inverse problem with con­
straints by the Lagrange multipliers method. 

Let's find the currents /̂ , k = 1,Â , of inductively connected coils under the 

condition of ^ /̂  = /^, at which the coils' magnetic field energy 
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. k=Ni k=Ni k=Ni 

is minimal. Inductances L̂  and mutual inductances M^^, (/:,/7 = l,A^,) of 

coils are given parameters. Assuming / = W^ be the objective functional and 
k=N 

taking into account ^ /̂  = i^ as the constraint, we can introduce an ex-

panded functional: /"k^N: 

L = I + Ji 

From the 

dL 
necessary 

k=N: 

^k=\ 

condition of the mmimum 

^ = 0, k = l,Nj and ^ik~^o-^^ we derive Â  + 1 equations for cur-
dij^ /t=i 

rents /^, k^l^Nj and for the Lagrange multiplier A: 
p=Ni 

k=Ni 

p=Ni 

Here, CP̂  = L̂ /̂  + ^ ^k,p^p ^^ ^^^ magnetic flux linked with the /:-th coil. 
p=\ 
ptk 

Magnetic field energy of the coils is minimal, if magnetic fluxes of all coils are 

identical and equal, that is cP̂  = - /I , k = 1,A ,̂. In particular, in the case of two 

coils Mj 2 = M2, = M , required currents are found from the equations 

L2/2 + M/j = -A, from which 

U -L 

L,+L2-2M 

L,-M 

L,+L2-2M 

Lagrange multipliers introduced for the account of constraints allow effec­
tive calculation of the gradient of the expanded functional on the parameters' 
vector. It is well-known that calculations of gradients of functionals are the 
most frequently carried out procedures when solving inverse problems. As it 
has been shown in Section 2.2, when using gradient methods, finding the 
functional's gradient demands the highest calculation expense. Therefore, the 
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technique of its calculation determines the efficiency of the entire minimiza­
tion process as well. 

Let's compare various approaches to calculation of the expanded functional 
gradient at the solution of inverse problems using electric circuits theory. 

The circuit equations can be written down as /^ (p,i) = 0, k= \,N., or 

f(p,i) = 0 , (2.9) 

where p = f/?p/?2, '"^P^ ) and i = Up/2, --s/yv ) are vectors of circuit pa­

rameters and currents, and f(p,i)=(/i(p,i), /2(p,i), ••• /A^CPJ)) . 

The problem involves finding a parameters' vector p, on which the given 
functional / (p , i ) reaches its minimal value. According to the Lagrange mul­
tipliers method, an expanded functional should be introduced considering the 
circuit equations (2.9) as constraints imposed on the desired parameters p: 

L(p,i,>.) = /(p,i) + >."f(p,i), 

where X = f/lj, A^, • • • ,/l^ ) are the Lagrange multipliers. 

One of the variants of calculating the functional L(p,i,X) gradient in­
volves the analytical solving of a system of equations f (p,i) = 0 with regard 
to the vector i, with substitution of the obtained solution i = i(p) into the ex­
panded functional and its subsequent differentiation. Gradient calculation in 
this way is unacceptable for the most nonlinear inverse problems, as the ana­
lytical solution of Eq. (2.9) is impossible or rather tedious. 

Another, most frequently used method of gradient calculation, is its nu­
merical calculation from the following relations 

^p 

L(p,i(p),X) -L (PJ+APPP2 '* - ' ' PA^ , 'KA+^I 'P2 '*" ' / ^ /V , ) ' ^ ) 

L(p,i(p),}.) -L (PPP2+^2 ' - ' - ' / ^ /V , 'KA'P2+A^2 ' - - - ' / ^ /V , ) ' ^ ) 

^ 2 

L(p,i(p),X) -L(p,,p^,"',p^^ +^^^XPVP2^'",PN^ +Apyv^X )̂ 
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When calculating the gradient by this method it is necessary to solve 
Â^ +1 times the system of Eq. (2.9) for calculation of the vector i at various 

p. This demands heavy computing expenses. 
Let's consider a way to use Lagrange multipliers for functional L gradient 

calculation. We shall calculate the derivative of the expanded functional on 
the vector p 

dp dp dp 
is 0 as f=0 

^cS^' 

v4>y 

'di^ 

dp {dpy 
dl 
— + 
di 

3f 9f 8i 
3p 9i 3p 

\^ 
X= 

dl fdi^' ^ '-^'' 
dp v ^ y v^Py 

dl fdS^' ^ 

3i l a . 

(2.10) 

Let's find the Lagrange multipliers X from the condition of equality to zero 
of expression in the brackets in the second summand of Eq. (2.10), that is to 
determine them from the solution of the system of linear equations 

di di 
(2.11) 

Then the gradient of the expanded functional can be calculated by means 
of the following relation: 

dL 

dp dp 

3f 

9P 
(2.12) 

This method of calculation of the gradient demands a single solution of the 
system of linear equations (2.11) and (2.12) that is a serious advantage in 
comparison with the methods discussed above. 

Let's consider an example. In the electric circuit shown in Fig. 2.13 let it 
be necessary to find the resistance r, at which the functional 

/(r,i) = (if + /2 - 0. Ij reaches its minimal value. 
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Fig. 2.13. Electric circuit with the resistor r of optimized resistance 

To write down Eq. (2.9), we apply the mesh current method: 

(4 + r)/, - 2i, =0, f/, (r,i) = (4 + r)/, - 2i,, 
or < (^.13) 

-2/ ,+4/2=1 [/2(r,i) = -2 / ,+4 /2 -1 . 

Then the expanded functional is 

According to Eq. (2.11), multipliers Jli and A2 should satisfy the following 
equations: 

[(4 + r ) ^ -2>^=-4 / , ( / f + /,^-0.l), ^^^^^ 

\-2J{ + 4\ = -4/2[if + (2 -0.1). 

It should be noted that the left parts of the systems of equations (2.13) and 
(2.14) are similar. Therefore scopes of work for solution of Eq. (2.13) and 
(2.14) are practically identical. We shall determine /i\ and /I2 from Eq, (2.14), 
using expression (2.4) for calculation of the desired gradient: 

dr dr f^i dr 

20/f + 201/2 + lQ 2̂̂ f +10^2 - 2̂ 1 - (2 . 

5(3+7) ^'' 
1 4 + r 

Eq. (2.13) has a solution /, = , L = and, hence, the func-
' 6 + 2r ' 2(6 + 2r) 

tional gradient is given by 

dL(rMr)) _ -224 + 36r + 32r' + 3r^ 

dr ~ 320(3+ r) 

From the necessary condition of minimum for the functional 
dL(rMr))/dr = 0 , and taking into account that r>0 , we find r^.^ = 2 . 
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Let's solve a problem similar to the one considered above, but in nonlinear 
statement. In the electric circuit shown in Fig. 2.13 let it be required to find 
the value of the parameter a of the resistor's nonlinear characteristic 

r - ail ~ 3, at which the functional /(r,i) = (if + i^ - O.l) becomes its mini­

mum. 

The circuit equation (2.1) and the expanded functional are given by: 
U(ni) = (4 + aif-3)i,-2i,, 

[ f,(r,i) = -2i,+4i,-h 

LirXX) = [if + i^ -Ol)\ \((l-{- aif)i,-'2i^) + A^{-'2i,-\-4i^--\). 

In this case of nonlinear electric circuit, the equation (2.11) for multipliers 
Ai and A/z is linear, as before: 

(l + aif)^-2Z,=-4i,{if + i',-0A) , ^^^^^ 

-2Ji,-i-4X,=-4i^[if-\-il -O.l). 

Solving them with respect to Ai and A^, and substituting the solution into 
Eq. (2.12), an expression for the expanded functional gradient can be de­
rived: 

= - 3 + 2^4—^ =0 + /(^ij+/l^-0 = — . 
da da " aa 3ai^ 

Then, the problem solution can be obtained by any of the gradient meth­

ods: a^"'^^^ =a^"^ +a— , where the factor a is defined by choice of the 
method used. After necessary calculations, we haveâ ^̂  = 500. 

Calculation of the gradient of the expanded functional, carried out on each 
step of descent, requires solution (numerical or analytical) of the following 
system of nonlinear equations: 

/2(^i) = 0. 
It is important to note that even in the case of several desired parameters 

(as in the example considered above, there was a single parameter a), calcula­
tion of a gradient will demand only a single solution of a nonlinear problem 
on each step of descent. Therefore, the considered method of calculation of 
the gradient, based on the use of Lagrange multipliers, is considerably more 
efficient than its direct numerical calculation. Its efficiency increases for 
large numbers of inverse problem desired parameters. 
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The method of a functional's gradient calculation described above can be 
applied to any electric circuit. Let, for definiteness, the electric circuit be de­
scribed by a system of equations using the mesh-current method 

CRC"i = CE. (2.16) 

Here, C is a matrix of the major loops, i = U, i^, • --J^,) is the vector of 

mesh-currents, E is the vector of sources assumed to be constant, and 

R = diag(rp r2, ••• ,r^ ), p = (^p ^2' "* ^^N ) ^̂  ^^^ vector of inverse 

problem parameters. Let the minimized functional be given by / = /(p,i) . 

The expanded functional can be given as 

L(p,i,X) = /(p,i) + X(CRC'^i-CE). (2.17) 

Let's denote f =:(CRC^i-CE) and Eq. (2,11) for determination of the 

Lagrange multipliers be 

^] x = - ^ , f r o m which ( C R C n ' ; . = - — , o r C R C " ; . = - — . 

Eq. (2.17) is linear with respect to X and its solution can be written down 

The type of minimized functional defines — , and its calculation does not 
di 

involve any difficulties. Components of the gradient of expanded functional 
are given by 

as 

- -+r (CRC )̂-' |-1 CR;̂  C (CRC^ y CE, 
^-1 ' (2.18) 
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R' = - ^ = diag(0, 0, .-., 0, 1, 0, .-. ,0) 

T unit in position k 

After transforming Eq. (2.18) in view of symmetry of the matrix CRC^ , 
necessary conditions of minimum of the expanded functional can be written 
down as 

dL dl (dl^^ 

dr, dr, {dij ^2.19) 

where b , = (CRC^)"' C R ; ^ C ( C R C ^ )"' CE. 

Here the vectors b^, /: = 1,Â ^ can be calculated at the initial stage of the 

problem solution. In respect to complexity, the calculation of vectors 

b^, k = l,Np is the same as of the solution of Eq. (2.16). Modern codes of 

analytical calculations allow obtaining analytical expressions for 

b^, k =l,Np, even for problems with several tens of optimized parameters. 

Use of analytical methods, together with the Lagrange multipliers method, al­
lows simplifying and considerably speeding up calculations of the gradient of 
the expanded functional and, thus, simplifying and speeding up the inverse 
problem solution. 

Let's consider some examples of search by the Lagrange method of opti­
mum solution for non-stationary problems in electric circuits theory. 

We shall consider the problem of optimal charging of a condenser. The 
condenser in a circuit with series connected sections r and C, when subjected 
to input voltage u(t), is charged up to voltage UQ during a period of T, It is re­
quired to find such a voltage u(t) at which the energy losses in the resistor are 
minimal. The circuit input voltage obeys the condition w (O) = 0. 

As the circuit current is related to the voltage Uc on the condenser as 

/ = C— - , then the objective functional is given by 
dt 

'-H'^ 2oV dt 
rdt 

Assuming the circuit equation rC—--^u^ =u(t) as a constraint, the ex-
dt 

panded functional can be written down as 



82 Inverse Problems in Electric Circuits and Electromagnetics 

T du^ 
L = I-^ ^Mt)\ rC—^-\-u^-u(t) \dt = I+ JMt)rC--^dt+ JMt)[u,-u(t)]dt, 

0 L dt J Q at Q 

where the Lagrange multiplier X(t) is a function of time. 
As the desired functions are udt) and u(t), i.e. functions of time, then the 

necessary conditions of minimum for the functional L are expressed through 
its variations in the form of S^ L = 0 and S^L = 0. 

For calculation of the variation S^ L we shall transform the expanded 

functional, performing integration by parts: 

L = / + A(O^CwJ'̂ ^-f- J -rCu^—— + X{t)u^-X{t)u{t) \dt. 

Then, the equation (5'̂  L = 0 becomes: 

5J + X[T)rCdu^{T)- X{0)rCdu^{0)+ i-rC^^^ + X{t)^^ 

The variation of objective functional (5"̂  / = \rC^—-—(Su^)dt is also 
J dt dt 

transformed using integration by parts: 

dt ' 

d u^ 
- Wc'^du^dt. 

dt' 

By virtue of arbitrariness of the variation du^ in the expression d^ L = 0, 

factors at Su^ under integrals should become zero. Hence, we obtain the fol­

lowing equation for the function X (t): 

/t = - r C — r 
dt dr 

rC^-Z = -rC^-^. (2.20) 

As Su^XO), Su^{T) are equal to zero, then A(0) and X{T) are arbitrary val­

ues, and, in particular, A(7)=0 can be assumed. Introducing a variable t\=T-t in 

Eq. (2,20), it is possible to proceed to the equation rC — -t-/l = rC^ 
dt^ dty 

which should be solved for the initial condition A(0)=0. 

The necessary condition S^L-0 of minimum for the functional L results 

in the relation 
T 

S^L = -JMt)Su(t)dt = 0, 
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from which follows that condition Z[t)=0 must hold for the point of mini­

mum of the functional. 
For the considered problem the solution of Eq. (2.20) can be easily found: 

Z(t)=0 at — r ^ ^ O ' i-̂ - ^̂  —^ = const. Thus, the charging current of the 
dr dt 

condenser should be constant and the circuit input voltage should change un­
der the linear law. 

There are several other problems similar to the problems considered 
above; for example, there is the problem of search of the circuit's input volt­
age u{t), at which the current in some circuit branch reaches a preset value 
during a given period T. The objective function in this case can be written 
down as 

I=0.5{m-i{T))\ 

Its variation to current is Si - [i{t) - i{T))5i. 

If at a transient in the circuit, the power output in resistor r over a period of 
time T should be P(7), then the objective function can be written down as 

/ = 0 . 2 5 j [ r ( O r - P ( r ) ] dt, 
0 

The variation of this function to current is 
T 

Sl = r ̂ \t)r - P(T)] mSidt. 
0 

The subsequent course of solution is similar to the one considered above. 
This approach can be applied to the general case when the electric circuit 

is described by a system of state equations: 

x = AX+u(o, x(0) = Xo, o<^<r , 

where X(0 = (^i(0. ^2(0. ••% -̂yv (O) is the vector of condition variables, 

U(0 is the vector of sources, and A is the matrix of the circuit state equations. 
It is required to find the voltages included in the vector of circuit sources 

T 

U(0, at which the functional / (X,U(0)= \(p(^,\i{t))dt reaches its minimal 
0 

value. 
The expanded functional can be given by 

T T T 

L = /+JX^[X-AX-U(0] rfr = /+JX'̂ X dt-jX^'lAX + Vit)] dt, 
0 0 0 

where 'k = y\{t),/i^{t), •••, /l^^(O) are the Lagrange multipliers. Integrating 

by parts we get: 
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.r VdX' 
L = / + >.^(0X(0L-|^^X + X'̂ (AX + U(0) 

dt 
dt, 

The necessary condition of minimum for the expanded functional S^L-Q 

results in the equation 

d^i=-yJ{t)dx[ +1 ^^dx-\-yJ x{sx) dyJ 

dt 
dt. (2.21) 

Then, S^I can be written down as 
T T 

d^I = jS^(p(X,V)dt = J0(X,Uf {SX)dt, 
0 0 

0(X,U) = (^,(X,U), (p^iX^V), ... ^^(X,U)) ' . 

Equating factors at variations SX in the left and right parts of Eq. (2.21), 

we get + X'^A = O'' (X, U(0), or: 
dt 

— + A'̂ X = O(X,U(0). 
dt 

(2.22) 

The initial conditions X(0), X(T) can be obtained equating factors at 

variations SX(0\ SX(T) in the left and right parts of Eq. (2.21). Their form 

is defined by the form of functional / and by initial conditions XQ. 

The necessary condition of minimum for the functional SyjL = 0 results in 

the following: 

jX^(t)S^j{AX + V(t))dt= \S^,(p{X,{])dt=jf{X,l])SVdt. (2.23) 

Equating factors at variation <5U in both parts of equation (2.23), we get 

M0 = <2>(X,U(0). (2.24) 
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Equations (2.22) and (2.24) allow calculating functions X(r) and the de­

sired voltage U(r) at the circuit input. 

The sequence of solution of the problem is as follows. Being given initial 

function U^ [t), the system of equations (2.22) should be solved to find func­

tions X[t), If condition (2.24) holds at initial voltage U^(r) = U(r), and at 

the found functions X[t), then the calculation comes to an end. In this case 

function U^ [t) determines the desired voltage. If the condition (2.24) does 
not hold, then the input voltage should be improved according to the applied 
method, and Eq. (2.22) should be resolved. 

As stated above, it has been shown that the Lagrange method allows effec­
tively solving an extensive range of inverse problems in electric circuits the­
ory. Parameters of circuit elements, as well as currents and voltages, being 
functions of time, can be the desired values. Application of the Lagrange 
method for solution of inverse problems in the electromagnetic field theory, 
when processes are described by differential equations in partial derivatives, 
shall be discussed in more detail in Chapter 4. 

2.4 Application of neural networks 

One effective method for finding the solution of inverse problems in electri­
cal engineering is based on the use of artificial neural networks. It can be 
considered as a method of processes mathematical modeling, alternative to 
classical mathematical analysis methods. Application of artificial neural net­
works assumes the use of computers for the object's mathematical modeling 
[7,8]. 

At solution of problems by the neural networks method, we find the vector 
w of output variables by the vector v = (VpV2, • • • ,v^ f G S^ of input variables 

(actions) and the vector i^-{p^,p^,"',p^ f ^Yl of optimized parameters, 

without setting up and solving neither the differential nor integral equations 
connecting them. Here, S^ and n are the sets of allowable input actions and 
parameters, respectively. When considering neural networks, we shall as­
sume that the vector p of the optimized parameters is the input vector. 

As it was noted in Section L1, the solution of inverse problems becomes 
considerably simpler if an analytical relationship connecting the device's in­
put and output variables is known. Frequently in view of the absence of such 
relationships, connections between vectors p and w are found during the 
problem solution by repeatedly solving the analysis problem numerically. 
This procedure, however effectively realized, occupies a major part of an in-
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verse problem's solution time. Furthermore, by the vector w of the output 
variables, a vector y = CVpy2»'"»y/v ^ of criteria can be determined which al­
lows writing down inverse problem's objective functions. In this section, 
when describing mathematical tools of neural networks it is convenient to as­
sume that the neural network outputs are elements of the vector y. 

The approach discussed in this section involves prior finding of numerical 
connections between input variables p and criteria y. These connections can 
be written down as 

y(p) = (yi(pX y2(pX •••,yN/p)) , p = (pv Pi^ ' " ' ^ N J » 

where y is a generally nonlinear vector function determined by the inverse 
problem conditions, Np is the number of optimized parameters, and Ny is the 
number of criteria. As noted above, finding an analytical expression for the 
function y, as a rule, is impossible. However, repeatedly solving analysis 
problems for a set of various vectors p, (y = \,K), it is possible to find a set 

of corresponding vectors yy {j- \,K). Resulting sets of vectors pj H yj can be 
considered as a numerical description of the function y(p). 

It is assumed that the set of vectors py (y = \,K) is a representative one, so 
that 

VpG^,, 3 p.: ||p,-p||<^||p||, (2.25) 

where ^ is a small value. It is intuitively obvious that such a description of 
y(p) will be more accurate, the less ^ is. It is also obvious that when increas­
ing Np and reducing e, the number K of vectors py necessary to satisfy Eq. 
(2.25) will increase. Required time for solution of the inverse problem will 
increase accordingly. Neural networks allow describing the properties of 
function y(p) with accuracy, sufficient for practical applications at compre­
hensible scopes of calculations that is at not too large a K, 

Finding of multivariable function y,^ (p) = / (p) = / (/7j ,/?2, • • • ,Pj^ ) becomes 

simpler if we can express it as a set of nonlinear one-variable functions. The 
question of feasibility of such representation for an arbitrary nonlinear func­
tion is of fundamental importance for neural networks. It has been shown [9] 
that any continuous multivariable function / can be exactly represented by 
superposition of continuous one-variable functions: 
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/=! I 7=1 

p i p 

\' 

(2,26) 

where a and y5 are arbitrary one-variable nonlinear functions. Functions a and P 
effecting exact representation of the function / are rather complex. In practice, 
approximate representations of the function/are allowable. Therefore bounded 
nonlinear functions must be used, such as, for example, the sigmoid unipolar 

function (p{x)- —, where fc is a parameter, the bipolar function 

(p[x) = tanh {bx), or the unit step function l(^). At their application Eq. (2.26) 
f N. 

can be written down as / = ^ iy>Pi , where Wi are constant factors. Thus, 

yk, the k-\h component of vector y, can be presented as 

f N^ 

yk(PvP2^'"^PN) = ^ I^.„A (2.27) 

Other nonlinear functions find application in practice; specific features of the 
inverse problem determine their form. For example, at solution of inverse prob­
lems in electric circuits theory can be polynomials or series of special kinds dis­
cussed in Section 1.2. 

It is well-known, that the expression 

yk(p) = %\T.^uPi+^ \ = ^A'^p+^)^ 

where W = 

W^. W 1,2 1,A/ 

R , W. '2,1 

V W 

2,2 w. 2,N 

w^ w. 

, b : 

v^My '^M,2 ""M.N J 

(similar to Eq. (2.27)), describes the funcfioning of a living organism nerve 
cell, called a neuron. The neuron circuit model shown in Fig. 2.14 also re­
flects properties of summation, transformation and transfer of a nervous pulse 
(signal). The weight factor Wk,i is referred to as the Neural Network Coeffi­
cient, the signal bk as the offset, and the nonlinear function (pk as the function 
of neuron activation. 
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In the human nervous system, the neurons (which number is on the order 
of 10^\ and the number of connections between them is 10^ )̂ are connected 
with each other and participate in reception, processing and transfer of elec­
trochemical signals through the brain's nerve paths. There are several signals 
at a neuron input whereas at its output there is only one signal, which de­
pends on input signals, properties of communication lines, and on the neuron 
itself. 

• "̂  ^ ^ 
^ I 

1 

F 
% JM 

PNP 

Fig. 2.14. The neuron model 

Signal intensity at the neuron input depends on properties of channels 
(synapses) incoming to the neuron, and also on the quality of the outgoing 
channel. If the signal at the input of a cell exceeds some threshold level, it re­
sults in an avalanche-like signal (pulse) at its output. Though the signal trans­
fer time by a cell is rather long (about 4 milliseconds), the nervous system 
shows rather high speed of work (for example, at visual recognition) due to 
parallel transfer of pulses by a large number of interconnected neurons. 

/,(P) 

y,{p) 

PNP 

ynyiP) 

Fig. 2.15. Single layer neural network 

It was presumed that the application of artificial neurons would allow con­
structing computers that operate like a human brain. And though these hopes 
were not justified (apparently, because of the greater complexity of processes 
in the human brain than it was presumed), neural networks have allowed 
solving of a number of problems more effectively than universal computers. 
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For calculation of all components of the vector y on the basis of neuron 
circuit shown in Fig. 2.14, it is necessary to connect several neurons to form 
a so-called artificial neural network. The elementary network is formed by 
the connection of neurons, having at their inputs components pi of the input 
vector p multiplied by factors W^j (k is the number of a neuron) (Fig. 2.15). 

The neural network shown in Fig. 2.15 is called a single-layer network. 
However, the majority of practical problems require application of networks 
containing large numbers of layers. Outputs y^yi, ... yk of the network shown 
in Fig. 2.15 can be considered as components of an intermediate vector y\ Fur­
thermore, it can be considered as the input for the second layer of neurons. In 
turn, the output y^ of the second layer can be considered as the input for the 
third layer, etc. In that case we have a multilayer network. The first layer of the 
network with input signals v, is called the input layer. The last layer, forming 
the network output signals, is the output, and all other layers are called hidden 
layers. If each of the input vector components of a layer in a network is fed 
through communication lines to the inputs of all the summing units of that 
layer, such networks are called fully connected networks. Matrices W, as well 
as offsets b for various layers, can differ. Besides, layers can have different ac­
tivation functions (p. 

Generally the number of layers and the number of neurons in each layer 
can be assumed to be arbitrary. Numbers of input and output signals can dif­
fer from the number of neurons in intermediate layers. 

Three-layer neural networks with an identical function of activation for every 
neuron have found practical application. In Fig. 2.16, a three-layer neural net­
work is shown. The hidden layer contains identical nonlinear activation functions 
(p, and input and output layers do not contain nonlinear functions. 

The neural network inputs and outputs shown in Fig. 2.16 are connected 

by the relationship y = V^(Wp + b ) , where vector p is the input and vector 

y is the output. 

P2 ^ 

• 
• 

^^\/ ŝ 
^ X ^ 
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—̂  
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PNP* 

Fig. 2.16. Three-layer neural network 
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Let's consider the following example. In this problem we wish to find the 
shape of a polar tip providing a specified distribution of magnetic induction 
along a given line. At numerical solution the required pole shape is deter­
mined by the set of coordinates /̂ p/? ,̂ • • • ,p^ of its surface points, and the dis­
tribution of magnetic induction is determined by its values in k points on the 
given line. At change of coordinate /?, any of the points on the pole surface, 
i.e. at change of the pole shape in vicinity of a single point, the magnetic in­
duction changes at all points of the line. The magnetic induction in k points 
on the line and coordinates Pn of the pole surface points are connected 
nonlinearly. This connection is generally not expressed analytically and is not 
known a priori. However, any specified shape of pole surface determines a 
certain distribution of magnetic induction along the given line. Therefore it is 
possible to set a relationship between any given set of coordinates of points 
on the pole surface and a set of values of a magnetic induction in aggregate 
points on the line. Thus, the magnetic induction B column-matrix is con­
nected to the column-matrix p of points coordinates on the pole surface by a 
nonlinear equation B=^(p), similar to the equation y = V^(WpH-b), con­
necting the inputs and outputs of a neural network. 

To find the neural network output vector y for any input vector p e H, it is 
necessary to calculate the factors of matrices V,W and b . Calculation of 
matrices V,W,b, or in other words, the network's adjustment, is referred to 
as its learning. Matrices V,W,b are found on the basis of solution of several 
analysis problems, which allow finding characteristics' vectors y by a speci­
fied set of parameters' vectors p at the device input. Thus, found vectors y 
are considered to be required vectors y on the neural network output for the 
same set of parameters p on the network input as on the device input. It 
should be noted that for a number of problems sets, having input parameters 
p and corresponding output values y of a network are obtained from ex­
periments. 

Assume we have some given initial values of factors of neural network 
matrices. Applying the vector p to the network input we get a vector y at its 
output, differing from the required vector y . It is possible to search for fac­
tors of the matrix W and the offset vector b by minimizing, for example, the 
sum of norms of discrepancies 

y=i 

Here, Â  is the number of solved analysis problems (the number of learning 
steps) or, in other words, the number of vectors y found by their solution. 
Factors of matrix V can be found similarly. Thus, finding of factors of matri-
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ces V,W,b, i.e. network learning, is reduced to the search for a minimum of 
a nonlinear functional. 

The specific form of neural network equations connecting vectors p and y 
allows applying an effective method of finding the factors of matrices 
V,W,b. Let's consider this method in more detail. For simplification we as­
sume that only factors of matrix W are determined. 

Let the weight factors be sought from the condition of minimum for the 
functional ^ (W) = y - y (W) , which can be written down as 

fiW) = f^l\W)=\f^f^(y^ -)'f(W))̂  

where N is the number of learning steps, i.e. the number of pairs of input and 
output vectors. 

Let's apply the gradient method for iterative calculation of the matrix W: 
y^h+\ _ y^h ^ ^^^^^ ^ where the vector e(W) defines direction in the space of 
weights W, and h is the number of iterations (learning steps). The c is called 
the learning factor. To find e(W) derivatives of objective function on re­
quired weights, both the output and hidden layers of the network should be 
calculated. 

Values of weight factors on the learning step h are calculated by means of 
the following relation: 

w/'+i^^Ti//' -71— 4-a(W^ -W^~^) 

^^n,k 

where parameters rj, a, determine the rate of iterative process convergence, 
and are found from empirical relations. The derivative dl^/dW^,^ on the 
learning step h in the above expression, is given by 

Apparently, the derivative dl^/dW^,^ is proportional to the error y - y on 

the network output, and in this connection this algorithm of weight factors 
calculation is called the method of error inverse transmission. 

Matrix V and vector b can be calculated similarly as the matrix W. 
This process of neural network learning is called learning with a teacher 

since it is assumed at its execution that for each input vector p the corre­
sponding vector y at the network output is known. 

The objective function /(V,W,b) can have several minima that consid­
erably complicate the finding of factors of matrices V,W,b, as it requires 
application of methods of search of the global minimum. Some possible 
methods of its search are described in this chapter. 

I'y 

z /=i 
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The necessary number of input and output sets for calculation of matrixes 
V,W,b depends, in particular, on dimensions of vectors p and y which can 
reach several hundreds or more. If in a three-layer network the number of inputs 
is A/p, outputs is Â ,̂ and the number of hidden layer neurons is m, then the total 
number of unknowns, which should be calculated for network learning, is 
(Np-\-Ny-\-\)m. Factors of matrices V,W,b can be calculated at the required accu­
racy for conditions that a sufficient number of corresponding sets of vectors p 
and y is given. 

After network adjustment, i.e. after determination of V,W,b matrices, the 
network should be tested on some set of corresponding input pi and output yi 

(i = l,Nj ] data, which had not been used in the weight factors calculations. 

At testing, matrices V,W,b should not be corrected. If the determined net­
work outputs differ from the required values no more than a given value, then 
the network can be assumed as a learned one. If the error 

£-||y|| = max||y.-y(p.)| | 

exceeds the given value, it is necessary to return to the learning level to cor­
rect the matrix factors on new pairs of vectors p/ and y, (here Nt is the number 
of test vectors). On reaching the specified error level, the network can be 
used for solution of inverse problems, i.e. for calculation of criteria vector y 
on a specified vector p of input parameters. 

Let's consider as an example for the solution of an inverse problem by the 
method of neural networks, finding of resistances of resistors R\'R4 in the 
electric circuit of a TTL-logic element (Fig. 2.17). For the circuit shown in 
the figure below, realizing logic operations NAND, 5 criteria are introduced, 
among which, in particular, are the allowable level of disturbing voltage in 
zero condition AL'' > 0.8V , average power consumption P < 20mW, and the 
allowable signal delay t^j <15ns. 

^ 4 

Fig. 2.17. Optimized circuit of TTL-logic 
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Resistances of circuit resistors are included into the parameters' vector 

p = (/?p/?2,/^3,/^4) as its components. Imposed constraints are 

0.5</?, < 10, 0.5</?2 < 10, 0.05</?3 < 1, and 0.1 <R^<2 (resistances are 

measured in kOhm). The network learning dependences of criteria from con­
trolled parameters have been defined by analytical expressions. Criteria cal­
culated by use of these expressions were considered as accurate values. 

A three-layer neural network was used. The number of network inputs is 4 
and the number of outputs is 5. The number of the hidden layer neurons was 
assumed to be equal to 30. At learning on 200 teaching examples, the root-
mean-square error was monotonously decreased and reached the value 
0.00132. After learning, the neural network was tested on 300 examples 
which were not used at learning. At that, the root-mean-square error was 
0.035. 

Neural networks find application not only for solutions of inverse prob­
lems of the type considered above, but also for solutions of so-called classifi­
cation problems, i.e. problems requiring one to relate an object described by a 
set of attributes to one of several groups that is closest to it. Such problems 
arise in various areas of engineering, including electrical engineering. 

If in an electric circuit the parameters of one or several elements have ex­
ceeded the allowable limits, then it will appear in deviations of the measured 
voltages and currents from their allowable values. If a fault occurs, it is nec­
essary to compare its attributes to characteristic attributes of groups found at 
classification. Thus, there is a problem of classification of the fault character, 
i.e. finding of a type or a group of faults to which it can be related. 

One may judge about serviceability of an electric circuit or about the char­
acter of a fault on the basis of analysis of measured values, for example, volt­
ages between nodes, branch currents, input resistances or transfer functions. 
For this purpose the vector of measured values should be related to a certain 
group describing faults of one type, because various vectors of measured val­
ues can correspond to the same fault. Thus, it is necessary to put a depend­
ence between the vector of measured values and one of the groups (classes) 
of input signals. Further, based upon belonging of a signal to either group, it 
is possible to draw a conclusion concerning the character of the circuit fault. 

This problem can be solved by means of a neural network with an input 

vector p = (/?i, /?2» '"^PN ) ^ ^I of measured values, and an output signal 

corresponding to the serviceability or to a certain fault of the circuit. To solve 
this problem by means of a neural network, it is necessary to learn or to train 
the network at the first stage. At the second stage, by means of the already 
learned network, it would be possible to place dependency between the input 
vector of measured values and a certain fault. 
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Let's consider the process of network learning. This is carried out on the set of 
input vectors p e FI with a number that considerably exceeds the number of 
possible faults. The learning problem of neural network involves allocation of 
groups of vectors close to each other by some criterion, which define one or sev­
eral faults of the same kind. It allows a reduction of the information content con­
cerning the properties of input vectors of the network. 

Let each of the faults be characterized by an input vector 

p = (/?p p^, "',PN ) ^ n of the neural network, with elements that are the 

electric circuit measured characteristics, for example, node voltages. Assume that 
vectors p e n are normalized so, for example, the norm of each vector is equal 

to unity. The set n is partitioned into groups by use of an accepted criterion of 

closeness of vectors. One of distance measures (i(p^^\p^^^) between the vectors 

p̂ ^̂  and p̂ ^̂  can be used as criteria of closeness: for example, 

d^=Z{pT-PTf'd,=j:W;'-pT\ or ^3 = max |py»-p f | . The degree 

of closeness for vectors p '̂̂  and p̂ ^̂  with elements of binary attributes (0 or 1) 

is defined as the Hamming interval 

d,=hpT(^-pT)+pTo-pf')h 
M 

which is equal to zero only at concordance of vectors. 
Another method of distance introduction is the calculation of correlation be­

tween vectors. The calculation of distance is carried out from the following rela­
tionship: 

The preliminary normalizing and centering of each of the vectors is as­
sumed: 

Pj-^r,oU 

^ p,old 

Here, M and a are the same as above. The index "oW" specifies that the 
vector and function components have been taken before and the index "new" 
- after normalization and centering. 
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Let the set of data p^ e n , j = \,Nj be arbitrarily divided into sets of dis-

jointed groups (classes) ;r̂  : FI = (J ;r̂  . Also let there be in every k-th class a 

chosen vector p^ e ;r^, determining the kernel of the class, that is a vector, hav­
ing the minimal sum of distances to other vectors of this class. 

The best way of partitioning into classes (in terms of the accepted measure 
of distance) and choice of kernel of each of the classes corresponds a mini­
mum of the following function 

1 ^^ 

This function depends on the method of partitioning of the set of vectors n 
on classes and of the choice of a kernel in each class. Methods realized by 
neural networks carrying out minimization of the function D are called meth­
ods of classification without a teacher. Accordingly, such networks are called 
self-organizing. 

Minimization involves cyclic execution of the following steps. 
On the first step, sets of vectors IT are partitioned into classes on the speci­

fied kernels Pp P2, • • • ,P/v by the following rule: a vector p̂ . is related to a 

class ;r̂  if the distance <i(Py,p )̂ between it and the kernel p^ of this class is 

less than the distance between p̂ . and the kernels of other classes. On the 

second step, the best kernel p^ in each class is determined from the condi­

tion 

T.d(p,p,) ^^^ )min. (2.29) 

The problem solution on the second step depends on the accepted defini­
tion of the distance. If, in particular, the distance is 

^P 2 

1̂ (P̂ ^̂  .P̂ ^̂  ̂  ~ X ( PT " PT ) ' ^̂ ^̂  ̂ ^ ^̂ ^ square of the Euclidean distance is 

assumed, then the kernel delivering a minimum in Eq. (2.29) for the class ;r̂  
will be the "center of gravity" vector of this class 

^ ; r , 7=1 
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On each step of the considered process the function D decreases, which pro­
vides its convergence. As a result of its minimization in Eq. (2.16) we have a 
set of kernels p^ being "centers" of classes, formed by groups of vectors p. 

Let's consider how a neural network realizes this process. Figure 2.18 shows a 
single-layered neural network containing Â  neurons. Each of the input vector p 
components is applied to all neurons of the network. The output signal of each of 
the neurons simultaneously is the network output signal. Weights of connections 
(elements of matrix W) in the beginning of the learning are arbitrary and should 
be determined. Let's consider the process of self-learning of this network. 

In the k-ih. step let the network be activated by the vector Pk. The following 
should be calculated for every neuron in the network: 

Here, \̂ ^^^ is the weights vector of the neuron with number i. The neu­

ron, possessing the least g., is declared the winner-neuron at the k-i\\ step. 

This technique of choice is called a strategy, at which "the winner gets all". 
The neighborhood S includes neurons having values g, close to the value g/ of 
the winner-neuron (see Fig. 2.18). Then the weights of the winner-neuron 
and neurons within its neighborhood are recalculated (changing direction to 
the vector p^) by the following rule (Kohonen's rule [10]): 

Weights W^,^ 

f Pi 

Weights W„,, 

Neurons 

\{ 
Weights W,,Np 

n n n n n Winner-
neuron 

Fig. 2.18. Self-organizing neural network 

Here, //f is the learning factor of the i-ih neuron at the ^-th step. The value 

of ri^ decreases as the distance between the /-th neuron and the winner in­

creases. It shall be noted that the "closeness" of neurons "n" and "m" here is 
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understood as closeness of values g^ =j(p ,̂W^^^ )̂ and g^ =^(p^,W^^^). It 
has been shown [11] that the described process of learning is equivalent to 
minimization of Eq. (2.28). At large numbers of steps, vectors of neuron 
weights becoming winners on a step more frequently than others define ker­
nels of classes, and their neighborhoods form so-called clusters - groups of 
neurons, characterizing a certain fault (or some group of faults). Thus, after 
the learning the neural network will be partitioned into clusters. We shall des­
ignate a serial number to each of the clusters, and the fault corresponding to a 
cluster will get the same serial number. 

The neural network learned in such a manner possesses a property to clas­
sify vectors acting at its input. To create a new, simpler neural network, we 
shall replace each of the clusters in the learned network by a single neuron -
the kernel of this cluster, that is by the neuron most frequently becoming the 
winner-neuron in this cluster during learning. For any vector p/ coming to the 
input of the new neural network, we shall calculate the value 

g,=^(p,.,w,), k=W,, 
where W ,̂ k = \,Nf^ are vectors of weights of neuron connections. As the 
neural circuit has been learned preliminary, only one of the values g^ will be 
close to zero. The number of the corresponding kernel (it coincides with the 
number of the cluster to which the kernel belonged) will determine the num­
ber of the class to which the given vector belongs. 

It should be noted that vectors p e n are normalized, so that, for example, 
the norm of each of the vectors is equal to unity. 

Self-organizing networks are applied for the diagnostics of faults of such 
electric circuits as active 7?C-filters and for diagnostics of the short-circuit loca­
tion on a transmission line by measurement of voltages in various points of the 
line. Such networks give significant effect at forecasting of power systems' 
performance when the network is preliminary trained on extensive experimen­
tal data obtained by analysis of the system performance for many years. 

Practical construction and use of neural networks is based substantially on 
experience and empirical relations. On the first step the network initial con­
figuration is selected, in particular, the number of the hidden layers and the 
number of neurons. Then the learning of the network is executed, i.e. the 
weights of neuron connections are found. One of heuristic rules defines the 
necessary amount of observations, i.e. the number of pairs of input and corre­
sponding output vectors, as a number of 10 times exceeding the number of 
connections in the network. It is well-known that the number of observations 
required for learning increases under a nonlinear law with increasing of input 
vector components number. Experience shows that for the majority of prob­
lems, the number of observations lays in limits from several hundreds up to 
several thousands. 
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For big errors of a network on the test set of data it is necessary to increase 
the number of neurons. If the error does not decrease with increasing number 
of tests, it means that the number of neurons in the network can be reduced. 

Special attention should be given on selection of a learning set that should 
reflect essential properties of the object modeled by means of the neural net­
works method. 

2.5 Application of Volterra polynomials for macromodeling 

Neural circuits can be applied in obtaining solutions of devices for macro-
modeling problems. As noted in Section 1.2, these problems may also be 
solved by means of a Volterra series or polynomials of split signals. Here, we 
shall consider the process of macromodeling using a Volterra series 

oo «> «> r=k 

connecting the input v(t)eS^ and output w(t)e S^ signals of a nonlinear 
electric circuit. In this approach, the electric circuit for which the macro-
model is created is considered as an unknown operator carrying out the trans­
formation of the set of input signals S^ onto the set of output signals 5*̂ . 

A segment of a Volterra series, containing q members, is called Volterra 
functional polynomial of q degree. For macromodeling it is necessary to de­
fine kernels /ẑ  (rpr^,...,^^), k = \,q in frequency or in the time domain. Sets 
of input and output signals obtained as a result of experiments or calculations 
are used as initial data for defining the kernels. 

Use of Volterra polynomials for operators' approximation is supported by 
the Frechet theorem [12,13], which deals with the approximation of continu­
ous functionals, and may not be strictly applied for approximation of opera­
tors. The possibility of approximation of nonlinear operators by means of func­
tional polynomials is proven more rigidly in [14], When using the Volterra 
series, research of their convergence is the most important and intricate part. At 
that, the question of series convergence is not so specific. The method of 
Volterra polynomials, the application for macromodeling for the case of diver­
gence of corresponding Volterra series, will be discussed below in an example. 

Let's describe the procedure of a nonlinear device macromodeling (Fig. 
2.19) by use of experimental data. Assume for simplicity that q = 2. Then, 

w[v{T),t] = V,[v{T),t] + V,[v{T),t], 

where 
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\^ [v(r ) , r ]= l^{T^)v{t-T^)dT^y,[v{T),t'\= j jh^{T^,T2)v{t-T^)v{t-T^)dT^dT^. 

1 Nonlinear 
device \w{t) 

Fig. 2.19. Arbitrary nonlinear device, for which a macromodel is constructed by the 
method of a Volterra series 

Let's search for the kernels ^ (^i). /̂ 2 ('̂ p '̂ a) ^f ^^^ Volterra polynomials in 

two stages. For the first stage we shall express Vi, and V2 through the output 

signal w(r). For this purpose, actions a^v[t), «r2v(^), where a^ and 6̂2 are 

arbitrary numbers not equal to zero, should be applied by taking turns apply­

ing them to the circuit input and measuring the reactions w, {t),W2 {t). Their 

linear combination will be given as 

We may choose numbers fi^^ ^2^ so that V\, and V2 can be determined. To 
find Vi, we assume 

(2.30) 

Then, we have 

Similarly, to find V2, we assume 

(2.31) 

Then, we have 
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Systems of equations (2.30) and (2.31) for any real 

a^^a^ and ^ , ^ 2 9^0 have unique solutions (y5/̂ /̂?2̂ M and (p\^\pf^\ , 

respectively. Therefore, by applying signals a^v{t) and a^vit) to the circuit 

input, then measuring w[aiv(^)] and w[cif2v(r)J and setting their linear 

combinationsPl'^w\a,v{t)] + Ii2^w[a^v[t)\, fil^^w\_a,v{t)] + P2^w[a^v{t)\, 

we can determine first V\ and second V2 members of the Volterra polynomial. 

This approach can be similarly applied for definition of members V^, k = \,q 

of Volterra polynomials of any order q. 
Let's proceed to the second stage of experimental finding of the Volterra 

polynomials' kernels. The first stage results allow us to determine experimen­
tally any of the Volterra series members. Let's consider the procedure of find­
ing kernels by the example of determination of the kernel h^i^z^, r^). hi first 
we shall find the Fourier-image of this kernel 

Then, we apply the following signal at the circuit input: 

v(r) = UQ [cosco^t + cos^20 • (2.32) 

Identical amplitudes and initial phases for both harmonic components are 
assumed for simplicity of further calculations. Then, on the basis of defini­
tion of the Fourier -image of the kernel of k-th order, we have 

j \l^2{^\^h)'^{^~^\)'^{^~h) dT^dT2 = 

U^ — I lh,{T,,T,) [ ^M(^-') +e- '̂̂ ^(^-') +^>-^(^-) +e-^"^2M)J X 

x [ ^M(r-r.) ^^-M(/-T.) +^M(r-..) ^^-Ml^-^)-] ^ ^ ^ j ^ ^ ^ 

--U^{ H'fcos[(co,-\-co,)t-hZH^^yHl'-'cos[(co,-co,)t-\^ -' + 
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where Hf''''^\H^{±jQ\,±jco,)\ and ZB^{±jo\, ±jco,\ k/ = l2 are the 

amplitude and phase of the Volterra polynomial kernel of the 2nd order in the 
frequency domain. For the integral calculation, the property of kernel sym­
metry has been used: H^{jO)^^co2) = H^ijco^jcOx). 

The first component in this result is of special interest: 

(7o'//i''cos[(^ +^2)r + Z / / ; ' ' ] . 

Presence of this component shows that if a harmonic signal (see Eq. 
(2.32)) is applied at the input of the circuit and the harmonic component with 
frequency co^ + co^ is extracted from the output signal (for example, by means 
of a filter), then it is possible to determine the amplitude and the phase of the 
Fourier-image of the 2nd order kernel at this frequency. By means of chang­
ing frequencies co^ and co^ of the input signals, it is possible to determine 
H^ijco^jco^) for all frequencies. Similarly, extraction of the Fourier-image 
of the 3rd order kernel is performed, except a signal containing three har­
monic components should be applied at the input, etc. 

This approach can be used for macromodeling in the frequency domain. 

Determination of /^sl^p^i) ^̂  ^^^ ^^^^ domain requires the use of Fourier 

inversion. 
The method considered above of the experimental definition of the 

Volterra polynomials' members imposes rather weak constraints on a^ and 
^2- They should satisfy only the conditions a^ ^a^ and a^.a^i^^. How­
ever, it can be shown that the accuracy of macromodeling depends on the 
choice of a^ and a^ values. The macromodel accuracy can be characterized 
by the root-mean-square error 

1 '̂ , 
••-Y\ 

V re[0,r] I "̂̂ L̂ ' \ ^J I 

l(w...[v,(0]-w,,,[v,.(0]f^/ (2.33) 

where vv̂ ô /[v. (r)]--w^.^^[v. (r)] are the output signals of the macromodel 

and the modeled object. 
In the case of ^ = 2 , the values a^ =1, a^- 0.414 are optimal. At any q, 

one of these numbers (for example, a^) can always be assumed equal to 1. 

Other q -1 values can be found from the condition of minimum of approxi­

mation error defined by the members of the polynomial of degree q-\-\. At 
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minimization of the root-mean-square error of approximation for q = ?> and 

(7 = 4 , the following sets of numbers are optimal: 

(7 = 3: 6̂1 = 1, ^2 = 0.5, ^3 = 0.596, 

q = A\ a^=l ^2=0.56, ^3= 0.644, 6^4=0.693. 

To estimate the quantity of Volterra polynomial members necessary for 
creating a macromodel displaying the object properties with specified accu­
racy, in general, is not trivial. If a macromodel created by use of q members 
does not result satisfactorily then the number of series members should be in­
creased. Moreover, calculations for definition of the first q kernels should be 
repeated, as the systems of equations similar to Eqs. (2.30) and (2.31) differ 
for various q. 

Let's create the macromodel of the nonlinear electric circuit shown in 
Fig. 2.20 by means of the Volterra polynomial [15]. 

L=1 

C = 1 

u,n(t) 

if 1 = u + u'' 

M 
IJ 

Fig. 2.20. Nonlinear electric circuit for macromodeling 

We shall find analytical dependence between the set of input signals 
Uf^[t)=^UQCOscot and the corresponding set of circuit responses 

^ [ ^ w ( 0 ] ~ ^ ( 0 ^̂  ^^^ range of frequencies ^ G ( 0 , 1 ] and amplitudes 

UQ = (0,5]. At these amplitudes of external actions and at the given nonlin-

earity, the Volterra functional series diverge. 
We shall use a Volterra polynomial of the 5th degree for macromodeling. 

As the nonlinear element ampere-volt characteristic is an odd function, then 
the spectrum of the circuit's response u[t) contains only odd harmonics. 
Therefore only odd members of series are included into the macromodel: 

Actions of Eq. (2.32) type with frequencies in the range COG(0,\] and am­

plitudes UQ = (0,5] were applied at the circuit input. Corresponding re­

sponses u[t) were calculated by numerically solving the system of circuit 

state equations for each of the input actions. Kernels were calculated for 5 
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frequencies. Making linear combinations of circuit responses, Volterra poly­
nomial members V^^.p k = 1,3 were calculated. After calculation of the spec­
tra of the obtained signals, harmonic components were extracted to determine 
Fourier-images of Volterra kernels. 

The root-mean-square error of thus obtained macromodel calculated from 
Eq. (2.33) is 1.6 % for the specified ranges of amplitude and frequency 
change at the maximal error of 13 %. To numerically calculate the integral in 
Eq. (2.33), interpolation of Volterra kernels in the frequency area was used, 
necessitating Fourier inversion. For macromodeling with specified accuracy, 
calculations at 5 frequencies prove to be adequate. Already by this simple ex­
ample, advantages of the Volterra polynomials method in comparison with 
neural networks, which demand numerous experiments for learning, are ap­
preciable. 

A more complex example concerns macromodeling of the operational am­
plifier circuit (//A741HC) containing 22 transistors. The amplifier connection 
circuit, used for the calculation of the output signal, is shown in Fig. 2.21. 

For macromodeling the following Volterra polynomial was used: 

UcM 

Ri = 2 KOhm; R2 = 200 KOhm; R3 = 10 KOhm; R4 =10 KOhm; R5 = 2 KOhm; 

Fig. 2.21. Operational amplifier connection circuit 

Modeling was carried out on the set of input signals 

w(̂ ) = f/sin^f/G (0,0.4] V, / G [ I , 10'] Hz in the mode of essential non-

linearity (the harmonic factor was up to 30%). 
The root-mean-square error of thus obtained macromodel was 0.73% in 

the specified ranges of amplitude and frequency change for the maximal error 
of 9.5%. 
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Visually, the results of modeling for input actions w.^j(0=0.4sin(2;T-500r), 

w (0 = 0.3 sin(2;r-36-10^0 and w^2(^)=0'32sin(2;r-9-ltfr), 

w,>,̂ 4(0= 0-35 sin(2;r'600-10^0 are shown in Fig. 2.22 a, b, c andd, respec­

tively. Curve 1 characterizes the device response ŵ .̂^ [t) and curve 2 - the 

model response u^^^j (r). 
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Fig, 2.22, Time responses of the real amplifier (1) and the model (2) for input volt­
ages of different magnitudes and frequencies 
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2.6 The Search for global minima 

Experience in solving inverse problems shows that their objective functionals 
can have non-unique minimum within the allowable range of change of de­
sired parameters, i.e. they can be non-unimodal. When solving these prob­
lems we may wish to find a global minimum. Generally speaking, estimating 
the possible existence of several extrema for the objective functional is not 
trivial. This means that in a number of problems, after finding the minimum 
of the objective functional, it is necessary to check, whether it is global. 

When using gradient methods, objective functional's unimodality should 
be checked during the solution, preceding the search for a global minimum in 
case several local minima are found. Uses of "soft" methods described below 
do not give such opportunity, therefore one needs good understanding of in­
verse problem physical properties to determine the question of its unimodality. 

Let's consider some examples. 
Assume that it is necessary to find the position coordinate jc of a body 

[ju^ju^^) having teeth a and /?, at which inductance L of the coil C has 
maximal value (Fig. 2.23). 

w^" 
-^^ 
- > x 

Fig. 2.23. The problem of coil's inductance with non-unique extremum 

Evidently, for the case of the coil's axis 2-2 running along the axis 1-1 of 
the small tooth b, we have a local extremum L = L^^,, as at a small deviation 
of axis 1-1 from the coil's axis 2-2 the inductance decreases. At the same 
time, for the case of the coil's axis 2-2 running along the axis of the large 
tooth (as in the arrangement shown above in Fig. 2.14) we have another ex­
tremum of inductance L = L^^^^ • This simple reasoning allows the assertation 
that this problem is not unimodal. In practice, teeth a and b may have com­
plex shapes, and determination of the global extremum will demand compari­
son of inductance extreme values. Therefore, solving of this problem requires 
finding and subsequent comparison of two local minima. 

In this example the objective functional I[x) = -L has no sharp troughs as 

|<i//J;c| (Fig. 2.24) is small. Here the point A corresponds to the local, the point 
C to the global minimum, and B is the saddle point. Note that points of objec­
tive functional minimum in sections with steep slopes, i.e. when |(i//rf;c| is 
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large in the vicinity of points of minima, and small changes of the parameter x 
(the coordinate, in this case) near an extremum correspond to large changes of 
the objective functional, usually do not represent any practical interest. Such 
solutions of inverse problems are rather sensitive to small changes in parame­
ters and an optimized device with such parameters cannot operate reliably. 

Fig. 2.24. The saddle-point B, points of mimima/4,C and their domains of attraction Ax 

Let's consider another example. Let, in the circuit shown in Fig. 2.25, it be 
necessary to find inductance LG [L^i„,L^^J, such that the relationship 

/ ( L ) = V^/V is maximal for some input signal frequency (0 = 0)^, 

® 
Passive 

linear two-terminal 
network 

V 

Fig. 2.25. Example of single-extremum problem of inductance L search 

It can be shown that this problem is unimodal for any linear two-terminal 
network. Indeed, let equivalent parameters of the two-terminal network be 
RQ and XQ at the frequency CO = (OQ. When Xo>0 , then l[L) = Vj^/V 

reaches its maximum at L = L^^^ .If XQ<0 and [XQI > 7?̂ , there is a unique 

maximum at some L̂ ,̂ G [L^,^ , L̂ ^̂  ] . 

Problems of search of global extremum are of great importance for prac­
tice that stimulated development of numerous methods of their solution. Even 
a brief review of these methods lies outside the scope of this book. It shall be 
noted that the search for a global minimum is much more time-consuming in 
comparison with the search for a local minimum, and demands significant 
computing resources. 

Let's now consider the most frequently used methods for finding the global 
minimum, which are most productive for a solution of inverse problems in 
electrical engineering. 
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2.6.1. The multistart method and cluster algorithm 

Application of gradient methods discussed in Sections 2.2 and 2.3 results in a 
minimum determined by initial values of desired parameters. Indeed, choos­
ing initial values of the desired parameter from the vicinity A] of the point X] 
(Fig. 2.24) will lead to the local minimum A. If the initial value x belongs to 
the segment A2, then a global minimum in point C will be reached. To answer 
the question whether the found minimum is global, it is necessary to compare 
it to other minima of the objective functional. Thus, the problem of a global 
minimum search demands solution of several problems of search of local 
minima [16,17,18]. 

One of the most frequently used methods of search of a global minimum is 
the method of repeated local descents (the method of multistarts). For each 
descent a new vector of initial parameters, distinct from the previous one, is 
set. Since the number of objective functional minima at 

P = (PpP2' '"^Pn) ^ ^ is not known in advance, a tentative estimation of 
the number of initial points (start points) is necessary. 

Let the range of definition of the k-ih parameter be set by a bilateral ine­
quality /?̂ ^ < Pk^ Pu,k' ^^ ŝ ^̂ ^ choose Nk equidistant start points on the in­
terval [Pi^k^Pu,k^' Then, the number of start points Â  necessary for covering 

k=n 

of the entire domain D can be calculated as follows: Â  = f][ Â^ • 

One can easily see that even for a number of parameters n=10 and an av­
erage value Â^ =10, the number of start points will be 10̂ ,̂ that is imper­
missibly large. A valid choice of start points' set is the basic problem for the 
application of the multistart method. Solution of the problem for a domain's 
optimal covering may give special grids that allow filling the domain IT in 
regular intervals. 

When filling the domain Yl by start points, a priori information about the 
minimized functional can be taken into account. So, for example, it can be 
known that the objective functional average values are smaller in the subdo-
main TveYl than in subdomain rj^Yl. Then, more start points should be 
placed in the perspective subdomain ;rthan in the subdomain rj. It may well 
be that preferability of a subdomain will be revealed only during the solution. 
If the objective functional average value in one of the domains appears to be 
smaller than in others, then the number of points remaining in unpromising 
domains can be reduced. 

A priori information on an optimized device's allowable sensitivity to the 
change of parameters can also be used in the estimation of the start points' 
arrangement density. 
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Indeed, the distance between the adjacent points of the parameters' vector 
and the change of objective functional are connected through the Lipschitz 
constant A: 

| / (p , ) - / (p , ) |<y l | | p , -p , | | , 

The Lipschitz constant in this case defines the sensitivity of the objective 
functional to changes of the /:-th parameter that can be estimated on the basis 
of a priori information. Let's consider the procedure of such estimation in 
more detail. 

Let Ap^.^ =1 Pj -P2II be the accuracy at which technical, technological or 

operational conditions allow maintaining the device parameters. In other 

words, vectors p* and P2are indistinguishable from the point of view of the 

device performance, if the following inequality holds: 

1 * •II . 
P l - P 2 | | < ^ P m i n -

Let AI^^^ be the maximum deviation of the functional from its optimal 

value. For changes of the functional more than AI^^^, the device ceases to 

satisfy its functionality. Then, the relation A = AI^^^/Ap^.^ can be consid­

ered as an upper estimate for the Lipschitz constant A, Here, AI^^ and 

^Pmin reflect a priori concepts about the device quality, its manufacturing 

technological possibilities or its service conditions. 
It was noted, when considering the examples shown in Figs. 2.23-2.24, 

that inverse problems' solutions corresponding to sharp troughs of the objec­
tive functional are quite sensitive to small changes of parameters, and devices 
created on the basis of such solutions do not represent practical interest. Es­
timation of the Lipschitz constant allows estimating the minimal distance be­
tween initial points of descent: 

, , J/(P,)-_/(M 

Indeed, let initial points of descent be chosen from this condition. Inserting 
one more point p* between them we shall assume that this point belongs to 
the domain of attraction of the minimum p̂ ^̂ , to which points pi and pi do 
not belong. That is, choosing of pi and p2 does not allow finding this mini­
mum. However, by virtue of the above estimation, the minimum Popt is in a 
sharp trough of the objective functional and its search does not represent any 
interest. 

Development of the idea of multistart results in the so-called cluster algo­
rithm, classed among random search algorithms. A random-number generator 
assigns start points in the domain n . The quantity of points is approximately 
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equal for each of the components of the parameters' vector p. In the process 
of movement from start points to local minima it appears that some points are 
concentrated, i.e. they converge towards the same minimum. At detection of 
such concentrations (clusters) only a single point of a cluster is kept and all 
other points are discarded. 

Note that the multistart method demands significant computing expenses 
in case of a large dimensionality for the vector p. Search algorithms for clus­
ters in many-dimensional space are also rather complex and ineffective in the 
sense that they start to "reveal" clusters only at significant number of steps of 
descent with various initial parameters' vectors p. Therefore it is expedient to 
carry out multistart search algorithms for a global minimum on parallel work­
ing computers, as processes of search of various minima are independent 
from each other. 

2.6.2 "Soft" methods 

Besides gradient methods, such as the method of the quickest descent, the 
method of adjoint gradients, the method of Newton, etc. - so-called "soft" 
methods of optimization, are also applicable. For search of a global extre-
mum these methods use models of natural processes that explain the termi­
nology accepted at their description. Here we shall consider the "method of 
simulated annealing" [19] and one of evolutionary methods, the so-called ge­
netic algorithm. 

The gradient methods of optimization demand calculation of functional de­
rivatives by the vector of unknown parameters. To move to an extremum, 
these methods use the information on the functional's behavior in the vicinity 
of the current value of the parameters' vector p. As has been noted above, 
one of the important properties of inverse problems is the non-
differentiability of the functional in view of the fact that optimization pa­
rameters can only have discrete values. The "soft" methods of a minimum 
search do not require calculation of functional gradients, hence their essential 
advantage. 

The genetic algorithm operates simultaneously with an aggregate group of 
parameters' vectors p.,/ = l,Â  covering, in the beginning of the process, all 
the space of allowable values of optimized variables. The algorithm of this 
method results in step-by-step concentration of the set of operating points 
near the best extremum point among those revealed during calculations. At 
that, there is no need to calculate gradients of variables. The method of simu­
lated annealing assumes calculations with one operating point, but also does 
not require calculation of gradients when searching for an extremum. 
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The simulated annealing method 

The annealing method [20] is classed among random search methods. If the 
inverse problem current solution is in the vicinity A^ (Fig. 2.24) of a local 
minimum XA of the objective functional, then during the solution there is a 
possibility to pass over the saddlepoint B to find the global minimum. Hence, 
this method allows increasing of the functional during minimization. 

The author of this method (Metropolis, 1953) has suggested using an algo­
rithm for search of the functional global minimum simulating the process of 
controlled annealing. In this method, the minimized functional is interpreted 
as the energy of a cooling down body. At slow controlled annealing, thermal 
balance is established at each temperature 7 and the body energy correspond­
ing to this temperature will be minimal. Thus, one can reach a global mini­
mum of energy by lowering the body temperature smoothly. In the case of 
quick cooling, irregularities of structural and internal pressures are formed. 
Therefore, the body energy will be higher than at slow cooling, which corre­
sponds to convergence to a local minimum. 

Let the solution of an inverse problem be reduced to minimization of a 
functional: 

/(p) p̂ „ )min, 

where Yl is the set of allowable values of the parameters' vector. Then we set 
the following constants: T = T^^^ > 0 , 0<a<l, and choose an arbitrary vec­
tor p e n . We shall further consider this vector p as the problem is current so­
lution. The annealing method algorithm involves iteration of the following 
actions until the constant T does not become less than a given small number 
^ min* 

1. Choice of a new arbitrary vector p^ G FI; 

2. Calculation of zl = / (P j ) - / (p ) , ^-e~^'^ and generation of a random 

number r from the interval [0,1]; 
3. Transition to the new current solution, according the following rule: 

• i f z l < 0 o r ( z l > 0 and ^ > r ) - accept pi as the new current solution 

( p = P i ) ; 
• if z l>0 and ^<r - ignore the vector pi and keep p as the current solu­

tion. 

4. Reduction of the constant 7, (7^ = oT) . 

In the beginning of the search when the vector p is far from optimum, the 
temperature 7 = 7̂ ^̂  has the greatest value and ^ is close to unity. Therefore, 

the probability of choosing a current solution that increases the functional is 
high. Acceptance of such solutions corresponds to movement towards the 
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saddlepoint B, instead of towards the minimum A (see Fig. 2.24). As we ap­
proach a global minimum, the temperature decreases and the probability of 
functional increase falls. For a reliable search of a global minimum by the 
annealing method, a rather slow decrease in temperature {o^\) and large 
numbers of iterations and calculations of objective functional are required. 

Key parameters of the annealing method are the initial T^^^ and the final 

m̂in values of temperature, as well as the factor a of its reduction. They are 
selected based upon reasons of reliability of finding the global minimum. In 
most cases the choice is made empirically or by results of preliminary nu­
merical experiments. Correct choice of parameters T'̂ ax'̂ min ^^^ circan con­
siderably speed up the solution search process. 

Obviously, at high initial temperatures the speed of change of the objective 
functional will be insignificant. The high temperature part of the process does 
not provide essential advancement towards a minimum. On the other hand, 
choice of small initial T^^ reduces the probability of finding the global 
minimum. 

Small values of the final temperature T^^^ considerably delay the final low 
temperature stage of the minimum search process. To prevent excessive 
computing expenses, the solution process can be finished if at K consecutive 
temperature reductions there is no reduction of the objective functional. Typi­
cal values of K are 5-^50. 

In the case of minimization of functional with unknown quantity and dis­
tribution of local minima, application of the annealing method is preferable 
in comparison with the multistart method. Reliable localization of the global 
minimum in the multistart method requires dense covering of the set IT for al­
lowable values of the vector p by start points, which is inconvenient in the 
case of, for example, large dimensionality of p. 

In the annealing method selection of only three parameters (7^^ ,T^^^ ,d) is 

required. It shall also be noted that the annealing method does not demand cal­
culation of gradients of the objective functional, which makes its application 
for the solution of inverse problems very effective. 

However, at solution of inverse problems with unimodal objective func­
tional the annealing method essentially lacks efficiency (concerning the 
number of the functional calculations necessary for search of a minimum) in 
comparison with gradient methods. 

Genetic algorithm 

When using gradient methods and the annealing method at each moment dur­
ing calculations there is only one current parameters' vector p, corresponding 
to the best value of the functional at that moment. Evolutionary methods op-
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erate simultaneously with a group of vectors p, called a population [1,21,22]. 
The extremum search process models the process of evolution of living or­
ganisms based on Darwin's evolutionary theory concerning heredity, vari­
ability and natural selection. We shall consider the genetic algorithm in more 
detail, as it will be used for solution of inverse problems discussed in this 
book. 

Further, we shall use commonly accepted terminology for description of a 
genetic algorithm and consider it in more detail. 

Each point in the space of optimized variables is defined by a vector 

p = (/7j,/72, "',Pn) ^ n of these variables, referred to within the frame­
work of accepted terminology as a chromosome. Each variable pi in a chro­
mosome acts as a separate gene. The minimized functional /(p) is referred 
to as fitness-function and serves in the genetic algorithm as the parameter of 
vitality (fitness) of a given individual. An individual is virtually an associa­
tion of "chromosome + fitness-function" (Fig. 2.26a) and can be presented in 

the form of (p, / (p)) . The set of all individuals (p,,/(p,)), / = 1,Â  forms a 

population. 
Chromosomes (vectors p) of each individual in an initial population are se­

lected randomly from the set FI. Further, the genetic algorithm involves itera­
tion of the following actions: 

• selection of all individuals in a population according to the values of their 
fitness-function; 

• individuals with best values of fitness-function form the parents' generation, 
and those with the worse values do not participate further in the process; 

• on the basis of the parents' generation, descendants are produced, forming 
a new population jointly with parents. 

A graphic representation of the algorithm is shown in Fig. 2.26b. It simu­
lates natural selection of individuals by certain attributes (survival of the 
most adapted). Such organization of the process of global extremum search is 
common for all evolutionary methods. The individual possessing the best fit­
ness-function at a given step is considered as the current solution of the prob­
lem. The process of extremum search comes to the end when the population 
has ceased to change. It occurs when values of genes in individual chromo­
somes and values of fitness-functions of parents and descendants remain con­
stant within the specified accuracy. In that case, we may say that the genetic 
algorithm has led to an extremum. The best individual, that is an individual 
with the minimal value of fitness- function, corresponds to the problem's so­
lution. 

This way of producing a new generation makes up the basis of the genetic 
algorithm and is further referred to as style of evolution. Various styles of 
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evolution, as well as selection of concrete style parameters, define the genetic 
algorithm modification. When realizing a style of evolution, significant free­
dom of actions is allowable, however three main principles of evolutionary 
development must be observed: 

• the principle of natural selection realized by preservation of the most adap­
ted; 

• individuals, owing to which the new generation on its total vitality (the to­
tal value of fitness-functions of individuals) should surpass the previous 
one (or not be worse); 

• the principle of inheritance of best properties, owing to which useful at­
tributes transferred from parents to descendants, are fixed in generation as a 
whole, the principle of variability, which provides genes changing in new 
generations. 

Gene 
Fitness-
function 

/(P) 

I Ctiromosome 

^ 

Initial 
generation 
of parents 

Production 
of new 

generation 
<J 

Individual 
Parents and 
descendants Selection 

11 
New 

generation 
of parents 

Fig. 2.26. Representation of properties of an individual and its fitness-function in the 
chromosome a) and the block diagram of genetic algorithm b) 

In classic genetic algorithm, production of descendants is carried out by 
means of the so-called crossover (crossbreeding) of a pair of parental indi­
viduals, when chromosomes of parents are severed in casual points and thus 
obtained pieces are sewn crosswise in chromosomes of two descendants (Fig. 
2.27a). Choice of parents (from all parents-individuals in the current genera­
tion) is carried out randomly or by the so-called "roulette rule" when the 
probability Pi of choice of i-ih individuals as a parent depends on the value of 
its fitness-function and is determined by the following formula: 

P.=- max / 
N ' 

Yi -I 
/ J max k 
k=\ 

where Â  is the number of individuals in the population and /̂ ^^ is the worst 
value of fitness-function among all individuals of the population. Descen­
dants originating as result of a crossover, bear chromosomal sets of both the 
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first and the second parents. In this way, the mechanism of inheritance and 
securing useful attributes in descendants is realized. 

New genes in chromosomes of descendants (i.e. changes of values of pa­
rameters' vector p elements) occur when mutations are used. Descendants are 
exposed to mutations after a crossover. At mutation some genes in an indi­
vidual's chromosome are changed by a random variable ^(Fig. 2.27b). After 
mutation a check of belonging of the new individual to the population should 
be carried out (as previously noted, the condition of p belonging to n is 
checked). If the individual does not belong to the population then the muta­
tion procedure should be redone with another S, The probability // of muta­
tions of each gene is a parameter of the evolution style. 

To increase the overall performance of genetic algorithm some of the de­
scendants are produced without crossover, i.e. by direct mutations of a single 
parent (so-called "gemmating" process). These mutations are of great impor­
tance for search of the global extremum, in particular for problems with con­
tinuously changeable variables. They ensure origination of new values of 
genes and prevention of fast degeneration of population. 

a K 

1 M l 1 /Ifz 1 /l^3 1 Â 4 1 Â S | r 

[Fiî Fa 1̂ 3 [/4L^5jL 

Parents 

A 1 A î 1 /V̂ 2 1 F3 1 F4 1 F5 

/|_Fi^F2 1 M3 \MA[M^ 

Descendants 

1 ^ 1 1 A*2 1 M3 1 M4 1 Ms 1 

4> , 
1 M i 1 ^ 2 + 6 1 ^ 3 1 Â 4 1 Â s 1 

Fig. 2.27. Block diagrams of crossover a) and gene mutation procedures b) 

Let's consider the performance of the genetic algorithm by an example to 
search for the global minimum for the following functional: 

iiPvPi)^ PI ^ PI-^^PXPI- •W cos • — +COS 

6 J 
Pi - 1 ,p„/72G [-10,10], 

which has several local minima in the parameters' vector definitional do­
main. 

Assume the size of population is 10 individuals. Fig. 2.28a shows equal 
level lines of the functional (the fitness-function) I(p^,p^) and the arrange­
ment of randomly chosen individuals of the first generation. One can easily 
see that individuals are located in domains of attraction of several local min­
ima. Then, we execute an iteration of the genetic algorithm. The arrangement 
of individuals of the new (second) generation is shown in Fig. 2.28b. All in­
dividuals of the second generation have concentrated in domains of attraction 
of only two minima, one of which is the global minimum. After execution of 
the following, third step (Fig. 2.28c), all individuals are located only in the 
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domain of attraction of the global minimum. However, it is apparent that 
chromosomes (parameters' vectors) of individuals are not identical; therefore 
it is necessary to continue iterating. After execution of the fourth iteration 
(Fig. 2.28d), chromosomes of all individuals in the population have practi­
cally coincided, and the global minimum is found. 

This example shows that the genetic algorithm does not require a priori 
data on minimized functional properties, such as availability of local extrema 
or estimations of dimensions of domains of attraction of extrema. Calculations 
of minimized functional derivatives are also not required. These properties of 
the genetic algorithm make it rather convenient for finding the functional' 
global extrema. 

a b 

Fig, 2.28. The fitness-function relief and arrangement of best individuals of the first 
a), second b), third c) and fourth d) generations 

Some modifications of the genetic algorithm which increases its efficiency 
are considered below. 

Let's allocate a group among the parents (usually 10-5-15% of their number) 
showing best fitness-functions - the so-called elite. Furthermore, the indi­
viduals included in the elite group will be chosen as parents at least once. 
Such style of evolution supplements the above considered "roulette rule" and 
provides faster distribution of the current population's best individuals 
throughout the population, speeding up convergence of the algorithm. On the 
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other hand, it increases the risk of population degeneration before finding the 
global extremum. At degeneration an individual and its descendants drive out 
less viable at present, but potentially perspective individuals during a small 
number of generations. Therefore, use of this modification of genetic algo­
rithm is expedient at the last stages of its execution. 

To prevent degeneration the following modification of the genetic algorithm 
can be used. On each step individuals with close values of chromosomes are 
excluded from the population. As a measure of closeness of individuals, acts 
parameter k determined by the following expression: 

(PpP2) 
k=- ^G[0 ,1] , 

V(PpPl)(P2'P2) 

Here (,) designates scalar multiplication of vectors. Change of k during 
calculation allows us to control the genetic algorithm performance. So, value 
k <kQ=O.S permits search only among vectors strongly differing from each 

other that stimulate a search of new local extrema. Value k<kQ= 0.99 di­
rects toward clarifying of already found local extrema. Smooth increasing of 
the constant ko during calculation appears to be the most effective way of 
searching. 

Another modification of genetic algorithm is an algorithm of descendants' 
production, named by its authors as "directed crossbreeding". This algorithm 
combines principles of crossbreeding with ideas of gradient methods at pro­
duction of a descendant. 

Fig. 2.29. Graphical interpretation of combined genetic + gradient method of opti­
mum search 
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Let there be some population of individuals (Pp/(p,)),/ = 1,Â , Â  » 2 . We 
shall describe the algorithm of directed mutation for three individuals at a 
number of genes in a chromosome of each individual equal to two 

(Pi ~\P\'\P2) )• ^ t that, the algorithm provides visual graphic interpreta­

tion. Figure2,29 shows three randomly chosen individuals (ppA),(p2,^) , 

and (p3,C), where A = / ( p i ) , B = /(p2), and C = / (p3) . It is possible to 

pass a unique plane ;r through the points A, B and C. Genes of all three indi­
viduals define the direction of antigradient G in the plane ;r, and in this sense it 
can be considered as the result of their crossbreeding. 

Three descendants can be formed in various ways. For example each indi­
vidual can generate a single descendant as shown in Fig. 2.29 for the individ­
ual (ppA), which generates the descendant ((pi,„̂ w, P2,new)^ ^i)- The step 
value h, i.e. the descendant's shift in the antigradient direction G with respect 
to the parental individual, is chosen from the relationship h = A-p, where p 
is a random variable distributed in regular intervals over the interval [0,1], 
and zl is a parameter of the "directed mutation" method. 

Another way of a descendant production by three individuals can be as fol­
lows. A search of an individual with the minimal value of fitness-function is 
carried out from the center of mass of the triangle ABC in the antigradient di­
rection. This search can be executed, for example, by the gradient method. 
The resulting individual is assumed further as the single descendant of three 
parents. Other algorithms of generation of descendants, using estimations of 
the minimized functional gradient, are also possible. 

The difference of this approach from gradient methods should be empha­
sized. Individuals from a population for crossbreeding are chosen randomly 
and, generally, are not close to each other. Therefore, in particular, at early 
stages of population development, not the local value of the functional gradi­
ent in some point is estimated, but some large-scale inclination of the extre-
mum search domain. At final stages when the majority of individuals are lo­
cated in a domain with a unique extremum, this approach becomes a version 
of the gradient method. Thus, positive features of the gradient method and 
the genetic algorithm are combined. This algorithm of crossbreeding is nor­
mally generalized for the case of an arbitrary number of genes in chromo­
somes. 

Another direction for improvement of genetic algorithm is its realization 
on multiple processor computers. The number of parameters on which the ex­
tremum is searched is assumed that to be very large, and use of a uniproces­
sor computer will lead to long and tedious calculations. Let M processes on a 
solution of a single problem work simultaneously. Then it will be possible to 
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make regular exchanges of groups of best individuals generated by parallel 
processes. It is possible and probable that evolution in various populations 
will go in different ways. Therefore, thus organized computing process is not 
equivalent to the process of the problem solution by use of a uniprocessor 
computer with M-multiplied size population. The total expenses of resources 
of a computer for executing of M parallel processes are less than that of per­
formance of a single process with M-multiplied size population. At the same 
time, speeds of convergence of both processes are practically identical. 

Efficiency of application of the genetic algorithm in many respects de­
pends on the choice of its parameters. Our experience shows that if the num­
ber of optimization problem's parameters is equal to n, it requires setting the 
size of the population equal to (50-f-150)n, and the number of parents - of the 
order of (10-j-20)n. At gemmating, it is expedient to set large probabilities of 
mutation (0.1-^0.5) and small values of mutation (-5%). Thus, the descendant 
chromosome will have some new genes close to the parent genes. For the de­
scendants produced by crossover, on the contrary, it is expedient to subject a 
small number of genes (-10%) in a chromosome to mutations, however the 
mutation value should be sufficiently large (-50%). Thus, there will be indi­
viduals in the population having genes considerably differing on value from 
genes of the whole population. These recommendations are not rigid and 
concern problems with n<\00. Optimal values of parameters also essen­
tially depend on the features of the problem. 

Comparing gradient methods and the genetic algorithm, the efficiency of 
the latter at solution of problems with discrete parameters and with large 
number of local extrema shall be noted. At solution of the majority of inverse 
problems in electrical engineering, it is necessary to search for a global ex-
tremum in view of discreteness of optimization parameters. Besides, for 
many practical problems, accuracy in 2^3 significant digits is sufficient. For 
solutions of such problems the use of the genetic algorithm is preferable. Due 
to these features of the genetic algorithm, the circle of optimization problems 
solved with its help has recently extended appreciably. 

A disadvantage of the genetic algorithm is the slow convergence near an 
extremum. Therefore, in cases when high-accuracy solutions are required, it 
should be expedient at first to obtain solutions near extrema by means of the 
genetic algorithm. Then, using them as initial approximation, more accurate 
solutions can be obtained by the gradient method. 
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Chapter 3. Methods of Solution of Stiff Inverse 
Problems 

In this chapter the so-called stiff inverse problems and methods obtaining 
their solution will be discussed. We will begin with several examples of stiff 
problems which will be considered in order to become familiar with their ba­
sic properties, and subsequently give definitions of problems of such a type. 
Further, in Sections 3.2 and 3.3, two basic principles will be introduced 
which provide a basis for solving stiff problems. Specifically, the principle of 
quasi-stationarity of derivatives, and the principle of repeated measurements. 
In Section 3.4, problems of diagnostics of sinusoidal current circuits that are 
typical inverse problems in circuit theory will be discussed. Conditions, at 
which these problems should be considered as stiff will be discussed as well. 
In Section 3.5, a new effective method of diagnostics stiff problems solution 
will be introduced and illustrated by results of numerical solution of some 
problems. In Section 3.6, the problem of localization of one or several per­
turbation sources in an electric circuit by results of measurement of voltages 
in circuit nodes located remotely with respect to the perturbation sources will 
be discussed. 

3.1 Stiff Inverse problems 

The purpose of solution of the extensive class of inverse problems is the crea­
tion of mathematical models for devices or processes and the determination 
of parameters of these mathematical models by means of numerical or physi­
cal experiments. Creating a mathematical model that reflects the modeled de­
vice (or process) in the best way requires simultaneous consideration of all 
(or most of) known factors that influence its functioning. At the initial stages 
of an inverse problem solution, it is usually impossible to estimate the impor­
tance of either "weak actions", "small parameters" or "minor alterations" of 
created mathematical models. Unreasonable neglect of "small quantities" can 
lead to "throwing out significant details", and the creation of inadequate 
models. 

The property of stiffness of mathematical models is a consequence of the 
inclusion of factors in them that differ by their degree of influence. Further 
research, which may give better understanding of specific properties and 
processes occurring in modeled devices, allow in many cases reducing the 
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model stiffness by means of reasonable exclusion of factors of little impor­
tance. However, for some devices and processes stiffness is an inherent prop­
erty reflecting the basic principles of their functioning. Being aw âre of ab-
stractness of this reasoning, we shall illustrate the aforesaid by several 
examples below. 

One may obtain some insight of a stiff mathematical model, and thus of 
the corresponding stiff inverse problem, when modeling a device that simul­
taneously includes "rapidly" and "slowly" varying quantities. As an example, 
let's consider the problem of mathematical modeling of a device by its ex­
perimentally determined transient conductivity > ê(0. Assume there is a priori 
information that physical processes in this device correspond to processes in 
the electric circuit shown in Fig. 3.1a. Then, the purpose of inverse problem 
solution should be the definition of parameters R, L and C. Such inverse 
problems are referred to as problems of electric circuits' parametrical synthe­
sis. For simplicity we assume that>'e(0 (in Fig. 3.1b) is an aperiodic function 
with initial conditions equal to zero. Half-fall time ofydt) is designated as 

^1/2-

^0-1(0 

Modeled device 

Equivalent circuit of 
the modeled device 

Fig. 3.1. The modeled device, its equivalent circuit a) and the transient characteristic 
of the modeled device b) 

Transient conductivity ym{t) of the series circuit R, L and C considered as a 
mathematical model, is related to the input current i(t) by the following ex­
pression: yJf^'^KtyUo, An analytical expression for the current i{i) can easily 
be derived by the solution of the linear differential equation of the transient 
process in the i^C-circuit: 

d^i Rdi_ 1 ._ ^0 

dt^ Ldt LC RLC 
(3.1) 

The solution of Eq. (3.1) can be written down as: 

Constants yi I and ̂ 2 are defined from the input conditions /(0)=0, wc(0)=0: 
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/(0) = 4+4=0 , 
di 

Ju 

dt 

A,=A--
f/„ 

L{\-X,) 
, A2— A, 

= L{M+4A,)=U,-UciO)=U„ 
y.(t)=^(e"-e'''). 

Ur 

Here the roots of the characteristic equation X\ and X2, corresponding to the 
differential equation (3.1), are given by 

R 
K: 

R' 1 
2L \AI} LC 

The definition of parameters R, L and C for the inverse problem of the de­
vices' mathematical model can be written down as: 

dt-
R,L,C -^min. (3.2) 

The result of solution of Eq. (3.2) will be values ofR, L and C, which can 
be used for the calculation of the roots of the characteristic equation Ax, A2 
and the constant^. Figure 3.2 illustrates this solution. 

Later on we may need the following properties of the solution: ye(t) rise 
time m̂ax up to its maximum value close to the time constant ri=|l//li| of an 
exponent with maximum modulo index, and ye(t) half-fall time tm close to 
the time constant r2=|l//l2|. 

yr(0 
2 

0 
1̂ j m̂ax 1 \ 

1 

- y^(0=ye(0 

t 

Fig. 3.2. The transient characteristic of the modeled device 

Methods of solution of the problems similar to Eq. (3.2), and difficulties 
arising in that connection, were discussed in Chapter 1. These methods will 
also be used in subsequent chapters. In this section, the case for which the 
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transient characteristic ye(t) of the modeled device has "fast"" and "slow" 
components is of interest, and will be considered below. 

y.it) 

ynt) 
/ \ 

\l i 
f ^ 1 

fr 
i 

""2 j t 1 
10''s fi/2 = 0,1s 

Fig. 3.3. The modeled device's transient characteristic shown on different time inter­
vals 

Let the transient characteristic ye{t) reach its maximum value y^^"" at 

^max""10"̂  s as shown in Fig. 3.3, with distortion of the time scale for clarity. 
The half-fall time t\/2 ofy^t) is 0.1 s. In this case tmax«h/2, therefore TI«T2; 

this is the same as |/ii|»|/l2|. Here, the obtained relations between t^ax, ha 
and time constants ri and T2 have been used. Then, according to Vieta's theo­
rem for the roots of the characteristic equation (3.1), we have: 

Following [1], from the first relationship when |/li|»|/l2|, we have 

A^=-R/L, and after its substitution into the second relationship, we find 

A2 = -\l RC. Similarly, for the constant A we have A^-UJR, and the solu­

tion to Eq. (3.1) becomes: 

U -^t -
i(t) = — ' - (e ^ -e 

R 
(3.3) 

Let's consider the behavior of the solution of Eq. (3.3) upon two sequential 
time intervals T]=[0, tb] and T2=[Tb, To]. Here, Th«To is the duration of the 
boundary layer - an important quantity in the stiff systems theory. We choose 
the duration of the boundary layer Tb so that the Eq. (3.1) solution within the 
boundary layer, i.e. upon the interval Ti, will be characterized by a fast varia­
tion of current. The duration of the interval Ti for this problem can be chosen 
equal to ri,=(3-5)-ri»10~^ s (see Fig. 3.3). The interval T2, lying beyond the 
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boundary layer, is characterized by a slow variation of current and comes to 
its end along with the completion of the transient process. 

For the case under consideration, it is possible to assume with a high de­
gree of accuracy that e"^^^ =e~'^^^ =\ on the interval Ti within the boundary 
layer, and e"̂ ''=e~'̂ ^^^ =0 on the interval T2 outside the boundary layer. 
Then, 

i{t)= % > • ' • 

R 

t t^h^ 

t>T„ 

U„ 4' 
/,(0 = ^ ( l - e M 

K 

,. u. -, 
' R 

(3.4) 

Relationships (3.4) show that fast and slow processes can be separated for 
stiff problems, which considerably simplifies their solution. Indeed, an ana­
lytical solution of above stiff inverse problem can be obtained for the condi­
tion that characteristic points of ye(t) dependence are known. Let 
^n^=10-\ ,̂/, = 0.1s, y^(t^) = yr-0.lSm,y^(t,,) = yr/2 = 0,05Sm. 
Then 

î  = — = 10kOhm, C = v " ^ - ^ = 1.44mF, 1 = — ^ = 50//H. 

It should also be noted that the form of expressions for currents ii(t) and 
/"iCO in (3.4) allows giving the following simple physical interpretation of the 
stiff inverse problem solution. Properties of the initial circuit, on the interval 
T\ within the boundary layer, coincide with properties of a simpler circuit 
consisting of a series-connected resistor R and inductor L. Outside the 
boundary layer on the interval T2, properties of the initial circuit coincide 
with properties of an i^C-circuit, which is simpler than the initial one. Thus, 
during the inverse problem solution, a correction of the initially accepted 
mathematical model has been carried out. This correction becomes possible 
because of the stiffness of the initial problem. 

Splitting stiff problems into two or more simpler, and non-stiff problems is 
one of the effective ways of their solution. Let's consider this method of so­
lution in more detail. 

Following [2], we shall give a rigorous definition of stiff systems. Suppose 
there is a system of nonlinear differential equations of the form 
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dyjt) 
dt 

:f(?, y) , ?e[0, r j , y(0) = y„; 
(3.5) 

y(0 = (j,(0 - yM ' f(' .y)=(/;(^y) - /J^y))' 

For a stiff system of differential equations, values of the solution deriva­
tives' norm outside the boundary layer Tb«To is much smaller than inside of it: 

^(0 
dt « 

dy{t) 
dt 

o 3 N»l' 

dy(t) 

dt 

Icfyit) 
N dt 

i V » l . 

After linearizing tlie rigiit member of Eq. (3.5) in the vicinity of the initial 
point, we have: 

f(^y) = f(/,yo)+|f(y-yo)+.... 

Values of vector y(t) components' derivatives at te[0, Tb] may reach up to 

W-max\yk(t)\, where ^ is a number satisfying the inequality 0<j^<||9f/9y|| 

and 5f/5y is the Jacobi matrix. 
The system of differential equations (3.5) is identified as a stiff one if at 

any vector of input conditions yo there will be such numbers Tb«To and 
0<^<|Sf/5yl, A^»l that assume the following inequalities: 

dyk 
dt 

t^H 

< — max yJOu k = \,m. (3.6) 

It is important that the concept of stiffness of a system of differential equa­
tions is connected with the interval /^e[0, To], on which its solution is 
searched. A system of equations that is stiff on the interval te [0, To] is not 
stiff on the subinterval ^G[0, r ,̂]. Applying the definition considered above to 
the system of linear differential equations 

^ = Ay, yeR '" , / e [ 0 , r j , 
at 

we obtain the following conditions for the stiff system matrix A eigenvalues: 

L_ 

N-
|^(A)| e«'^<^>^'<-^, i = max|^(A)|, ; ^ » 1 , T,«T„ k=^l,m. (3.7) 
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Let's estimate the stiffness of state equations of the circuit shown in Fig. 3.1. 
The state matrix eigenvalues are /li=-10^//s~^=-10^s~^ and Aj^-^/^^^-
10^ s~\ The search interval for its solution is ^6[0, 10 jus]. We assume that the 
constant ^ i s equal to the module of maximum eigenvalue ^=|/li|=10^. For the 
boundary layer we have: rft=5rmin=5|l//li|=5-10"^s~\ We can see by choosing 
A^=100 that this system is stiff, since the following inequalities are valid: 

N 100 

W_ 
N 

This problem is classed among the so-called singularly perturbed prob­

lems. Indeed, from expressions |/ii|»|A2|, /i, s -R/L and /Ij =-1/ RC fol­

lows RC»LC=fi, therefore Eq. (3.1) can be rewritten in the form of: 

\4 ,M'^h = 10'-e-^=6.7-10*< — :10'; 

M^b : 1 0 ^ . ^-510- = 10^<- .\o\ 

d^i di U. 
Li—--\-RC — + / 

dt^ dt R 
where // is a small parameter. Presence of a small parameter in the equation 
or in the system of equations is a characteristic feature of singularly per­
turbed problems. This singularity allows splitting linear problems into several 
simpler ones quite easily as it has been done above. In most cases singularly 
perturbed problems are stiff; however they by no means exhaust the variety 
of stiff problems. A system of equations can be stiff as well, in cases when it 
is not possible to select a small parameter. To prove it, we shall consider the 
following example: 

Fig. 3.4. The electric circuit, for which the problem of parametrical synthesis is solved 

Let's once again state the parametrical synthesis problem for the electric 
circuit shown in Fig. 3.4. Assume that i?=470 Ohm, r=270 Ohm, C=4 pF, and 
EQ'^X V are known values. Suppose determination of parameters a, L, Ri by 
measured state variables /L(0 ^^^ ^cQ) is required. Assume the exact solution 
is known: a*=0.866 kOhm, L*=1.0//H, 7 î*=l kOhm. The system of state 
equations describing the transient process is given by: 
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d 
dt 

h _ 1 

P 

' R{aR^-2R^r-rR-R^R) rR^ ] 

L L 
R,(a-r) r + R^ 

I C C \ 
p = rR,+RR^+rR 

1 
+— 

p 

'EM 
L 

Eo^\ 
I C J 

5 

or 

d_ 

dt 
+ b , (3.8) 

where A is the state equations matrix and b is the vector of sources. 
Dependences iiit) and udt) at initial conditions /L(0)= 100 mA, 

wc(0)=100 V are shown in Fig. 3.5a for the time interval of ri=[0, 50 ns], and 
in Fig. 3.5b for the time interval T2=[0,20 jus]. Analysis of these depend­
ences allows defining the boundary layer duration as approximately r̂  «10 
ns, thereby dividing the transient process in two parts: 

- boundary layer part t<Tb with fast-changing state variables /L(0? ^C(0 ^^^ 
large values of derivatives |/^(0| ^^d |wc(0|j 

- outside of the boundary layer part ^ > r^ with slow-changing state vari­

ables //XO? wc(0-

a b 
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Time, / [//s] 
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— a = 0.866 1 
— a = 0.86609 -
- a = 0.8659l| 
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Fig. 3.5. Dependences k(t) and uc(t) near a boundary layer a) and outside of the 
boundary layer b) for various values of gain a 

This property of the problem ensures that it is a stiff problem. We may as­

sert that the matrix A is ill-conditioned, that is |/lmax(^)| »I'^minC^)! • Indeed, 

it is easy to find that A is a degenerate matrix (i.e. its eigenvalue is zero), if 
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a o - i ? + r + ri?/i?i (3.9) 

The value (x=a =0.866kOhm that was specified in the problem conditions is 
close to the critical value a\ „ „ „. ^ = 0.8669kOhm . Therefore ma-

0|r=270,/?=470,/?,=i?, 1000 

trix A should be close to a degenerate one, and one of its eigenvalues should be 
close to zero. Indeed, matrix A eigenvalues are >li;=^512 //s~^ and Xir^^.'b jus~\ 

However, the property of stiffness found for this problem does not allow 
making simplifying assumptions for the purpose of deriving relations be­
tween required parameters or splitting it into simpler and less stiff problems. 
It is also impossible to select a small parameter. Here, we do not intend to as­
sert that splitting the initial problem is basically impossible. We only draw at­
tention to the situation typical for practice, when simplification of the initial 
problem requires application of special methods. Such methods will be dis­
cussed in the following paragraphs of this chapter. Here, we shall continue 
the solution of the above problem to demonstrate difficulties arising at the so­
lution of stiff problems. 

Let's proceed to solution of the inverse problem. Let i^"^ (t) and u^"^ (t) be 

experimentally found in points t = t^,m = l,M. We shall search for parame­

ters a, L, Ri from the condition of minimum of the following functional: 

F(a,L,R^) = rmx(S^,S^y ->mm. (3.10) 

where S„ = 

\ 2 

h(L) = hQ^^^^^^\)[=,^^^ and Uc(tJ = u^(t,a,L,R,)[^^^. 

These values are obtained from solution of Eq. (3.8) at some current values 

of desired parameters a, L, R\ and at input conditions f^^^iOl =/^(0) 

^c'''(0 -^c(^)- This approach to solve parametrical synthesis problems in 

its various modifications is one of the basic methods frequently used in prac­
tice. Let's estimate possibilities of its application for solution of stiff problems. 

In practice, solution of the stiff system of Eq. (3.8) is carried out numeri­
cally. We shall use an analytical solution of this system of equations to calcu­
late the functional F{a,L,Ri), This approach will allow eliminating the influ-
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ence of the error of numerical integration of Eq. (3.8) when solving the pa-
rametrical synthesis problem. The solution is given by: 

/ , (0 = /,(oo) + J.e^'+5,e^' 
(3.11) 

where Zi and A2 are the eigenvalues of matrix A, and 

(/^(oo), W(̂ (oo)) = -~A~̂ b is the vector of steady-state values of state vari­

ables. The constants are equal to: 

A=^^ tL^ ^_^^ 5^^_j 

. ^ (̂ 22 - ^)^"C + ^21^'L Q ^ (̂ 22 - ^ ) ^% + ^21^'L (3.12) 

where zl/̂  = /̂  (0) - i^ (00), zlŵ , = ŵ, (0) - ŵ^ (00). 

Minimization of Eq. (3.10) was carried out by the Nelder-Mead simplex 
method [3] for 50 various initial approximations (a^^\L^^\Rl^^j. These ini­
tial approximations were chosen at random fashion from the given search in­
tervals of parameters: a^'^ e[a^,^,a^^], ^̂ '̂  e[Z^i„,L„,J and 

^r^ ^[^min'̂ max]- ^t their cholcc, the condition a^^^ Ka^i^R^^^) has been 

superimposed. The latter allows negative eigenvalues to remain in the do­
main of matrix A and to use formulas (3.11) - (3.12) for the circuit response 
calculation. In each case the solution was considered to be found, if for two 
subsequent iterations the increment of parameters in corresponding units did 
not exceed 10~*̂ . 
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Fig. 3.6. Results of numerical solution of the problem (3.10) from various entry con­
ditions for gain a. Approximate solutions incorporated in Group 1 correspond to 

large values of minimized functional F, but are arranged near the solution of (3.10). 
Approximate solutions incorporated in Group 2 are characterized by a small value of 

F, but they are arranged far from the solution of (3.10) 

Figure 3.6 shows results of the numerical experiment. Let's consider them 
in more detail. Symbol "l̂  marks off the exact solution of the problem (3.10), 
showing the functional F global minimum. Initial approximations (symbol °) 
at some value Le[L^.^,L^^^] and corresponding solutions of the problem 

(3.10) (symbol •) are shown on the plane a,R^ in the lower part of the fig­

ure. This part of the figure shows that all obtained solutions are located on 

the curve a^ [R^) and that the majority of them are far from the correct solu­

tion of the problem. 
Minimum values of functional F for each of the obtained solutions are 

shown in the upper part of the figure. It is obvious that values of the func­
tional in points distant from the global minimum (for example, group 1 of 
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points) are frequently arranged considerably lower than in the points in its vi­
cinity (for example, group 2 of points). Such detailed studies of the functional 
level surface are rarely made in practice. Usually they are limited to determina­
tion of the first minimum with a reasonably small value (~10~^̂  in above con­
sidered case). However, this solution can be rather far from the true one. 

It should be noted that minimization of the functional F has been carried 
out at idealized conditions of use of a known analytical solution. Besides, a 
rather simple problem of parametrical synthesis has been chosen. The degree 
of stiffness of a problem, which can be characterized by the ratio 
|^max(^)M'^min(^)|~l^^ ^̂  uot exccssivcly high. Moreover, input conditions 
close to the solution were used at minimization. However, as stated above, 
there are serious obstacles to solving this parametric synthesis problem for­
mulated in its most frequently used statement. 
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Fig. 3.7. Geometry of the minimized functional F in coordinates a, Ri at L=L* and 
the projection of the ravine bottom on the plane a, R\ 

Problems arising at solution are caused by the fact that level surfaces of 
the functional F are of ravine form in the space of variables a, R^. To illus­
trate, the level surface of the functional F is shown in Fig. 3.7 for values 
a*=0.86kOhm and Z*=l//H. The initial problem at a*=0.866 kOhm is 
characterized by a "deeper" ravine that is rather complicated to present 
graphically. The point of minimum is at the bottom of a ravine with very 
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steep walls. At that, the functional is changing insignificantly along the ra­
vine bottom even at significant changes of parameters. For this reason some 
of above obtained solutions are close enough to the point of true minimum, 
however they give large values of the functional. They are located on the 
steep wall of the ravine. Note that the projection of the ravine bottom is a 
curve. It is important that the functional F also have ravine structure in space 
of variables a,L with a ravine directed along the coordinate axis L, Thus, 
the functional of the above considered inverse problem is ravine type, and the 
problem is stiff. 

This example leads to an important overall conclusion: when the subject 
(in this case, an electric circuit) of parametrical synthesis, diagnostics or 
mathematical modeling has the property of stiffness, then the corresponding 
inverse problem possesses this same property. 

Let's introduce, following [2], the definition of a ravine functional. A 
smooth functional F(x), xeR^' (m-dimensional Euclidean space) is called ra­
vine, if there is an area GeR^, where eigenvalues of Hesse matrix H"(x), 

ordered in decreasing of absolute values in any point xeG, satisfy the ine­
qualities: 

\{x)» min /I, (x) (3.13) 

If the Hesse matrix H"(x) of the functional is positively defined (all its ei­
genvalues are greater than zero), the inequality (3.13) is equivalent to the 
condition of ill-conditionality of the Hessian: 

6 > = : 4 l l . ^ » l , 
'^min(H") 

where © is the spectral number of the Hesse matrix. For further use it will be 
convenient to give one more equivalent definition of the ravine functional us­
ing its trajectory of the quickest descent. The trajectory of the functional F{\) 
is quickest descent is described by the following system of differential equa­
tions: 

^ = -F'(4), x(0) = Xo. (3.14) 

A smooth functional F(x) is ravine if the system of differential equations 
(3.14) is stiff 
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Many works are dedicated to methods of minimization of ravine function­
a l but their discussion lies outside the scope of this book. We shall empha­
size only that established methods of minimization are ineffective for ravines 
of arbitrary form. For example, the coordinate-wise descent method allows 
solving problems with a linear ravine arranged along one coordinate axis. 
The modified Hook-Jives method of configurations and Rozenbroke method 
of coordinate rotation can be used for nonlinear, one-dimensional ravines. 
The simplex method chosen for solution of the above problem is effective for 
solution of problems with many dimensional nonlinear ravines (at a small 
number of variables). It does not use the functional gradient; therefore, its ef­
fectiveness does not depend on the relation of derivatives along and across 
the ravine bottom. However, as apparently, this method also gives bad results 
in view of weak convergence within the ravine domain. And this in spite of 
the fact that an analytical solution for the circuit response was used, the 
search area of parameters was limited by a small area in the vicinity of the 
problem solution, and initial approximations were close to the solution. 

It is necessary to note some other difficulties arising from solution of stiff 
inverse problems. Usually (for example, for circuits described by differential 
equation of third order) it is not possible to write down an analytical expression 
for the functional as has been done above. Then the functional values have to 
be calculated numerically. So, for example, to calculate the functional (3.10), 
numerical solution of the system of differential equations (3.8) would be re­
quired. Since it is a stiff system for its integration application of special meth­
ods, demanding high computing power is necessary. Therefore, this elementary 
example already indicates the urgency of development of new methods that al­
low creating effective computing procedures considering characteristic proper­
ties of stiff problems. Such methods are discussed below in Section 3.2. 

In conclusion, we shall consider one more important property of stiff in­
verse problems. Further, we shall consider, as is the case in practical prob­
lems, that values of variables /f^(^^) and u^c^{t^) are measured with some 
relative error yO-ẑ ax? where yC>G[-l,l] is a random variable and zlmax is the 
relative measurement error describing the accuracy class of measuring in­
struments. 

Assume that after measuring if^{t^) and u^c^{t^) by an errorzlmax=0.01%, 
it was possible to solve the problem (3.10) by means of some method of 
minimization. Assume that the obtained value of dependent source coeffi­
cient was aexp=0.8660000. It is natural to suppose that Oexp was determined 
with a relative error no larger than 4Tiax- Thus, the inverse problem solution 
will be written down in the form of aexp=0.86600±0.00009, that at first sight 
can be considered to be a good result. Let's estimate the response changes for 
the circuit shown in Fig. 3.4 for variation of a within this range. The tran-
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sient process at found values of parameters is shown in Fig. 3.5 by dashed 
and dash-dot lines. 

This is an unexpected result, which is characteristic for stiff problems. 
The error of modeled process reproduction by its mathematical model out­
side the boundary layer is -10% and exceeds hundreds of times the error 
-̂ max '̂O.OP/o, by which experimental data / f ( 0 , ^c^^Q) have been ob­
tained. Therefore, the mathematical model created as a result of solution 
of the inverse problem is not adequate to the real subject, and the obtained 
solution is unacceptable. 

In this case, the reason of poor adequacy of the model involves strong 
distortion of the small eigenvalue /I2 of matrix A when setting its elements 
with a small error. This, in turn, is a corollary that in an ill-conditioned 
matrix A, the information on its small eigenvalue lies in low-order digits 
of its elements. And it is these orders which are distorted at setting of the 
matrix elements. So, if the exact value is 6if=0.86600 kOhm, eigenvalues 
are /li=-512.6128415//s~\ A2=-0.5063187795//s"^ and at 
0=0.86609 kOhm they are >li=-512.6146800 jus~\ >i2=-0.4556853442 jus" 
^ Thus, at an error 0.01% for the parameter a, the error for the large ei­
genvalue is -0.00036%), and for the small one it is 10%). For this reason, 
when reproducing the process by its model, a maximum error of the order 
of 10%o is observed. 

The maximum error of a model can be estimated as follows. The condi-

tionality number of the matrix A is 0(A) = |/l,|/|A2|« 1500. It is always 

possible to choose such a scale (such system of measurement units) at 

which the module of the larger eigenvalue Xi is unity. Then, ||A|| will also 

be of the order of unity, and the module of the small eigenvalue will be 

\A^\ = 1/1500 = 6.7 • 10"^. Let the relative change of matrix elements' values 

be ^^'lO"'^. Then the absolute change of the elements' values will be 

Aa- • = | |A | | - ^^ «CJ^ =\0~\ Considering that the information on the small 

eigenvalue A2 lies in low-order digits of matrix elements a/,y, the relative 

error for A2 will be J^ = Aa^ y / | ^ | = ^^z j ' 6^(A)«15%). This is in close fit 

with the results of a numerical experiment. 
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3.2 The principle of quasistationarity of derivatives and 
integrals 

In this section we shall consider one of the main principles of effective solu­
tion of stiff inverse problems - the principle of quasi-stationarity of deriva­
tives [2]. We shall state it in regard to stiff systems of linear differential equa­
tions. At the end of this section, it vŝ ill be shown how this principle can be 
used when searching a solution of ill-conditioned systems of algebraic equa­
tions to which inverse problems are reduced. 

Let's consider an inhomogeneous stiff system of linear differential equa­
tions whose Jacobi matrix is negative-definite, that is, one having only real, 
negative eigenvalues: 

^ = A y + b , ^€[0,71, y(0)=yo, y{t)={y,(t) ... y^(t)f, b=const. (3.15) 

In this most simple case, matrix A is ill-conditioned as follows from the 
condition of stiffness of the system of equations (3.16). Let us arrange matrix 
A eigenvalues /1(A) by decreasing absolute values. We shall assume that they 
can be divided in two groups, by their values A,, i = \,k and A, i = k + \,m, 
according to the following inequalities 

where A^^^^ and X^^-^ are maximum and minimum eigenvalues by absolute 

value, respectively. 
According to the definition of stiff systems stated in the previous section, 

there is a boundary layer with duration Tb on the interval of solution 
te[0,T]. It separates intervals of fast and slow changing of variables y{t). 
Typical dependence of component yp{t) of the vector y{t) is shown in 
Fig. 3.8: in linear (with distortion of the time scale (Fig. 3.8a)) and logarith­
mic (Fig. 3.8b) scales. 

Obviously, the solution behavior inside and outside of the boundary layer 
is very distinctive. The derivative y[(t) outside the boundary layer has con­
siderably smaller modulo value than inside it. Similarly, for all components 
of the vector y(t), the following inequalities are valid: 
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Fig. 3.8. Typical dependence from time for one of the variables of a stiff system of 
differential equations in linear a) and logarithmic b) scales 

This property of the solution that is characteristic for stiff problems under­
lies the principle of quasi-stationarity of derivatives. According to this prin­
ciple the solution of a stiff system of differential equations (3.15) of w-th or­
der outside the boundary layer can be described with high accuracy by 
solution of a less stiff system of differential equations ofm-k order and by a 
system of linear algebraic connections of A:-th order. 

Linear connections are defined from the condition of quasi-stationarity of 
(/7-l)-th derivative of the solution outside the boundary layer. At that, the 
quasi-stationarity or constancy of («-l)-th derivative of the solution means 
that its /7-th derivative is zero. Actually, the («-l)-th derivative outside of the 
boundary layer varies very slowly in comparison with its variation inside the 
boundary layer. It is "almost" constant or quasi-stationary, therefore the cor­
responding principle name has been defined by this feature. 

The principle of quasi-stationarity of derivatives is constructive in the 
sense that it not only postulates simplification of describing the stiff system's 
solution behavior outside the boundary layer, but also shows the way to do it. 
Let's differentiate by t the system of equations (3.15) n times: 

di 
' dt 

:AV + Ab, 
dt" dt 

= A''y + A"-'b 
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According to the principle of quasi-stationarity of derivatives we shall 
equate the n-th derivative to zero. At that the {n-\)-th derivative outside of 
the boundary layer is assumed to be quasi-stationary (or constant): 

df 
- A X O + A"-^b=0. 

Linear relationships A"y = -A^ b̂ allow definition of any k components 

of vector y(/) by the remaining m-k components. Let for the sake of defini-

tiveness them first be k components > /̂(0? i = \,k that make the vector 

y^={y^,y2,-',yh)^' Remaining components of y(/) form a vector 

y2 =(ĵ )t+pĴ ^+2»*"'3 /̂«)̂  ^^^ then linear connections between vector 

y(/) components can be written down as: 

AV = -A^'-^b, or 
Vi,i Vi,2 

72. r»("-') r»("-i) 

Q!"V, + Q!"2 y2 = -Qlr"b, - Q t ; "b , , from which 

y, = -(Qi:i')"' (Qî y^ +Q!r"b, +Q!r'b,) = L<"'y.+1'"'. 

(3.17) 

Matrix L*"' and vector /*"̂  are defined from relations: 

L<"'=-{a?)"'Q!:i, /<"' =-(Q5"T'(Q(r"b,+Q(«-%,) (3.18) 

In Eq. (3.18) Q̂ ^̂  = 1. As will be shown later the value n=2^A is sufficient 
for qualitative definition of linear connections. 

By substitution of the vector yi in the system of equations (3.15), the order 
of the latter is reduced to m-k\ 

dt 
:Ay+b, or 

d_ 

dt Ly2. 
= 

jh.,1 '̂ ,2 J 

yi 

Ly2. 
+ 

(3.19) 

4^2(0 
=«.,.y.+«z,2y2+b2=«2,,(L<"V2+/*"')+«2,2y2+b2=iy"V2+d*"'-
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Matrix D̂ "̂  and vector d̂ "̂  are defined from relations: 

Equations of linear connections (3.17), together with the reduced system of 
differential equations (3.19), describe the solutions of the stiff system (3.15) 
outside the boundary layer. 

It has been shown in the previous section that the system of differential 
equations describing a transient process in the electric circuit, shown in 
Fig. 3.4, is stiff. Let's obtain a reduced system of equations and linear con­
nections outside the boundary layer. Substituting parameters' values 
i?=0.47kOhm, r=0.27 kOhm, a=0.866kOhm, C=4 pF, i=l //H, Eo=\ V in 
the system of equations (3.8), we have (here the current is measured in milli-
amperes and the voltage in volts): 

-146.8716, 311.45461 

171.8768, -366.2475 

542.1617 

288.3839 
, y(0)= 

10̂  

10̂  =yo (3.20) 

Matrix A eigenvalues are /ii«-512//s ^ H /l2«-0.5 //s ^ In this problem 
the matricesQ^^^ A:,p = l,2, L "̂\ D̂ "̂  and vectors /̂ "̂  d^''\ appearing in 

Eqs. (3.16)-(3.19), are scalars. Therefore they will be designated further as 

Let's define linear connections between variables /̂ (O and uc{t) at various n. 
Let «=1, then it corresponds to the assumption of quasi-stationarity of the 

variables' vector outside the boundary layer. Then the linear connection 
(3.17)-(3.18) is defined from the first equation of the following system of 
equations: 

dyit)_ 
dt 

- 0 , => A y — b , 

Substituting numerical values in Eq. (3.20), we have: 

1̂ \h. "•" 1̂2̂ c - ~^i' fr^^ which ij = (-^j 2 /^i i) ŵ  + (-^1 /^11) = 

-311.4546 -542.1617 . , . . , . , „ , , 
-Ur + = 2.l206ur +3.6914. 

gO) 

-146.8768 •- -146.8768 
Value «=2 corresponds to the assumption of quasi-stationarity of the first 

derivative of variables' vector outside the boundary layer. The linear connec­
tion is defined from the first equation of the following system of equations: 
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= 0, from which A y = - Ab , 

then: 

h =(-(&fy Q^a] ^c +(-(fi[,f )"'(a,A + a , A ) ) = 2.1279z., -0.1357. 

Let n=3, then it corresponds to the assumption of quasi-stationarity of the 
second derivative of variables' vector outside the boundary layer. The linear 
connection is defined from the first equation of the following system of equa­
tions: 

d'y{t) 
•• 0, from which A y = - A b , 

df 
then: 

h =(-(^fy efl) ^c+(-(2if r(ef>,+ef,?*2))=2.i27%, -0.1395. 

Comparing expressions for coefficients of linear connections derived at 
n=2 and n=3, we can note that they are very close. Obviously, in this particu­
lar problem coefficients of linear connection can also be defined from the 
second equation with the same result. 

We shall use the above derived linear connections to reduce the dimen­
sionality of the system of equations (3.20). As a result, we shall obtain sys­
tems of algebro-differential equations that give an approximate description of 
the process beyond the boundary layer: 

n = \, ^ = -1.7672wc+922.8497, /̂  =2.12061/^+3.6914 , 
dt 

du 
n = 2, — ^ = -0.50761/,.+265.0629, /, =2.12791/^-0.1357, (3.21) 

dt 

du 
n = 3, — ^ = -0.50631/^.+264.4116, /̂  =2.1279^^-0.1395. 

dt 

Solution components containing the factor e^^ have been damped outside 
the boundary layer, so the solution contains only components with the factor 
e^^. Therefore, the quality of obtained results is characterized by closeness 
of the coefficient at uc to the value/^ « -0.5063 in the differential equation. 
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It is apparent from the expressions (3.21) that this condition sufficiently 
holds at n=2 and n=3. This indicates that the assumption about quasi-
stationarity of the vector of first («=2) and the second («=3) derivatives out­
side the boundary layer was correct. 

Exact and approximate solutions of the system of equations (3.20) in loga­
rithmic scale are shown in Fig. 3.9a and b. The constant of integration in the 
solution of approximated differential equations (3.21) was defined with use 
of the exact value of the variable uc{t) at /^r^. Dependences Aij^{t) and 
Au^ {t) of relative errors of approximated solutions of the system of equa­
tions (3.20) are shown in Fig. 3.9c and d. Evidently, the coincidence of exact 
and approximated solutions is already good at n=2. 

Let's consider the solution of the system of equations (3.15) inside the 
boundary layer. We shall use the following expression for any given compo­
nent >'p(0 of solution y(0 of the system of equations (3.15): 

i=k i==m 

/=1 i=k+\ 

where a,,̂  are constants defined by initial conditions. Assume that inequali­
ties (3.16) are valid for matrix A eigenvalues. The second sum in Eq. (3.21) 
varies slightly in the interval of the boundary layer. Therefore, it can be ap­
proximated by a linear function. At the same time, the first sum decreases 
exponentially to zero (or to rather small value). 

Let's apply the principle of quasi-stationarity of derivatives "in reverse" 
and calculate not the derivative, but the integral of the variables' vector. For 
this purpose we shall introduce a new variable T = t/T where T = 5/\\^^\, 

and then integrate both parts of Eq. (3.15) over the bounds 0 to r: 
< r 7 r r 

- f - ^ r = [(Ay + b)(ir = A j y J r + b r , 
' 0 ^^ 0 0 

from which JyJr = — - ( y - yo) + yoô -
AT 

~T 

Here y^ = -A~^b is the vector of steady-state values of variables. 

Let's calculate the second integral of the variables' vector: 
r T A - 1 r A - 1 _ 2 

jjydTdT=—- jydT-—y,t+-

= A - ^ r ^ ( y - y „ ) - A - ' r ' ( y „ - y J r + ^ 
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Fig. 3.9. Dependences uc(t) - a) and /̂ (/) - b) and their approximation expressions 
obtained by means of linear connections at various n for t>Th, and errors of approxi­

mation Auc{t) - c) and Aii{t) - d) 

Similarly, the ^-th integral of the variables' vector is given by: 

jj...^Jry=A-"7-(y-y,)- A-̂ 'r̂ V-
A-^'r^V A'Y'r'^ 

{n-\)\ 
| ( yo -y jH^ - (3.22) 

Since r r < r ^ «5/|/l^| « r , we have r « l inside the boundary layer. 

Therefore, we can neglect all members in expression (3.22) except for the 
linear ones. Assuming that the {n+l)-th integral of the solution is quasi-
stationary, we equate the n-th integral of the solution to zero. Then multiply­
ing both parts of the resulting equality by T", we obtain a relationship for 
linear connections inside the boundary layer: 
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A - " ( y - y o ) - A - " ^ ' ( y o - y J r = 0. (3.23) 

The assumption about equality to zero of the integral (3.22) used for deriv­
ing linear connection (3.23), is well justified, which can be seen by the ex­
ample of system (3.15) when m=2. One of the solutions of the system inside 
the boundary layer under condition of (3.16), mentioned above, can be given 
by: 

y\ (^) ^ 7i (^) + <̂ ^̂  '"" '̂' + bTr + c, 

where a, b and c are some numbers, and T = 5/\/l^.^\ is the approximate tran­

sient time. After integrating the solution n times: 

JJ-|v,(c/0" = 
a{e'-'-\) -I ar ;;,(oo) + c , bTr" 

„„ „ K.J" 1^^K::T""k\ n\ (« + l)! 
it can be seen that at l l ,̂  I » \ X . I and r < r. = 5l\l^ I the first two mem-

I ITlaX I I Ill in I u I \ illdA I 

bers are close to zero, as Umax^"r=^(|^max|/|^min|r »^' Remaining mem­

bers are small, as r « 1, i.e. the «-fold integral is quasi-stationary. 
We shall use Eq. (3.23) to define the linear connection between variables 

ii{t) and uc{t) in equations (3.20) for various n. Desired linear connection be­
tween variables inside the boundary layer is given by: 

ij^{t) = auc{t)-^/i-\-yt, t<T, b • 

Coefficients of this dependency derived from relations (3.23) at various n 
are listed in Table 3.1. 

Data in Table 3.1 show that accuracy of definition of linear connections 
grows rapidly with increasing n, therefore assuming n=2^A is sufficient for 
practical purposes. Given this one can easily see that factor p can be calcu­
lated by known input conditions as yS = /^(O) - aU(^{Qi), or in general form 

Table 3.1. The coefficients of linear connection between variables ii{i) and uc{t) in­
side the boundary layer 

n 

1 
2 
3 

a 

Value 

-0.850394 

-0.851570 

-0.8515709 

Relative er­
ror (%) 

0.1 

10-̂  

10-̂  

P 
Value 

185.0394 

185.1570 

185.15709 

Relative er­
ror (%) 

0.1 

10"' 

10-̂  

y 

Value 

716.5354 

693.9369 

693.9926 

Relative er­
ror (%) 

3.2 

10-̂  

10-̂  
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Let's construct a simplified model of the system on the interval of 
boundary layer. For this purpose we shall substitute the linear connection 
obtained for n=3 into the initial system of equations (3.22). As a result, we 
have: 

n = 3, — ^ = -512.6128w,,+3.2112-10'+1.1969-10'^ 
dt (3.24) 

/^=-0.8515709wc+185.15709 + 693.9926r. 

Solution components with the factor e"^^ are small on the interval of 
boundary layer, so the solution contains only components with the factor 
e^^. Therefore, the quality of obtained results is characterized by closeness 
of the coefficient at uc to the value A^ = -512.6128415//s"^ in the differential 
equation. It is apparent that the approximation (3.24) at n=3 well describes 
the process in the initial circuit. 

It is obvious that uc(t) can be excluded instead of /̂ (O froi^ the initial sys­
tem of differential equations in a similar way. For this purpose, the above ob­
tained linear connections should be written down in the form of 

_Uij(t)-^b^ +c / = -1.174300/^(0+217.4300+815.0050r, r<r^ 

[aAif)'^^ =0.469941/, (0+0.065546 t>T,. *̂ "̂ '̂ ^̂  

Then, for the current /̂ (O we have the following approximations: 

di^ _ r-512.6128/^(0 + 68261.75 + 253837r, r<r^ 

"*" "1-0.506319/-, (0 + 562.5764, />r^ . 

The exact curve of voltage on the capacitance (solid line) and its ap­
proximations (dash and dash-dot lines) obtained according to linear connec­
tions (3.25) are shown in Fig. 3.10. It can be seen that the linear connec­
tions (3.25) describe the exact solution on the whole time interval with high 
accuracy. The approximation of solution inside the boundary layer, derived 
when neglecting the member cit in Eq. (3.25), is shown in Fig. 3.10 (dotted 
line). In this case, the error of approximation in the vicinity of r̂ , is signifi­
cant. 
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Fig. 3.10. Dependence wc(0 and its approximation expressions within and outside of 
the boundary layer 

The principle of quasi-stationarity of derivatives has allowed describing 
the behavior of solution of the stiff problem with high accuracy (3.20), both 
inside and outside the boundary layer. Simplified models describing the be­
havior of stiff problem inside the boundary layer (3.24) and outside of it 
(3.21) have also been created. For definition of linear connections "exact" 
values of the system of differential equations' matrix coefficients were used. 
In practice, when solving inverse problems, particularly problems of diagnos­
tics, identification and parametrical synthesis, parameters of diagnosed (iden­
tified) devices are found on the basis of experimental data. Therefore, the 
problem of influence of experimental data errors on accuracy of definition of 
linear connections considered below is of significant interest. 

Linear connections were defined above by means of Eqs.(3.17) and (3.23), 
in which matrix A of the system of equations (3.15) was used. Let this ma­
trix's elements be found experimentally with an error zlmax- Figure 3.11 
shows dependences of error for the coefficients of linear connections (3.17) 
and (3.23) from zl̂ ax for the circuit shown in Fig. 3.4. When deriving these 
dependences, exactness of initial conditions yo and vector of sources b have 
been assumed. Curves on Fig. 3.11 have been obtained as average results of 
100 calculations. It is apparent that coefficients a\, ^2, h\ and h^ are defined 
with an error not larger than zlmax? whereas the coefficient c\ is defined with 
an error exceeding zlmax by an order. 
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Fig. 3.11. The relative error of linear connections' coefficients between uc{t) and //,(/) 
within and outside of the boundary layer, as well as matrix A eigenvalues versus 

measurement error zĴ ax 

Thus, even this elementary example shows that there are significant dis­
tinctions in the stability of linear connections' coefficients to errors of matrix 
A elements. To find properties of stability in general, we shall present matrix 
A of the system (3.15) in the form of A = PAP"' =PAQ^, where P and Q 

accordingly are matrices of right and left eigenvectors p„ q,, / = l,m, and 

A = diag(/l,,...,/l^) is the matrix of eigenvalues. In general form, the linear 

connection outside the boundary layer is given by A"y = -A""'b , then: 

A;- EP-
^ 

q; 
v'^y 

-A,- ZP, 
'A^"-' 

v ^ y 
q, 

According to condition (3.16), (/I, /A^)" w 0, / > A: can be assumed for the 

exponent «=3-5. Then, for linear connection we have: 

ZP-f-T q; =̂T ZP-
A,-i ^ 

qf b . (3.26) 

Each of the equations (3.26) represents a linear connection of the form: 
m 

Therefore, it is necessary to estimate the sensitivity of coefficients 

a2i,i = 2,m and Z?2 to the error zlmax of the definition of matrix A elements. 
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Let the perturbed matrix of the system be A = A + F , where F is the ma­
trix of absolute errors, and ||F|| < 4nax ||^|| • According to perturbations theory 
an estimation of distortion of matrix eigenvalues can be performed for the 
ordered eigenvalues on the basis of the Bauer-Fike theorem [4]: 

|i, - A, I < ^(P). ||F[ < ^(P) • A^^ • \\Al, (3.27) 

where X. is the eigenvalue of matrix A, ^(P) = //^^ //̂ min ^̂  ^^e spectral 

number of conditionality of the right eigenvectors' matrix, //, is the matrix 

singular number, and H^ = ju^^^ is the matrix spectral norm. ^ in a bi-

logarithmic scale is proportional to the parameter Â^ = I||A||^ "Xl'^ ' i ^^^^ 

describes the matrix asymmetry (here ||||^ is the Euclidean (Frobenius) norm 

of the matrix). 
From the estimation (3.27) follows that for matrixes with small parameter 

Na, the relative change of dominating eigenvalues \,L,,..,\ is of the order 

^max- At the same time small eigenvalues /l^^p/l^^2 5--''̂ m ^^^ distorted to a 

greater extent, since \X,^, \«\X^^^ \ < ju^^^. 

Right and left eigenvectors are defined as solutions for the following sys­
tem of equations 

( A - A , l ) p , = 0 , ( A - A , l ) ' q , = 0 , 

which have ill-conditioned matrixes. Therefore, a small difference of matrix 

( A - i - l j elements from elements of the correct matrix (A-yi . l ) leads to a 

significant error in solution of these systems of equations. However, as 
shown in [5], the error vector is practically parallel to the desired eigenvector 
of matrix A and has no infiuence upon the latter's direction. Therefore, ei­
genvectors corresponding to dominant eigenvalues are stable against errors of 
setting of the elements of the system matrix A. From Eq. (3.26), it follows 
that linear connection coefficients depend only on dominant eigenvectors 

p,,q.,/ = l,A:. Therefore, connection coefficients corresponding to t>Tb, are 

stable against errors of matrix A elements. 
Similarly, rewriting the expression (3.23) for linear connection inside the 

boundary layer in the form of: 

A-My-yo-bO = A^"V. 
we have: 
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ZP-
'k,^ 

\^i J 
q; {y-y,-ht) = X, IP, 

r '^ \ 

\^i J 

n-\ \ 

Yo^- (3.28) 

Each of equations (3.28) represents a linear connection of the form: 

3^i=Z^M^/+^i"^^i^- (3.29) 
i=l 

As is apparent from expression (3.28), connection coefficients a ^ . , i - l , m , 
h\ and c\ in Eq. (3.29) are defined by small modulo eigenvalues of matrix A 
and corresponding eigenvectors. According to Eq. (3.27) and subsequent rea­
soning concerning eigenvectors, one may conclude that generally all connec­
tion coefficients inside the boundary layer are unstable to errors of matrix A 
elements. 

However, this is not always true. In a number of cases that are important 
for practical purposes, some coefficients of linear connection (3.29) are sta­
ble against errors of matrix elements. These cases correspond to systems with 

a strongly separated spectrum of eigenvalues. For such systems {^^^j ̂ i)' = 1 

at /-m and (/l^//l,)' « 0, / = A: + l,m - 1 . Therefore, the accuracy of connec­

tion (3.29) coefficients a^^, i = 2,m and b\ is defined only by the variation of 

eigenvectors included in expression (3.28). Variation of eigenvectors at dis­

tortion of matrix A elements can be estimated as follows [5]. Assume that A^ 

and X^ are eigenvalues of matrices A and A, p^ and p,. are corresponding 

characteristic vectors, and 7 = min U - 1 . is the minimal distance between 

i,. and the remaining part of matrix A's spectrum. Then: 

| s i nZ(p„p , ) |< | |FyY. 

Usually the distortion of matrix A maintains the separation of its spectrum, 

so | | A | | 2 / / < 1 |sinZ(p^,p^)|<4Tiax- The last condition is valid for any stiff 

system of the second order, and in particular, for the system considered in 
this paragraph. In this example, the coefficients a^ and bi of the connection 

(3.29) are stable against errors of matrix A elements as it follows from 
Fig. 3.11. Generally, even if small eigenvalues do not form a sufficiently 
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compact group, coefficients a^ ,̂ / = 2, m and bi of the connection (3.29) also 

appear to be stable against errors of matrix A elements. 
Let's consider the stability of coefficient ci to errors of matrix A elements. 

As is apparent from Eq. (3.28), the expression for ci involves a summand, 
which is proportional to 1^ and varies strongly at small variation of elements 
of A. The contribution of this summand into the magnitude of ci depends on 
the relation A^ '||yo||/||^|| • ̂ ^^ example, the electric circuit shown in Fig. 3.4 
is of order 0.1. Therefore, the aggregate error of ci is approximately an order 
less than A^rnn definition error (Fig. 3.11). 

In spite of the fact that the coefficient ci of connection (3.23) is defined 
with a greater error, it affects the solution behavior only in the vicinity of tb 
(see Fig. 3.10). For example, in the considered problem at a 10% error in 
definition of the coefficient ci, the greatest error in reproduction of the tran­
sient process curve is reached at t^tt and is equal to 1%. 

In conclusion, of this section we shall apply the principle of quasi-
stationarity of derivatives to the solution of inverse problems that can be re­
duced to solution of systems of linear algebraic equations. In inverse prob­
lems of such type coefficients of a system of equations are determined, for 
example, by measured currents and voltages of an electric circuit at various 
conditions of its performance. The vector of unknowns is formed by circuit 
parameters that are subject to definition. Similar problems will be considered 
in Sections 3.4-3.5 in more detail. 

Let matrix coefficients g^ G G / ^ e / , k,p=l,m of a system of equa­

tions be determined as a result of a series of experiments: 

Gx = f, (3.30) 

where the solution vector x is the solution of some inverse problem. Assume 
that matrix G is ill-conditioned, then the solution of inverse problem by a 
"direct method", by using the solution of the system of equations (3.30) (for 
example, by Gauss method or by means of inversion of matrix G), will be 
obtained by a far greater error than the error of input data [6]. The following 
relation can be used for a crude estimation of the relative error Ax when solv­
ing the stiff inverse problem (3.30) by means of solution of the system of 
equations: 

^ < ^ ^ ! N J M L ^ | |G| |^=^trace(G.G^). 
m 

Here zl̂ ax is the relative error of experimental definition of matrix G coef­
ficients, m is the matrix dimension, and trace is the matrix trace function (the 
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sum of its diagonal elements). Let, for example, zlmax'̂ 0.01. Let matrix G be 
congruent with matrix A from Eq. (3.20). Then m=2 and: 

II A l - I I A i l 
^^^ax^^-^'^-^^ ^ = 0.01-54L9«6, or 4 < 6 0 0 % ! 

m 
As this estimation shows, for solution of stiff inverse problems by the "di­

rect method", experimental data with very high accuracy are required. Here 
some general aspect of the problem should be noted. The solution of the sys­
tem of equations (3.30) by virtue of the ill-conditionality of matrix G is de­
termined by its small eigenvalues. Because of experimental and therefore not 
so accurate definition of matrix G elements, it does not contain trustworthy 
information about the small eigenvalues. This paradoxical statement should 
be understood as follows. When changing parameters of one or several ele­
ments of G on a value no more than the measurement error, small eigenval­
ues of G, and therefore the solution of Eq. (3.30) will change considerably. 

Let's return to the principle of quasi-stationarity of derivatives and to bene­
fits that it can give for solution of stiff inverse problems. Instead of the prob­
lem (3.30) we shall consider the more general problem: 

-^=:-Gx + f, x(0) = Xo (3.31) 

with solution that coincides with the solution of Eq. (3.30) at /-^oo (we as­
sume that matrix G is positively defined). The system of equations (3.31) sat­
isfies the definition of stiff system of the differential equations, and therefore 
use of the principle of quasi-stationarity of derivatives is possible. Linear 
connections between the vector x components beyond the boundary layer are 
given by: 

G^x-G'^-^f. (3.32) 

Linear connections can be easily found by experimentally determined ma­
trices G and f for any n. As was shown above, these linear connections are 
defined with the same accuracy at which the experimental data have been ob­
tained. Therefore relationships (3.32) contain important information on the 
stiff inverse problem. Using this information, repeated measurements in 
slightly modified conditions can be performed and the inverse problem can 
be solved on the basis of thus obtained experimental data. The idea of this 
approach, formulated by authors of [2] under the name of "principle of re­
peated measurements", is considered in Section 3.4. 
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3.3 Using linear relationships for solving stiff inverse 
problems 

As shown in the previous section, data received as a result of experimentation 
("primary" data) can be used to determine linear connections between vari­
ables in a problem. Irrespective of the degree of stiffness in a problem, the 
degree of accuracy of connections to be found is the same as the accuracy of 
measurements that have been carried out. 

Here we shall continue the study of the problem of synthesis of an equiva­
lent circuit for the circuit shown in Fig. 3.4 that we started in Section 3.1. The 
problem consists in definition of parameters a, L and Rx by relationships ii{t) 
and uc{t) on the interval [0,7] obtained as a result of measurements. It has 
been shown that these problems cannot be solved using traditional methods, 
instead the use of linear connections (3.18) and (3.23) gives rise to alternative 
methods for solutions of inverse problems, discussed below. 

Let's proceed according to the following sequence. At first we define coef­
ficients of linear connections and then use them to solve the inverse problem 
specified. According to Eq. (3.25), we shall write down linear connections 
for ii{t) and ucif) as follows: 

^c (0 =', 

The problem of determining the coefficients a^^b^.c^.a^.b^ can be formu­

lated as 

where \ = {a^,b^,c^,a^,b^^ is the vector of unknown coefficients of linear 

connections and 

The problem (3.33) does not require a solution of a stiff system of differ­
ential equations. For its solution, we shall apply the least-squares method. 
Let's search the solution of (3.33) for time intervals inside and outside the 

boundary layer. Let /^G[0,rj for m<K and r^G[r^,r] for m = K-\-\,M, 

that is, the first K points of experimental curves lay inside the boundary layer, 
and the remaining points are outside of it. The following matrixes can be 
formed: 
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W = 

\ (0 1 

. U | ,W, ' " 2 = 

«c(^ic+i)l 

"cv/r+2/ 

. « C ( ^ M ) . 

When i^>3 and M-K>2, matrixes W,^W,, / = 1,2 are nonsingular. 
The problem (3.33) has a unique solution, which according to the least-
squares method is given by 

X. = ( w / W , ) " ' w / u , , / = 1,2, x,={a,,b,,c,)' ,x^={a,,b,y. (3.34) 

Dependences of coefficient errors for apZ>pCpa2,Z>2 versus measurement 

error calculated from Eq. (3.34) are shown in Fig. 3.12. These dependences 
are derived by averaging over 100 calculations. Further, all dependences ob­
tained for the random experimental error A^ax will also be given as averaged 
over 100 calculations. 

One can easily see from Fig. 3.12 that error of coefficient ^2 considerably 
exceeds the experimental error. Loss of accuracy (relative to the experimental 
error) is of three orders. Reasons of this were discussed in the previous sec­
tion. They are caused by the smallness of Z?2 in comparison with ^2, which in 
turn is a display of the stiff properties of the problem. 

10^ lo-' 

Measurement error, ^ ^ 

Fig. 3.12. The relative error of linear connections' coefficients between uc(t) and iiit) 
within and outside of the boundary layer versus measurement error zl̂ ax 
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To determine parameters a, L and R\ one needs only three coefficients of 
linear connection. Let them be a^ ^2 and c\. Let's designate coefficients de­
rived from Eq. (3.34) as al""^a^^ ^cl"", emphasizing the fact that they have 
been found experimentally. Expressions connecting coefficients al"" ,a^^ .c^"" 
with desired parameters a,L,R^, can be found from Eq. (3.18) and (3.23) by 
use of condition equations (3.8). At that, the value of ^ in these formulas is 
assumed to be 2. Large values of n can be required only for the purpose of 
full elimination of small eigenvalues' influence, that is to provide the condi­
tion {^J^y - 0 , in Eq. (3.26) and (3.28). For the problem under consid­
eration a comprehensible solution can already be obtained at n=2. Analytical 
expressions for coefficients of connections are given by 

a, (x) = -D-'L {925.93LRf + 67.501 + 500LR, + Rf (a - 0.27)) 

^(x) = 10-'ZT^ [{321(/ -6.61^+33.38)7?^ +{\-a)R, •h(a-TIO)Ll^ +0.05] 

c,(x) = Z)-'[z(925.93ai^,'-685.197?,'-31.73-302.507^,)/^(0)+ ^̂3 35̂ ^ 

+7^(a7?;-0.13-0.747?;)wc(0)+(925.93L+0.47)7?f+250.00(a + l)Z7^], 

7) = 10-'7?,(1.907?,-1.88a7?i+0.24 + 270I + I7?,), x = (a , I ,7? , )^ 

Here, ifXO) and udO) are also defined by experimental dependences. 
Thus, the new problem for definition of the required parameters a,L,R^ 

becomes: 

|a,(x)-

L(x)-
piW-

-afH 
-«r 

' 1 

m̂ in F(x), F(x) = ^2(x) - af" . ^3^^^ 

The following important advantages of problem (3.36) should be empha­
sized: 

- the accuracy of coefficients a^^^^al^^.c^^^ found by experimental data 

weakly depends on stiffness of equations (3.8). It is defined only by the accu­
racy of the measuring equipment; 

- the solution of Eq. (3.36) does not require multiple integration of a stiff 
system of state equations (3.8) as was necessary for the solution of Eq. 
(3.10). 



154 Inverse Problems in Electric Circuits and Electromagnetics 

Regardless of these essential simplifications, the problem (3.36) neverthe­
less is complex enough owing to ill-conditionality of the functional F Hesse 
matrix. Let's consider its further simplification by use of the inverse problem 
property of stiffness. 

Stiffness of the initial inverse problem is conditioned on diverse influence 
of desired parameters on transient in the circuit. Considering two characteris­
tic time zones - inside and outside of the boundary layer, may help to esti­
mate the influence of either parameter on the process in these zones. Estima­
tion of sensitivity of the system of Eq. (3.8) matrix A eigenvalues Z\ and JI2 
to modification of parameters a,L,R^ will be sufficient for this purpose. 

Let's introduce normalized variables <^^ e [0,l], / = 1,2,3 : 

quantities with indexes "min" and "max" limit ranges of definition of a,L,R^. 
To estimate the sensitivity of Ai and A2 we shall use the average value of 

their derivative on normalized variables in the whole domain of their defini­
tion. Thus, averaged elements of matrix J are calculated as follows: 

Ai-^jjl^jd^,d^2d^,^'f, ' = U, 7 = 1,2. 
^ii 0 0 0 

In the problem under consideration, matrix J is given by: 

^ 
0.1 

1 

0.05 

A, 

1 

0.7 

0.25 

,̂ 

4 
# 3 

Here, elements of each column are divided by the maximum element of 
that column. 

Apparently, maximum eigenvalue Ai depends weakly on ^3. Hence, modi­
fication of 3̂ has only a slight influence on transients inside the boundary 
layer. Therefore the problem of (3.10) could be divided into two problems: 
for the interval inside of the boundary layer and outside of it. Further, an ap­
proximation for L can be found from the first problem having chosen the re­
maining parameters arbitrarily from within their corresponding ranges. Then, 
with known L the problem can be solved outside of the boundary layer to de­
fine a and Ri. Thus calculated, a and R] can be used to adjust L and then to 
find new values for a and i?i, etc. As calculations demonstrate, this algorithm 
well converges to a solution. However, it is absolutely inapplicable in prac­
tice, because analytical expressions for eigenvalues that are necessary for its 
work can be obtained only in rare instances, and only for elementary prob­
lems. Computational investigation of the stability of/li and X2 encounters the 
problem of stiffness and cannot be fulfilled correctly. 



Methods of Solution of Stiff Inverse Problems 15 5 

In the suggested approach, the sensitivity of linear connections' coeffi­
cients au a2 and c\ are used instead of the sensitivity of eigenvalues X\ and 
^2. Analytical expressions for these coefficients can be found for high-order 
systems (including nonlinear ones), as it requires only multiplication of ma­
trixes. In the problem under consideration, values of matrix J elements for 
coefficients of connections are as follows: 

a, 
0.2 

1 

0.1 

c, 
1 

0.01 

0.3 

« 2 

1 

1 

0.25 

#, 

# 2 

^3 

Obviously, the coefficient Ci depends weakly on the variable 2̂ (the nor­
malized inductance L). Therefore, the solution of Eq. (3.36) can be divided 
into two stages: 

- in the first stage, we shall find L from any of the equations of (3.35) an 
arbitrary a and i^i, from their respective ranges of definition; 

- in the second stage, we find a and Ri using data about the process outside 
of the boundary layer. 

Further, by means of calculated values a and Ru we adjust the value L and 
find new values for a and Ru etc. This process converges well, but requires 
(during realization of the second stage) integration of a system of stiff differ­
ential equations on each iteration. Therefore we shall use only linear connec­
tions (3.35) for determination of a,L,R^. 

For this purpose, we can use the following iterative process: 
- find the inductance L from Eq. (3.35) for a^: a, [a^'\L,Rl'^) -> L^'^'^; 

find the coefficient a from the expression for ^2: 

a,(a,L^'''\Rl'')^a^'''^; 

find the resistance 7?i from the expression for c\: 

c,(a'''^L''''\R,)^Rr'-

As our analysis shows, this process converges well at any initial values d^^ 
and RI^^ from their respective ranges of definition. The relative error of pa­
rameters' calculation versus error of experimental data zl̂ ax is shown in 
Fig. 3.13. For estimation of the quality of this, results recall that the error of 
a,L,R^ calculation by the traditional method (3.10) at zlmax'̂ lO"'̂  was equal to 
hundreds of percents. 

Summing up this section, let's note that the property of stiffness of an in­
verse problem can be used for simplification of its solution. Use of linear 
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connections between the problem's variables discussed above is one of the 
effective methods of simplification of its solution. 
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Fig. 3.13. Dependence of parameters L, a, i?i definition error from the measurement 
error Arr,^^ 

3.4 The problems of diagnostics and the identification of 
inverse problems in circuit theory 

This section is concerned with furthering the discussion of problems arising 
from solution of inverse problems in circuit theory, and those resulting from 
the stiffness of equations of the circuits under consideration. 

As it was noted earlier in Section 1.3, the problem of electric circuit diag­
nostics involves definifion of parameters of the elements of the circuit by its 
measured responses to known actions. Each problem of diagnostics consists 
of two stages: the experimental stage, at which the physical device character­
istics are measured, and the calculation stage, at which parameters of the de­
vice are calculated by its measured characterisfics. As a rule, at solufion of a 
diagnostics problem, we have extensive information on the circuit's topol­
ogy, and rated values of parameters of its elements. The purpose of diagnos-
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tics is in detecting deviations of the device parameters from their rated values 
during manufacture or operation. 

A more general type of inverse problem in circuit theory is the identifica­
tion problem, which aims at constructing a circuit model on the basis of ex­
perimental data. The most complicated object of identification is the so-
called "black box", - an object with completely unknown internal structure. 
Lack of information on the device to be identified and simultaneous desire to 
create an adequate model can lead to excessively complicated models. Occa­
sionally it is necessary to consider the complete model, introducing deliber­
ately or unintentionally to the discussion of weak or insignificant connections 
between separate elements of the device. Thus, elements with strongly differ­
ing parameters may be included into the model. This is the reason of stiffness 
of the model equations. Further, we shall consider the identification problem 
as a more common inverse problem of the circuit theory. 

Depending on whether the topology of a circuit is known and whether nodes 
and branches of the circuit are accessible for connecting measuring devices, we 
shall distinguish the following types of identification problems: 

1. Problems with known topological structure, in which all necessary 
nodes and/or branches are accessible for carrying out experiments. 

2. Problems which have known topological structure of the circuit but not 
all necessary nodes and/or branches are accessible for carrying out experi­
ments. 

3. Problems with unknown topology. 

When solving problems of the first type it is possible to derive a model 
completely adequate to the real electric circuit. In this case values of admit­
tances or resistances of branches of the investigated circuit are the unknown 
parameters of the model. 

As a result, in the solution of a problem of the second type finding values 
of parameters only for some of the circuit branches is possible. Besides, it is 
possible to also find the values of parameters of the multiterminal network, 
which is equivalent to the part of the circuit inaccessible for measurements. 
We shall illustrate this by the example shown in Fig. 3.14. Let nodes 1-6 be 
accessible for carrying out experiments, and A'̂  be the circuit part containing 
internal (inaccessible) nodes. At solution of the identification problem, the 
values of admittances gi2, g34, gse, gn, gss of the real circuit branches, and 
values of admittances ^26' SIA^ SAS of the multiterminal network equivalent to 
its part can be found. 
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Fig. 3.14. A circuit with only partially known structure 

When solving a problem with unknown topology, (problems of the third 
type) the circuit can be represented in the form of a full equivalent multi-
terminal network. The number of its nodes is equal to the number of external 
nodes of the circuit. Values of parameters of multiterminal network elements 
are found by means of experimentation, for which the general number of 
nodes of the real circuit is unknown. 

We define a circuit observable by current or voltage if the experimental 
data is sufficient for the determination of currents or voltages for all of its 
branches. For complete representation of a circuit, it is sufficient to know the 
currents Î  of its links, or voltages Uc of the circuit graph tree branches. Cur­
rents and voltages of the remaining branches can be calculated as follows: 
Î  =F^ Î ,, Û . =-F'U^, where F is a matrix associated with the tree so that 

D=[l,-F''],C=[F,1] , D is a fundamental cutset matrix, C is a fundamental 

loop matrix, 1/ and U/ are sets of tree currents and voltages, Î  and Û  are sets 
of cotree currents and voltages, and 1 is a matrix of unity. 

Depending on whether the circuit is observable by current or voltage, dif­
ferent topological bases are used for its identification. If the circuit nodes are 
accessible, it is expedient to use the basis of cuts; in this case there is a possi­
bility to measure the voltages of tree branches. It is convenient to use the so-
called fundamental tree with branches that connect each of the circuit nodes 
with the basis node. If there is no branch between some node and the basis 
node, a fictitious branch with zero admittance is introduced between them. 
Thus, a conversion from the basis of cuts to nodal basis is carried out which 
simplifies identification of circuits with unknown structure. If circuit 
branches are accessible for measurements, then it is expedient to solve the 
problem in the loop basis. In this case, measurements of the link currents is 
sufficient. 

The choice of either topological basis offers two methods of circuit identi­
fication: the method based on nodal analysis - the so-called Nodal Imped­
ances Method (or NIM) [1], and the method based on loop analysis - Loop 
Admittances Method (or LAM). 
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3.4.1 Methods of identification of linear circuits 

Let's consider the statement of the identification problem by means of NIM. 
Let all Â +1 nodes of a passive electric circuit of unknown structure be ac­

cessible for experimentation. Let's define the admittances of the equivalent 
circuit by a circuit presented in the form of a full multiterminal network. We 
assume that the identification problem is solved if the matrix of circuit nodal 

admittances Yn=(v,,) is found. Indeed, in that case we have the admit-

tance gij between nodes / andy as, 

[k=\ 

According to NIM, the matrix Yo is defined as the inverse of the matrix of 
nodal resistances ZQ. Elements of the matrix ZQ=YO"' are defined by ex­
perimental results presented in Fig. 3.15, which constitute the experimental 
stage of the problem's solution. Let's connect a current source of 1 A (gener­
ally of one relative unit of current) between nodes 0 and 1. Then the nodal 
voltages of the circuit will satisfy the following equation: 

Uo=Y,-^J=Zo-J, 
where U^ is the column of measured nodal voltages and J is the column of 
current sources. After designating this experiment as the first one in a series 
of measurements, we can write the expansion as 

U^J>=Z,.(1, 0, ... 0f=Y,-^ef. 

Thus, the column Uj,̂ ^ of nodal voltages represents the first column of ma­

trix Y"'. 

Passive 
Network 

I T 

Passive 
Network 

n 
Fig. 3.15. Schematic diagram of experiments by Nodal Impedances Method (NIM) 
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Similarly, to find they-th column UQ̂ ^ of the matrix Zo, it is necessary to 
connect a current source between nodes 0 and 7 of the multiterminal network 
(Fig. 3.15b) and then measure the nodal voltages U^̂ .̂ 

U^^>=V.(0,0,...,l,...,0)'=V.e;. 
By means of connecting the current source to each node and in turn meas­

uring the nodal voltages, we find Zo=rUo\ U^̂ ^ •••, U^^M. If the measure­
ments are carried out with sufficient accuracy, then the solution of the elec­
tric circuit identification problem becomes Yo=Zo\ Therefore, the 
calculation stage of NIM involves inversion of the matrix ZQ. An important 
advantage of NIM is that it requires rather simple experiments, and they can 
be easily automated. The calculation stage of the method also does not pose 
any difficulties. However, this method has a disadvantage in that it does not 
allow determining the admittance of parallel connected branches. 

To define parameters of parallel branches that may be included in the di­
agnosed circuit, the LAM (Loop Analysis) method can be used. Let's con­
sider an identification problem of the first type. According to LAM, the iden­
tification problem is solved if the matrix of the circuit loop resistances 
Z^ =CZC^ is found, where A'' is the number of links of the circuit graph, C is 
the fundamental loop matrix, and Z is a diagonal branch impedance matrix. 

The matrix of loop resistances is defined as the inverse matrix to the ma­
trix of loop admittances Y ,̂ generated by experimental results. To carry out 
circuit identification it is necessary to connect a 1 V emf source to the circuit 
links, and in turn, measure the currents of all links in each experiment. An 
example of such an experiment for a circuit with four links is shown in Fig. 
3.16a, where the branches of the circuit network tree are indicated by solid 
lines. 

E;^'=E3<="=E;^'=O 

Fig. 3.16. Schematic diagram of experiments carried out by the method of loop ad­
mittances (LAM) for a circuit with four independent loops, when solving problems 

of first a) and second b) types 
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Link currents Î ^̂  measured in the7-th experiment satisfy the following set 
of equations: 

I^^>=Z/'.(0, 0,-.., 1,..-, 0f=Y,.e^:, 

hence, Î ^̂  is the y-th column of matrix Z~ .̂ Let's compose a matrix 

Y^=ri^^\ lf\---,I^^^1 consisting of the measured columns V^JK Then the 

solution of the electric circuit identification problem becomes Z^=Y^"', pro­
vided experiments were carried out with adequate accuracy. Thus, the calcu­
lation stage of LAM, as well as of NIM, involves the inversion of a matrix 
with factors that have previously been found by measurements. 

In cases of incomplete observability of the circuit (problems of the second 
type), it is possible to find parameters of branches only of those loops which 
have no common branches with the loop that corresponds to an inaccessible 
link. For example, if in the circuit shown in Fig. 3.16a, link 4 is inaccessible to 
measure, it is only possible to define parameters of the equivalent circuit with 
the graph shown in Fig. 3.16b. The parameters of the branches indicated by 
solid lines correspond to real ones, and the parameters of the remaining 
branches represent some combination of real parameters. 

3.4.2 Error of identification problem solution 

To investigate errors in the solution of an identification problem, we need a 
model for the measuring devices used in the experimental stage. Assume that 
these measuring devices allow us to carry out measurements with a maxi­
mum relative error A^ax, in which the error of each real measurement is a 
random variable uniformly distributed on the interval [-4nax' 4nax ] • 

As has been shown above, the solution of the identification problem either 
by the LAM or NIM method requires inversion of a matrix (further - matrix 
A) with factors obtained by measurements. The condition number (or Todd's 
number) of a matrix inversion procedure acts as its characteristic of numeri­
cal stability: 

min|A(A)| A„,„(A) 

Increasing of the number 0 causes deterioration of numerical stability of 
the matrix inversion procedure. Ill-conditionality of matrix A at idenfification 
of a circuit may be caused by the following reasons: 

- incorrect conceptions about the structure of the diagnosed circuit, leading 
to occurrence of elements with strongly differing parameters in the equiva­
lent circuit; 
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- topological singularities of the circuit, such as special cuts (sections) 
passing only through branches with small admittances and special loops pass­
ing only on branches with small resistances. 

Let's specify concepts of "small admittance" and "small resistance". Obvi­
ously the concept of smallness should be connected with the measurement er­
ror zlmax- Let gmax aud gmin be maximum and minimum values of the circuit's 
branch admittances, accordingly. Assume that some admittance gk is small, if 
the inequality gjyjg^i^ -ĝ ax <4nax holds. And on the contrary, we assume 
that an admittance gk is large, if gJ4^~^>AnL • Accordingly, parame­
ters of branches differ strongly if one of the parameters is small in compari­
son with others. 

In identification of a circuit with unknown structure, in nodal analysis 
(NIM) fictitious nodes resulting in redundancy of the model, and conse­
quently - in its stiffness, can exist. Let's show this by the example using the 
circuit in Fig. 3.17a. Here the node 2' is split into two nodes, 2 and 3, one of 
which is fictitious. We will use nodes 2 and 3 to carry out our experiments, as 
we have no information that these nodes are connected to one another inside 
the device. Using NIM results in the equivalent circuit shown in Fig. 3.17b. 
This circuit corresponds to the real circuit if G->oo. The equivalent circuit in 
Fig. 3.17b has an ill-conditioned matrix of nodal admittances YQ. This matrix 
has two eigenvalues, close by magnitude to g^. A: = 1,3, and a third one close 
to G^oo. A dual situation can arise at identification of circuits by the 
method of loop admittances. For these cases, the models' ill-conditionality is 
caused by the lack of information about the identified circuit's structure. 

Fig. 3.17. Identification of fictitious nodes by the method of nodal resistances 

Let's consider topological singularities. We shall consider a cut as a special 
one if the sum of admittances of branches intersected by this cut is small in 
the sense specified above. Accordingly, a loop is considered a special one if 
the sum of resistances of branches included into it is small. Identification of 
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circuits with special cuts is difficult using the NIM method. In identification 
of circuits using the loop analysis method (LAM) difficulties arise when the 
presence of special loops in the circuit exist. 

Special cuts and special loops divide the circuit into subcircuits that are 
poorly connected with each other. In the circuit shown in Fig. 3.18, there are 
three poorly connected subcircuits, M, N2 and iVs, separated by a special cut s 
and a special loop /. In the case of a special cut, the currents of branches con­
necting N\, and N2 are small because of admittances of branches in this cut 
are small. In the case of a special loop, the voltages on its branches are small, 
and subcircuits N2 and Â3 are poorly connected as well. 

/ 

r 
y 

V / 

w, 

i 
•-

\p 

I 

2,->0 

/ ^ 

W3 

a 

r 
Fig. 3.18. A circuit with topological singularities 

Each special cut introduces a small modulo eigenvalue in the spectrum of 
the nodal admittance matrix Y. Indeed, in the extreme case when the admit­
tance of cut branches is zero, the circuit breaks up into two sub-circuits 
which are not connected. Therefore, while analyzing such a circuit, it would 
be possible to consider each subcircuit and choose a zero node for each one 
separately. For this reason the matrix Y of the whole circuit will include a 
single, linearly dependent row (and column) and one of its eigenvalues will 
be zero. If the admittances of the special cut are small, then by virtue of con­
tinuous dependence of eigenvalues on the matrix elements, the whole circuit 
matrix Y will have a small eigenvalue. Accordingly, 0(Y) will be large and 
the matrix Y will be ill-conditioned. Similarly, the influence of a special loop 
on eigenvalues of the loop resistances matrix Z^ =CZC^ can be explained. 

Topological singularities can be of the "embedded" type. Let there be a 
special cut s in an identified circuit, inside of which there is a subcircuit N\. If 
there is also a special cut î in Â i, and cuts s and 1̂ are not intersected, then 
cut s\ is embedded in cut s. Similarly, "embedded" special loops can now be 
introduced. It will further be shown that circuit identification becomes con­
siderably more complex in the presence of "embedded" special cuts in it. 

Further, we shall concentrate mainly on the NIM method, focusing atten­
tion on circuits with special cuts. According to the duality principle the re­
sults will be valid for the LAM method as well. 
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Let's consider singularities of circuits with special cuts by using the exam­
ple of the circuit shown in Fig. 3.19a (admittances of its elements are speci­
fied in the drawing). At 8 « 1 the circuit has two special cuts î and ^2. It can 
be shown for this problem that /lmin(Yo)«£; /lmax(Yo)-2 and hence, Todd's 
number is 0 = IIs» 1. 
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Fig. 3.19. Example of a circuit with two independent special cuts 

Let £=10"̂  and measurements carried out have an error zlmax=5 10'̂ . Then 
at identification using the method NIM, the matrix Zo, presented in 
Fig. 3.19b will be obtained as a result of measurements. We readily verify 
that matrix Zo is a special one, and its eigenvalues are equal to 
(0,0, 1, 1000, 1000). Therefore the calculation stage of the method NIM, 
consisting in an evaluation Y = Z^', cannot be fulfilled. 

The reason for our failure in finding a solution to the identification prob­
lem of the circuit with special cuts involves insufficient accuracy of meas­
urements. If elements of matrix Zo have been found with exact accuracy, its 
eigenvalues would be equal to (0.5, 0.5, 1, 1000, 1000). Thus, error of meas­
urements has led to distortion of small eigenvalues of Zo. 

In practice it is unlikely we would derive zero eigenvalues at the realiza­
tion of measurements, such as in the example above. However, it is safe to 
say that for ill-conditioned matrixes, small errors in the calculation of their 
elements generate large errors in small eigenvalues. Elements of the matrix 
Y = Z~' that are necessary for identification depend only on small eigenval­
ues of Zo, as eigenvalues of these matrixes are connected by the relation 
A^=A^\ Therefore, identification errors for circuits with special cuts will 
always be high. 

Dependences of identification error S from the conditionality 0 of the 
nodal admittance matrix for a circuit with a single special cut are shown in 
Fig. 3.20. The mean square error of definition of elements of the matrix, cal­
culated in the following relation, is considered as the error in the solution: 
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1 ] N N 
yij-yi, 

\ 2 

V l̂ l̂ 
(3.37) 

where y. • is a matrix element determined by some error, and y. j is the ex­

act matrix element. 

10"! 

10-1 

10" 

101 

10-

\ "̂ ^̂  

y 
X 

» 

• 

*/ 
y 

y 

X 

• 1 
/ 

/ 
/ 

/i„^=io' 

0{ y)\ 

10' 10^ 10' 10' 

Fig. 3.20. Dependences of identification error J (3.37) from the conditionality 6̂  of 
nodal admittances matrix for a circuit with a single special cut 

To derive smooth dependences, calculations for each pair of 4nax and 0 
have been carried out 500 times and then averaged. 

It is obvious from Fig. 3.20 that the identification error Praises linearly as 
0 increases for all 4nax • For example, if we accept (^10"^ as the accuracy 

and carry out measurements with an error zlmax̂ lO"̂ , then the solution of the 
identification problem can be obtained only if the conditionality of the circuit 
matrix Y does not exceed -100. In other words, the method NIM allows per­
forming identification only for circuits with well-conditioned mathematical 
models. 

The dependences of identification error S from s^ are shown in Fig. 3.21 
(here, as above, s is the admittance of branches through which the special cut 
passes) for electric circuits with the following layouts of special cuts: 

- circuit with a single special cut (the circuit pictogram - [o]), 
- circuit with two independent special cuts (the circuit pictogram - L2l), 
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- circuit with two special cuts embedded in one another (the circuit picto-
gram- M) 

It is apparent that the identification of the error of parameters for the cir­
cuit with embedded cuts considerably exceeds the identification of error for 
parameters of circuits with another arrangement of special cuts. So, at 

^ 1 A - 3 10" and £=10 , the identification error Sis about '-10%. In electric cir­
cuits used in practice, admittances of branches can differ considerably, more 
than 10̂  times. Therefore, identification of parameters of real circuits can of­
ten be carried out with only significant errors. 

x->̂ -̂ <-̂  [ o ] 

Me 
10 

10" 10' 10" 10" 

Fig. 3.21. Comparison of identification error J for various arrangements of special cuts 

The above statements are also valid for sinusoidal current circuits. More­
over, in this case additional special cuts caused by resonance phenomena can 
emerge (Fig. 3.22). Dependence &=0(f) of the circuit matrix Yo Todd's 
numbers from frequency is shown in Fig. 3.23. At /=1 kHz (at 
C32=C5o=25.33 //F, 132=1.50=1 mH, î 32=i?5o==l MOhm) the minimum eigen­
value Amin(Yo)-0. Therefore, there is a special cut s at this frequency. In this 
circuit special cuts can appear also at other, higher frequencies. 
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Fig. 3.22. Special cuts in an AC circuit 

Therefore, at identification of AC circuits, it is necessary to choose the 
frequency of experiments in order to obtain sufficiently small conditionality 
of the matrix of nodal voltages. The above described appearance occurs for 
the majority of AC circuits. This is especially clear at high frequencies w ĥen 
formation of high-Q resonance contours is possible. 

w 

10" 

10' 

1CP 

10-3 

la" 

-

-

-

_ 

1 AI 
0og_____,̂  \ / 1 

' 1 
W 1(fi 10^ 

Fig. 3.23. Dependences of conditionality 0 from frequency/for the AC circuit 

We have demonstrated that the identification error increases quickly with 
deterioration of conditionality of the circuit mathematical model. It is true for 
AC as well as for DC circuits. Further, we shall consider a new method of 
identification based on the principle of quasi-stationarity of derivatives. In 
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this method the identification error will not depend on conditionality of the 
circuit mathematical model. 

3.5 The method of stiff diagnostics and identification 
problems solution 

3.5.1 Application of the principle of repeated measurements for 
solution of electric circuits' identification problem 

It has been shown in the previous section that the error of identification of 
circuits with topological singularities (special cuts and/or special loops) de­
pends on numerical values of their parameters (admittances of branches in­
tersected by a special cut, etc.). The problem properties are characterized by 
Todd's number 0 (condition number) for the matrix of coefficients of the 
circuit's system of equations (or its mathematical model). Larger condition 
numbers mean less accurate solutions of the identification problem. 

The solution of identification problem consists of experimental and calcu­
lation stages. Improving only one of these constituents does not lead to sub­
stantial gain in accuracy for identification of circuit parameters. It will be 
shown in this section that use of additional experimental data, together with 
modification of the calculation algorithm, provides enhanced accuracy in the 
solution. 

The idea of modification of a diagnosed circuit, and subsequent realization 
of additional experiments on the modified circuit, is based on the general 
principle of repeated measurements (RMP), suggested in [2]. Let's consider 
this principle in more detail. 

Let matrix A be the coefficients of a system of equations which are poorly 
conditioned, that is equivalent to the presence of some topological singularity 
in the circuit. We will assume as well that the elements of matrix A and of 
vector b, of the right-hand members, are measured with some error ^during a 
"firsf experiment. Solving the system of equations A'X=b at 0{A)»\ does 
not make sense, as the error of solution will considerably exceed S. Really, 
its solution x*=A"^b essentially depends on small eigenvalues of matrix A. 
However, information concerning small eigenvalues of matrix A approximat­
ing the representation of its elements is inadequate. 

It has been shown above (Sections 3.2 and 3.3) that matrixes A and b with 
elements that are determined with an error S contain certain information on 
linear connections between elements of the solution vector x*: 
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(^, x * ^ o , (3.38) 

where vector f and the number ô are coefficients of the linear connection, the 
error of linear connections definition being close to S. Therefore we use matrix 
A and vector b, resulting from the "firsf' experiment, to determine linear con­
nections between the components of the vector x*. Then the dimensionality of 
the problem can be reduced by means of linear connection (3.38). It can be 
shown [1] that the conditionality of the matrix of the problem with reduced di­
mensionality (or the reduced problem) does not exceed the conditionality of the 
initial problem. Then a repeated experiment can be carried out to determine pa­
rameters of the reduced problem. 

It is possible to apply this algorithm recursively, meaning that the results 
of the repeated experiment can be used for determination of new linear con­
nections. Then a further reduction of the model can be performed and succes­
sive, repeated experiments can be carried out. The way to reduce a problem, 
in order for repeated experiments to be carried out for a considerably less 
stiff model, will now be considered. 

We shall perform the electric circuit identification by the NIM method, 
comprehensively considered in the previous section. Results will also be 
valid in the case of application of the LAM method on condition of transfer 
to the loop basis. 

When using RMP for identification of circuits with topological singulari­
ties the following should be carried out: 

- finding the linear connections (3.38) between variables of the identifica­
tion problem according to data from initial experiments; 

- suggesting the type of repeated experiments that should be carried out for 
a less stiff problem. 

Solution of these particular problems will be considered below. 

3.5.2 Definition of linear connections between parameters of 
circuit mathematical models 

Let's find the equation of linear connection between elements of columns of 
matrix Yo in the case of circuit identification by the NIM method. We shall 
present matrix equation U'Yo=l in the form of Â  systems of equations 
Uy^ =e^, k=\,N (N is the number of circuit nodes), where yA: is the A:-th col­
umn of the matrix Yo of node admittances. 

Assume there is a special cut in the circuit. Then the ill-conditionality of 
matrix U is due to the presence of big modulo eigenvalue >iiin its spectrum: 
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. l , (U)»xi , (U)>-->l^(U). 

Let's consider the system of equations U-yi=ei. Multiplication of its right 
and left parts ^-1 times, by matrix U from the left, gives 

U^y,=U^-^e,. (3.39) 

Let's represent matrix U in the form of U=P-A-P"^ Then U ' = P - A ' P " \ 

where P is the matrix of matrix U eigenvectors, and A=diag(/l,, A^^-'-^Aj^) is 

the matrix of matrix U eigenvalues. When -̂-̂ oo, matrix A"̂  degenerates: 

A^=;i,^diag 1 ^ ... ^ =^^.diag( l ,0 , - ,0) . 

Hence, all rows of matrix Û  are pairwise linearly dependent, and any of 
the equations of (3.39) represents the desired linear connection (3.38) be­
tween vector components of yi. Since (ep...,e;^)=l, then the set of linear 
connections for all columns of matrix U can be written down as follows: 

U^Yo=U" (3.40) 

If coefficients of matrix U are obtained as experimental results by some er­
ror, then the linear connection will be found with an error along the same or­
der as the measurement error. Really, it is defined only by the maximum 
modulo eigenvalue, which has a distortion close to the error of matrix U co­
efficients. 

Fig. 3.24. Electric circuit with a special cut s for researching the accuracy of identifi­
cation problem solution 
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Let the coefficients of matrix U be defined by the NIM method with an er­
ror Amax- We shall estimate the linear connections' definition error S^ in asso­
ciation with the condition number 0 of matrix Yo for the circuit shown in 
Fig. 3.24. This circuit has a special cut S. Assume 5^ is represented by the 
following quantity: 

5̂ =max|(̂ , y , ) -4 , | , 

where ^is the vector of coefficients of linear connection (3.38) and is identical to 
all columns of matrix Yo, and ^o,k is the linear connection's absolute term for A:-th 
column. Figure 3.25 shows dependences of S^ from the condition number of ma­
trix Yo for various levels of voltages' measurement error 4nax- To derive smooth 
curves, these dependencies were averaged upon a large number of calculations. 
Apparently, the error of linear connections' definition does not depend on matrix 
Yo condition numbers and is close to 4nax-

Dependencies shown in Fig. 3.25 are obtained at 5=5. Increasing the expo­
nent s leads to diminution of influence on coefficients of linear connections 
from strongly distorted small eigenvalues of matrix U. Therefore, research of 
dependence of linear connections' definition error from s is of interest. The 
dependences S^=St(,s) for various 6> are shown in Fig. 3.26. Obviously, in­
creasing s over 4-5 is not prudent. 
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Fig. 3.25. Averaged dependences of linear connections' definition error S^ versus 
matrix Yo condition numbers for various values of measurement error 
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Fig. 3.26. Influence of exponent s on linear connections' definition error S^ for vari­
ous condition numbers 6̂ Yo) 
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In conclusion, we shall note that identification of nonreciprocal circuits 
(circuits with controlled sources, etc.) in matrix Yo is asymmetric. Therefore 
the linear connections between the elements of columns of matrixes generally 
do not coincide with linear connections between elements of their rows. 
However, taking into account that Yo-U=U-Yo=l, the following expression 
for linear connections between elements of rows can be found: 

YoU '̂=U•̂ '-̂  (3.41) 

Obviously, properties of linear connections between elements of columns 
considered above are also valid for connections between elements of rows. 
Further, we shall assume that if necessary, both groups of connections should 
be defined: connections between elements of columns by the expression 
(3.29) and connections between elements of rows by the expression (3.41). It 
should be noted that in the identification of "black box" type electric circuits, 
it is always necessary to define both groups of connections. 

3.5.3 Algorithm and results of electric circuits' identification 
problem solution using repeated measurements 

It has previously been shown that at presence of Â  topological singularities in 
the spectrum of matrix U, there is a group of large eigenvalues 

A . a x = { ^ ' - - ^ \ } ' such that 

^(U)>. . .>^^(U)»A^, , (U)>. . .>A^(U). 
Thus, it is possible to find K independent linear connections (3.38) from 

the equations (3.40), each corresponding to some eigenvalue from the group 
^max- To numerically calculate all independent connections, one needs the 
value of exponent s in Eq. (3.40) at which information on all small eigenval­
ues in matrix U" vanishes, whereas information concerning Amax remains. Ac­
cording to IEEE floating-point arithmetic standards, the error of representa­
tion of the stagnant part of a number in a computer is 10'̂ ^ (at double 
precision floating-numbers calculation). Therefore, to provide the above-
mentioned condition it is necessary that {\+xl\y ^10~*^. Hence, we find the 
optimal exponent 

5 = - c e i l f l 6 / l o g , o ^ 

where ceil(x) is the function of rounding up the number x to an integer. 
When carrying out measurements with some relative error zimax, the latter 

is the basic quantity that defines s. Therefore, 
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5=ceil ' O g l o ( 4 a x ) / l O & o ^ 
V I \ J 

(3.42) 

The relationship (3.42) shows that acceptance of 5=1-2 at 6^U)»l/zlmax 
and 5=2-5 (in case of smaller stiffness of the problem) is sufficient. Further, 
we assume 5=4, if not specified otherwise. 

Thus, we have considered a means to find linear connections between ele­
ments of rows and/or columns of matrix U. These linear connections can be 
obtained by results of an initial experiment. The accuracy of their determina­
tion does not depend on the stiffness of the mathematical model, and is de­
fined only by the measurement error. Further, we shall consider the way to 
reduce the problem for carrying out repeated experiments. 

The new reduced identification problem should satisfy the following re­
quirements: 

- parameters of all elements of the model, with the exception of those 
which can be restored later by means of linear connections, should be defined 
from the solution of the reduced problem; 

- the new model's coefficients matrix condition number should be less 
than the condition number of the initial model's matrix. 

Obviously, to provide the second requirement it is necessary to delete 
topological singularities from the model one by one. At the first stage of re­
duction this will be the topological singularity corresponding to maximum 
eigenvalue /li(U). At the next stage it will correspond to the maximum eigen­
value from remaining ones, i.e. to Ml^), and so on. 

Topological singularities divide a circuit into subcircuits that are weakly 
connected with each other. To remove a topological singularity, one may 
connect subcircuits isolated by it to the zero-node, by means of an additional 
link with a large admittance G. If there is a special loop, it requires introduc­
ing an additional large resistance R into a link, which is included in this loop. 

In practice, short-circuiting (G->oo) one of the isolated subcircuit nodes to 
zero, thereby shunting the special cut as well as breaking off (J?->oo) the spe­
cial loop, is more convenient. At that the matrix of coefficients of the reduced 
model will be a submatrix of the initial matrix of model. The purpose of re­
peated experiments involves determination of elements of this submatrix. 
Missing elements of the initial matrix may be restored later by means of lin­
ear connections. 

Let's carry out identification of the circuit shown in Fig. 3.27 using the 
method described above. This circuit contains a single special cut S. 
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Fig. 3.27. Resistive circuit with a single special cut S 

V--

Assume for definiteness that G=\0'^ Sm. If 6^Yo)«10^, then matrixes Yo 
and Zo=Yo'̂  of the circuit are ill-conditioned. We shall carry out experiments 
according to NIM, using the above-described model of measurement error at 
^max=0.01=l%. Results of the first series of experiments are as follow^s: 

1.004 0.5005 0.4979 0.4943 0.4989" 
0.5005 50.86 50.31 50.38 50.11 
0.4979 50.31 50.57 50.39 50.24 
0.4943 50.38 50.56 50.94 50.31 
0.4989 50.06 50.19 50.31 50.43 _ 

This circuit is a reciprocal one. Therefore, the experimental matrix of volt­
ages has been balanced. Hereinafter, we will write down the results with only 
the significant digits shown, the number of which is defined by the magni­
tude of zlmax-

Predictably (see Section 3.4), the isolated subcircuit node voltages domi­
nate by their large values. The minimum eigenvalue of the matrix of voltages 
is /l^i„(lJ)=0.162, which differs from its exact value A^i„(U)=0.250 by 
35%. That is, definition error of a small eigenvalue noticeably exceeds the 
measurement error. At the same time the error of the maximum eigenvalue is 
- 0.1%, that is, it does not exceed the measurement error. Following NIM, 
we find the identification problem solution as follows: 

Yo=U '̂ = 

1.001 
-5.80810-' 

0 
0 
0 

-5.80810-' 
1.359 

-0.7252 
0 

-0.3917 

0 
-0.7252 
3.569 

-0.2732 
0 

0 
0 

-0.2732 
1.099 

-0.5888 

0 
-0.3917 

0 
-0.5888 
3.572 

Hereinafter, assuming that the circuit structure is known, the Ŷ  elements 

of the matrix corresponding to objectively nonexistent admittances will be 

substituted by zeroes. Small eigenvalues of matrix U are distorted by the 
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measurement error. Therefore, the relative error SVQ at definition of matrix 
Yo elements essentially exceeds zln,ax=l%: 

"6 10-" 480 
480 32.1 

^Y„ 27.5 

60.8 

27.5 
78.4 
72.7 

— 

-
72.7 
45.0 
41.1 

60.8 
-

41.1 
78.5 

%. 

Thus, NIM does not allow identifying the circuit considered above. Let's 
apply the principle of repeated measurements (RMP) for the identification of 
this circuit. We shall find linear connections (3.40) between elements of ma­
trix Yo from the results of the first experiment: 

9.843810' 

9.8435-10"' 

9.843510' 

9.843510' 

9.843510"' 

0.99592 

0.99592 

0.99592 

0.99592 

0.99592 

0.99461 

0.99461 

0.99461 

0.99461 

0.99461 

1.000 

1.000 

1.000 

1.000 

1.000 

0.98757 

0.98757 

0.98757 

0.98757 

0.98757 

\x\ = 

4.907M0-' 4.9403 4.9338 4.9606 4.8989' 

4.9030-10-' 4.9403 4.9338 4.9606 4.8989 

4.903010' 4.9403 4.9338 4.9606 4.8989 

4.903010-' 4.9403 4.9338 4.9606 4.8989 

4.903010-' 4.9403 4.9338 4.9606 4.8989 

(3.43) 

xlO" 

U-' 

Linear connections (3.43) are normalized, that is, each of the rows in Eq. 
(3.43) is divided by the maximum element of matrix U' in that row. It is ap­
parent that all rows in Eq. (3.43) are identical within an error not exceeding 
m̂ax- As noted above, this follows from the fact that there is only one special 

cut in the considered circuit. Therefore any row from Eq. (3.43), for example 
the first one, can be taken as a linear connection. Then we have five equiva­
lent linear connections for columns y,, /=1,5 of matrix Yo, and each of these 
linear connections can be used for further calculations: 

^•y, = 4 , =4.9071-10-', ^.y,=^„3 =4.9403-10-', ^-y, = 4 , =4.9338-10-% 

^-y, = 4 , =4.9606-10-% ^-y, =45 =4.8989-10-\ 

where ^=(9.8438-10-% 0.99592, 0.99461, 1.000, 0.98757). 
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Then, we shall remove the special cut by means of modification of the cir­
cuit. For this purpose we connect one of nodes of the isolated subcircuit, for 
example the fourth node, to the zero-node. The matrix Ŷ "̂̂^ of nodal admit­
tances of the new reduced circuit is given by 

"1+^ - ^ 0 0 • 
-£ 2^£ -1 -1 
0 - 1 2 0 
0 - 1 0 2+8 

where the superscript (-1) shows that the matrix size has been reduced by a 
unit. The matrix YQ̂"̂^ has been obtained by removal of the fourth row and 
the fourth column from the initial matrix YQ. Then, we shall perform a re­
peated series of experiments according to NIM for the reduced circuit. The 
measured nodal voltages matrix is given by 

v(-')-

( - 1 ) . 

1.004 
9.93510"" 
4.974-10"' 
5.00910"' 

9.935-10"" 
1.001 

0.4963 
0.4965 

4.974-10"" 
0.4963 
0.7524 
0.2486 

5.009-10"' 
0.4965 
0.2486 
0.7472 

u 

As the special cut has been removed from the reduced circuit, then the ma­
trix Û ~'̂  is well-conditioned and ^(IJ^"^^)»6. Therefore, the solution of the 
reduced identification problem can be found with an error of the order zlmax-
Indeed, 

and Y(-O -
*o ~ 

0.9961 -< ).76210"' 0 0 
-9.76210"" 1.971 -0.9745 -0.9854 

0 -0.9745 1.975 0 
0 -0.9854 0 1.996 

^^""1=10"' 
'0.5 2.3 - - " 
2.3 1.5 2.5 1.5 
- 2.5 1.3 -
- 1.5 - 0.2 

Further, it is necessary to solve the initial problem using linear connections 
and the reduced problem solution, that is, to find all elements of matrix YQ. 
For this purpose we first restore, by linear connections, the fourth column, 
and then the fourth row: 

%= 

0.9961 
-9.762-10^ 

0 
0 (-8.784-10"') 

0 

-9.762-10"* 
1.971 

-0.9745 
0 (-1.560-10"') 

-0.9854 

0 0 (-8.784-10'') 
-0.9745 0 (-1.560-10"') 

1.975 -0.9889 
-0.9889 1.977 

0 -0.9849 

0 
-0.9854 

0 
-0.9849 

1.996 
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Here, calculated values which are equal to zero in the exact matrix are 
shown in brackets. Apparently, all of them have the same order of error, 
equal to the order of measurements error. Thus, the relative error of the initial 
identification problem solution is of the order of magnitude zlmax̂  

"0.5 2.3 
1.5 
2.5 ^Y. =10" 

2.3 

1.5 -

2.5 -
1.3 1.1 
1.1 1.2 

1.5 

1.5 

1.5 
0.2 

In this example, the special cut has been excluded by means of connecting 
the fourth node to zero. Let's ascertain how to find the node number po/?/ that 
gives maximum drop in the condition number of the reduced problem when 
connected to zero. One of the trivial though rather laborious methods of solu­
tion of this problem is searching through all the nodes. In that, for each re­
duced problem it is necessary to perform experimental definition of matrix U 
and estimation of 6^U). 

Searching through all nodes can be done virtually, that is without realiza­
tion of numerous experiments with the reduced problems. This requires only 
matrix U to be obtained as a result of the first series of experiments. We shall 
describe the A:-th step (k=l,N , where N is the number of circuit nodes) of the 
algorithm for searching the node number as follows: 

1. Transpose the k-th row and ^-th column of matrix U to the first place. 
2. Perform one step of direct Gauss elimination that gives matrix \]^'^\ 

with size on a unit less than U. 
3. Calculate 0(V^-% As proved in [7], 0(V^-^^)<0(V). 
4. Enter the value ©(U "̂̂ )̂ into 0(k). 
After realization of iV steps of this algorithm,/>o/?/ is defined as follows: 

A , . : ^ (A , , . )=mm^W. 

The problem of searching of popi can have a non-unique solution. So in the 
above example, nodes 2, 3, 4 and 5 are practically equivalent to be chosen as 
the node popt, that is ^2 )«^3)«^4)«^5) . Indeed, choosing any of these 
nodes as popt results in removal of a large eigenvalue from the spectrum. In 
this case any of these nodes can be chosen dis popt. 

Further, we consider application of RPM for identification of a circuit with 
several topological singularities. For each topological singularity, there is a 
corresponding eigenvalue from the group ylmax and a number popt of the best 
element for reduction of the problem (for elimination of this topological sin­
gularity). Let's designate the set of these numbers as ^={piopt^"'^PK,opt ] • 

For identification of a circuit with several topological singularities we shall 
find all elements of n by means of experimental matrix U, using above-
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described algorithm. Further, we can find k independent linear connections 
by application of Eq. (3.41). Then we shall simultaneously exclude all topo­
logical singularities and perform repeated experiments. Finally, we can iden­
tify circuit parameters by independent linear connections and results of re­
peated experiments. This method is convenient for practice as it requires only 
two series of experiments. However, its use ensures the desired accuracy for 
the problem solution only when special cuts do not encompass each other. In 
the general case of nested special cuts, the circuit identification should be 
performed by use of the following algorithm: 

1. Perform the first series of experiments according to NIM to determine 
the matrix of voltages U as a result. 

2. Using matrix U, define the first linear connection corresponding to 
maximum eigenvalue of matrix U. 

3. Analyze matrix U and define the node numberpio/?/, then perform reduc­
tion of the problem by means of connecting the node of mxxnhQx pxopt to the 
zero-node. 

4. Perform a series of repeated experiments on the reduced circuit to de­
termine a new experimental matrix Û "̂ ^ as a result. 

5. If the condition number ^U '̂̂ ^)>l/zlmax, then a second linear connection 
should be defined by repetition of steps 3-5 of the algorithm to determine 
P2,oph matrix U "̂̂ \ etc. When the condition number becomes comprehensible 
at the specified level of measurements error zlmax, then matrix Û '̂ ^ should be 
converted to determine parameters of the reduced circuit branches. Remain­
ing parameters of the initial circuit are defined from k independent linear 
connections. 

Results of application of this algorithm for identification of the circuit with 
a single special cut are shown in Fig. 3.27. On ordinate axis lays the error of 
the identification problem solution, calculated by the formula (3.37). Com­
paring dependences S=S(^0), (shown in Fig. 3.20 and Fig. 3.28), obtained for 
identical circuits, one can arrive at the following important conclusions: 

- use of RPM has allowed reducing the error of definition of matrix Yo 
elements to the level of measurements error; and 

- the identification error at use of RPM does not depend on the condition-
ality of the circuit's mathematical model. 
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Fig. 3.28. Averaged mean square error of definition of matrix Yo elements by use of 
RPM for a circuit with a single special cut 

In this section we have considered the identification of resistive circuits by 
means of NIM. However these results are also valid for the LAM method and 
for identifications of AC circuits. Special cuts in this case may arise on fre­
quencies close to resonance. An alternative to application of RPM in this case 
is realization of experiments at various frequencies. However, presence of a 
large number of inductance-capacitance connections in complex devices may 
be an impediment for choice of frequencies to carry out diagnostic experi­
ments. Moreover, the properties of devices' mathematical models can vary 
considerably at change of frequency, especially for high-Q devices. Thus, ar­
bitrary choice of frequencies for realization of experiments as a rule is im­
possible in practice. 

Let's consider an example of identification for the AC circuit shown in 
Fig. 3.29a. This circuit has two nested special loops, l\ and k, for a frequency 
close to 1 kHz. Therefore, the circuit should be reduced twice for identifica­
tion. As has been shown in Section 3.4, identification of parameters for cir­
cuits with nested singularities is of particular complexity. 

0.2 0.4 0.6 0.8 

Fig. 3.29. An AC circuit a) with two special loops and b) - dependences of the condi­

tion numbers ^Zc) for the initial circuit, ^(z^r'M for the circuit after the first re­

duction, and 6>(zl~^^] for the circuit after the second reduction from the frequency 



180 Inverse Problems in Electric Circuits and Electromagnetics 

Frequency dependences of the condition numbers 6^Zc) for the initial cir­
cuit, 0\Z[~^A for the circuit after the first reduction, and 0(Z[.~^M for the 

circuit after the second reduction are shown in Fig. 3.29b. One can easily see 
that the first reduction of the problem has reduced its condition number prac­
tically over the whole frequency range. However, it is not enough for fre­
quencies close to 1 kHz. The second reduction allows obtaining a compre­
hensible conditionality in the whole frequency range, including 1 kHz. 
Therefore, identification of circuit parameters on any frequency after the sec­
ond reduction does not represent any difficulties. 

According to our calculations, the error of construction of linear connec­
tions was of the same order of magnitude as the measurements error at each 
iteration step for all frequencies. In the above considered problem it was -
m̂ax==l%, therefore definition of the initial circuit parameters by linear con­

nections also did not involve any difficulties. 
Comparison of errors of circuits' identification after the first and the sec­

ond reductions, (shown in Fig. 3.30) is of interest. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 /, kHz 
b 

10̂  

10' 

T r 

ginew) o 

i fc. . .Li . . . . . 

Fig. 3.30. Results of identification of an AC circuit with nested special loops by 
RPM. Identification errors after the first a) and the second b) reductions of the circuit 
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One can easily see that the circuit identification after the first reduction is 
successfully fulfilled for all frequencies, with the exception of frequencies 
close to 1 kHz. This fact well agrees with the frequency dependence of 

0(zl~^^) shown in Fig. 3.29. The circuit identification error after the second 

reduction (Fig. 3.29b) does not depend on frequency and is close to the 
measurement error zlmax=l%-

Thus, application of RPM essentially allows raising the accuracy of identi­
fication problems solution for DC and AC circuits at use of both NIM and 
LAM methods. 

3.6 Inverse problems of localization of disturbance sources 
in electrical circuits by measurement of voltages in the 
circuit's nodes 

In previous sections of this chapter we have solved several problems to de­
termine parameters of passive elements in electric circuits. In this section, we 
shall consider the problem of searching for location of disturbance sources in 
electric circuits. At that we assume that only current sources, i.e. active ele­
ments, should be acting as disturbance sources. This problem can also be re­
ferred to as an inverse problem in electric circuits' theory, considered as a 
particular case of the identification problem. Its urgency for practical pur­
poses is obvious. 

Let's consider this problem in the following statement: 
- we shall find the location of a disturbance source in a linear electric AC 

circuit with operating frequency ajF=(JDo, assuming that parameters of its ele­
ments are known quantities; 

- we assume that the electric circuit has some nodes that are accessible for 
measurements of their voltages to earth (test nodes); 

- we have reliable information that disturbances can occur in the circuit 
nodes carrying numbers Ei, Ei, ... En (excited nodes); 

- we assume that in neither of the test nodes, occurrence of a disturbance is 
possible; 

- the disturbance source is similar to a source of non-stationary noise Jd 
connected between the circuit node N^ and the ground. 

The problem involves definition of the node number Nx to which the dis­
turbance Ja is connected, on the condifion that voltages measured in the cir­
cuit's test nodes are known. This problem will be referred to as a problem of 
localization of a non-stationary disturbance source. It should be noted that as­
sumption about non-stationarity of disturbances is important for the further­
ing of this concept, and well agrees with practice. 
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For the electric circuit in which we seek the location of disturbance source, 
the measuring system and the disturbance source are shown in Fig. 3.31. The 
measuring system is connected to the electric circuit through digital filters. 
These filters exclude the operating frequency 6^ from the measurements. 
Therefore, the input signal on the measuring system does not contain har­
monics with frequency COQ. We assume that the measuring system measures 
effective values of voltages. 

Measuring system 

Linear circuit with 
internal sources 
{Tested circuit) 

Excited nodes 

"1 

Fig. 3.31. The measuring system, filters, the disturbance source J^ ,and the tested 
electric circuit 

Voltages measured by the measuring system will not change by representing 
the circuit shown in Fig. 3.31 to the circuit shown in Fig. 3.32. Thus all voltage 
sources of operating ft*equency will be short-circuited, whereas current sources of 
operating frequency will be open. In addition, harmonics with fi-equency COQ 
should be excluded from the disturbance spectrum. Inasmuch as the disturbance 
source is a source of non-stationary noise, removal of any harmonics from its 
spectrum will not essentially change its properties and will not have any impact 
upon the accuracy of its localization procedure. 

Tested nodes Excited nodes 

Linear circuit witiiout 
internal sources 

Fig. 3.32. The measuring system and the tested electric circuit 
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Thus, electric circuits shown in Fig. 3.31 and Fig. 3.32 are equivalent from 
the point of view of searching for the location of the disturbance source. Ap­
parently, the circuit in Fig. 3.32 is simpler compared to the circuit in Fig. 
3.31. Furthermore, we shall consider the problem of localizing the distur­
bance in the circuit shown in Fig. 3.32. 

Solving the problem of localization of the source of disturbance, we begin from 
the particular case of sinusoidal disturbance localization when 
Jd ~ ^m.c/'̂ î  ^^' (0^(0^. For its solution, voltages Vi and V2 measured in two 
test nodes (Fig. 3.33) are sufficient. We solve this problem in two stages. At the 
first (calculation) stage we shall connect a source of disturbance J^ to all exited 

nodes in tum, and then calculate factors af=M\N2, named identifying factors. 
Here, index "p" means that at calculation of the factor 6 ,̂ the disturbance source 
is connected to the node with number "/?" as shown in Fig. 3.33. 

Measuring 
system 

(§ 
^ 

-*1 

^2 
Linear 
circuit s 

± 
Fig. 3.33 Circuit diagram for the calculation stage of localization of sinusoidal dis­

turbance Jj 

Voltages in test nodes Vi and V2 are proportional to J/. 

X=kJ., N,=k,J., a 
^i^d 

Therefore for any "p", the identifying factor a does not depend on the 
magnitude Ja of the disturbance source and is defined only by the node to 
which the disturbance source is connected. This property of identifying fac­
tors will be used further for localizafion of the disturbance source. It should 
be noted that all factors ap are real. 

Results of the calculation stage of the localization problem are summarized 
in Table 3.2. 
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Table 3.2. Identifying factors a^^ and numbers of corresponding excited nodes 

E,^,k = \,n , determined during the calculation stage of localization procedure 

1 Node number 
Identifying factor 

Ex 

« £ , 

E2 

«zr, 

'E„ 1 
<^E„ 1 

The way of choosing test nodes is of great importance, as it essentially af­
fects localization accuracy. The best is such an arrangement of test nodes 
when the disturbance signal comes to test nodes from excited nodes through 
various circuit branches. Further, we shall elucidate particularities of choice 
of test nodes and the influence of their arrangement upon the accuracy of the 
localization process by means of appropriate examples. In practice, numbers 
of nodes in which disturbance occurrence is possible are often known. There­
fore test nodes can be chosen from the condition of disturbance localization 
with maximum accuracy. Disturbance localization accuracy can also be in­
creased by introduction of additional test nodes. 

Then the experimental stage of localization follows. At this stage the 
measuring system carries out continuous measurement and analysis of volt­
ages V\,exp and V2,exp' If voltages satisfy inequalities: 

^\,exp<^\,per a n d Y2,exp<^ 

where V^per and V2,per are permissible levels of disturbance, no actions will 
follow. If at least one of the inequalities is not satisfied, then the experimental 
value of the identifying factor is calculated as a^xp'^"^ x.exj^ uxp- Then, we find 
a factor aj^ most close to a^^p in Table 3.2. The number Ek in the upper 

cell of the table corresponds to the number of the node in which the dis­
turbance occurs. Thus, the problem of localization of a sinusoidal source 
is solved. 

In practice, the above-described algorithm of localization shows low selec­
tivity because of the following circumstances: 

- values of identifying factors obtained at the first, calculation stage can be 
equal (or rather close) for various excited nodes. 

- the experimental value of an identifying factor aexp can be equally close 
to its several calculated values owing to measurement errors. 

The actual disturbance is not sinusoidal and often has a wide frequency 
spectrum. As noted above, a good model of disturbance is its representation 
as a source of non-stationary noise. Let's show that this circumstance allows 
a considerable increase in the accuracy of disturbance localization. 

Assume further that there is an infinite number of harmonics in the distur­

bance spectrum. Let, for the sake of definiteness, them be harmonics with 

frequencies Ico^.Zco^, ... MCOQ. We can find identifying factors a^P for each 

harmonic at the calculation stage of localization. Here, the subscript specifies 
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the excited node to which the disturbance source is connected, and the super­
script - the harmonic number in the disturbance spectrum. Since factors â *̂  

do not depend on the amplitude of the disturbance source, then when calcu­
lating, the amplitude of the disturbance source can be assumed equal to 1 for 
all frequencies. Results of calculations are summarized in Table 3.3. 

Table 3.3. Identifying factors a^^^, m = 2,M and corresponding numbers of excited 

nodes Ej^, k = l,n for harmonics with frequencies ICOQ, 3COO, ... MCDQ 

1 2fi)t) 

1 3<ati 

MCDo 

Ex 

< 

< > 

< > 

£2 

af 
< 

< • 

"E„ I 
< 

< 

< ' 

Data shown in Table 3.3 can be presented in the form of a two-

dimensional graph shown in Fig. 3.34. Functions a^ (a>), k = \,n in Fig. 

3.34 can be found, for example, by spline-interpolation of the columns in Ta­
ble 3.3. Thus, the calculation stage involves determination of a set of func­
tions ap{o)), similar to those presented in Fig. 3.34. Functions ap{co) can also 
be called identifying functions. It should be noted that the calculation stage is 
run only once. 

Fig. 3.34. Graphic representation of identifying functions ap{o)), corresponding to 
Table 3.3. 
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The experimental stage involves the following: 
- the measuring system carries out continuous measurement and analysis 

of voltages Vi,̂ ;̂ ^ and V2,exp- When the disturbance level exceeds a permissi­
ble level (y \,exp>^\,per OX W2,exp>^2,per\ then 2M ValuCS of voltages N\,exp{t) 

7t 

and V2 expif) are recorded for instants of time t, = k, k = 1,2M ; 

- we carry out Fourier-series expansion of functions V\,exp{t) and W2,exp{t) 
(for example, by means of fast Fourier transform): 

^=2M -i—k ^^^^ -i—k 

^ , . c . , W = E \e.p(h)e "" . ^ 2 . . , W = Z \ e . „ ( h ) e " ; ( 3 . 4 4 ) 

- we calculate experimental identifying function for frequencies 
ko)Q, k = \,M: 

< * = : ^ ' ^ = W (3.45) 

and then we construct the function a^^^{o)) by means of, for example, 
spline-interpolation; 

- we find a function closest to oc^^p{co) in Table 3.3 (or among functions 

a J, {o)\ k = \,n in Fig. 3.34) and thus we find the problem solution: 

^k' \^E, (^) - ^ . x p ( H | — ^ ™ n . 

The value Ek found in this way is the number of the node to which the dis­
turbance is connected. It should be noted that the solution of the last problem 
of minimization does not represent any difficulties. The simplest way is 
searching, as in real problems the number of columns in Table 3.3 seldom 
exceeds 100. 

Let's consider an application of the above-described method for searching 
the location of disturbance source in a power installation with the circuit dia­
gram shown in Fig. 3.35a. The identifying functions calculated at the first 
stage are presented in Fig. 3.35b. These identifying functions were obtained 
for the case when nodes 2 and 14 were considered as test nodes. 
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Grounding 
grid 

c^>-4<n)f> 
17 18 

13 

Fig. 3.35. The circuit diagram of a power installation a), and graphic representation 
of Table 3.3 for this circuit b) 

As a result of the experimental stage, the function CC^^P{O)/COQ) shown in 

Fig. 3.36a is determined. The error of cCexpi^l^o) definition has been 

roughly 10%. 
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To localize the disturbance it is necessary to find the closest function to 

oCexp i^/^o) aiTiong identifying functions obtained at the calculation stage. 

For this purpose, we shall plot the graph of function 

According to the above described algorithm of disturbance localization, 
values Ek, at which X^A:) reaches its minimum, correspond to the number of 
the node to which the disturbance source is connected. The graph of function 
J{E/c) for the problem under consideration is shown in Fig. 3.36b. Apparently 
the function XEyt) reaches its minimal value at £yfc=14-18. Hence, the distur­
bance can be found in one of the nodes with numbers 14-18. More accurate 
localization of disturbance when carrying out measurements in nodes 2 and 
14 is impossible. Really, with the given circuit topology, information on the 
disturbance signal located in nodes 14-18 comes through the same circuit 
branches. 

Figure 3.37 shows results of localization when choosing nodes 6 and 14 as 
test nodes. One can easily see that in this case, the location of disturbance (at 
node 5) is determined unambiguously. 

We may say that this example of a tested circuit is among the most com­
plicated ones for localization. It involves a rather small number of loops in 
the circuit and contains so-called "suspended" branches. In case of multiple 
loop circuits without "suspended" branches, the method of choice of test 
nodes is not so important. 

The accuracy of localization can essentially be increased in any circuit by 
the introduction of an additional third test node. If we have three test nodes 
with numbers Ti, T2, T3, then disturbance localization can be carried out using 
each of the pairs of nodes {Tu T2), (Ti, T2), {T2, T3). Let, for example ri=2, 
^2=12, 73=13. Then, localization by (ri, T2) test nodes shows that the distur­
bance is located either in the node 9 or in the node 13. Localization by (Ti, T3) 
shows that the disturbance can be located in nodes 9-12. This information is 
enough for finding the location of disturbance - at the node 9, unambiguously. 
Thus use of localization data by (T2, T^) is not required. 

There may be several sources of disturbances in a tested circuit. The 
above-described algorithm allows defining the number of these sources and 
localizing them. Let's consider briefly the problem of localization of two dis­
turbance sources arranged in various nodes. At first, we find from measure­
ments of V\,exp and V2,exp that there are more than one disturbance sources in 
the circuit. With regard to the second source of disturbance, let's assume that 
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it is a source of non-stationary noise similar to the first one. We shall assume 
as well that characteristics of both sources are not correlated. 

2r 
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Fig. 3.36. Experimental dependence a^^^ (<̂ /<̂ o) ^) ̂ ^^ ̂ ^ residual function b) 
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Fig.3.37. The residual function at choice of nodes 6 and 14 as test nodes 
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If two sources of disturbance Jd,\ and Jci,2 operate in a circuit, then we can 
write down for the k-ih harmonic: 

As the disturbance sources are not correlated, then the function 

^exp (^/^o) calculated on ^\^exp and ^i^exp will vary depending on time. To 

register these changes it is necessary to determine oc^^p{(oj(o^ in two se­

quential time intervals; for example, to find a^ ^^^ {cojco^ from Eq. (3.44) and 

(3.45) by measurements in instants of time t, k, k - 1,2M, t, G fO,rl, 

and then ^2tx/;(^/^o) " W nieasurements in instants of time 

t^ e [ r , 2 r ] , A:=1,2M. Then pu,;,^(^/<^o)~^2,ex/7(^/^o) ^^^ ^^ calculated. 

In the case of a single source of disturbance in the circuit, this magnitude is 

close to zero. This property of a^^^ {colco^ can be used to clarify the question, 

if indeed there is only a single source of disturbance in the circuit. 
Assume we have two sources of disturbance operating in the circuit. It can 

be shown that their identification requires measurements to be carried out in 
at least three test nodes. At that, the algorithm of disturbance source localiza­
tion will not change. However, the number of dimensions of all matrixes and 
functions will increase by a unit. So it is necessary to fill a three-dimensional 
table at the calculation stage, and identifying functions will be two-
dimensional. The condition of two sources of disturbance operating in the 
circuit is the constancy in time of experimental identifying function, similar 
to the case of single-source of disturbance. If this condition fails, one may 
conclude that there are three or more sources of disturbance in the circuit. 
This implies that measurements in four test nodes are necessary for their lo­
calization, etc. 

This method of disturbance localization is rather simple in its realization. 
Its disadvantage is the necessity of storage of a large scope of information if 
the number of disturbance sources is more than three. In that case, the dimen­
sionality of tables, created at the calculation stage, will be four and more, and 
the solution of problem (3.46) will be rather complicated. A possible as well 
as perspective alternative to the storage and handling of large tables can be­
come a combination of this method with the method of neural networks. In 
this case, the training of the neural network will become the most long-run 
stage of calculations. 

This method is also valid for DC circuits with essential simplifications. It 
can be applied for localization of disturbance sources in nonlinear circuits 
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and, in particular, in circuits with semiconductor elements. This, however, 
requires fulfillment of the condition that the disturbance should represent a 
"small signal" in comparison with the operating parameters of the device. 
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Chapter 4. Solving Inverse Electromagnetic 
Problems by the Lagrange Method 

In this chapter we shall consider an effective method for solving inverse elec­
tromagnetic problems by applying Lagrange multipliers. In this chapter we 
shall also explore the properties and features of this method for practical use. 
In Section 4.1, we shall examine the application of Lagrange multipliers as 
continuous functions for electromagnetic optimization problems. When de­
rived, the equations for field potentials and auxiliary adjoining functions can 
be used to show how to construct the boundary conditions for these functions 
and the algorithm for the numerical solution of optimization problems. Fur­
thermore, in Section 4.2 we illustrate, through a number of examples, the 
procedure of finding field sources of the adjoining function, including the 
appropriate equations. The search for optimum distribution of a substance in 
a space can be carried out in various classes of media such as homogeneous, 
non-uniform, isotropic, nonlinear, etc. In Section 4.3, we shall also consider 
an algorithm for variations of the medium properties, allowing one to achieve 
local minima of the objective functional. Specific features of the method and 
its numerical realization will be considered by means of practical examples 
and application of benchmark problems in Section 4.4. Section 4.5 deals with 
the problems of computing values. In Section 4.6 some issues of the La­
grange method application for solution of optimization problems in non-
stationary electromagnetic fields will be discussed. 

4.1 Reduction of an optimization problem in a stationary 
field to boundary-value problems 

The problem of seeking an optimum shape for bodies embedded in the elec­
tromagnetic field should be stated generally for a non-stationary three-
dimensional electromagnetic field with consideration of the medium's 
nonlinear and anisotropic properties. Such problems are rather complex, 
therefore we shall first reduce optimization problems to boundary-value 
problems, taking into consideration the stationary three-dimensional and two-
dimensional fields. We shall then take into account the media for which the 
solution is sought, for example, in a class of homogeneous or non-uniform 
media. By using simple examples, simplification of the statement will enable 
us to obtain the essence of the method and its properties. 
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One of the peculiarities of inverse electromagnetic problems is the fact that 
the number of parameters, i.e. the number of degrees of freedom determined 
by geometrical and physical characteristics of the media and sources is in­
definitely large. In fact, for a numerical solution the degrees of freedom can 
be measured to be in the tens of thousands, leading to significant computing 
time. When we use gradient methods, they are associated with the necessity 
to repeat the many calculations of derivatives of the objective function with 
respect to the parameters sought [1]. As is shown below, application of the 
Lagrange method to the solution of these problems helps to alleviate this 
situation. 

When using the Lagrange method, field equations included in the objective 
functional may be considered as constraints in composing the augmented 
functionals and multiplying them by the function A.{x,y,z), which is depend­
ent on the spatial coordinates. Thus, the augmented functionals in the general 
case will include, as unknowns, numbers A (Lagrange multipliers that are 
discrete constraints) and functions Z^x^y^z), which can be found using the 

procedure shown in the previous chapters. 
We shall describe stationary fields with the help of potentials <p(x,y,z) and 

A{x,y,z). In the case of three-dimensional fields, the potential A(x,y,z) is a 
vector function generally having several components in the given coordinate 
system, and the potential (p(x,y,z) is a scalar function. In the case of two-
dimensional fields, the potentials A(x,y) and (p{x,y) are scalar functions. 

The shape and the structure of bodies to be sought are determined by the 
spatial distributions of functions ju{x,y,z), £'(x,> ,̂z) and a{x,y,z) which de­
scribes the medium properties. For simplicity we shall designate any of these 
functions - ju{x,y,z), £{x,y,z), and a{x,y,z) - as <^{x,y,z). It is obvious that in 
order for the spatial distribution of the ^(x,y,z) function to be found, both the 
shape and the structure of bodies must be known. The ^{x,y,z) function will 
be regarded as the optimization parameter forming a vector p in the numeri­
cal solution with a finite number of components, namely pi, p2,...pn' The 
forms of the objective functionals and constraints usually imposed on the 
field intensity and other characteristics, and on the unknown function 
^{x,y,z), have been considered earlier. 

It is expedient to look for an algorithm of optimum search using varia­
tional methods. This allows one to solve the problem analytically and to real­
ize the numerical optimization algorithm only at the final stage. The peculiar­
ity of problems found in seeking the shape and structure of bodies positioned 
in an electromagnetic field is that the quantity ^{x,y,z) may vary in a limited 
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range ((̂ ĵ̂  < ̂  < ^^^^). Therefore, they are regarded as non-classical prob­

lems of calculation of variations. 
Let us consider the optimization problem in an electrostatic or stationary 

magnetic field with the following conditions. Assume that the field satisfies 
the equation div(^grad^) = - / 7 , where the function <^{x,y,z) describes the 

distribution of dielectric permeability in the case of an electrostatic field or 
the distribution of magnetic permeability in the case of a stationary magnetic 
field. The quantity p = p(x,y,z) determines the density of given electric 
charges for an electrostatic field or the density of magnetic charges equiva­
lent to the given electric currents [2]. 

In the domain V limited by the surface Sbd, the field sources of density p 
occupy the domain V^r (Fig. 4.1). It is therefore necessary to find a fimction 
<^{x,y,z) in the domain V^ of admissible material position for which the ob­

jective functional, given in the domain Vob, assumes its minimal value (or 
achieves the lowest boundary). 

Fig. 4.1. Calculation domain in the problem of searching for optimal distribution of 
field sources and the medium in an electromagnetic field 

The boundary condition of the first kind for the potential 
(p{x,y,z) = /Zj [x,y,z) is given at the boundary Sibd, and the boundary condition 

of the second kind —{x,y,z) = h^ (x,y,z) is imposed at the S2bd section. 
dn 

In most problems, the objective functional / depends not only on the coor­
dinates x,y,z and on the potential (p{x,y,z), but also on the field intensity, 

. , , . . do , do , do , 
I.e. on the potential derivatives —^ = (p^, —^ = cp , — = (p^: 

dx dy dz 

i= lfix,y,z,(p,(piyy,(pl)dV. (4 1) 
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For example, in solving some problems a magnetic pole tip of unknown 
shape is considered where it provides the least deviation from a constant of 
the normal to some surface component of field intensity. In this case, the 

function (p'^ - —{x,y,z) enters the functional /. 
dn 

Regarding the equation div(^grad^) + /? = 0 as a constraint, the aug­
mented functional according to the Lagrange method can be composed as: 

L{(p,^,Z) = / + j(div^grad^ + p)MV, (42) 

in which the quantity A is a. function of coordinates A(x,y,z), being distinct 
from the discrete Lagrange multipliers usually used [1,3]. 

Applying Green's theorem to the transformation of the integral 
J(div<^grad^)/l(iK in Eq. (4.2), we obtain an expression [4] 

L = I-\-d X^—ds - {grdidcp • ^ • gradAdV + [pXdV , (4.3) 

in which the quantity dcpjdn determines a derivative of the potential (p di­
rected along the outer normal n to the surface Sbd (Fig. 4.1). Application of 
Green's theorem allows us to write down the augmented functional L as fol­
lows: 

L=^I-d(p^—ds+dX^—ds^ ĵ (diV(^gradA)(iK + \pMV, (44) 

We will seek the equation for the function X{x,y,z) as well as the medium 
parameter ^{x,y,z) based on the necessary condition of the extremum of the 
augmented functional L. First calculating the variation 5L (see Appendix B) 
of the augmented functional with respect to the potential (p, and using the 
condition (5L = 0, we get the equation for the function X{x,y,z). Calculating 
the variation SL of the augmented functional with respect to the medium 
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characteristics ^ and using the condition ^Z = 0, we get the equation for the 
function ^(x,y,z). 

In the calculation of the variation of both parts of Eq. (4.4) with respect to 
the potential (p inside the volume V, we obtain the expression 

j(div^gradA) ScpdV = -S^I = - \SJ{x,y,z,(p,(p[,(p'y,(p[)dV , 

V Kb 

By virtue of randomness of a variation S(p, it yields that the function 

Jl(x,y,z) satisfies the equation div(<^grad/l) = 0 for 3^1 = 0, and particu­

larly, where / = 0, i.e. at the points beyond Vob-

If the quantity S^f{x,y^z,(p,(p[, cp'^, (p[) is represented in the form 

S^f{x,y,z,(p,(p[,(p'y,(p[) = f^d(p, the equation satisfied by the function 

A{x,y,z) in the domain Vob may be written as div(^grad/l) = - / j . 

The specific kind of the right-hand part/i of this equation, determining the 
field sources of function /l{x,y,z) named adjoint to the potential (p(x,y,z), de­
pends on the objective functional /. In the following Section (4.2), we show 
how to search for the function/i. There will also be examples of its calculation 
for various objective functionals /, as these are frequently used in practice. 

Let us determine the boundary conditions on the surface Sbd for the vari­
able A. To this end, we equate to zero the variation of the augmented func­
tional on the surface Sbd, with respect to the potential and to its normal sur­
face derivative. We take into account that at the part Sibd (see Fig. 4.1), the 
boundary condition of the first kind (p(x,y,z)=h^ is set, and the boundary 

condition of the second kind —{x,y,z) = h^ is imposed at the part Sibd-
dn 

If the objective function is set in the domain Vob, having no common points 
with Sbd, then we have SI = 0 on the surface Sbd, and from the condition 
SL = Oil follows that 

Since the potential on the part Sibd of the surface is fixed, it should not be 
varied on that part of the surface. It may be varied only on that part of the 
boundary where its derivative normal to Sbd is set, i.e. on S2bd- Therefore, by 

virtue of randomness of a variation S(p, we obtain the condition— = 0 on 
dn 

S2bd from the integral | ^—{S<p)ds = 0 (Fig. 4.2). Consequently, as the 
,.•' dn 
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normal derivative of the potential is given on the part S2bd, it may be varied 
only on the part of the boundary where the potential is fixed, i.e. on the part 
S\bd as is shown below. Therefore, on the part SIM of the domain F boundary 
we obtain the boundary condition /I = 0 for the adjoint variable from the in­

tegral j ^XS 
d(p 

dn 
Lfc = 0 . 

fp(^,y,^) 

<Pu 

Fig. 4.2. Boundary conditions for the potential and the adjoint variable 

Thus, the boundary condition of the first kind for potential cp on the part 
S\bd is transformed on that part of the boundary into a homogeneous bound­
ary condition /I = 0 for the adjoint variable. 

The boundary condition of the second kind for the potential on the part S2bd 
is transformed on this part of the boundary into a homogeneous boundary 

condition of the second kind — = 0 for the adjoint variable. 
dn 

When the objective function is defined on the domain boundary Sbd or on 
some part of it, the form of boundary conditions for the adjoint variable will 
vary on this part of the boundary, and it may become non-uniform. Actually, 
in this case the variation of the objective functional on the domain boundary, 
with respect to the potential or its normal derivative, may differ from zero. 

Let, for example, the objecfive functional be specified on the surface Sibd 

as 4 . j F f * 
\dn 

b . We shall present its variation with respect to the po­

tential normal derivative to the boundary ^i^^ as Sl\ 
SXbd 
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Ids • 
/p. -

From the condition JZ=0, follows that equation | ^AS\ — 

= - I F^S\ — \ds should hold on the surface Sibd- This gives the boundary 

condition /ll --F.lE, 

Similarly, the boundary condition for variable X, in the case where the ob­
jective functional is specified on the surface Sihd as /L = | F{(p)ds , can 

^^ 2bd J 
^2bd 

be obtained. Its variation on the surface Sitd, with respect to potential cp, can 
be written down as Sl\^ = J F^Scpds . From the condition SL = 0 follows 

^2bd 

that equation | ^—S(pds = \ F^Scpds should hold on the surface S2bd- This 
dn 

^2hd ^2hd 

gives the boundary condition — 
dn 

= ^v 
4-

The function X{x,y,z) is described by the equation div (^gradA) = - / j , 

which is similar to that for the potential cp: div(^grad/l) = -p. Distinction of 

these two problems (for variables (p and A) consists due to the fact that the 
variables (p and /I have different sources and different (in the general case) 
boundary conditions. At the same time, the function <^ix,y,z) determining the 
substance distribution has the same form in both problems. Field sources of 
the variable X, characterized by the function/i, depend on the objective func­
tional and are positioned either in the domain Vot (including its boundary Sob) 
or on the boundary Sbd of the domain F, if the objective function is given also 
on the boundary Sbd-

Analogy of the equations for the potential cp and for the function X allows 
us to consider the calculated adjoint function >. as a potential of an auxiliary 
electric or a magnetic field "conjugate" to a real field with the potential cp. 

Hence, with analysis and calculation it is possible to use such concepts ac­
cepted for static and stationary fields, such as a charge, a current, field inten­
sity, a fiux, energy, a field map, etc. 

Note that a problem of the function X calculation is adjoint to the direct 
problem of calculating the potential (p. 

Let us determine the conditions for finding the medium characteristics 
^{x,y,z) on the assumption that a minimum of the objective functional is 
provided. To do this we calculate a variation of both parts of the relationship 
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in Eq. (4.3) with respect to ^and use the condition 5^L = 0. In seeking the 

optimum in a class of non-uniform media, when the medium with the charac­
teristic ^ = (^(x,y,z) may be present in the domain F ,̂ we consider the varia­
tion of Eq. (4.3) with respect to <̂: 

jgmdcp' gvdidX{d^)dV = S^I^(^ X^{S^)ds. 

If the domain V^ has no common points with the domain Vot where the ob­
jective functional is given, and also has no common points with the boundary 
Sbd, the right-hand part of the last expression is equal to zero, and by virtue of 
randomness of a variation d^ we obtain the necessary condition of the sta-
tionarity of the functional L in the form gx^dcp • grad/l = 0 . 

This condition means that in the solution of the optimization problem in a 
class of non-uniform media the vectors grad^ and grad/l should be mutu­
ally orthogonal at the points of the domain V^. Generally, when the objective 
functional / is given in the domain Vot intersecting with the domain F ,̂ the 
stationarity condition S^L = 0 allowing one to calculate <^(x,y,z), is obtained 

as grad^ • grad/l = f^, where ŷ  is a function whose form depends on the ob­
jective functional. The necessary condition found of an optimality linking the 
quantities grad^ and grad/l is essential for the construction of an effective 
algorithm of the problem solution. 

Depending on the form of constraints superimposed on medium properties 
that are characterized by the quantity ^(x,y,z), problems of searching for an 
optimum structure and shape of body can be distinguished. If the function 
^{x,y,z) in the body volume is specified, for example, as a constant value, 
then the problem of searching for the body shape should be solved, inasmuch 
as its structure will be known. 

In some cases the quantity ^(x,y,z) is not specified beforehand. It can be a 
tensor quantity, and simultaneously discontinuous and nonlinear as well. 
Such problems require searching for the body structure. At that, the body to­
pology, i.e. the medium distribution in the body volume is unknown before­
hand, and is defined as a result of the solution. Such problems are referred to 
as problems of topological optimization [5,6]. 

Thus, optimization is possible in various classes of media: homogeneous, 
piecewise homogeneous, inhomogeneous, linear or nonlinear, isotropic or 
non-isotropic. Usually the class of medium in optimization problems is de­
fined by the technical possibilities of realization of obtained solutions. In 
many cases, available technical possibilities are very limited and allow realiz­
ing only solid bodies made of homogeneous substances. 
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Then, the problem is reduced to searching for the body shape. However 
even at such constraints, a search for a solution in a wider class of media, for 
example, in the class of inhomogeneous non-isotropic media, is expedient at 
the first stage. Indeed, the objective function will have a smaller value in this 
class of media. Transition to homogeneous continuous medium, easily realiz­
able in practice (that worsens the solution as the value of the objective func­
tion at such transition generally increases), can be fulfilled by various meth­
ods [7,8]. This problem will be illustrated in more detail in Section 4.4 by 
using several examples. 

Thus, the search for the medium distribution, bringing a minimum to the 
objective functional, requires solving the boundary-value problems for the 
variables cp and X. Let us construct an algorithm of search for the function 

At first we find the boundary conditions for the variable X on the surface 
Shd and determine the distribution of the density/i of field sources X. 

We will further set a particular initial distribution of substance ^^(A:,J;,Z) 

and solve the equation divK^grad^j = -/? for the potential cp, as given on 

the Sbd boundary conditions. 
Next, we solve the equation div(^°grad/l) = - / ; for the adjoint variable 

X(x,y,z) under the boundary conditions found from the first step for X{x,y,z) 

and its sources. 
Further, we check the implementation of the condition grad^ • grad/l = f^. 

The solution is considered to be found if the accepted criterion is satisfied. 
The criterion will be satisfied if the condition grad^ • grad/l = f^ is carried 
out with the given error or if the rate of change of the objective functional 
does not exceed the required value. 

If the criterion at the termination of the process is not met, we find the cor­
rected distribution (^\x,y,z), repeat the solution of the equations for the func­
tions (p, X, and again check the implementation of this condition. Correction 
of the function ^(x,y,z^ may be effected using various approaches. The ef­
fective algorithm of correction of substance distribution in the iterative proc­
ess of the solution will be considered in Section 4.3. 

Since functional L variation 8^L represents the main linear part of its in­

crement, then function grad^-grad/l defines the approximate value of the 

functional "material" derivative 91/5^ . Its calculation enables the application 

of known algorithms for the search of an augmented functional minimum. 
Thus, the Lagrange method allows us to construct such an optimization al­

gorithm that does not require the calculation of "material" derivatives of the 
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objective function with respect to the optimization parameters. Applying the 
Lagrange method, it is sufficient to calculate gradients of potentials of the 
initial and auxiliary adjoint problem formulated w îth respect to Lagrange 
multipliers. 

For search of optimum spatial distribution of field sources density 
p{x,y,z), the variation of augmented functional (see Eq. (4.3)) with respect 

to desired density should be put to zero: S^L = 0. If the domain of admissible 

position of sources lies outside the definitional domain of the functional we 

obtain the condition \A(^x,y,z)(^Sp)dV = 0. It means that for an optimum 

distribution of sources, the condition A(x,y,z) - 0 should be valid. Just as in 
the case of search of medium distribution, calculation of the functional de­
rivative allows applying known optimization algorithms for finding the 
source's density distribution p{x,y,z). 

In the following section, we consider the sort and character of the spatial 
distribution of sources of the adjoint variable X in the solution of the elemen­
tary problems of search for the optimum shape of bodies in an electromag­
netic field. We will derive the sources using the scalar and vector magnetic 
potentials. 

4.2 Calculation of adjoint variable sources 

As indicated in the previous section, finding the adjoint variable X source's 

density, which determines the right part of the equation div(^gradA) = -y j , 

requires calculation of the objective functional variation with respect to the 

potential (p: SI = [f^ScpdV. 
V 

In this section, we shall find variations 51 of objective functionals to be 
minimized when solving inverse problems in magnetic and electric fields, as 
well as adjoint variables' field sources. The definition of functional variation 
and examples of its calculation can be found in Appendix B. 

Such quantities as inductance, mutual inductance or emf are expressed via 
magnetic flux. Therefore, finding their extremum is associated with the 
search for extremum for magnetic flux [9]. 

In a plane-parallel field the magnetic flux 0 through a segment connecting 
points a and b relates to the vector magnetic potential by the expression 
0 = A^-Aj^, Assume, as a priori known fact, that during a search for condi­
tions of magnetic flux extremum the sign on the difference between Aa-Ab 
does not change. Then the functional 7 = 0 can be accepted as the objective 
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functional. Its variation in the point a with respect to the potential is 
SI = SA^^. Besides, SI = -SA^ is in the point b and SI = 0 in all other points 

of the domain. To write down the functional as / = \fdV, we introduce a 

two-dimensional delta function ri[x,y) which is equal to zero everywhere 

except for points a and b: I = Ur/^ - ri^')AdV . Thus, the variation of the ob-
V 

jective functional can be given by SI = UT]^ - rj^^^SAdV . Now we can write 
V 

down an equation with regard to the variable X adjoining to the vector potential. 
Let the vector magnetic potential satisfy the equation div(vgrad/4) = 0 

(where v = \/ju ). Assume (p = A, <^ = v ,p = 0 in Eq. (4.4). Then, from the 

relationship \(di\vgY?idA)SAdV = -\{t]^-T]f^)SAdV (see Eq. (4.4)), we 
V V 

find the following equations: div(vgrad>l) =-77^ in the point a, 

div(i/grad/l) = /7̂  in the point b and div(vgrad/l) = 0 in all other points of 

the domain. 
The field of variable X can be considered as a magnetic field adjoining to 

A. Its sources are linear electric currents /̂  = 1 and /̂  = - 1 . They are located 

at the ends a and b of the segment through which the magnetic flux flows. 
The density of current in points a and b is infinite (Fig. 4.3). 

Fig. 4.3. Magnetic flux through the segment ah (left) and sources of the adjoint vari­
able A in points a,b (right) 

If the quantity A^ - A^^ can change its sign during search of the magnetic 

flux extremum, then / = 0.5(yi^ ~ A ) ^^^ ^^ accepted as the objective func­

tional. By analogy with the previous example, it can be written down as 
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:0.5 

\v 

Here, as above, t]^ and % are delta functions 

differing from zero in points a and b, accordingly. Variation of this func­
tional with respect to the potential A is SI = 

f \ 
The equation for X becomes ( 4 , - A ) jnJAdV-lTj.SAdV 

\V 

div(i/grad/l) = -77(^^-^^)in the point a, div(Kgrad/l) = ;7(^^-^^)in the 

point b and div(Fgrad/l) = 0 in all other points of the domain. 

Apparently, sources of Z field are linear electric currents numerically equal 
to A^ - Aj^ in the point a and -{A^ - ^^) in the point b, correspondingly. 

The scalar magnetic potential can be applied for the analysis of both two-
dimensional and three-dimensional magnetic fields. Therefore, it is of interest 
to find expressions for the variation of functionals by use of the scalar mag­
netic potential. 

When seeking the conditions of magnetic flux extremum and using scalar 
magnetic potential for a plane-parallel field calculation in a direct problem, 

b ps 

the objective function can be written down as I = 0 = - [ju—^dl. As stated 

above, it can be used if the function dcp^jdn does not change its sign during 

the search of magnetic flux extremum. Then the variation of the objective 

function with respect to the scalar potential is SI = - \ju———dl. 

To find A field sources we shall use the analogy between electric currents 
and magnetic charges. Above, when searching variation of functional 
I = 0 = A^-Af^/it has been determined that sources of the adjoint variable X 
are linear electric currents. At the transition to the objective function 

J =:0 = -\ju—^dl with equivalent replacement of sources by magnetic 

charges in a direct problem, it is necessary to replace sources A by magnetic 
charges equivalent to them. As is well-known, linear electric currents +/ and 
- / located in points a, b are equivalent to a double layer of magnetic charges 
with a constant moment. This layer of charges rests upon points a, b. There­
fore adjoint variable A field sources, which in this case can be considered as a 
scalar magnetic potential, will form a double layer of magnetic charges with 
a moment jui. At its crossing the quantity A has a discontinuous jump equal 
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to i = \. Thus, the integrand expression ju -̂̂ ^ in the variation of func-
dn 

tional SI = S0 = -\ju ^-^^^dl determines a double layer of magnetic 

charges with a constant moment. 

The functional / = 0.5 , similar to the above-considered func­

tional / = 0.5(^^ ~ A ) ' defines the square of the magnetic flux crossing a 
segment ab in a plane-parallel field. Using the equivalence of electric cur­
rents and magnetic charges we can find sources of the field A when the direct 
problem is solved by means of the scalar magnetic potential. Double layers of 
magnetic charges with constant moment numerically equal //(^^-^^)are 

equivalent to electric currents found above, numerically equal (^A^-A^^) in 

the point a and -{A^ ~A) i^ ĥe point b. Therefore in this case, adjoint vari­

able A field sources are magnetic charges forming a double layer. At crossing 
h p. 

it, the scalar magnetic potential has a discontinuous jump \ju—^dl. 
i 5« 

In the general case of three-dimensional magnetic field, the magnetic flux 
through a surface bounded by a contour / is related to the vector magnetic po­
tential by expression 0 = dAdl. When searching for extremum for the 

functional 1 = 0 and solving the direct problem with the help of vector mag­
netic potential, the source of field A can easily be shown to be the linear elec­
tric current flowing along the contour /. Starting at the solution of the direct 
problem by means of the scalar magnetic potential we shall present the objec­
tive functional as I = 0 = - \ju—^ds . In this case magnetic charges form-

ing a double layer become sources of field A. This layer has a constant mo­
ment and rests on the contour /. 

Thus, in problems of search of extremum conditions for magnetic flux ex­
pressed by vector magnetic potential, sources of adjoint variable A. are linear 
electric currents. If the magnetic flux is expressed by a scalar magnetic po­
tential, then double layers of magnetic charges equivalent to electric currents 
become the sources of adjoint variable X. 
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The problem of finding conditions of extremum for magnetomotive force 
h 

F̂ ^ = \Hdl = (p^^ - (p^^ between points a, b has a solution similar to one ob-
a 

tained above for the search for conditions of extremum for magnetic flux ex­
pressed by vector magnetic potential. Variation of the objective functional 
I = F with respect to potential <p^ is 51 = Sep^^ in the point a and 

51 = 5(p^j^ in the point b. In case of three-dimensional field the sources of 

field X are magnetic charges m^ = 1 and m̂  = -1 located in points a, b. In the 

case of a plane-parallel magnetic field they are distributed along lines. In 
both cases their cubic density is infinite. 

Obviously, similar solution can be derived when searching for conditions 
of extremum for electric voltage between points (p^^f^ = (p^^ - (p^j^, equal to the 

difference of electric potentials. In the case of a three-dimensional electric 
field, when the objective functional is specified as / = ^^^, field A sources 

are point electric charges q = 1 and q = -\. They are located in points a, b, 

correspondingly. 
Let's find the variation of the objective functional for the problem of find­

ing the pole 1 shape of a ferromagnetic core that provides an extreme value 
for the electromagnetic force component Fk in the direction of the k axis, act­
ing upon conductor 2 with current density J^ (Fig. 4.4). 

Fig. 4.4. Searching for the pole 1 shape to find the extremum of the electromagnetic 
force 

The objective function 

^..-p.v-P,(|> 
defines the component of force in the plane-parallel magnetic field, acting 
upon a conductor with a current in the direction of the k axis (here Bp is the 
projection of magnetic induction vector on the axisp). It can be written down 
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as I = F^= Qj^Acos(n,k)dl, w^here n is the unit vector normal to a point on 
/ 

conductor cross-section contour /. 

Variation of the objective function SI = \J^cos(n,k){SA)dl shows that 
/ 

sources of the adjoint variable Z form a simple layer of current on the contour 
of the conductor cross section. The linear density of this current is numeri­
cally equal to J^cos(n,k). 

Above-discussed elementary objective functions will find application 
when searching for extremum conditions for flux, voltage, and integral quan­
tities associated with them, such as electric capacitance, inductance or mutual 
inductance. There are other problems that require the value of a certain quan­
tity F to be as close as possible to a specified one. In other words, the devia­
tion of F from the specified F^ should be minimal. 

In particular, when the required value is zero [F^ = O) , F will take on its 

extremal value. 

Let's find the variation of the functional 7 = 0.5 J ( F - F ^ ) dV and the 

density of sources of adjoint variable A for selected quantities F(x,>^,z) used 

in practice. 

Taking into account that SF^ = 0, we have 

SI= j{F-F^)SFdV. 

Let F be the scalar potential of a field with required distribution of poten­
tial specified by the function F^ = (p^ {x,y,z) in domain Vob- The objective 

function becomes / = 0.5 \{(p- P^fdV. Then, 

SI= \{(p-cpJ{S(p)dV 
Vob 

and the equation for A is div(^grad/l) = - ( ^ - ^ ^ ) within the domain Vob, 

and div(^grad/l) = 0 outside of it. 

Apparently, the cubic density of field sources X numerically equal to 
(p-(p^ depends on the direct problem potential (p. Changes of potential cp 

during the search of optimum lead to change of adjoint problem source's 
density. Therefore, direct and adjoint problems appear to be interconnected. 

In practice, it requires solving the problem of creating a specified distribu­
tion of a certain component of magnetic field intensity on a surface or along a 
line. Frequently, the problem concerns the component of magnetic field in-
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tensity or magnetic induction that is normal to this surface or line. Let 

F = B^ and F^=B^^^. The minimum of functional I = 0.5 UB^-B^^) ds 
s 

provides the least deviation of Bn - the normal component of magnetic induc­
tion to the surface S, from desired B^vn- Its variation with respect to the scalar 
magnetic potential is 

As follows from stated above, the integrand expression here defines a dou­
ble layer of magnetic charges on the surface S. Its moment numerically 
equals ju(^B^ ~ ̂ nw) ^ ^^^ the jump of potential X on the surface S generally 
are functions of coordinates. 

To obtain a required distribution of the magnetic induction component B^ 
normal to line ab in two-dimensional statement, both vector and scalar mag­
netic potentials can be used. For simplicity, we set the segment ab along the 

b 

axis X. In the objective function / = 0.5 UB^ - B^) dl we assume dl^j^ = dx , 
a 

B^= By. Expressing magnetic induction through the vector magnetic potential 

A and calculating the functional variation with respect to A, we have 

SI. 
dx) 

dx- ^^+/? 

â ^̂ - dx 
{SA)dx. 

Integrating by parts, we find 

.57 = 1 ^ + 5^1^^1 
=* V 

-^B^ \SA\ 

Adjoint variable field sources form a simple layer of current distributed on 

line ab with density j = — + 5 
dx\dx 

. Linear currents i^ = -dA/dx - B , 

/•̂  = dAjdx + By^ are located in points a and b. As one can easily verify, the 

sum of adjoint variable field sources equals zero. 
When using the scalar magnetic potential to solve this problem, variation 

of the objective function 7 = 0.5 [[B^ - ^ ^ ) <ix = 0.5 jj -/^ dy' ^^ 
dx 

with respect to the potential (p^ results in the following expression: 

^/=fl/z .^(p, 

^''r 5y 
dx. 
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It shows that adjoint variable field sources form a double layer of magnetic 

charges ŵ ith a moment numerically equal to / /——-\-B. The same result 
dy 

can be derived by integrating the current distributed along the line ab ob­
tained above at solution of the direct problem by means of the vector mag­
netic potential. 

Evidently, adjoint variable sources can be both magnetic charges and elec­
tric currents. The type of sources in an adjoint problem is determined by the 
kind of potential in the direct problem. Since they should be equivalent re­
spective of the created magnetic field, then it is possible to calculate equiva­
lent magnetic charges by the currents found and vice versa (see Appendix A). 

The above-considered problem of obtaining a specified distribution of 
magnetic induction normal to a line in two-dimensional statement can be put 
differently by use of the expression By=-dA/dx. The objective function 

h 

I = 0.5 j(^(x) - A^(x)) dx becomes its minimum at A(^x) = A^ (x) . At that, 
a 

we have B^ = B^ . 

Variation of this objective function with respect to potential A 
h 

51= \[A{x)-A^{x)]{dA)dx 
a 

shows that in this case the adjoint variable field source is an electric current 
distributed along the line ab with linear density y(x) = ̂ ( x ) - ^ ( x ) . Ap­
parently, sources in this case have more simple form in comparison with the 

h 

case of the above-considered objective function / = 0.5j(5^-5^) dx. 
a 

However, the required accuracy of calculation in this case should be higher, 
as the closeness of the potential A to the specified one A^ does not mean that 

dA dA\ 
functions —, — will be as close to each other as potentials A and Ay,. 

dx dx\^ 
Let's find the objective function variation and adjoint variable field sources 

in the problem of obtaining a magnetic field of specified intensity H = H^ 

within the domain Vob- Assume that F = H = -grad^^, F^=H^; then varia­

tion of the objective function 7 = 0.5 j(-grad^^-i^^)^rfF can be written 
Kb 

down as: 
SI= J(-grad^^-//JJ(-grad^JrfF= jigv^d(p^+HJ(gmdS(pJdV. 
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Transforming the integral with the use of Green's theorem, we find 

SI= \ ( ^ + H\5cp^)ds- j ( d i v g r a d ^ , + d i v 7 / J ( ^ ^ J i K . 

Here, n defines the external normal to the domain Vob bounding surface. 

The variable X field sources within the volume Vob are characterized by a 

cubic density numerically equal to -div(grad^^)-divi^^, and on the sur­

face Sob - by surface density dcp^jdn + H^^. 
Sources located on the surface Sob form a simple layer of magnetic 

charges, causing a discontinuous jump of the normal derivative dXjdn . 

A known problem of this type involves finding of the optimum shape for a 
ferromagnetic screen providing minimal field within the volume Vob- At its 
solution, the source's density and equation for X are found from the above 
expressions, assuming that H^=0. 

Another similar problem involves producing a homogeneous magnetic 
field within the volume Vob-

Let's find the adjoint variable sources by search of conditions at which the 

functional 7 = 0.5 \(H- j H^ ds, specified inside the rectangular area Sob 
Sob 

is its minimal value. 
Let assume that the x,y axis of rectangular coordinates are parallel to the 

sides of region Sob- Assume that the direct problem is solved on the basis of 

scalar magnetic potential (p^ in plane-parallel statement (j = J^,B^=0). The 

source's desired density can be found using the general expression derived 

above for variation of the functional I = 0.5 j (-grad^^ - H^ fdV : 

SI= l ( ^ + H\s(pJdl- lidwgmd<p^+diwHJ{S(pJds, 

Surface sources form simple layers of magnetic charges on the sides of the 
9(2? d(p ^^^ 

area S with densities cr, = —^-^, cr. = -^-^ + //^,, 
' dx ' dy "̂  

0 * 4 = — — - H . Charges with cubic density p = - -
dy dx dy dy 

are distributed inside the whole area Sob-
When solving the direct problem by means of the vector magnetic po­

tential, the adjoint variable field sources are electric currents distributed on 
sides as well as inside the whole area Sob-

r> 

& 

0-3 

> ^ 

dx 

gv„ 

, and 

SH^y 
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Solving of some problems requires the use of objective function 

7 = 0.5 UB-B^) dV, containing the magnetic induction absolute value B. 

Minimization of this function allows finding conditions at which the module 
B of magnetic induction is close to a specified value 5̂ ^ within the domain 
Vob' Need of consideration of such functional arises in problems of moving 
particle beams focusing by means of quadrupole devices. At assumption of a 
plane-parallel magnetic field, the domain Vob can be a circle Sob with a given 
radius R. Under condition B^ =kr of linearity of the required field induction 
along the radial coordinate r, the objective function becomes 

7 = 0.5 j{B-krfds. 
So, 

Here A: is a constant. The coordinate r is counted from the circle center and 
the magnetic permeability inside the circle is assumed to be constant. 

If the magnetic induction is expressed through the vector magnetic poten­
tial, then variation of this functional with respect to vector potential A can be 

written down as SI = J gmdA - gmd(SA)ds . It can be transformed so 

as to have variation SA under the integral sign as a multiplier. Taking into ac­
count that dS^i^ = rdrda , where a is the angular coordinate, we find 

7 B(R,a) dr^ ' I [ B ^ )^ ^ 
The integrand expression of the second integral can be presented as 

B-kr 

B 

B-kr B-kr 
div grad^ r^^^l divgrad^ + grad^ • grad 

B B 
SA. Under 

y 

the condition divgrad^ = 0 inside the circle we finally have: 

SI = di^^^^''^-''^-^(SA)ds- y.dA^gr.d^^(SA)ds. 
7 BiR,a) dr^ ^ f ^ B ^ ^ 

This expression shows that the adjoint variable field sources are distributed 
B-kr 

inside the circle with a cubic density J = -grad^ • grad , and on a circle 
B 

or radms R with surface density / = . 
B{R,a) dr 

It is easy to find adjoint variable field sources in the above-considered 
problem for the case when for direct problem solution the scalar magnetic 
potential is applied instead of the vector magnetic potential. It can be done in 
two ways: by expressing the magnetic induction included in the objective 
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functional through scalar potential, and executing transformations similar to 
shown above. Also it is possible to take advantage of equivalence of electric 
currents and magnetic charges and to transform the above found currents into 
equivalent magnetic charges. 

In conclusion, we shall calculate adjoint variable field sources for the 

problem with objective function I = 0.50 [B-B^) ds. Here, Sob is a closed 
Soh 

surface in a three-dimensional domain and B is the magnetic induction mod­
ule in points belonging to the surface Sot- We shall find the variation of the 
functional with respect to the potential provided that the direct problem is 
solved by means of the scalar magnetic potential cp̂ ^ 
SI=(j{B-B^){SB)ds. 

The module of magnetic induction can be written down as 

B = J(^d(p^/dT^) -^{'^(Pml^^i) '^{p^ml^^) ' where Zu 2̂, '̂  define tangent 

Tu Ti and normal n orts of an orthogonal coordinate system on the surface Sob-
For simplification. Lame's constants are omitted in this expression. Taking 
into account that variation of the magnetic induction module with respect to 

the potential (pm is 5B = ^9m ^^9m I ^9m ^^^Pm , ^9m ^^9m 

dx, dr. dx^ dx^ dn dn varia­

tion 5/ can be written down as 

U Sr, 5r, J ar, 5r, 
51-- di.di^ + ^9m ^S9m 

dn dn 
ds. 

Here, designation B = (^B- B^)/B has been used. 

After transformation, the expression for 5/becomes 

<5/ = - ( | 
9T, 

B ^9m 

dx 1 y 5T. 
B S9m 

V 
dx 2 y 

{5(p,)ds + p 5(Pm 58^ , 
dn dn 

ds . 

Thus, we have a simple layer of magnetic charges on the surface Sob with 
^B-B... ^ 

density <ĵ  = -div^ 
B 

grad^^^ . Here the index r means that opera-
J 

tions div and grad should be calculated on the surface Sob- The second inte­
gral in the expression of dl shows that besides the simple layer, there is also a 
double layer of magnetic charges on the surface Sob with a moment that is 

numerically equal to Therefore not only does the adjoint vari-
B dn 

able X have a discontinuity on the surface Sob, but so does dXjdn - its normal 
derivative to the surface. 
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Similar to the above-considered problem, it is possible to search in other 
problems for adjoint variable X sources, having forms and spatial distribu­
tions determined by given objective functions. It should be noted that the ob­
jective function depends on the potential chosen for field calculation. There­
fore, both the form and character of spatial distribution of adjoint variable X 
field sources also depend on the type of potential accepted at the direct prob­
lem solution. However, the approach for calculating variation of the objective 
function can be the same as the one used in this section. 

As appears from above, when performing optimization in a magnetic field, 
transition from vector magnetic potential to scalar at solution of the direct 
problem implies equivalent replacement of sources in the adjoint problem: 
electric currents should be replaced by equivalent magnetic charges. 

The procedure and results of search of optimum media distribution based 
on application of the Lagrange method depend on properties of used materi­
als. Optimization in the class of materials with homogeneous electromagnetic 
properties allows finding only the shapes of bodies. 

However, at use of materials with inhomogeneous electromagnetic proper­
ties, not only shapes but also the structure of bodies can be determined as 
well. Aspects of optimization procedure development for various classes of 
materials will be considered in the following section. 

4.3 Optimization of the shape and structure of bodies in 
various classes of media 

When solving problems to find optimum shapes and structures of bodies em­
bedded in the electromagnetic field, the constraints on properties of used ma­
terials are of great importance. In some cases, only application of substances 
with homogeneous structure and constants of electromagnetic characteristics 
independent of spatial coordinates are allowed. In other problems, use of not 
only non-uniform, but also anisotropic materials is possible. Solutions sought 
after for various classes of media can differ considerably. 

The Lagrange method allows finding optimum shapes and structure of 
bodies in various medium classes: homogeneous, non-uniform, isotropic and 
anisotropic, linear and nonlinear. 

The class of media used for seeking an optimum solution should be de­
fined at the problem statement. When defining the type of medium the possi­
bility of practical realization of the device, acquired as a result of solution on 
the basis of available materials, is of great importance. Most often homoge­
neous and isotropic materials are used. Therefore, if a solution is found in the 
class of homogeneous isotropic media, its practical realization most probably 
will not pose any difficulties. 
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Practical realization of solutions found in the class of non-uniform or ani­
sotropic media is much more difficult. Moreover, in many cases they are 
practically unfeasible. Then the distribution of such medium resulting from 
calculations should be replaced, for example, by the distribution of a homo­
geneous medium. 

It however does not mean that solutions acquired in the class of non­
uniform or anisotropic media do not represent any practical interest. They are 
interesting because, as a rule, they result in smaller values of an objective 
function in comparison with solutions in the class of homogeneous isotropic 
media. Having the optimization problem solution in the class of non-uniform 
isotropic or anisotropic media enables the estimation of errors arising at its 
practical realization. It is also possible to determine whether it is expediently 
to apply, for example, anisotropic instead of isotropic materials for reduction 
of the objective function to its limit value. 

Let's consider features of the Lagrange method application when seeking a 
substance's optimal distribution in order to find solutions in various classes 
of media: homogeneous isotropic, non-uniform isotropic and non-uniform 
anisotropic. At realization of the method and comparison of optimization re­
sults in various classes of media, it is possible to estimate advantages of each 
statement of the problem, to compare solutions by their laboriousness and 
their degree of approximation to the best results. 

In the beginning let's consider the elementary problem of seeking the op­
timum shape for a body in the class of homogeneous magnetizable media. In 
this case the body's structure is specified, as the substance magnetic perme­
ability positioned in the area V^, has a constant value. So the procedure of 
search of the body shape can then be considered as finding of function 
ju(^x,y,z), which can have only two values: jUmm and //max- In the domain of 
admissible material position it can take values /Anin or /Anax- Outside of the 
domain V^, it is equal to /Anin [9,10,11]. 

As noted in Section 4.1, the search algorithm of a body shape and struc­

ture, i.e. of finding the function ^[x,y,z), can be constructed by use of equa­

tion S^L = 0, i.e. equality to zero of the augmented functional variation with 
respect to medium characteristic ^. This equation has enabled us to find the 
following conditions. 

If the domain V^ of admissible, material position has no common points 
with the area boundary Sbd, then the following conditions are valid: 

grad^^ • grad>^ = 0 and grad^^ • gradA = f^ ( /) . 

The first condition (grad^^ •grad/l = 0) is the necessary condition of the 

augmented functional extremum if the objective functional / is given outside the 
domain V^ of admissible material position. In this case, variation / with respect 
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to the medium characteristic // S^I-- \S^f{x,y,z,(p^,(p'^^,(p'^y,(p'^^)dV is 

equal to zero. 

In the general case, when the objective functional domain of definition in­
tersects with the domain F^, we have S^I ^0. After calculating the variation 
of the integrand function/of the objective functional, it can be written down 
as S^f = f^S/j,, thus giving the second condition grad^^ • grad>l = f^ ( / ) . 

The peculiarity of search algorithm for body shape discussed in Sec­
tion 4.1 at its given structure and under the above-mentioned constraints on 
values of magnetic permeability, involves the way of changing the shape of 
body surface. As stated in Section 4.1, in the first step we solve a direct prob­
lem of the calculation of the potential (pm at a given, generally arbitrary, dis­
tribution of a medium in domain F^, i.e. at some initial shape of a solid body. 
This solution allows finding field intensity everywhere in the whole space, 
including grad^^ {^.y-^^) on the surface. Since during search for the body 

shape only the shape of its surface varies, then grad^^ {x,y,z) can be calcu­
lated only on the body surface. Furthermore, we calculate field sources of the 
function X{x,y,z) and its boundary conditions. 

For the second step, by solving the adjoint problem we find Lagrange mul­
tipliers X{x,y,z) and then grad/l(jc,>',z) on the body surface. 

Further, we check ftilfillment of the condition /2-grad^^ • gradl = 0 at body 

surface points. If it holds at a point, then this point remains fixed during this step. 
If /2-grad^^ • grad/l ?t 0 at a point on the surface, then it should be moved 

along the normal to the body surface. When moving this point into an area 
where ju = ju^.^, i.e. outside the body, we, in addition, position substance 
near the surface. Accordingly, when moving a point inside the body we re­
move some volume of substance with magnetic permeability //max in the vi­
cinity of this point, replacing it by medium with magnetic permeability 

This algorithm of solution in the class of homogeneous media does not de­
termine the sizes of deformation of the body surface portions on each step of 
the process. They should be set based upon the experience of calculations. 
Usually at initial steps when the surface shape is still far from optimum, 
rather large movements of surface points are accepted. As approaching the 
optimum shape, they should be reduced. 

Interestingly, if searching for a numerical solution in the class of piecewise 
homogeneous isotropic media, it can result (as shows experience of calcula­
tions) to a layered medium. It can be characterized as structural anisotropic. 
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In that case the functions grad^^ and gradA should be calculated in the 

whole volume of the body, not just on its surface. 
When seeking an optimum solution in the class of non-uniform isotropic 

media, the distribution of substance in the admissible domain V^ is character­

ized by an unknown function ju^^^ <M{^^y^^)<Mmax beforehand. Thus, it is 

possible to not only find the body shape, but also its structure. 
Just as in the case of seeking the distribution of a piecewise homogeneous 

medium, it is necessary to calculate functions grad^^ and gradA not only on the 
body surface, but also in all points of domain V^ at each step of the solution. By 
the value S^L found at a point of domain F ,̂ the required character of change of 

magnetic permeability in that point can be determined. Simultaneously, the in­
crement Aju, proportional to the difference /2-grad^^ • grad/l, can be found. 

Difficulties of finding solutions in the class of non-uniform isotropic me­
dia are caused by the impossibility of calculating exact values of Aju in 
points on each step of the process. They should be determined empirically, 
proceeding from experience that complicates finding the optimum. 

Let's consider the search algorithm for the shape and structure of bodies in 
a magnetic field in the class of anisotropic media [11]. Its efficiency has been 
verified by optimization in plane-parallel magnetic fields [9,12]. 

We shall consider the medium as a layered composite formed by sub­
stances with absolute magnetic permeabilities JUQ = ju^.^ and // = /u^^^. Prop­
erties of the anisotropic non-uniform medium in a volume element are de­
fined by concentrations mi and mi of these substances, and also by direction 
of anisotropy axes [11]. 

The medium can be characterized by the magnetic permeability matrix: 

The eigenvalues / / j , JU2 of this matrix are determined from the equation: 

Mxx-Mv Mxy 

_r*'yx 9 Myy Ml 

The angle a between the ort h of anisotropy axis and ort 1 of coordinate x 

(Fig. 4.5) is bound to matrix elements ju by the following relationships: 
Mxx =0.5[//, +//2 +(//, - / /2)cos2a] , ju^=0.5[ju, +/u^ -{/u, - ju^yosla], 

y"x̂  =/">. =0.5[(//, - / /2 )s in2a] . 

det :0. 
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We shall characterize each point in the anisotropic medium by two pa­
rameters, namely by the angle a determining the main anisotropy axes direc­
tion, and by eigenvalue //2 of the magnetic permeability matrix fi. 

Vii) 
grad(p 

gradX 

x(i) 

Fig. 4.5. Orientation of substance layers and directions of gradients of main and ad­
joint variables 

Other variants of choice of two parameters determining the medium prop­
erties are also possible, for example, /U\ and m\ or jux and ^2. 

The search algorithm of medium distribution can be found from the sta­
tionary condition of the augmented functional L with respect to parameters a 
and jUi'. S^L = 0, S^^L = 0. These conditions are equivalent (see (4.3)) to 

conditions grad/l • (9fi / da) • grad^ = 0, grad/l • {dyildju^) • grad^ = 0, if the 

objective function / i s specified outside the domain V^ of admissible position 
of the body. 

9jl 
into the 

- s in2a , cosla 

cos 2a, sin 2a 

optimality condition grad/l •(9fi/9a)-grad^ = 0 yields the equation: 

Substitution of the relationship -^^ = (//j - juA 
da 

|grad/l| • |grad^,„ | [cos rj,sin 7]]« ( A - / ^ 2 ) = 0. 
- s in2a , cos2al fcos^P 

cos 2a, sin 2aJ [sin!P 

Here, ;; is the angle between the ort / of coordinate x (Fig. 4.5) and the 
vector grad^^. 

After matrix multiplication, we find the condition 
|gradA|• |grad^, \ 'Sin{^+ 7])-{ju,-ju^) = 0 . 

Here, ^ is the angle between the ort i of coordinate x (Fig. 4.5) and the 
vector grad>l. It follows from this condition that the equality ^ = -T] (at 

ju^^ JU2) should hold at optimum. 
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Thus, at medium optimum distribution the anisotropy axis h should be the 
bisector of the angle between vectors grad^^ and grad/l. Then, angle a 
should be calculated by the formula: 

a = 0.5(iP + /7). (4.5) 

Taking into account that jl = , the condition of optimum 

grad/1 • (9ji/5//2) • grad^ = 0 can be w r̂itten dow n̂ as: 

grad/l 

"5//, 

^Mi' 

- 0, 

0 

1 

•grad^^=0. 

To calculate the derivative djU\/djU2, we shall at first express jU2 by means 
of//] For this, the following expressions are used: 

M2 = ^l/^min + ^iMm.. ' Ml = Mmln ' /"max/('^l/^max + ^2/^min ) ' 

These expressions result from the condition of equality of magnetic resis­
tances of layered medium in directions of main axes /i and /2 to their corre­
sponding equivalent values. Thus, we find the concentrations: 

'^l = {M2 - /̂ max )/(/^min " /̂ max ) ' ^ 2 = {^2 " Mmin )/(/"max " Mmin ) ' ^^'^^ 

After simple transformations, this gives: 

" 2 r^min r^max r^min * r^max •Ml 
(4.7) 

from which we have d^Jd^:, =juf (-"mm •-"max )^' • 

Now, the condition grad/l •(5[i/3//2)gr3d^ = 0 allows writing down the 

relationship: 

|grad^^ I • |grad/i| • [cos7,sin;7] • 
0 , 1 

Hence, taking into account that f = - 7 , we have 

cos!P 

sin!P 

; / i ' -cosV 

= 0. 

•sinV = 0 
/«, mm r^max 

and 
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/ / ? = / / . u t g V . (4.8) 

We can find the value of//2 with the help of (4.7). 
Thus, the condition of optimality S^L = 0 allows calculating material con­

centrations mu ni2 in a layered (composite) medium from Eq. (4.6) by use of 

y/, i^x and //2 values preliminarily found from Eqs.(4.8) and (4.7). The expres­

sion (4.8) can be used for the calculation of//i value for such angles ^that 

bring the calculated value //i into the limits //̂ j„ ^ /̂  ^ /̂ max' i-̂ - if 

a . ' LT^ < tg V <LL ' LC^. , 

In case of violation of latter inequalities //i, //2 become their limit values, 
namely i^^^ or // 

max 

Above-mentioned expressions for calculation of anisotropic axis iVs direc­
tion (see Eq. (4.5)) and substance's concentration m\, m2 (see Eq. (4.6)) allow 
uniquely correcting the medium parameters within volume V^ on each step of 
the search process. At that, as distinct from search algorithms for optimum in 
the class of isotropic media, it does not require the use of empirical relation­
ships. This is the essential difference of this algorithm from the above-
mentioned ones. At the same time the laboriousness of realization of all con­
sidered algorithms is approximately identical. 

The realization to convergence of the solution of any of these algorithms 
can be controlled in various ways. The most natural and reliable method in­
volves calculating the objective function during each iteration or after several 
iterations. Use of other criteria for finding a solution can lead to premature 
termination of calculations or to their excessive prolongation. So, for exam­
ple, if changes of shape of the optimized surface are accepted as criterion, 
then fluctuations of the surface shape may be significant even at values of the 
objective function which are close to the minimum. This is a subject of not 
only errors of domain digitization, but probably also of the objective function 
low sensitivity to changes of optimization parameters. This circumstance, be­
ing rather essential for design purposes, should be taken into account when 
performing calculations. 

When solving the optimization problem in the class of non-uniform anisot­
ropic media distribution, of medium characteristics in the form of compli­
cated functions, of coordinates are frequently obtained. As a rule, practical 
realization of such distributions by means of available materials is inconven­
ient. At the same time, as it will be shown in Section 4.4, in many cases ap­
plication of anisotropic materials results in a minimal objective function. 

One of the methods for the creation of non-uniform continuous distribution 
of a substance (for example, a ferromagnetic one) is the application of pow-
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dered materials. Change of powder local density leads to changes of the ele­
mentary volume averages of magnetic permeability. The subsequent process 
of powder baking allows fixing the shape and structure of the body. 

Another way involves using layered materials. With their help, realization 
of structurally anisotropic substances is possible. However, means of making 
of thin anisotropic non-uniform structures, as against the powder method, are 
rather limited. 

Transition from theoretically best non-uniform anisotropic medium to its 
practical realization can be made in various ways. The choice of method de­
pends on available materials, their properties, and cost. When using a homo­
geneous isotropic material, the found distribution of ju(^x,y,z) can be equiva-
lently replaced by estimation of material concentration value mi (or ^2). In 
the elementary case at m^ < 0.5 the value// = ju^.^ can be assumed in a volume 
element, and in the case of m, > 0.5 the value ju = ju^^ , correspondingly. 

However, this approach can give no optimal shapes of optimized body sur­
face even in the class of homogeneous isotropic media. Therefore with such 
limited means of practical realization this equivalent replacement should be 
considered as a rather difficult one. Experience for calculations shows (see 
Section 4.4) that for the best unknown criterion of replacement of a non­
uniform anisotropic medium by a homogeneous isotropic one, it is expedient 
to search for the optimum shape of a body all at once in the class of homoge­
neous isotropic media. Then, as noted above, alongside with a homogeneous 
body it is possible to obtain a structurally anisotropic body as a result of op­
timization. In some cases practical realization of the latter appears to be fea­
sible (as against practical realization of the solution derived in the class of 
anisotropic non-uniform media). 

4.4. Properties and numerical examples of the Lagrange 
method 

In this section we shall discuss the properties of numerical optimization by 
the Lagrange method and compare the results of optimization for various 
classes of media. To this end, we shall consider several problems of search of 
optimum shape and structure of bodies in a magnetic field. For their numeri­
cal solution the finite difference method and the finite element method have 
been used. 
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4.4.1 Focusing of magnetic flux 

The problem of focusing (concentration) a magnetic flux involves searching 
for the distribution of the substance in the admissible domain of its position 
providing concentration of the given magnetic flux on a certain part of a 
boundary. We will assume the magnetic field to be plane-parallel. 

The area where the field is present is limited by a square contour abcda 
(Fig. 4.6) with a side dimension of 1 in relative units. There is a specified 
magnetic flux uniformly distributed along the upper side dc. 

d(p/dy=1 

Z ' (d/Jdy^O) 

\\\\\\\\\lo i 
d(p/dx-0 , 
(dA/dx^^O) 

a 

m 
Âo 

iJ(^>y) 

d(p/dy=0 
(dA/dy^O) 

(p=0 

(A^O) 

y,= 0.5 

(p-0 

yi=o 

0 
Fig. 4.6. Calculation domain and boundary conditions for the potential and the ad­

joint variable (in parenthesis) 

The magnetic field intensity on this boundary has a single component 
H^^= Hy=-\. On the right side be the scalar magnetic potential (p = 0 . On 

the lower side at it satisfies the condition d(p/dy = 0, and on the left side ad 

we have the condition dcp/dx = 0. 

Lef s find such a distribution of substance with magnetic permeability ju, 
which provides the largest value of magnetic flux by its module on a certain 
part of the right side (^x -\,y^ <y <y^^y^ =0,y2 = 0.5), i.e. on the segment 

y\y2. The admissible domain of substance position is limited by the contour 
1234. In all points outside of this area the magnetic permeability is JUQ. 

We shall write down the objective functional as: / = |//Q —dy. The fol-
: dx 

lowing boundary conditions for the adjoint variable correspond to the given 
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boundary conditions for the potential, as follows from results obtained in sec­
tions 4.1 and 4.2: Z = 0 on the segment >'2 ,̂ dJi/dy = 0 on the side ab and 

dX/dx = 0 on the side ad. Taking into account that SI = [ju^Sl — Uv, we 

have /I = -1 on the boundary yiy2. 
The quality of focusing is determined by the ratio of the magnetic flux 

crossing the segment y\y2, and the full magnetic flux crossing the side be: 
k = 0y^y^ 10^^. Ideal focusing means equality to 1 of this ratio: k = \. 

This problem has been solved for two classes of media: anisotropic non­
uniform, and isotropic piecewise homogeneous. In both cases, the maximal 
value of specific magnetic permeability has been set to //̂ ^^ -X^jj,^. In the 
first case (at solution in the class of anisotropic non-uniform media), both 
magnetic permeability and directions of anisotropy axes are functions of co­
ordinates. In the second case, the magnetic permeability of substance located 
within the admissible domain could only accept two values: ji -10//^ or /A). 
The results are listed in Table 4.1. 

Table 4.1. Ratio of the focused magnetic flux to the total flux when optimizing in 
various classes of media 

1 Class of medium 

1 Anisotropic non-uniform 
1 Anisotropic, converted into isotropic piecewise homogeneous 
1 Isotropic piecewise homogeneous 

Flux ratio 

0.713 
0.672 
0.687 

In the second row of the table, the ratio of magnetic fluxes O^^^^ jOj^^ 

{k - 0.672) obtained when replacing the optimal distribution of anisotropic 

non-uniform medium by an isotropic piecewise homogeneous one is shown. 
The replacement has been carried out depending on the value nii, the concen­
tration of substance with maximum magnetic permeability. In areas where it 
was equal or higher than 0.5 a changeover to a homogeneous medium with 
the maximum magnetic permeability 10//oWas performed. In areas with con­
centrations ^2 < 0.5, minimal magnetic permeability /^ was accepted. The 
ratio k of magnetic fluxes has decreased for this elementary (and not the best) 
method of conversion from the optimum anisotropic non-uniform medium to 
an isotropic piecewise homogeneous one. It became even less than k = 0.687 
when seeking the solution in the class of isotropic homogeneous media. 
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As may be seen from the table, the best solution is obtained when using an 
anisotropic non-uniform material. The ratio k of magnetic fluxes in this case 
is maximal. 

The body structure and shape found are shown in Fig. 4.7. 
Continuous lines in the area of substance location divide zones with vari­

ous concentrations of the ferromagnetic material mi. 

m<0.5 

m=0 
(^J=fJmin) 

Fig. 4.7. Optimal distribution of substance in the problem of magnetic flux focusing 

When ^2 < 0.5 prevails, the substance with magnetic permeabil­
ity//=//^i^, and at W2>0.5 the substance with magnetic permeability 
ju = ju^^^. Directions of anisotropy axes at points of substance location are 
not shown. 

4.4.2 Redistribution of magnetic flux 

The problem of redistribution of magnetic flux involves searching for such a 
function ju(x,y) in the admissible domain of substance position, which pro­
vides distribution of a specified magnetic flux in a certain part of the bound­
ary according to a prescribed law. The magnetic field is considered to be 
plane-parallel. 

On the the upper side dc of the square area abed (Fig. 4.8) with dimensions 
1X1, the magnetic field intensity changes according to linear law H^ = -2x. It 

is necessary to find such structure and shape of a body that will provide change 
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of magnetic field intensity according to the law i/^ = -2 4- 2x on the lower 

side ab. The admissible domain of substance position is the area 1234 where 
ju=ju(x,y). In areas ab21 and cd43, the medium properties are fixed and //=/^. 

Boundary conditions for the scalar magnetic potential (p are shown in Fig. 
4.8. By virtue of definition of homogeneous conditions of the 2nd kind for 
the sides ad and be, all the magnetic flux that passes through the area 1234 
falls on line ab. 

d(p/dy=2x 

d(p/dx=0 

lllv 3 : 

^i(^.y) d(p/dx^O 

<p=0 

^ mm , 

IJo 

Fig. 4.8. Boundary conditions for the scalar magnetic potential in the problem of ob­
taining linear distribution of magnetic induction on the line ab 

The objective functional can be written down as 

dx. Boundary conditions for the adjoint variable X 

are shown in Fig. 4.9. 

The boundary conditions definition for the sides be, ed and da becomes 
clear from Fig. 4.2 in Section 4.1. When writing down the boundary condi­
tion on the side ab, it has been taken into account that the objective func­
tional / is defined on it. As the variation of the objective functional is equal to 

d(p 

tion X = -d(pjdy-Hy„ 

"-HTy*"^ 
dcp 

dx, the adjoint variable is subject to the condi-

-dcpjdy •\-l-lx on the side ab. 



Solving Inverse Electromagnetic Problems by the Lagrange Method 225 

Similar to the above-considered problem of magnetic flux focusing, we 
now search for the solution in classes of anisotropic non-uniform and iso­
tropic piecewise homogeneous media. 

H î̂  

dA/dx=0 

1 

•U/(^y); 

A t • . - . • ." . ' ." . • , •• .• . - . • . •• .• . •• .• 2 1 . 

dA/dx=0 

^^Mo 
^0 ^ / u 

A:= -dcp/dy-H^ 

Fig. 4.9. Boundary conditions for the adjoint variable in the problem of obtaining 
linear distribution of magnetic induction on the line ab 

Results (see Table 4.2) were compared according to the value of root-

mean-square deviation of derived function ^^ (x ) distribution from the 

specified linear distribution. 

Table 4.2. Root-mean-square (RMS) deviation of magnetic field strength from the 
linear field when optimizing in various classes of media 

1 Class of medium 
1 Anisotropic non-uniform 
1 Anisotropic, converted into isotropic piece-

wise homogeneous 
1 Isotropic homogeneous 

RMS deviation a 1 
0.150 
0.236 

0.178 1 

RMS deviation ion a = j[i d(p 

Ty 
+ H^^dx 

The conversion of an anisotropic non-uniform medium into an isotropic 
piecewise homogeneous one has been the same, as in the above considered 
problem of magnetic flux focusing. It is evident from the table that the best 
solution is obtained, just as in the previous problem, through the use of an 
anisotropic non-uniform medium. For this case the substance distribution is 
shown in Fig. 4.10 (//^^ = 10//^ and ju^^^ = ju,). 
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Directions of anisotropy axes in the substance location points are not 
shown in the figure. 

m>0.5 

Fig. 4.10. Optimal distribution of substance in the problem of obtaining linear distri­
bution of magnetic induction on the line ab 

The substance is divided into zones, where values of its concentration m 
with magnetic permeability /^max^l^/^o ^^^ assumed to be equal 
m = 0,772<0.5, 0.5<m<l and m = \. 

Dependence of the field intensity module Hy, from coordinate x along the 
lower side ab at substance optimum distribution, is shown in Fig. 4.11 (curve 2). 

Fig. 4.11. Required (line 1) and obtained (curve 2) distributions of magnetic field 
strength on the line ab 

As may be seen from the drawing, the largest deviation from the given dis­
tribution of field intensity occurs at the area's edges. In the middle of the area 
at 0.1 < X < 0.8 field intensity, Hy changes close to the linear law. 
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Similar conclusions can be made when considering the problem of redis­
tribution of a uniform flux with field intensity H^=-\ on the upper side dc 

of a square area to a cosine flux /f,̂  = —cos—x on its lower side ah. The 
^ 2 2 

admissible domain of substance position is the area 12S4, In areas abll and 
cd43 the medium properties are fixed and // = //(, (Fig. 4.12). 

dA/dx=0 

(d(p/dx-0) 

y4< 

a 

4 h':' 

dA/dy=0 (d(p/dy^1) 

\ 

. ' . " • I tJ(x,y)\.'.'\'.*\'.'.', 
dK/dx^O 

(d(p/dx=0) 

fJo 

((p(x)^O) 

Fig. 4.12. Boundary conditions for the potential (in parenthesis) and adjoint variable 
in the problem of obtaining cosine distribution of magnetic induction on the line ab 

The minimized functional is of the same form as in the previous problem: 

^ f /9 V 
/ = \juA —^ -f H dx. Boundary conditions for potentials of direct (in pa-

a {^y J 
renthesis) and adjoint problems are shown in Fig. 4.12. 

This problem has been solved at the same media classes as the previous 
one. Results are shown in Table 4.3. 

Table 4.3. Root-mean-square (RMS) deviation of magnetic field strength from the 
cosine field when optimizing in various classes of media 

Class of medium 

Anisotropic non-uniform 
1 Anisotropic, converted into isotropic piecewise homogeneous 
1 Isotropic homogeneous 

RMS deviation 1 

0.099 
0.132 
0.125 1 
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RMS deviation is a = j(( — + H?dx. 

The distribution of substance (with //̂ ^^ =10//o ^^^ /̂ min =/^o) î  show^n 
in Fig. 4.13. 

Fig. 4.13. Substance distribution in the problem of obtaining cosine distribution of 
magnetic induction on the line ab 

The dependence of the field intensity module Hy, from the coordinate x 

along the lower side ab at the substance optimum distribution, is shown in 

I I 7t 71 

//^(x)| = —cos—X. > 
1.6 

1.2 

0.8 

0.4 

0 

i 
Hy 

i 2 

0. 

1 

25 0.50 0.75 1. 

X 

00 

Fig. 4.14. Required (curve 1) and obtained (curve 2) distributions of magnetic induc­
tion on the line ab 



Solving Inverse Electromagnetic Problems by the Lagrange Method 229 

4.4.3 The extremum of electromagnetic force 

Let's consider the problem of search of such a shape of a ferromagnetic pole, 
which provides the maximum value of the vertical electromagnetic force F 
acting upon a conductor of rectangular cross-section w îth a current / (Fig. 
4.15). 

A-Am 

Fig. 4.15. Boundary conditions for the potential and domain S^ of substance distribu­
tion in the problem of searching for extremum of electromagnetic force 

The magnetic field is assumed to be plane-parallel. The conductor current 
density has a component J^. 

The admissible domain of substance position S^ with a given magnetic perme­
ability ju = const is located between two rectangular contours 1 and 2 marked 
by dashed lines. Additionally, there is an external uniform magnetic field with 
induction BQ. On the lower and upper sides of the calculation's area (in Fig. 
4.16 they are shown by continuous lines) the vector magnetic potential A is as­
sumed to be constant and equal to 0 and A^^^, correspondingly. On the left and 
right sides of the area, the potential changes by linear law from 0 to A^^ . 

We shall transform the objective fianction I = -F = 

= - J J^B^dS = - \Jz — ^ ^ ^^ ^he form / = -dj^Acos{n,y)dl. Here, n is the 
^ob ^ob ^ K>b 

external normal to the contour / of the wire cross-section. 

As cos(«,>') = 0 on the sides he and da of the conductor, then the objec­

tive function can be written down as: 
h d b d 

I = - \J^Acos{n,y)dl - \j^Acos{n,y)dl - -J^ \Adl + J^ \Adl. 
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Taking into account that SI = -J^ \{5A)dl + J^ \{SA)dl, we have the 
a c 

equation for the adjoint variable div i/gradA =+7; ; on the line ab, 

divvgrad/l = -JT] on the line cd, and divvgrad/l = 0 in other internal points 
of the calculations area. Thus, the adjoint variable field sources form simple 
layers of current distributed along the lines ab and cd. 

This solution shows that optimum distribution of substance in the area o^, 
depends on the relationship between the external magnetic field and the con­
ductor current self-magnetic field. The optimum shape of a body in a weak 
external magnetic field is shown in Fig. 4.16. 

Fig. 4.16. Optimum shape of a body (shaded) in weak external magnetic field 

If the external field considerably exceeds the current self-magnetic field, 
then the optimally shaped body focuses the magnetic flux in the area of the 
conductor location (Fig. 4.17). 

A^O 

Fig. 4.17. Optimum shape of a body (shaded) in strong external magnetic field 
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Similar to previous examples, this problem also has been solved by opti­
mization in classes anisotropic and isotropic media. Calculation has con­
firmed the conclusion that the application of anisotropic substances gives a 
lesser value for the functional compared with using the cases of homogene­
ous or non-uniform isotropic substances. 

4.4.4 Identification of substance distribution 

Let's consider features of the identification problem solution in a magnetic 
field by the Lagrange method. Such problems arise, in particular, when 
searching for the shape of buried magnetic bodies causing distortions of 
ground uniformity. 

Surface distributions of potential or field intensity are known, for example, 
as a result of measurements. Therefore, the identification problem involves 
seeking such a shape of a body located in the ground which will satisfy the 
given boundary conditions on the ground surface. 

The identification problem was divided into two stages with the purpose of 
estimation of its solution accuracy. At the first auxiliary stage, the magnetic 
induction distribution on the ground surface has been found at a given poten­
tial of its surface and at a given distribution of substance. At the second 
stage, the actual identification problem was solved by search of such distribu­
tion of substance, which furnished minimal difference between the obtained 
and given distributions of magnetic induction on the ground surface. 

At the first stage the problem of magnetic field calculation in the square 
area afecJ with dimensions 1x1 (Fig. 4.18) was solved. 

In the central part of this area limited by lines 1,2,3,4, a body with dimen­
sions of its cross-section 0.4x0.4 and with magnetic permeability ju=\OjUo, 
distinct from the magnetic permeability JUQ of the surrounding medium, was 
located. The following boundary conditions were set for the square area 
abed: Hy=A on the upper side dc, (p = 0 on the lower side ab, and 

dcpjdx = 0 on both lateral boundaries. As a result of this calculation the dis­

tribution of magnetic field intensity H^ (x) on the lower side ab was found. 



232 Inverse Problems in Electric Circuits and Electromagnetics 

dh/by^O (d(p/dy=1) 
\ 

ym 

ii(y.y)\\' 

(d<p/dx=^o) 

A=-d(p/dy-Hy„ 
(g>(x)=0) 

3- /^O 

Fig. 4.18. The first stage of identification problem solution: field calculation at de­
sired arrangement of body. Boundary conditions for the potential are shown in paren­

thesis 

At the second stage, the problem of search of body optimum shape has 
been solved at the above-found distribution of field intensity H^ on the line 

ab. Comparison of the two body shapes, given at the first stage and calcu­
lated at the second stage, allows us to estimate the accuracy of the identifica­
tion problem solution. 

Thus, in this statement the identification problem involves the search for 
the shape of a body based upon the distribution of field intensity given on 
some surface enclosing the body. 

The solution was searched in the class of homogeneous media when mag-
nefic permeability could possess values ju^.^ =JUQ and ju^^^ =10//o- Bound­
ary conditions for the solution of direct and adjoint problems are shown in 
Fig. 4.18. The admissible area, where a change of material is allowed, is con­
fined inside the line 1234. In areas ab21 and cd43 the medium properties are 
fixed and ju^.^ = JUQ , and the permissible values of magnetic permeability in­
side the area 1234 are ju^.^ = ju, or ju^^^ = 10ju,. 

Distribution of the module Hy of field intensity along the lower boundary 
ab for the required (1) and found (2) body shapes is shown in Fig. 4.19. 
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Fig. 4.19. Magnetic field strength on the line ab at desired (1) and obtained (2) dis­
tributions of medium 

In Fig. 4.20, the square section 1 of the identified body is show^n by dashed 
lines. The area 2 represents the cross section of the body obtained as a result 
of the identification problem solution. 
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Fig. 4.20. Required (1) and obtained (2) distributions of medium when solving the 
identification problem 

As can be seen, even for the requirement of closely obtained dependence 
Hy[x) on the area boundary (Fig. 4.19) when the maximal error was less 

than 3%, there is significant distinction between the shapes of the body cross-
sections both specified and obtained at the solution. Therefore, a solution for 
practical identification problems require several orders of higher accuracy. 
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4.4.5 Creation of a homogeneous magnetic field 

Generation of homogeneous magnetic fields is a well-known practical prob­
lem. Selected conductors and current carrying coils suitably arranged in 
space can create a homogeneous field. Correction of thus obtained magnetic 
induction distribution is carried out by use of ferromagnetic bodies with be­
forehand unknown shape and structure, which should be determined as a re­
sult of solution of the corresponding optimization problem. 

Let's consider features of the Lagrange method application when solving 
the problem of creation of a homogeneous distribution of magnetic induction 
on a straight line segment [12]. 

The cross-section of the target magnetic system is shown in Fig. 4.2 L It is 
necessary to find such a shape of the magnetic pole tip S^ that provides as 
small as possible deviation of the magnetic induction vertical component By, 
distributed along the segment ab from a constant value By^^OA T. The mag­
netic field is assumed to be plane-parallel. 

A=0 0.6 

Fig. 4.21. The cross-section of the magnetic system 

In Fig. 4.21 the admissible area, where change of medium is allowed, i.e. 
the area determining the limits where the pole tip can be situated, is marked 
by dashed lines and designated S^. As well, boundary conditions for the vec­
tor magnetic potential A used at solution of the direct problem are shown. On 
the left border of this area (at x = 0), the condition 8A/8n = 0 is assumed. 
On the other borders of the area, the condition ^ = 0 is specified. The current 
density J in the winding is 5.6-10'* A/m^. 

dA 
The objective funcfion is assumed to be: / = — [( ^vw^dx 

dx 
Its variation with respect to potential A is: 
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51-
dA 

dx 
•B.. 

dA 

dx yx= dx ^ 
6A i (d'A dB„ 

dx" dx 
]SAdx. 

Taking into account that B^ = const and dB^jdx = 0, we have: 

5I-- dx - r 
Since ^ = 0 in the point x 

this point, and then we have: 

' dx ^ 

d'A. 
SA - I—T-SAdx 

dx' 

• b is specified as a condition, then 5A = () in 

8IJ^^B\5A\ -fA^Adx. 
ydx ^ j '̂=̂  Idx^ 

Writing down 51 as 51 - \f{5A)dV we find the adjoint variable field 
V 

sources. They form a current layer on the line ab. In the point a, electric current 

i = -(dA/dx + B \ is located. The density of current distributed along the line 

ab is d^A/dx^ . Apparently, it is a function of potential A of the direct problem 
and the solution was sought in the class of homogeneous media. 

The numerical solution for this problem has been obtained by the finite-
element method. Triangular elements were applied both at linear and at quad­
ratic interpolation of the potential. 

As the solution was sought in the class of homogeneous media it was suf­
ficient to calculate functions grad^ and grad/l only on the pole tip surface at 
each step of the process. This allowed reducing the amount of calculations in 
comparison with the case of search of its structure. 

Several moveable vertexes (from 11 up to 41) have been chosen along the 
line cd determining the initial shape of the pole tip surface. Each vertex could 
move only downwards or upwards on a specified distance during any step of 
the process. The amount of change of the moved vertex coordinate on each 
step depended on the angle between vectors grad^ and grad/l. It was se­
lected from the condition of solution convergence proceeding from experi­
ence of calculations. 

At linear interpolation of the potential the whole area has been divided into 
a grid with 30314 elements. Along the pole border cd, 22 movable vertexes 
have been chosen. 

As a result of the solution, the root-mean-square deviation of magnetic in-
ducfion By from the specified O.IT was equal 0.0066. However, the pole 

shape has turned out to be rough with sharp protrusions. Therefore, calcula­
tions were also carried out for the potential quadratic interpolation when the 
grid had 11204 elements, and the border cd, 41 movable vertexes. 
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After 24 iterations the root-mean-square deviation of the magnetic induc-

tion from the specified one a = \\(By-B^ydl was 0.0091. Fig-
want \ a 

ure 4.22 shovŝ s the substance distribution determining the pole tip shape, af­
ter completion of the 24* iteration. 

k j n ^ J v y S ^ 

Fig. 4.22. The optimal shape of the polar tip at interpolation of the potential by a 
polynomial of first degree 

The best shape for the pole tip has been found after 216 iterations (Fig. 
4.23). The tip shape appeared to be close to results of other researchers, who 
have also solved this problem. 

0^^^^^^>^^^^^^^^m^^mi^^\ 

Fig. 4.23. The optimal shape of the polar tip at interpolation of the potential by a 
polynomial of second degree 
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The distribution of magnetic induction along the line ab for the obtained 
shape of the pole tip is shown in Fig. 4.24. The distribution of induction 
along the line ab in another scale is shown in an additional window in this 
figure. In this case the root-mean-square deviation of By from the required 

one is slightly increased (up to 0.0071), which may be attributed to the more 
smoothed surface of the pole tip. 
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Fig. 4.24. Distribution of magnetic induction on the line ab at optimal shape of the 
polar tip. The small box shows the same dependence in another scale 

For juxtaposition of the Lagrange method with other methods, and also 
with the purpose of comparison of obtained results, a solution has been de­
rived also with the help of the gradient method. The modified Newton 
method was chosen with application of BFGS formula for Hesse matrix up­
dating. It possesses one of the best characteristics when solving optimization 
problems in electromagnetic fields. 

At variables number (movable vertexes on the pole border) equal to 41 the 
problem solution time by the Lagrange method appeared to be less on an or­
der than the modified Newton method. At that, the root-mean-square error 
was the same. 

Optimization results by the Lagrange method and the modified New1:on 
method are summarized in the following comparison table. 
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Table 4.4. Initial data and characteristics of the problem solution by the Lagrange 
method and by the modified Newton method 

Lagrange method 

[Number of grade 
elements 

[Number of optimi­
zation parameters 

[ Time, required for 
an iteration [min] 

[ Calculation time 
1 [^iii] 
[Number of itera-
[ tions 
1 RMS deviation 

11204 

41 

0.33 

8 

24 

0.0091 

72 

216 

0.0071 

Modified Newton method 
with BFGS formula 

8135 

11 

1.53 

35 

23 

0.0091 

82 

54 

0.0071 

11204 [ 

41 

8.61 

103 

12 

0.009 

164 

19 

0.007 1 

As follows from the above table, the Lagrange method allows us to obtain 
reliable results with the same accuracy as in the modified Newton method 
with application of the BFGS formula for Hesse matrix updating with essen­
tially less calculation time. It should be noted that advantages of the La­
grange method are most apparent when the required accuracy of optimization 
is rather low (for root-mean-square deviations about 10" )̂, becoming less ap­
preciable with increasing of accuracy. 

In conclusion let's note the basic properties of the Lagrange method when 
seeking the optimum shapes and structures of bodies in electromagnetic fields. 

The solution can be sought in various classes of media, both isotropic and 
anisotropic, and each step of search demands solution of two boundary value 
problems. The direct problem is formulated for the main variable determining 
the field (for example, the scalar potential (p). The adjoint problem is solved 
with regard to an auxiliary variable X. Functions grad̂ z? and grad/l obtained 

as a result of solution of these problems determine the character of medium 
properties change during calculation. 
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4.5 Features of numerical optimization by the Lagrange 
method 

Choice of numerical methods for solution of direct and adjoint boundary 
problems is determined by their specific nature, namely the type of boundary 
conditions, the accepted class of the optimized medium, presence of natural 
boundaries of calculations domain, etc. Methods of finite-elements and inte­
gral equations are most frequently applied to find numerical solutions of 
boundary problems in electromagnetic field theory. 

Regardless of the method selected for a numerical solution, the search al­
gorithm for substance optimum distribution stays the same. We find the value 
// at a point and the directions of anisotropic axes (when seeking solution in 
the class of anisotropic media) on the found functions grad^, grad/l. Features 
of search algorithm realization lie in the method used for calculating the vec­
tors grad^ and grad/l, and in the approach used for deformation of the shape 
or change of the structure of the optimized body. 

When solving optimization problems in the class of homogeneous media 
for calculation of potentials of direct and adjoint problems, the following in­
tegral equation for density of auxiliary sources a on the surface S of the op­
timized body can be used: 

X r cos(r,n) 
\a'^^^ds = f. (4.9) 

IK i r 

Here, 1 is a parameter dependent from magnetic permeabilities I^Q and JJ, of 
the media, r is the radius vector determining the distance between points on 
the surface S, n is the normal vector for points on the surface ofS, and / i s a 
function determined by a given distribution of external sources in the domain 
F, (Fig. 4.25). 

^ V"—-—• < (̂'̂ »y.̂ ) 

n ̂^T^^. 

Fig. 4.25. Domains Voh, where the objective function is specified, Fy - of field, and 
V,_^ - of medium distributions 
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External sources in the domain Vs can be electric currents or equivalent 
magnetic charges of density p. In the latter case for calculation of the func­
tion grad^, the following expression can be used: 

grad^ = grad( J—J5 + \—dV) = (\—dS-\- \^dV) . 

If the objective function is given outside of the area V^, then the left mem­
ber of the equation for density of scalar sources (we shall designate it as/?) in 
the adjoint problem coincides with the left member of Eq. (4.9). However, 
the right members of these equations differ. 

Indeed, external sources of fields (p and X can generally have different spa­
tial distributions and they can be located in various domains. But at the same 
time, secondary sources of density p of the adjoint problem are located on the 
same surface S as sources of density a of the direct problem. Therefore, the 
left members of the equations for or and p coincide, whereas the right mem­
bers differ. 

After solving the integral equations for densities a and p of direct and ad­
joint problems, we further calculate grad^, grad/l and solve the optimiza­
tion problem in accordance with the algorithm discussed in Section 4.3. 

When using the same expressions for approximation of integrals included 
in equations for a and p, the algebraic equations of direct and adjoint prob­
lems Ka=F, Kp=Y have identical coefficient matrices K. 

We arrive at a similar conclusion when considering algebraic equations of 
the direct and adjoint problems in the case of seeking their solutions by using 
the finite-elements method. Indeed, at realization of any of these methods (fi­
nite-elements or integral equations) the direct and adjoint problems on each 
step should be solved using the same geometry of domains, and for the same 
physical properties of materials. In both cases, correction of the body surface 
S is carried out only after finding grad^ and grad/l. 

Thus, on each step of the iterative process it is necessary to solve two 
boundary problems (equations for potentials or for density of secondary 
sources), but matrix K should be inverted only once, considerably reducing 
the calculation time for the numerical solution. Therefore, for solutions of al­
gebraic equations by using direct methods, the necessary time on each step of 
the iterative process is determined only by the time of a single boundary 
problem solution. This advantage does not occur at solution of direct and ad­
joint problems by iterative methods, when on each step of the optimum shape 
search process it is necessary to solve both problems without taking into ac­
count the above-mentioned restraint between them. 
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However one cannot draw a conclusion that the direct method of equa­
tions, the solution on each step of the problem solution, is unconditionally 
preferable on the basis of this reasoning. 

The process of finding the optimum shape of a body is an iterative one as 
the objective function depends nonlinearly on the body shape. At each step of 
the process, the body shape can change insignificantly, particularly at the fi­
nal steps of the search. During iterative solution of algebraic equations effec­
tive use of the solution found by the previous step is possible if it can be con­
sidered an initial approximation. At the same time at solution of algebraic 
equations by direct methods, the initial approximate value of the coefficients 
matrix K is not used. In this connection the choice of the method of solution 
for the algebraic equations of direct and adjoint problems on each step of the 
iterative solution should be connected with convergence of the search process 
for the optimum body shape. 

The following reasons of general character should be noted. At iterative 
solution of algebraic equations of direct and adjoint problems at a given step 
of the process, their values obtained during the previous step may expedi­
ently be accepted as initial an approximation for potentials (or sources densi­
ties). It demands storage of arrays of unknown quantities both for the direct 
and adjoint problems. When solving algebraic equations by direct methods it 
is advisable to accept the inverse matrix obtained during the previous step as 
a parent matrix, and then to specify values of its elements by iterative calcu­
lations. 

To increase the accuracy of solution of optimization problems the grid 
FEM is accepted to be deformable near the surface, whose shape is subject to 
find. 

Assume it is found during solution that the body surface should be moved 
in the direction of external normal at some point. On the following step of the 
iterative process we deform the surface not for the whole cell size, but only 
for a portion of it. Moving the corresponding node of the element lying on 
the surface carries this out. Thus we are permit the following: firstly, to enter 
small deformations of surface during search of its optimal shape, and sec­
ondly, always to place nodes on the surface. After deformation of elements, 
control of their degeneration with corresponding corrections should be car­
ried out. The procedure of moving the surface nodes of an optimized body 
may expediently be carried out only at the final stage of optimization. In that 
case, the objective functional will be close to its minimum and the surface 
shape will be close to optimum. 

The possibility of calculation of functions grad^, grad/l, defining the 
medium properties at a point, not only on the body surface, but inside and 
outside of it as well, is a distinctive feature of optimization by the Lagrange 
method. According to the algorithm of solution it is possible to correct the 
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function ju(x,y,z) in the whole domain at once on each step of the process. 
For this reason the structure, and therefore the surface shape as well, can 
change considerably during each step of the process. It essentially allows 
finding the solution more speedily, in particular during the initial steps when 
the body shape and structure are far from optimum. 

4.6 Optimizing the medium and sources distribution in non-
stationary electromagnetic fields 

The Lagrange method allows solving optimization problems not only in sta­
tionary fields, but in non-stationary electromagnetic fields as well. As a re­
sult, an auxiliary adjoint problem for the variable X is formulated. The equa­
tion and boundary conditions for it are derived from the necessary condition 
of the augmented functional extremum SL = 0. Solution of the adjoint prob­
lem allows finding the augmented functional gradient, and by virtue of it, 
constructing an effective search algorithm for optimization parameters. 

Problems of search of the shape of bodies changing in time in a non-
stationary field are not posed because of practical reasons. In a number of 
problems, external sources are considered as optimized variables with re­
quirement to find their distribution in space and time. Finding the spatial dis­
tribution of material characteristics fulfilling the accepted criterion of opti-
mality is also of interest. In some cases it is necessary to find such field 
distribution at the domain boundary, where the objective function reaches its 
minimal value. 

Let's consider features of the Lagrange method application when solving 
optimization problems in a non-stationary electromagnetic field. 

Let the substance penetrated by a flat electromagnetic wave be character­
ized by having a magnetic permeability ju and a specific electric conductivity 
a. Inside the body, magnetic induction By-B{x,t) is described by the 

equation — 
dx 

^ 1 dB^ 

IJ,(j dx 

under the law B^ = B(0,t) (Fig. 4.26) 

r)B 
— . On the surface of the body (at x = 0 ) it changes 
dt 
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B(0,t) 

x=0 

i". r 

B(x,0) = 0 
• ^ 

x=/ 

Fig. 4.26. One-dimensional domain 0<x<l of substance arrangement; initial and 
boundary values of magnetic induction 

We accept the following initial conditions: B(x) = 0 at t = 0, and ^ = 0 

at X = / . 

Let's search for such a function 
1 

: p(x) determining the medium 
ju(x)a(x) 

properties, at which the magnetic induction distribution B(x,T) by the mo­

ment of time T becomes as close as possible to a given distribution B^{x) 

[3,13]. 
The objective functional can be written down as 

I = 0.5 \{B{x J)- B^{x)ydx. 

We construct the augmented functional as 

L = I+jjJl{x,t) df , ^8B^ dB 

ox J dx dt 
dtdx ^ 

and, after double integration by parts, we have: 

1 dB_ 

dx 

I 

dt-
0 

-JJ 
0 0 

(dB dX\ ,dB 

\dx dx J dt 
\dtdx (4.10) 
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L = / + J A p — dt-\Bp—\ dt-\XB'(^(h + 
0 ^-^ 10 0 ^-^ 10 

/ 71 

f 5x V Sx j 5/ 

(4.11) 

\Bdtdx. 

Using Eq. (4.11), the variation L with respect to magnetic induction B can 
be written down as 

SL = 6I+ \Xpd\ — dt- \{dB)p—\ dt - | A ( ^ 5 ) [ dx + 

^ l}\_dxy dx) dt _ 
From the condition 5L-0 follows that the adjoint variable X satisfies the 

p— + — = 0. As the variation of the objective functional 
^ dx J dt 

{SB)dtdx. 

equation 
dx 

with respect to magnetic induction B is equal: 

SI=\{Bix,T)-B^ix)) {SB{x,T))dx, 
0 

then the following condition should be imposed on the adjoint variable: 
Z(xJ) = B(xjyB^{x). 

BE 
As B{0,t) is a given value at x=0, then variation of only — at x = 0 is 

dx 
dB 

possible. Therefore, we have /l(0,/) = 0 . Furthermore, —{l,t) = 0 is a given 
dx 

value at x = / , and variation of only J5 at x = l is possible. Then, we have 

Using Eq. (4.10) we find the augmented functional variation with respect 

to the variable p{x). The condition S^L = 0 results in the following expres­

sion: 

'iM-'-ih"'"-'' 
By virtue of arbitrariness of variation dp, the necessary condition of opti-

mality = 0 can be obtained, which should be valid in each point x in­
fix dx 
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side the segment 0 < x < / . The value of determines the augmented 
dx dx 

functional "material" derivative. Its calculation allows applying known gra­
dient methods for seeking of a medium optimal distribution. 

Thus, the process of solution includes the following steps. The dependence 

B{xJ) is calculated by solving the equation — p(x)— 
dx[ dx 

— under the 
8t 

dB\ 
conditions B\ = Bit), — 

'̂ =̂  ^^ dx\ 
= 0 and 5(jc,0) = 0 . Solution of the equation 

=/ 
d ( , ^dx 

+ — = 0 under conditions A(0,t) = 0, 
dt 

for the adjoint variable — p(^)' 
5x V dx 

—(l , t) = 0, and A,{x,T)=B(x,T)-B^(x), allows finding the function 
dx 
/i(x,t) in order to find the augmented functional gradient. 

Problems of searching of such distribution of medium specific electric 

conductance or = <J(X) on the line segment 0< X<XQ, at which the maxi­

mum local thermal emission Q in a point of the conductor with coordinate x 

for all duration to of the electromagnetic process, i.e. Q{x)- \a{x)E^{x,t)dt 
0 

is minimum, are of practical interest. For such problems, the functional can 

be written down as / = max A problem of this kind is dis-\(j{x)E^ {x,t)dt 
Vo 

cussed in Chapters. 
Another possible statement of this problem involves finding a dependence 

5(0,0 on the surface of the body, at which the magnetic induction B(x,T) 

at a certain moment of time T is as close as possible to the required B^(x). 
Seeking this dependence is carried out by use of a similar expression for the 
augmented functional, and the same equation for the adjoint variable. 

To find the function B(0,t), we calculate the variation of both parts of the 

expression given in Eq. (4.11) with respect to B(0,t). This results in the rela­

tionship 

^.(0,0^ = - lp{0)^(0,t)SB{0,t)dt = 0 , 



246 Inverse Problems in Electric Circuits and Electromagnetics 

which gives the necessary condition of optimum —(0, / ) = 0. The expression 
dx 

for 
^5(0,/)^ determines the functional derivative with respect to the desired 

quantity B(0,t) that, as above, allows using gradient methods for search of op­

timal law of magnetic induction change on the surface of the body. 
A characteristic problem is the search of such spatial distribution of an 

electric current with density J^^^ and a law of its change in time, at which the 
power of losses p(x,y,z) in a conducting body located in the field of this 
current is distributed as close as possible to a given q^(x,y,z) at the moment 
of time T. Such problems arise for inductive heating of conducting solids 
[14,15,16], particularly when uniform heating of the body is important. In 
this special case we have q{x,y,z) = const. 

In Fig. 4.27, the conducting body is designated as S^, the allowable do­

main of current distribution - as S., and the domain of existence of the elec­

tromagnetic field - as iS (/ is its border line). 

Fig. 4.27. Domains Si and iŜ -of desired current distribution and specification of the 
objective function, accordingly 

Assume that the electromagnetic field is plane-parallel. For its description 
the vector magnetic potential A, being in this case a scalar, is used. The po­
tential in the area 5, satisfies the equation 

divgrad^=-//J^^,, 

and in the area S^ - the equation 

div grad A - jua— = 0 • 
dt 
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Assume the condition ^ = 0 on the part h of the border, and the condition 
dA 
— = 0 on the part I2 of the border. The objective functional can be written 
dn 

down as: 
-^2 

"•'IHt]'"-''"- '̂ ds. 

\2 
Here, the quantity o-i^A^j =aE^(x,y,t) determines the power emitted 

in the body element ds caused by induced electric current flowing in the 
conducting body. 

Assuming that there is no field at / < 0 and J,xt=0 at t = 0, we can write 
down the initial condition for the potential as A{x,y,0) = 0 throughout the 
whole domain. The desired distribution J^^X^^y^O can be discontinuous and 
will therefore have discontinuous time derivatives, hence, the problem solu­
tion is searched in a generalized sense. 

Let's find the equation, boundary and initial conditions for the adjoint vari­
able Z(x,yj) included in the augmented functional 

T V ^. 1 (4.12) 
jjZ(x,yj) + 

s 0 

dA 
divgrad4 - /ucr — + juJ^^^ (x, y, t) ]dtds. 

dt 

We shall seek the equation for function X{x,y,t) and the algorithm of cur­

rent density J^^Xx,y,t) change in the domain 5, from conditions S^L = 0, 

Let's transform the integral in Eq. (4.12): 

s 0 

r 

I \/l(x,y,t)d\vgY2idAdtds 

= f f(A A—)dtdl + f f.4divgrad;i(i^^5. 
^ ^ dn dn ^ ^ I 0 ^" ^" s 0 

As \X/ua—dt = jua(JiA\^^j--XA\^^Q)-\A/ua—dt, then the expression 
dt ' ^ ''=^ ''="^ i ' dt 

(4.12) can be written down as: 
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L(A,J^^,,A) = I-\- {UA-—A—)dtdl+ \\AdivgY?idAdtds-
10 3« 5« so 

\JU(T(AA\^^^ -ZA\^^^jds+ \\AjU(j—dt + \\AjuJ^^^dtds. 
s s 0 ^^ s 0 

Taking into account that 

S^ \Zjua—dt = ILI(JX{8A)\^^j- \{8A)ju(j—dt, we have 
0 ^t - i' dt 

S,L = SJ + 

T "] 

I fdivKgrad/l(^^)J^ m-
T 

+ 
5Lo 

dA^ 
- \jU(jA(SA)\^^^ds-\- \\M^—(SA)dtds. 

s s 0 ^^ 
The equation for the variable A(x,y,t) in the domain S^ can be given as: 

divgrad/i(x, j ; , 0 •^i^G—-^f^. 
dt 

Here, /^ is a function determined by variation 5J of the objective func­

tional. 

It is necessary to supplement this equation with boundary conditions A-0 

on the part l\ and dXjdn = 0 on the part h of the domain contour. They should 

take into account boundary conditions for functions A and dAjdn . The condi­

tion for variable A at ^ = T is bound to the type of objective functional. 

Outside of the domain 5^, the adjoint variable satisfies the Laplace's equa­

tion divgrad/l = 0. 

If the adjoint function X satisfies this equation's initial and boundary con­

ditions, then we have ^^Z = 0, and fulfillment of equation Sj L = 0 is nec­

essary for observance of optimality conditions. Variation of Eq. (4.12) with 

respect to current density J^^, results in the relationship 
T 

\ \ju/l(x, y, t)SJ^^^ (x, y, t)dtds = 0, 
S 0 

i.e. in the condition X{x,y,t) = 0. As the increment of the functional can be 
r 

presented as /SL{J^^^)^-\\iuX{x,yJ)lsJ^^X^,yj)dtds, then the objective 
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function gradient appears to be equal juA(x,y,t). 

Thus, the optimization problem in a two-dimensional non-stationary elec­
tromagnetic field is reduced to boundary problems for potentials A and A, 
which enables calculating the objective function gradient and constructing an 
iterative process for search of the optimum function J^^^(x,y,t). 

On the first step we solve the equation for potential ^ at a given initial 
function J^^^(x,y,t) to find the funcfion A{x,y,t), and further the adjoint 
function X{x,y,t), which satisfies the above equations as well as the bound­
ary and initial conditions. Using the objective function gradient found at so­
lution of the adjoint problem, we can apply known gradient methods for 
searchof current density J^^Xx^yJ) optimum distribution. 

It should be noted that a constraint J^^^(x,y,t)<J^^ can be imposed on 
the desired current density, which means that for a given diameter of the wire 
in the winding located in the domain S., the winding current / < i^^. An­
other possible constraint is the condition J^{x,yj) <K in points of the con­
ducting body, which means limitation of instant power of losses in connec­
tion with infeasibility of local overheating of the material. 
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Chapter 5. Solving Practical Inverse Problems 

5.1 Search for lumped parameters of equivalent circuits in 
transmission lines 

In this section we shall consider problems of synthesis of equivalent circuits 
of transmission lines. As it was already noted repeatedly, synthesis of an 
equivalent circuit is a typical inverse problem of circuit theory. 

The problem of synthesis consists of two subproblems: synthesis of the 
equivalent circuit structure and synthesis of its parameters. Synthesis of 
structures of lines' equivalent circuits is fairly well-known. Therefore, classi­
cal results will be considered rather briefly, however the main focus will be 
given to newly obtained equivalent circuits. In this section we shall consider 
synthesis in the time domain. The purpose of synthesis of equivalent circuits 
(their optimization) consists in the definition of such parameters of equivalent 
circuits, at which their transient responses approximate transient responses of 
a line in the best way. 

Processes in transmission lines are described by the system of telegra­
pher's equations. For operator representation of vectors of currents I(p,x) and 
voltages U(p,x) at zero input conditions, they are given by [1,2]: 

f—=Z{p)I{p,x) 
^^ , (5.1) 

dl{p,x) 
dx 

-=Y(p}U(p,x) 

where Z(/?) and Y(p) are matrixes of parameters. Problems of propagation of 
electromagnetic waves in systems of horizontal wires, coaxial cables, trans­
former windings or in cylindrical screens can be reduced to telegraph-type 
equations [1]. 

Classical open-chain ladder-type equivalent circuits of lines are derived by 
conversion from partial derivatives to finite differences in Eqs. (5.1): 
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df(x) 
dx Ax 

The system of difference equations together with boundary conditions 
forms the difference scheme. Difference schemes corresponding to T- or U-
shaped n-link equivalent circuits are graphically represented in Fig. 5.1. 
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In 
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'lH^ 1 

UnJ 

^ J 
Fig. 5.1. Stencils for deriving of n-link T-shaped a) and U-shaped b) equivalent cir­

cuits 

Let's consider in more detail the process of construction of an equivalent 
circuit with use of the stencil represented in Fig. 5.1a. We divide the line of 
length / into n equal sections each of length Ax, and then substitute partial de­
rivatives in Eq. (5.1) by finite differences: 

h(p)-I,,,(p)=-AxY(p)U,(pl k = hn, 

U,,,(p)-U,Xp)=-AxZ(p)I,{pl v = U-l 
Ax 

U,(p)-U,(p)=-—Z(p)I,(pl 
Ax 

U^,,{p)-USp)=~Z{p)I^{p), 

(5.2) 

We shall supplement Eq. (5.2) with boundary conditions UQ = U(0,p) and 
^̂ +1 - ^(^' P)' Then Eq, (5.2) will correspond to the n-link equivalent circuit 
made of T-shaped links. Each link of the equivalent circuit has the form 
shown in Fig. 5.2a. This equivalent circuit of the line is named as T-shaped. 
Similarly, the stencil shown in Fig. 5.1b can be applied to finite-difference 
approximation of derivatives in Eq. (5.1). The set of equations similar to Eq. 
(5.2) will have the following form: 
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U,{p)-U,_,{p)=-hxZ{p)I,{p\ k=ln, 

I,,,(p)-lAp)=-AxY(p)U,{p), v: 

I,(p)-Io(p)=-Y^(p)Uo(p\ 

i„.Ap)-f„(p)--
Ax 

•\,n-l, 

y(p)u,(p). 

(5.3) 

Equation (5.3) will be supplemented with boundary conditions 
IQ = 1(0, p) and /^^j = / ( / , p). Then the set of Eq. (5.3) will correspond to 

the n-link equivalent circuit made of U-shaped links. Each link of the equiva­
lent circuit has the form shown in a Fig. 5.2b. Further, this equivalent circuit 
of the line is named as U-shaped. 

Z(p)Axl2 Z{p)Axl2 

U^) 
3^ 

//C*l(P) 

kip) k 
0 > 

Z{p)Ax 
/(+1 

Y{p)Ax m) 
I 

y(pMx/2 

4^1(p) 

rr 
U-
0 * 

y{p)Axi2 

I 
t/«.,(p) 

y 
Fig. 5.2. Links of T-shaped a) and U-shaped b) equivalent circuits of a line 

Let's compare the processes in a line and in its open-chain equivalent circuit. 
For this purpose we shall consider transient at energizing the T-shaped m-link 
equivalent circuit of the line with a constant voltage UQ. The equivalent circuit 
models reproduce processes in a lossless line of length / with linear parameters 

L ! and C^ loaded on wave impedance z^ = yJL'jC. In this case, we have 

Z{p) = pL\ Y(p) = pC\ This problem has an analytical solution. The load 

current of an m-link T-shaped equivalent circuit is given by: 

7 "̂  
^w 0 

where co^^ljyjLfi] is the link cutoff frequency, L̂ . =L'A//2 and 
Q, = CM are the link inductance and capacitance, accordingly, and Jim is a 
Bessel function of the first kind of the second order, 2m. This expression for 
the current allows us to write down the voltage transfer characteristic kuit) 
for the line equivalent circuit as: 
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k,{t)^^^^ = CO, \J^„{CO,t) dt. 

Dependences of ku(t) for equivalent circuits of lines containing three 
(curve 2) and eight (curve 3) T-shaped links are shown in Fig. 5.3. The step 
curve 1 in Fig. 5.3 represents the dependence kyit) for a lossless line. The 
transmission factor on voltage is equal to zero up to the moment 

tQ= — = I^L!C , equal to the wave travel time along the line (v is the velocity 
V 

of wave propagation along the line). 
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Fig. 5.3. Transfer characteristics of a line (1), and its 3-link (2) and 8-link (3) equiva­
lent circuits 

Comparison of curves in Fig. 5.3 shows that equivalent circuits reproduce 
processes in a real line with a large error. Modeling of processes in the line 
by means of equivalent circuits shows weakly damped oscillations that are 
not present in the real transient. It can be shown that increasing the number of 
equivalent circuit links does not result in diminution of the amplitude of these 
oscillations, but only increases their frequency. The first maximum of oscilla­
tions is about 27% of the established value. Such errors of modeling are in­
admissible in the majority of electrotechnical calculations. 

Examination of non-distorting lines closer to practice, as well as lines with fre­
quency-dependent linear parameters, shows that oscillations introduced by 
equivalent circuits are damped. Therefore their equivalent circuit will show repro­
duction of real transients with not so large error. Nevertheless, the problem of syn­
thesis of an equivalent circuit reproducing the properties of a lossless line in the 
best way represents fundamental interest. Equivalent circuits obtained when solv­
ing this problem will correspond to its solution for the worst case. Therefore, they 
will allow modeling of processes in lines with losses with a greater accuracy. 

Let's consider an approach to optimization of lines' equivalent circuits based 
on improvement of finite-difference approximation of Eq. (5.1). It can be 
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shown [4,5,6], that the approximation error of derivatives in Eq. (5.1) differs 
for the internal, and extreme points of the stencil. For internal points of both 
stencils shown in Fig. 5.1, the principal member of the error is given by 

r-. As for extreme points of stencils, the principal member of error on 

Axd^U 
variable / for the stencil shown in Fie. 5.1a is :r, and for the stencil 

4 dx^ 

shown in Fig. 5.1b it is ——-r- on variable U. This imperfection of classical 
4 dx' 

approximation of derivatives on x in Eq. (5.1) can be overcome by use of three-
point approximation for extreme points of stencils. 

Let's show the way of deriving the difference equation for the extreme left 
point of the stencil shown in Fig. 5.1a. We search the expression for the de­
rivative in the following form: 

dU(x,p) 

dx Ax (5.4) 

We employ the Maclaurin formula to represent functions U\{p) and U2ip) 
in the point x=0 

U,{p) = U,{p) + 
Ax dU{x, p) 

1 
+ -

6 

2 dx 

(l^^ d^U{x,p) 

2 

\(^x'\d-U{x,p) 

,"^21 2 J dx"-

dx^ 

U,(p)^U,(p) + -

+ 0(Ax'), 

3Ax dUix,p) 

dx 

\f3Axrd^U{x,p) 

=0 2^ 2 ; dx^ 

1 
+ -

6 

3A:v: 3 ^ 3 dV(x,p) 

V ^ y dx' 
+ 0{Ax''). 

After substitution of the expressions for t/i(p) and Uzip) in Eq. (5.4), we 
come to the following set of equations for definition OQ, a\ and cci: 

a^-^-a^^-a^- 0, 

a^ + 3^2 = 2, 

6̂ 1 + 9^2 = 0, 

from which 

ciro=~8/3, 

^ = 3 , 

6̂ 2 = - 1 / 3 . 
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Substitution of expressions for OQ, Oi, ai in Eq. (5.4), after some transfor­
mations gives: 

dU(x,p) 
dx 

S{U,(p)-U,(p))-{U,(p)-U,(p)) 

SAt 
•O(AX'). (5.5) 

The principal member of error ;- has the infinitesimal or-

derO(Ax;').It means that the relationship (5.5) ensures the same accuracy of 

approximation in the extreme point of the stencil, as in its internal points. 
Similar approximation of the derivative can be fulfilled for the extreme 

right point of the stencil. Using thus found expressions for derivatives in ex­
treme points of the stencil, we have the following, instead of Eq. (5.2): 

h(p)-h.,(p)=-^Y(p)U,(pX k=U, 

U,Jp)-U,(p)^-AxZ(p)I^(pX v=U-l 

|(^//7)-(7o(/7))~(f/,(/7)-^,(/7))=-AxZ(/7)/o(/7), 

|(t/„,,(/7)-t/„(/7))-fl(^„(p)-[/,.,(/7))=-A^(p)/,(/7). 

(5.6) 

Sets of Eqs. (5.2) and (5.6) differ only by the form of the last two equa­
tions. Therefore, modifications in equivalent circuits will occur only in ex­
treme links. So the extreme left link takes the form shown in Fig. 5.4 when 
using Eq. (5.6). 

3Z(PMX/8 (L/,-^)/3 Z{p)Axl2 Z{p)Axl2 

/1(p) 

^(p) 

I 

I 

w 
/ ( P M X m 

T 

I 
y{pw 

Fig. 5.4. The equivalent circuit extreme left link according to equations (5.6) 

A set of equations similar to Eqs. (5,2) and (5.6) can also be obtained for 
the stencil shown in Fig. 5.1b. The corresponding equivalent circuit consists 
of U-shaped links, and extreme links also contain controlled sources (in this 
case - current sources). 
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The transient characteristic ku(t) of a lossless line loaded on its wave im­
pedance is shown in Fig. 5,5. We compare this transient characteristic with 
characteristics of two five-link, T-shaped equivalent circuits. One of the 
equivalent circuits is the traditional one corresponding to Eq. (5.2). The other 
for the improved circuit with controlled sources in extreme links corresponds 
to Eqs. (5.6). 
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Fig. 5,5. Dependences ku(t) for:l- line, 2- equivalent circuit corresponding to 
Eqs. (5.2), 3- equivalent circuit corresponding to Eqs. (5.6) 

As may be seen from Fig. 5.5, line transient characteristic's representation 
by the transient characteristic of the equivalent circuit with controlled sources 
is better in comparison with the traditional circuit. It shows diminution of 
magnitudes of extremums of oscillations with increased damping of oscilla­
tions and a steeper pulse front. Modifications have concerned only extreme 
links of the equivalent circuit. Therefore, equivalent circuits with controlled 
sources can be used for any number of links. It must be noted as well that 
factors 3/8 at extreme resistances Z(p)Ax 1/3 next to controlled sources in ex­
treme links can be subject to further optimization. 

Another concept of line equivalent circuit synthesis will be discussed fur­
ther. Let the modeled line be divided into unequal sections, each modeled by 

a single T-shaped link. We consider lengths of the line sections \ , k = l,m 

modeled by a link as parameters of optimization. At that, we assume that the 
following conditions are satisfied: 

k=m 

- the sum of lengths of all sections is equal to the line length - ^ \ - X\ 
k=\ 

- sections arranged symmetrically with respect to the middle of the line are 
have identical lengths that necessary for the equivalent circuit symmetry 

\=yi^-k+i, k=l,n m = 2n + l, or m = 2/i; and 
- T-shaped links of the equivalent circuit are symmetrical. 
Results derived below can be used for lines modeled by equivalent circuits 

consisting of U-shaped links as well. 
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The inductance L̂  = K^L!\I2(, and capacitance Ĉ  = K^C^ /i of each 

link of the equivalent circuit are proportional to the length \ of the modeled 

line section. Here, K\ and K2 are constants depending on the line geometry. 
We can assume constants K\L and KiC to be equal to 1 without belittling the 
generality of the further results, which will correspond to a line with a linear 
inductance L=l/A î H/m and linear capacitance C^MKiVIm, Let the line 
length l-\ m, then the line inductance L and the capacitance C will also be 
equal to 1. Thus, a wave travel time on this line will be f̂  = 1/v =1 s, where 

V = \lyJL'C = 1 m/s is the velocity of wave propagation along the line. 
Let's change over to dimensionless variables. We shall introduce dimen-

2 
sionless lengths of links ^̂  = — ^ , k-\,n. For dimensionless quantities the 

\/m 
equality ^^ = 1 means that the length of the k-ih link is equal to the length of 
links in the case of dividing the line into equal sections. After normalization, 

the vector of optimization parameters becomes l = (^p^2>'"^«) > where 

n = entier[(m — \)/2) owing to the equivalent circuit symmetry. 

We shall consider the module of difference of the lossless line's character­
istic ku(t)=\(t-l/v) and the transient characteristic kuc(t) of its equivalent cir­
cuit as the minimized functional F: 

1 n I 
F{\)=— JI kyc(t,l) -\{t - 1/v) I dt —^ min . (5.7) 

Integration of upper limit T needs to be chosen equal to 3to/v=3, which cor­
responds to the moment of arrival of the first reflected wave to the line end. 

The reason for choice of such a statement of this problem is that compari­
son of a lossless line and its equivalent circuit most clearly shows the dis­
crepancy between processes in a line and in its equivalent circuit. Dimen­
sionless values of length and linear parameters of the line can be converted to 
real parameters by multiplication to corresponding factors. Using unit line 
parameters and 1(0 as input action ensures simplicity of calculation and ob­
viousness of results. It should be noted that problems of connection of a line 
closed on its wave impedance Zw (or close to it) are typical for electric trans­
mission and communication lines. 

For calculation of each value of the functional F it is necessary to solve the 
following set of condition equations: 
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dh _^k-^k^.\ 

dUpJp-i-ip 

, k=0,m u,=U,, A)=a L^,,=0, 

dt C„ 
p~\,m 

(5.8) 

Kcit) = Lit)zju„ 

for the equivalent circuit show^n in Fig. 5.6 at zero entry conditions. Parame­
ters of the equivalent circuit Li...L^ and Ci...C^ are determined by elements 
of the vector 1. Solution of Eq. (5.8) can be carried out by any numerical-
analytical or numerical method, e.g. by the Runge-Kutta method. The integral 
in Eq. (5.7) can be calculated, for example, by the method of trapezoids. 

Fig. 5.6. The equivalent circuit of forming line 

To minimize the functional F at rather small number of variables {n<5) 
Powell's method, using information on gradient F for advancement to the 
minimum, has been applied. For narrowing the search area of a minimum 
with a view of prevention of process convergence to local minima of the 
functional, which correspond to optimal equivalent circuits with smaller 

numbers of links, restrictions given by 0.5 <^^ <1.5, k=\,n have been 

superimposed on optimization variables. This restriction was ensured by add­
ing to the functional of penalty functions in the form of: 

0, under 0.5 < ^̂  < 1.5, 

<Pk(^k) = ^. >1.5, /: = l,n, 

^ , <0.5. 

\-(£,-l,5)\ under 

[A, ( ^ , - 0 5 ) ' , under 

Weight factors A/ are positive and have been chosen empirically from pre­
vious experience of calculations. In view of this, at use of the gradient 
method the minimized functional becomes 

F(})=^j\k,,(t,\)-Kt-l/v)\dt+Y<p,{i,)- -^ nun. (5.9) 
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Results of solution of the problem (5.9) are listed in Table 5.1, where op­
timum partitions of the line to T-shaped links for m=3-8 are shown. Effec­
tiveness of thus obtained solutions is illustrated in Table 5.2. Data in this ta­
ble show that equivalent circuits obtained by solution of the problem (5.9) 
reproduce processes in a line better than traditional ones. Indeed, relative 
diminution of the first maximum is 18-33 % and there are practically no sub­
sequent extremums. 

Table 5.1, Relative diminution of extremums obtained as the result of solution of the 
problem (5.9) for m=3-8 

m 
3 
4 
5 
6 
7 
8 

jst 

0.852 
0.830 
0.787 
0.795 
0.814 
0.811 

^nd 

1.296 
1.170 
1.215 
1.246 
1.291 
1.333 

3rd 

0.852 
1.170 
0.996 
0.959 
0.957 
0.974 

4th 

-
0.870 
1.125 
0.959 
0.876 
0.882 

5̂ ^ 
-
-

0.787 
1.246 
0.957 
0.882 

" " 6 ^ ^ 
-
-
-

0.795 
1.291 
0.974 

yth 

-
-
-
-

0.814 
1.333 

gtn 

-
-
-
-
-

0.811 

Table 5.2. Relative diminution of the extremums of transient characteristics (see 
Fig. 5.7) 

m 

3 
4 
5 
6 
7 

1 8 

ord 1 

{b,-a,)/b, 1 
% 1 

33.7 
23.1 
22.4 
21.5 
17.9 
18.5 

95.4 
59.6 
61.4 
60.4 
60.6 
59.3 

63.8 1 
72.1 
96.0 
97.6 
98.5 
99.2 1 
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Fig. 5.7. Comparison of transient characteristics of the line (1), accepted equivalent 
circuit (2) and advanced equivalent circuit (3) 
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When increasing the number of variables n, the use of gradient methods in 
synthesis problems rapidly becomes ineffective. Therefore, at n>5 it was ex­
pedient to use the genetic algorithm. Restrictions on optimization parameters 

(0.5<£^<1.5, k = \,n) have been maintained. The size of the population 

has been assumed to be equal to 150n, and the number of parents - to 20n. 
Figure 5.8 shows comparison of transient characteristics of a line (curve 1) 

and T-shaped equivalent circuits for n=lO (Fig. 5.8aj and for n=\5 
(Fig. 5.8bj. Curve 2 defines the traditional equivalent circuit transient charac­
teristic (equal apportionment of the line on sections), and curve 3 - transient 
characteristic of the equivalent circuit obtained at minimization of Eq. (5.9) 
by means of genetic algorithm. 

Figure 5.8a,b also show relative lengths of links ^^, k =l,n that are the 
solution of the problem (5.9). One must pay attention to the fact that the func­
tional minimum value is reached at oscillating distribution of lengths of links 
relative to their average value. It is practically impossible to choose entry 
conditions for the gradient method leading to such solution without prior in­
formation on the character of this distribution. Therefore, for n>5 even the 
best solutions obtained by the gradient method were always essentially worse 
than solutions obtained by means of the genetic algorithm. Moreover, solu­
tion of the problem by the gradient method requires much more computa­
tional time in comparison with the evolutionary method. 

It should be also noted that though calculations were carried out for a loss­
less line and at I7o=const, obtained optimum partitions of the line into sec­
tions will remain optimal for undistorting lines with losses. They will be 
close to optimum in case of lines with monotone dependence of parameters 
on frequency, as well as for arbitrary voltages of the source. 
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Fig. 5.8, Transient characteristics of the line (1), accepted equivalent circuit (2) and 
advanced equivalent circuit (3) and relative lengths of links ^^, k=\,n, obtained 

from solution of the problem (5.9) for n=10 a) and n=15 b) 
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5.2 Optimization of forming lines 

In this section we shall consider parametrical synthesis of optimum artificial 
forming lines. In practice, forming circuits (Fig. 5.9a) are often applied for 
shaping of voltage or current impulses of prescribed forms on electrophysical 
loads. They store electromagnetic energy in condensers and inductance coils 
at the stage of charging of the accumulating device, then return it into the 
load at discharge. Energy is slowly transferred into the accumulator during 
the charging period (the switch is in position 1), and then the reserved energy 
is transmitted into the load Ri at discharge (the switch is in position 2). At 
that, the shape of current and voltage impulses in the load do not depend on 
the strength or stability of the source UQ. It is defined only by parameters of 
the forming circuit. This allows forming power pulses of highly stable shape 
and duration in the load. 

A line of length i with characteristic impedance Zw, equal to the load resis­
tance, can be used as a forming circuit. In this case a rectangular impulse 
(Fig. 5.9c, curve 1) with amplitude UL=UQI2 and duration 

r. =2— = 2i'yjL'C' equal to wave double travel time along the line is 
V 

formed in the load at discharge. A long line is an ideal forming device from 
the point of view of the impulse shape. However, use of lines when designing 
sources of high-power impulses in practice results in expensive structures of 
large dimension. Therefore, accumulating devices' modeling properties of 
lines, namely artificial forming lines, are created using reactive elements 
(Fig. 5.9b) to generate high-power impulses. In practice, these lines consist of 
high-voltage impulse condensers and connecting buses that act as inductances. 
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Fig. 5.9. Forming circuit a), simplified diagram of a forming circuit b), and voltage 
impulse formed on the load by a five-link artificial forming line consisting of identi­

cal links c) 
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Artificial forming lines are extensively used as impulse power supplies for 
lasers and in other electrophysical installations. Thus, the optimum form of 
voltage or current impulse on the load is a priory known to the researcher. 
Further, we assume that a voltage impulse of rectangular form is optimum, if 
not specified otherwise. Obtained results will be valid for other shapes of im­
pulses as well. The problem of parametrical synthesis of these particular ac­
cumulators will be discussed below. 

Assume the artificial forming line (Fig. 5.9b) consists of m identical links. 
At a given load resistance Ru and impulse duration limp, the capacitance and 
inductance of a link can be found from the following relationships: 

C.=- ^0 
_ ^imp^L 

2m/?,, 2m 
Impulse Uj^ (t) formed by a five-link circuit (or five-link artificial forming 

line) in the load RL=ZW at Uo=\, is shown in Fig. 5.9c. One can easily see that a 
five-link line generates impulses considerably differently from the rectangular 
shape. Therefore, artificial lines consisting of identical links are rarely used for 
creating high-power forming lines. To improve the shape of impulse, parame­
ters of links should be optimized. Before proceeding to the optimization prob­
lem, we shall consider the equivalent circuit of a line in more detail. It will al­
low us to find results of optimization considerably close to practical objectives. 

A rough diagram of an artificial forming line is shown in Fig. 5.10a. The 
circuit diagram shown in Fig. 5.9b does not reflect in sufficient precision all 
properties of high-voltage impulse condensers modeled by capacitances 
Ci, ..., C^. As experience demonstrates, when modeling impulse condensers 
their inductance and losses should be taken into account. In view of the afore­
said, the artificial line circuit diagram will become the equivalent circuit, as 
shown in Fig. 5.10b. 

Fig. 5.10. 

Diagram of artificial forming line. Circuit diagram of artificial forming line. 
1 - connection of condenser sections in a cell RL - load resistance 
2 - a cell of condensers C] ,...,€„,- condenser capacitances 
3 - connecting buses; 4 - line terminal lead L\ ,...,Lm- inductances of connecting buses 
5 - semiconductor switch Lc.i,..., Lc,m - transverse inductances of condensers 
6 - load, He - number of sections in a cell R\, ...,R,„- resistors corresponding to losses in condensers 
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The transverse inductance of series connected cells (vertical packages of 
sections) Lc,\ ... Lc,m depends on sizes, design and shape of sections and sec­
tion terminals and methods used for connecting sections in a package. It can 
be shown [7,8] that the inductance of connecting buses and the transverse in­
ductance of condensers are connected by the following relation: 

k^=-^ = const(n), (5.10) 

where the coefficient /r^e [0.25,1]. The active resistance R^ of the n-ih sec­

tion can be calculated by the cell capacitance as follows: 

/ . 
R = 

_ pC^d i n^ 

3e df V 
(5.11) 

Here p is the specific resistance of the foil material, £ is permittivity of the 
dielectric located between the foil sheets, df and d are the thicknesses of the 
foil and the dielectric. Proceeding from dimensions and materials used in real 
forming lines design, the coefficient of calculation of the active resistance has 
been assumed R^ Ohm=PCn [//F] (P=55 Ohm/juF). 

At the moment of switching on the load (see Fig. 5.10a), condensers of the 
artificial forming line are charged up to the working voltage UQ. However it 
is more convenient to begin the transient calculation at zero initial conditions. 
Therefore, to calculate the process of line discharge on the load resistance RL, 
it has been substituted by an equivalent process of the line connection to the 
source UQ with internal resistance RL. 

When optimizing an m-link artificial line, the total number of optimization 
variables becomes 2m in view of relationships (5.10) and (5,11). We shall 

carry out optimization on variables L̂  and Q, k = l,m . Then, the statement 
of optimization problem is given by: 

F(L,C)=1 J \u{t,UC)-l{t)+\{t-^ dt ;,,e),,, ) min, (5.12) 

where L=(Li, .,., L )̂"̂ , C=(Ci, ..., Cmf are vectors of optimization variables 
and Timp is the given duration of impulse. The upper limit of integration in 
Eq. (5.12) is assumed to be T=2tintp. In the beginning we shall seek the solu-
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tion of Eq. (5.12) using the gradient method, and then by the genetic algo­
rithm. 

Use of the gradient method requires establishing constraints on the search 
domain for a minimum value of G and applying a special algorithm for 
choice of initial conditions. Domain G is given by the following inequalities: 

- Lk>0 and Q>0 k = \,m\ 

- Lk>Lk.u Ck^k-u k = 2,m, that excludes large numbers of local minima 
corresponding to circuits with the number of links smaller than m; 

1 L\^' — l _ ^ C f ^ " > 
^<q, —<-~^<q, k-\,m, that sets constraints on changing of 

link parameters in relation to their initial approximations. Here, ll^\ C[^^ 

are initial approximations of the /:-th link parameters, ll^\ C[^^ are values 

of the k-ih link parameters at they-th iteration of solution, and p and q are a 
priori given magnitudes of maximum deviations. Experience in solution of 
Eq. (5.12) has shown that p,qe [5, 20]. 

Despite rather stiff constraints on the search domain for a minimum, solu­
tion of Eq. (5.12) by the gradient method requires a special algorithm defin­
ing the initial approximation. Without this algorithm described in [8], only 
local minima that are far away from the global minimum of functional F may 
be calculated from Eq. (5.12). As our calculations have shown, application of 
the gradient method appears to be effective only for m<9. 

Values of parameters of links for lines with the number of links from 3 up 
to 8, resulting from solution of problem (5.12) by the gradient method, are 
listed in Tables 5.3 and 5.4. In both tables, Co and LQ are respectively the ca­
pacitance and inductance of a forming line with identical parameters of links, 
and the coefficient kp^O, Figure 5.11 shows the voltage impulse in the load, 
generated by a 5-link homogeneous (curve 1) and optimized (curve 2) form­
ing lines. Apparently, optimization of line parameters has resulted in signifi­
cant improvement of the impulse shape. 

Table 5.3. Values Q/Q for optimal forming lines 

1 ^ 1 
2 
3 
4 
5 
6 
7 
8 

1 CJ/CQ 

c^c. 
0.242 
0.253 
0.462 

0.957 

C/Co 
0.177 
0.177 
0.214 
0.402 

0.969 

C/Co 
0.139 
0.139 
0.151 
0.191 
0.359 

0.978 

C/Co 
0.114 
0.114 
0.118 
0.135 
0.172 
0.328 

0.982 

C/Co 
0.097 
0.097 
0.098 
0.107 
0.124 
0.158 
0.304 

0.984 

C/Co 1 
0.085 
0.085 
0.085 
0.090 
0.099 
0.114 
0.147 
0.283 
0.987 1 
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Table 5.4. Values L /̂LQ for optimal forming lines 

1 ^ 1 
2 
3 
4 
5 
6 
7 
8 

1 VA) 

L/A) 
0.232 
0.234 
0.306 

0.772 

WU, 
0.172 
0.173 
0.188 
0.264 

0.796 

Lj/Lo 

0.137 
0.137 
0.141 
0.166 
0.235 

0.816 

WLo 
0.113 
0.114 
0.114 
0.125 
0.149 
0.214 

0.828 

WLo 
0.097 
0.097 
0.097 
0.102 
0.114 
0.137 
0.197 

0.841 

Li/L^ 1 
0.084 1 
0.084 
0.084 
0.087 
0.094 
0.105 
0.127 
0.184 
0848 1 

Analysis of data in Tables 2 and 3 shows that values of cell capacitances 
and inductances increase with rise of the cell number, with a sharp increase 
of Ck and Lk values for the last cells of the line. The gradient method does not 
allow finding of satisfactory solutions for Eq, (5.12), for which inequalities 

Lk>Lk.u Ck^k-u k = 2,m are not valid. They can, however, be found by 
means of the genetic algorithm applied for problems discussed below. 

Fig. 5.11. Voltage impulse on the load formed by homogeneous (1) and optimized 
(2) lines at m=5 

Also, one can easily see that for circuits with a number of cells m>5, pa­
rameters of several first cells are practically equal. Hence, the impulse shape 
is improved (in comparison with the impulse shape in a homogeneous line) 
only by the last 3-4 cells. Therefore, the inhomogeneous line part located 
near the load can consist of identical cells. For the most part, calculations will 
be conducted for five-link lines that are more frequently used in practice. 

As noted above, the coefficient kp changes within the interval [0.25,1] de­
pending on the line design. Tables 5.5 and 5.6 show how parameters of cells 
in a five-link forming line vary depending on kp value. Obviously, capacitan­
ces and inductances of sections change noticeably for various values of factor 
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kp. This circumstance is rather important when designing and manufacturing 
forming lines. 

Table 5.5. Values Q for optimum forming lines at various kp. 

v~ 
0 

1/4 

1/3 

1/2 

1 

C^ 

0.693 

0.506 

0.476 

0.421 

0.323 

C2 

0.694 

0.507 

0.477 

0.435 

0.367 

C3 

0.754 

0.624 

0.598 

0.555 

0.480 

C4 

0.954 

0.895 

0.878 

0.849 

0.788 

^̂  1 
1.794 

2.381 

2.495 

2.665 

2.980 

Table 5.6. Values L^ for optimum forming lines at various kp 

1 V 
0 

1/4 

1/3 

1/2 

1 

Lx 

0.683 

0.488 

0.450 

0.397 

0.310 

Li 

0.686 

0.489 

0.451 

0.397 

0.310 

L, 

0.704 

0.547 

0.519 

0.477 

0.394 

U 
0.830 

0.705 

0.678 

0.627 

0.523 

~^' 1 
1.177 

1.132 

1.131 

1.027 

0.848 

The load of the lines has been assumed to be linear, active and constant in 
time in the problem under consideration. However, characteristics of real loads 
of high-power forming lines (e.g. in the case of volume discharge for gas laser 
pumping) can be much more complex. Real loads can be nonlinear or variable 
in time, with inductive or capacitive properties. Besides the load properties, 
characteristics of the switch may influence the shape of impulse as well. All 
these features can be approximated in functional (5.12) during optimization. 
With the above-described approach, the line optimization will not change. 

In a number of problems impulse shapes distinct from rectangular are re­
quired. The above-described approach for optimization of parameters of in-
homogeneous forming lines thus remains unchanged. Let the desired shape of 
impulse be given by the following relation: 

- ^ [0, npH r > r , . 
(5.13) 

As the number m of optimized line links is equal to 10, a functional similar 
to Eq. (5.12) was minimized by the genetic method. Impulses obtained as a 



268 Inverse Problems in Electric Circuits and Electromagnetics 

result of optimization of forming line for ramp-up (a=OA, J3=0.2/Timp) and 
ramp-down (o^0.6, P=-Q2/Timp) ideal impulses are shown in Fig, 5.12. 

a b 

o.7,a/i/c 

0.6 

0.5|-

0.41 
0.3 [ 

0.2 

0.1 

0.0 

-0.1 tlT^ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Fig. 5.12. Voltage impulses of 10-link forming line at the optimum impulse given by 
the expression (5.13) at ̂ 0 - a), and y^O - b) 

In some areas of high-power impulse engineering, forming of impulses 
with maximum steep fronts is required. As a result, the following problem of 
optimization of parameters of inhomogeneous forming lines can be formu­
lated: to obtain impulses with as steep as possible fronts on the load of an in-
homogeneous line, at the expense of some deterioration of the impulse shape 
at the top and droop of the impulse. This problem can be solved by means of 
a time-dependent weight factor introduced under the sign of integral in ex­
pression (5.12), and given by: 

K{t)= ^ -, 

Here, the factor A defines the degree of influence of the instantaneous 
shaping the impulse has on the load. Factor A has been assumed equal to 30. 
Constraints on positivity of parameters were taken into account by the intro­
duction of penal functions in the functional. Then the statement of optimiza­
tion problem becomes: 

F(L,C) = - \K{t)\u,{uUC)-U,^^{t)\dt + Y.'Pi L,C -̂  mm. 

Our calculations have shown that an increase of front steepness can be 
achieved only for circuits with a small number of cells. Thus, one can con­
clude that increasing the steepness of the impulse front is possible only by in­
creasing the number of cells in the line. 

So-called double forming lines frequently fmd application in practice. The 
diagram of a double forming line, consisting of two identical lines, is shown in 
Fig. 5.13a. Both lines are charged up to voltage f/o (the switch is in position 1). 
When putting the switch in position 2, a rectangular impulse is formed in the ac-
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tive load equal to double wave impedance of lines. Its duration is 2r, where ris 
the wave travel time along one of the lines. Diagrams of voltage distribution 
along the lines in various instants of time are shown in Fig. 5.13b. Double form­
ing lines allow creating impulses of amplitude UQ on the load, that is with ampli­
tude equal to charge voltage of condensers. This is an important advantage. 

RL=2Z„ 

2r<f<3r \Uoi2 \\i\-^ UL=UO 

Uu=0 

Fig. 5,13. Diagram of a double forming line a) and voltage distributions along the 
lines in various instants of time b) 

Double lines can also be created on the basis of artificial lines. In this case, 
each of the lines in the double line design is replaced by a multilink equivalent 
circuit. However, such replacement results in significant deterioration of the 
formed impulse shape that is a basic disadvantage of artificial double forming 
lines. The voltage impulse formed on the load by a double line consisting of two 
five-link circuits with identical links is shown in Fig. 5.14. One can easily see 
that the shape of the impulse is rather far from the ideal. Nevertheless, the possi­
bility to form impulses of twice higher amplitude is the governing factor in prac­
tice. Therefore, optimization of artificial double forming lines' parameters is an 
actual problem. 

1.4 
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Fig. 5.14. Voltage impulse formed by a double artificial line consisting of 2x5 links 
(1), ideal impulse (2) 
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The purpose of optimization of double line parameters consists of creation of 
impulses on the load which minimally differ from the rectangular impulse. We 
shall consider this problem in the statement described in Section 5.1, when lines 
are divided into unequal parts and each of these parts is modeled by a single link. 
Lengths of line parts Â , k=\,n modeled by a single link are considered as pa­
rameters of optimization. The number of links in lines are assumed to be identi­
cal. Let also the short-circuited line (the left one in Fig. 5.13a) be made of U-
shaped links, and the open-ended line (the right one in Fig. 5.13a) of T-shaped 
links. We shall assume, as in Section 5.1, that the length of each line /=1, and lin­
eal parameters areL'=l, C'=l. Then, T=l, Zw=l and RL=2ZW=2. 

For further reasoning it is convenient to change over to the dimensionless 
vector of optimized variables x=(.̂ i, ...,Xnf, where x,^ =\/A)^ 
ŷ  = 1/m, k = l,n, and AQ is the length of a link in case of partitioning lines 
to equal parts. Elements x^ of the vector x from the 1st to (m-l)-th correspond 
to the parts of line 1, and from m-th up to n-th - of line 2 (Fig. 5.13,a). 

The statement of the optimization problem becomes: 

5T 

F{x) = j\u(t,x)-l(t-T)+l(t-3T)\dt—^nun, (5.14) 

where u(t,x) is the load voltage created by the artificial line, r is the wave 
travel time along the line, and \(t-T)-\-l(t-3T) gives the impulse of ideal 
shape (see Fig. 5.14). Parameters of the equivalent circuit (Fig. 5.15) are cal­
culated by xjc, i.e. Lk=xi/m and Ck=Xk/m. 

U2 (U+U,)/2 

CJ2 jci^)/2 2^ C../2L y 
(a.2 +Gn.i)/2 

Fig, 5.15. Artificial double forming line with T-and U-shaped links 

Minimization of Eq. (5.14) has been carried out by means of the genetic 
algorithm. Just as for problems considered in Section 5.1, optimization of a 
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double line by use of the genetic algorithm has allowed finding previously 
unknown solutions. These solutions are characterized by nonmonotonic 
change of Xk at changing of k. Optimization of double lines by the gradient 
method does not give an oscillating solution. At that, solutions with mono-
tonically changing parameters correspond to large values of the functional. 

The problem of parametrical synthesis under consideration has a large 
number of local extremums. However, its solution by the genetic algorithm 
does not require assignment of special initial conditions and/or constraints on 
the search domain for minimum. The important advantage of the genetic al­
gorithm to overcome local extrema allows obtaining the solution at the first 
run of the optimization program. 

As a result, optimum partitions of lines for numbers m of parts from 3 up 
to 10 have been obtained. Values of optimum lengths of parts for double 
forming lines at various m are listed in Table 5.7. For both lines, the counting 
of parts begins from the load resistance to the short-circuited end (for the line 
1), or to the open end (for the line 2). 

Table 5.7. Optimum partition of double forming lines 

1 m 
3 " 
4 
5 
6 
7 
8 
9 

1 10 

•̂ 10 

-
-
-
-
-
-
-

1.330 

^9 

-
-
-
-
-
-

1.244 
0.689 

•̂ 8 

-
-
-
-

1.332 
0.862 
0.836 

X-j 

-
-
-
-

1.143 
0.942 
0.855 
0.696 

Line 1 
xe 

-
-

1.200 
0.816 
0.673 
0.861 
0.788 

Xs 

-
0.981 
0.961 
0.903 
1.201 
0.943 
1.264 

x^ 
-

1.130 
0.855 
0.776 
0.709 
1.528 
0.720 
0.776 

X3 

1.119 
1.043 
1.030 
1.271 
1.406 
0.499 
1.461 
1.355 

X2 

1.153 
1.348 
1.596 
1.328 
1.538 
1.262 
1.582 
1.711 

xi 1 
0.728 1 
0.479 
0.538 
0.464 
0.485 
0.563 
0.472 
0.556 1 

1 m 
"3 
4 
5 
6 
7 
8 
9 

1 10 

•̂ 10 

1.379 
1.072 
1.250 
1.185 
1.000 
1.464 
1.407 
1.421 

X() 

0.657 
1.613 
1.853 
0.489 
1.172 
0.668 
0.918 
0.756 

^8 

0.964 
0.744 
0.438 
0.755 
0.449 
1.220 
0.560 
1.032 

X-j 

0.571 
0.516 
1.925 
2.014 
2.332 
1.525 
1.685 

Line 2 
•̂ 6 

-
0.963 
1.156 
0.661 
0.618 
2.248 
0.498 

Xs 

-
-

0.490 
1.260 
0.458 
0.582 
1.993 

X4 

-
-
-
-

0.444 
0.710 
0.627 
0.629 

X3 

-
-
-
-

0.530 
0.688 
0.615 

Xl 

-
-
-
-
-

0.445 
0.767 

xi 1 
1 
1 
1 
1 1 
1 
1 0.601 1 
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3.0 4.0 

Fig. 5.16. Voltage impulse on the load formed by double lines (1) - ideal impulse, (2) 
- impulse formed by an artificial line with identical length links (m=5), (3) - impulse 

formed by an artificial line partitioned to links of optimum length (m=5) 

The shape of impulse formed on the load by optimum double 2x5-link 
lines is shown in Fig. 5.16. The impulse formed by an artificial line with 
links of identical length is shown in the same figure. One can easily see that 
the impulse produced by the optimized line is much closer to the rectangular 
shape. The front of the impulse, as well as the amplitude of oscillations at its 
top, has decreased. However, the shape of the impulse has appeared neverthe­
less to be far from ideal. 

Let's consider how a changeover from T-and U-shaped links to L-shaped 
links influences the shape of impulse (Fig. 5.17). Thus, both inductances L̂  
and capacitances Q of each link in each line should be optimized. In this 
case, the total number of optimization variables will increase up to 4m. Opti­
mization has been carried out by means of the genetic method. As before, the 
minimized functional was given by Eq. (5.14). 

Results of the solution are shown in Tables 5.8 and 5.9 for 2x3 ... 2x10-
link double forming lines. Numeration of links begins from the load R^, It 
should also be noted that inductances of the first cells of lines {L\ and L^+i) 
are series connected and form a single variable inductance. 

Fig. 5.17. Artificial double forming line with L-shaped links 
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Table 5.8. Values Q for optimum double forming lines with L-shaped links 
Line 1 

1 m 
3 
4 
5 
6 
7 
8 
9 

1 10 

Cio 
-
-
-
-
-
-
-

1.923 

C9 

-
-
-
-
-
-

1.579 
0.698 

c. 
-
-
-
-
-

1.277 
0.704 
0.941 

C-j 

-
-
-
-

1.908 
0.909 
0.921 
0.916 

Ce 
-
-
-

1.839 
0.884 
0.954 
0.927 
0.975 

C5 

-
-

1.685 
0.992 
1.120 
1.024 
1.018 
1.024 

C4 

-
2.530 
0.864 
0.836 
1.305 
0.923 
0.978 
0.898 

C3 

2.879 
0.810 
1.129 
1.161 
0.902 
1.015 
1.045 
1.071 

C2 

0.963 
0.897 
1.065 
1.059 
0.931 
0.955 
0.708 
0.996 

Ci 1 
1.428 
1.439 
1.283 
1.240 
1.278 
1.388 
1.723 
1 587 1 

FM 
3 
4 
5 
6 
7 
8 
9 

1 10 

Ci 
0.850 
0.616 
0.881 
0.819 
0.976 
0.800 
0.973 
0.923 

C2 

1.250 
1.240 
1.115 
1.103 
0.977 
1.154 
1.097 
1.030 

C3 

1.257 
1.471 
0.840 
1.113 
0.990 
1.283 
1.178 
1.035 

C4 

-
1.285 
1.200 
0.800 
1.048 
0.900 
1.064 
0.981 

Line 2 
Cs 
-
-

0.929 
1.330 
0.586 
1.096 
0.907 
1.061 

Ce 
-
-
-

1.048 
1.382 
0.529 
0.990 
0.865 

C7 

-
-
-
-

0.961 
1.292 
0.832 
1.195 

Cg 
-
-
-
-
-

1.146 
1.149 
0.495 

C9 

-
-
-
-
-
-

1.008 
1.276 

Qo 

1 
1 
1 
1 
1 
1 
1 1.315 1 

Table 5.9. Values L^ for optimum double forming lines with L-shaped links 
Line 1 

1 m 
3 
4 
5 
6 
7 
8 
9 

1 10 

Ao 

-
-
-
-
-
-

1.225 

^ 

-
-
-
-
-

1.246 
0.721 

^ 

-
-
-
-

1.200 
0.916 
1.021 

^ 

-
-
-

1.000 
0.936 
0.873 
0.981 

^6 

-
-

1.046 
1.117 
1.070 
0.976 
1.028 

^5 

-
0.962 
1.043 
1.204 
1.006 
0.988 
0.940 

^4 

0.800 
1.082 
0.897 
1.925 
0.881 
0.990 
0.958 

^ 
0.709 
0.953 
1.313 
1.285 
1.063 
1.116 
0.943 
1.119 

^ 
1.255 
1.151 
0.750 
0.558 
0.482 
0.623 
0.980 
0.682 

^rn 
0.698 1 
0.412 
0.685 
0.552 
0.718 
0.714 
0.512 
0.821 1 

Line 2 
1 m 

3 ' 
4 
5 
6 
7 
8 
9 

1 10 

Li 
0.774 
0.802 
0.858 
0.656 
0.856 
0.526 
0.559 
0.659 

L2 

1.488 
1.190 
0.916 
0.974 
0.860 
0.963 
0.678 
0.914 

L3 
0.384 
1.471 
0.853 
1.059 
0.983 
1.093 
1.300 
0.910 

L4 

-
0.351 
1.182 
0.799 
0.939 
1.070 
1.113 
0.906 

L5 

-
-

0.346 
1.535 
1.075 
0.787 
1.031 
0.955 

Le 
-
-
-

0.410 
1.107 
1.223 
0.869 
1.006 

^ 
-
-
-
-

0.485 
1.000 
1.040 
0.876 

h 
-
-
-
-
-

0.410 
0.873 
1.112 

L9 

-
-
-
-
-
-

0.280 
1.283 

^10 

1 
1 
1 
1 
1 
1 
1 0.475 1 
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Voltage impulses formed on the load by optimum 2x5-link double lines 
and a line with links of identical length are shown in Fig. 5.18. 

Analyzing curves in Fig. 5.18, one can draw the following conclusions: 
- the impulse formed by the optimum double line is essentially closer to 

the rectangular shape in comparison with the impulse formed by a homoge­
neous line. Durations of the impulse front and droop, as well as the amplitude 
of oscillations at its top, has decreased. It should also be noted that at m>5 the 
maximum amplitude of oscillations at the impulse top is no more than 3-5% 
of the impulse amplitude; 

- comparing curve 3 in Fig. 5.18 with the similar one obtained by optimi­
zation of partitions' lengths (Fig. 5.16), one can easily see that optimization 
of Lk, and Q (at twice the number of variable parameters) yields noticeably 
better results. Distributions of capacitances and inductances versus k obtained 
by optimization of Lk, and Q cannot be obtained by optimization of lines' 
partition lengths. Thus, optimization of L ,̂ and Q, in despite of much greater 
volume of calculations, yields in fundamentally better results. 

Fig. 5.18. Voltage impulse of the load formed by double lines of double forming 
lines with m=5. (1) - ideal impulse, (2) - impulse formed by an artificial line with 

links of identical length (m=5), (3) - impulse formed by an artificial line partitioned 
to optimum length links (m=5) 

Evaluation of dependences of both total capacitance and total inductance 
of optimum lines on the number of links is of interest. Results are presented 
in Table 5.10. The table shows that for circuits with any number of cells m, 
total capacitances Ci of optimum lines are greater than the total capacitance 
Co=l of the homogeneous line by 10% on average. The total inductance Li is 
less than the total inductance Lo=l of the homogeneous line, also by -10 %. 
Accordingly, wave impedances Zyv of both line 1 and line 2 are -0.9 of the 
homogeneous line wave impedance. 
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Table 5.10. Total capacitances Q, inductances Li, and wave impedance Zw of opti­
mum double forming lines 

m 

3 
4 
5 
6 
7 
8 
9 

1 10 

C 

Line 1 
1.40 
1.42 
1.21 
1.19 
1.19 
1.06 
1.07 
1.10 

z 

Line 2 
1.12 
1.15 
1.00 
1.04 
1.00 
1.03 
1.02 
1.02 

L 

Line 1 
0.87 
0.83 
0.96 
0.90 
0.93 
0.94 
0.94 
0.95 

z 

Line 2 
0.87 
0.95 
0.83 
0.91 
0.88 
0.88 
0.86 
0.91 

z, = Vz7c 1 
Line 1 
0.79 
0.77 
0.89 
0.87 
0.88 
0.94 
0.94 
0.93 

Line 2 1 
0.88 
0.91 
0.91 
0.93 
0.94 
0.93 
0.92 
0.94 1 

In Sections 5.1 and 5.2, we have discussed problems of parametrical syn­
thesis and characteristic problems arising at their solution in time domain. As 
noted in Chapter 1, problems of parametrical synthesis can be stated and 
solved in frequency domain as well. We shall consider these problems in 
such statement in the following section. 

5.3 The problems of synthesis of equivalent electric 
parameters in the frequency domain 

In this section we shall consider problems of calculation of equivalent cir­
cuits' parameters for devices according to their frequency characteristics, or 
problems of parametrical synthesis in frequency domain. At parametrical 
synthesis in frequency domain the minimized functional is created on the ba­
sis of the circuit's frequency characteristics. Deriving of circuits' frequency 
characteristics in whole is easier than deriving their transient responses. 

At first we shall consider a rather simple problem of definition of the 
equivalent circuit modeling the internal resistance of a round cylindrical wire. 
In Sections 5.1 and 5.2, solution of the synthesis problem of substitution of 
long lines in time domain was discussed. In this section, solution of a similar 
problem in the frequency domain is described. Apart from the fact that these 
problems are important by themselves, comparison of synthesis methods in 
different domains is of interest as well. 

Let's define parameters of an equivalent circuit for calculation of internal 
resistance of the round cylindrical wire with frequency characteristics as fol­
lows: 

iTtya^ I,(a^jcojur) 
Z(co) = r(co)+ jx((0)-
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where a, / are the wire radius and length, accordingly, and /o(;c) and I\(x) are 
modified Bessel functions of zero and first order. 

For approximation of the frequency characteristic Z(a?), various equivalent 
circuits can be used. Let's consider the ladder circuit shown in Fig. 5.19, hav-
mg parameters ri. Lm, which are parameters of optimization. 
The frequency characteristic of internal resistance for an aluminum wire with 
length 1 km and radius 5 mm, for which we shall define parameters of 
equivalent circuit, is also shown in Fig, 5.19. 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

I I 1 ^ 

r,xOhm | | | | | \ i ^ \ \ 

1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 f, Hz 

xlO"^ 

Fig. 5,19, Equivalent circuit and frequency characteristics x{o^ and r{oS) of a round 
cylindrical wire 

If we assume that the number of links m in the ladder circuit can be infi­
nite, then values of its parameters are as follows: 

where r̂  = 

n = l,2,3,... 

-, and LQ=^-— are the wire resistance and internal induc-

tance in the case of uniformly distributed current across the wire's cross-
section (direct current). The circuit shown in Fig. 5.19 defines the form 
(structure) of the equivalent circuit. To use equivalent circuits in practice, it is 
desirable to have a small number of links in the equivalent circuit at the given 
approximation error for the frequency characteristic. Therefore, we shall con­
sider this problem for number of links m=4 and m=6. 

Assume parameters of the first link are equal to their values at direct cur­
rent (ri=ro, Li=Lo). Therefore, if the number of links is m, the number of 
modified variables should be n=2(m-l). Then the problem can be formulated 
as follows: 
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^(P) = 
dco 

|l/2 

-^min, (5.15) 

where p=(r2, ..., r^, Z ,̂ .,., L ^ / is the vector of optimization parameters, and 
r^(^,p), x^{(Oy\i) are equivalent active and reactive resistances of the ladder 
circuit. Limits of integral correspond to the frequency interval (0.1-10^) kHz. 
To find a solution, the genetic method is applied. 

Parameters of equivalent circuits with four and six links obtained for result 
of minimization of Eq. (5.15) are shown in Table 5.11. Frequency character­
istics in both cases practically coincide with the characteristics of the wire. 

Table 5.11. Parameters of ladder-type equivalent circuits at m=4 and m=6 

1 Number of 
link 

1 r, Ohm 
UiM 
r, Ohm 

1 UjM 

1 

0.354 
50 
0.354 
50 

2 

1.225 
25.44 
0.250 
98.32 

3 

3.737 
14.40 
2.409 
14.43 

4 

0.048 
7.19 
0.960 
18.89 

5 

-
-
10.70 
15.32 

"6 1 

1 
-
0.0015 
7.66 1 

The form of frequency characteristic Z(ty) defines the choice of limits of 
integral (or the frequency range). In the case of monotonic dependence of 
Z(^), the upper limit of the integral can be defined by means of repeated op­
timization for its several values. However, at nonmonotone dependences of 
frequency characteristics such an approach needs additional substantiations. 

The problem considered above shows that for frequency characteristics of 
a simple form and without extremums, calculation of equivalent circuit pa­
rameters does not represent any difficulties. In practice, however, devices 
quite often have nonmonotone characteristics with numerous extremums. 
Such problems are much more complex than the above-considered one. We 
shall solve one of such problems noting the basic properties of synthesis 
problems in the frequency domain. 

Synthesis of a long line's equivalent circuit shall be carried out, as before, 
on the basis of a lossless line problem, closed on its characteristic wave im­
pedance switching on to a constant voltage source [/o=l(0- The diagram of 
the equivalent circuit is shown in Fig. 5.9b. Voltage gain of such a line in the 
frequency domain is given by: 

/^. = -Ml 
u. 

= e 
-JQ)C^L'C' 
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where U_^ and U_2 are voltages accordingly in the beginning and in the 

end of the line, i is its length, and L' and C are lineal inductance and ca­

pacitance, accordingly. 
The module of voltage gain of a line is equal to 1 and does not depend on 

frequency. On the contrary, the module of voltage gain Kfj^.^((o)=\Ky ^i^(co)\ 

of the multilink equivalent circuit is a strongly varying function of frequency. 
This function for equivalent circuits of a line consisting of m identical T-
shaped links at m=3-6 is shown in Fig. 5.20. One can easily see significant 
distinction of frequency characteristics of a line and its equivalent circuit. 
Transient characteristics of a line and its equivalent circuit similarly differ in 
time domain, as considered above. 

Reasons of these distinctions can be explained as follows. Processes in a 
long line are described by a system of differential equations with partial de­
rivatives that has an infinite spectrum of eigenvalues. Line frequency charac­
teristics (as well as its transient characteristics for time domain) are obtained 
from these equations. Similar characteristics of the equivalent circuit are ob­
tained from the system of Kirchhoff equations. Hence, the equivalent circuit 
spectrum of eigenvalues is finite and only approximates the beginning of ei­
genvalues spectrum of the long line. Therefore, both frequency and transient 
characteristics of a line and its equivalent circuit cannot coincide in the whole 
range of frequencies (or in the whole range of time) at any number of links in 
the equivalent circuit. 
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Fig. 5.20. Frequency characteristics of a line and its equivalent circuit at various m 

Let each link of the equivalent circuit model be a part Ai of the line. The 
line equivalent circuit can be considered a low-pass filter with cutoff fre­
quency (O^ -ij^L^^^C^^ , where Lch-L'-Ai and Cch-C'-Ai are the inductance 
and capacitance of the equivalent circuit link, accordingly. As 

^v.aAoi)- ->0, then harmonics with frequencies exceeding cutoff fre-
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quency are practically zero on the output of the equivalent circuit that does 
not agree with the line frequency characteristic. Besides, the characteristic 
Ky^.^(co) has maximums at axco^, magnitudes of which are proportional to 

6; (see dashed lines in Fig. 5.20), Those harmonics of input action that corre­
spond to maximums of Ky^.^(co) will be amplified on the output. Here, the 

input action amplitude spectrum is Uo=l(t) ^\lco. Therefore, frequencies cor­
responding to these maximums at any m will be present on the output of the 
equivalent circuit that also distinguishes it from a long line. Thus, there is a 
significant distinction between frequency characteristics of a line and its 
equivalent circuit. 

Further, we consider optimization of line equivalent circuits on frequency 
characteristics that will allow us to improve the approximation of the fre­
quency characteristics of the line. 

Assume parameters of optimization are lengths of line parts Xk k = l,m 
that are modeled by one link of equivalent circuit each. Then, the optimiza­
tion problem becomes 

F(l)=-lj|/^,,,,(^,l)- e-^'^'^^ I dco -^ mm. 
(5.16) 

where 1 = (/Ij,..,A^) is the vector of varied variables, and Q. defines the fre­
quency range within which minimizations of functional F are carried out. 

Let's find an expression for Ky^.^((o). For this purpose we shall represent 

the equivalent circuit by a four-terminal network and write down its equa­
tions in A-parameters: 

= 
'A B' 

C D 
'U.2' 

J-2. 

Hi 

L. = x 
U.2 , where K = PjA,((y). 

Here, A,((y) is the matrix of A-paraitieters of the line equivalent circuit i-

th link, which in case of T-shaped links is given by: 

A,(6J) = 
1-

1 
co^L,^,C ^i,ch i,ch' 

1 1 •, 

J(OCi.cl,- 1- | ^ ' A - , c . C , 

A resistance equal to the wave impedance Zw of the initial long line is con­
nected to the output of the equivalent circuit. We assume L=l, C=l, ^=1, then 
Zw=l and 

1 
Ku.Cir(^)--

A + B 
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Let's change over to dimensionless parameters of optimization. Parameters 
L.̂ .̂  and Q̂ ^̂  of the equivalent circuit's i-th link are numerically equal to 

the relative length x- =Ai-/i of the line Ai. part corresponding to this 

link, i.e. L.̂ .̂  = C-^^^ = x^. We shall assume that the line equivalent circuit is 

symmetric, that is x- =x^_^^^, (/ = l,m). It can also easily be shown that 
i=m 

^ ; c . = 1. To decrease calculation errors we shall change-over from relative 
/=i 

lengths of parts x^ to relative deviations Sk=mxk of lengths. So, when ;c^=l/3 
and m=3 (uniform partition of the line into three parts), we have Sk=fnxk=l. 

The main contribution into the value of functional F according to the form 
of integrand (Fig. 5.20) is due to signals of frequencies near the cutoff fre­
quency cOc. Therefore, it is expedient in this problem to changeover from the 
frequency co to dimensionless frequency ^through the following relation: 

_ CO _ coi^JTc _ CO 
(O^ 2m 2m 

In dimensionless variables, the matrix of A-parameters of the T-shaped 
link becomes 

A,(^ ,^ , )= 
2 ; o ^ ; o ^ 3 

where d,^ = CUdf^, 
1 -2^ / J2d-j2d, 

_ j2d, I-2d,' 
Matrix ^̂  can be derived by multiplication of A-parameters' matrixes for 

all links of the circuit. To reduce error, we carry out these multiplications 
analytically. Elements TTJ j [ij = \,2) of the matrix X are given by polyno­
mials with integer-valued coefficients Pi/. 

^u = Pir^''Wk' ' (5.17) 

Expressions for elements of matrix K for the three-link T-shaped circuit 
(in this case there is only one optimized variable d\) are shown in Table 5.12. 
Recall that 1̂,1/̂ 2,2 ~-̂ 2,1̂ 1,2 = 1 • The number of members in polynomials 
7r-j(GJ,d,^) i,j = 1,2 grows rapidly when m increases. So at m=10, the num­
ber of members in ;TI,2 (GJ, dk) is --104. Therefore, a computer program work­
ing with analytical expressions has been used for their calculation. 

In dimensionless variables the optimization problem (5.16) becomes: 
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F{d) = ^]f(tiJ,d)dCU -> mm 

where / ( ^ , d ) = . 
^ 1 1 

A 2 / 

^ u + ^ u 
- cos CU 

J 

K.. 
2 2 -sine?! 

(5.18) 

where d = (Jp ... ,c/^) is the vector of dimensionless variables of optimiza­

tion and ©=Q.lcOc. 

Research shows that the integrand in Eq. (5.18) varies considerably with 
small changes of 4 (see Fig. 5.21), and has high and narrow peaks which 
move along the frequencies' axis when the vector of parameters changes. It 
can be shown that the parametrical synthesis problem under consideration is 
a stiff problem. 

Table 5.12. Expressions for coefficients of matrix Ĵ  at m=3 in the form (5.17) 

^1,1 

PXA 

1 
-18 
108 
-72 
12 

-216 
288 
-120 

16 

^ 
0 
2 
4 
4 
4 
6 
6 
6 
6 

s\ 
0 
0 
1 
2 
3 
3 
4 
5 
6 

^ , 2 

Pxi 
6j 

-54j 
36j 
-24j 
4j 

216j 
-216j 
72j 
-8j 

-216j 
288j 
-120j 

16j 

^ 
1 
3 
3 
3 
3 
5 
5 
5 
5 
7 
7 
7 
7 

^1 

0 
0 
1 
2 
3 
2 
3 
4 
5 
4 
5 
6 
7 

^^j 1 
/^2.1 

6j 
-72j 
48j 
-8j 

216) 
-288j 
120j 
-16j 

ci 
1 
3 
3 
3 
5 
5 
5 
5 

1̂ 1 
0 
1 
2 
3 
2 
3 
4 
5 

At numerical integration of Eq. (5.18) there are several problems that are 
characteristic for synthesis in the frequency domain in general. Let's consider 
these in more detail. 

Numerical calculation of the integral in Eq. (5.18) by using the method of 
trapezoids requires extremely small steps of integration and, accordingly, sig­
nificant time in performing the calculation. This is because of acute peaks in 
the integrand close to Wc that give essential contribution to the value of the in­
tegral. Positions of these peaks are unknown beforehand. Moreover, positions 
of these peaks are different for various d found during minimization of Eq. 
(5.18). This property of the integrand is typical for synthesis upon frequency 
characteristics and is strongly exhibited at synthesis of high-Q circuits. There-
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fore calculation of the functional should often be carried out by means of spe­
cial methods that take into consideration properties of each specific problem. 

Another feature of synthesis in the frequency domain is the substantial de­
pendence of optimization results on the choice of 0 - the upper limit of inte­
gration. If we assume 0<U5c, then after several steps of minimization process, 
the highest peaks of the integrand will be transferred into the area 0>\, That 
is to say they will not be taken into account at minimization of F, If, on the 
other hand, we choose G with a "margin" (for example 6^2), then the main 
contribution into the functional will come from frequencies higher than 03c. 
So this "uninteresting" part of the curve K^j^.^{coA) will be optimized, 

whereas its "interesting" part, namely from zero up to the cutoff frequency, 
will have a weak influence upon the value of the functional. In both cases, 
not the best voltage gain frequency characteristic will correspond to the mini­
mum of the functional. Choice of ©varying during minimization is an alter­
native to the two possibilities considered above. However, problems cannot 
be avoided in that case too. It requires comparison of functionals calculated 
at various ©during minimization. 
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Fig. 5.21. Typical dependences of integrand/(^,d) from the relative frequency U5\x\ 
(5.18) at various d\ and di 
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Fig. 5.22, Typical dependence of function K^^ + K\^^ from the relative frequency W 

We will show below how the problem properties can be used to overcome 
the above-mentioned difficulties. Before each calculation of the integral in 
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Eq. (5.18), we shall analyze beforehand properties of the integrand/(^,d). At 

that wt shall focus our attention on properties of its denominator Trf^ + 7rl2, 

that will allow localizing positions of maximums of the integrand. A typical 

form of TTI^ ^Ttl^ dependence versus frequency is shown in Fig. 5.22. Maxi­

mums oifiCUA) are located in the vicinity of points of minimum of this curve. 
To define integration intervals by frequency, upon which the integrand has 

high peaks, let's find roots of the equation n^^ -^^^2 = ^ « 1 • They allow se­
lecting intervals on the frequency axis, on which the integrand has peaks 
f(tff)>\/e. The algorithm of numerical calculation of the integral in Eq. (5.18) 
uses this property of functions/(ei7,d) and 7rf^ +^^2 ^^^ adaptive modification 
of the integration step. It allows reducing the functional F calculation time 
some tens of times. 

The value of 0- the upper limit of integration - can be found as the maxi­
mum real root of the equation ;r,̂ , + 7rf2 = 1. As the analysis demonstrates, the 
accepted upper limit of integration ensures smooth modification of the func­
tional at modification of its parameters and essentially reduces the stiffness of 
the problem. 

As the method of optimization, the gradient method (method of secants) 
has been used. To assure better convergence to the global minimum some 
constraints have been superimposed on variables of optimization, realization 
of which were ensured by means of the following penal functions ^.: 

f 0, when 0.5<^. <1.5 

(p.(S.) = \A,{S.-\.5f,whQnS.>h5 , i = Ui, 

[/\.(^.-0.5)', when ^. <0.5 

where weight factors A/ were selected during calculations. 
In view of the aforesaid, the problem (5.18) becomes 

V / \2 
2 2 - C O S ^ 

TT,, + 7r^2 
+ 

TT, 1.2 
2 2 " S i n ^ 

V^U+^1.2 J 

dCU 

m (5.19) 

HZ^,(d) 
/=i 

The factor 1/^is introduced into the integrand in Eq. (5.19) to strengthen 
the influence of low frequencies on the value of functional. The limit inferior 
of integration (Dd is assumed to be equal 0.1 to exclude division by zero and 
to reduce the calculation time of F, 
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Results of Eq. (5.19) solution are shown in Table 5.13. 

Table 5.13, Relative parameters of the long line equivalent circuits, obtained from 
Eq. (5.19) at various m. 

1 m 
3 
4 
5 
6 
7 
8 
9 

1 10 

6, 
0.918 
0.894 
0.875 
0.866 
0.868 
0.875 
0.862 
0.879 

63 
1.164 
1.106 
1.118 
1.116 
1.114 
1.110 
1.145 
1.101 

83 
0.918 
1.106 
1.014 
1.018 
1.013 
1.016 
1.034 
1.027 

54 
-

0.894 
1.118 
1.018 
1.010 
0.999 
0.986 
1.038 

55 
-
-

0.875 
1.116 
1.013 
0.999 
0.946 
0.955 

§6 

-
-
-

0.866 
1.114 
1.016 
0.986 
0.955 

57 
-
-
-
-

0.868 
1.110 
1.034 
1.038 

68 
-
-
-
-
-

0.875 
1.145 
1.027 

59 
-
-
-
-
-
-

0.862 
1.101 

§10 

1 
1 
1 
1 
1 
1 -

0.879 1 

Transient characteristics of a long line (curve 1), 8-link T-shaped tradi­
tional (curve 2) and optimized equivalent circuits (curve 3) are shown in 
Fig. 5.23. Apparently, the transient characteristic of the optimized equivalent 
circuit reflects the real properties of a long line somewhat better than the 
transient characteristic of the circuit with uniform partition. The improvement 
however, is insignificant. The calculation process of the minimized func­
tional in the frequency domain is also more complicated than in the time do­
main. In Sections 5.1 and 5.2, we have considered solution of similar prob­
lems in the time domain, and have encountered a series of difficulties. 
However, we had achieved more significant improvement of the line equiva­
lent circuits' properties. As a whole, optimization in the time domain with 
reference to this problem is much more effective. 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

Fig. 5.23. Transient characteristics: - of a line (1), - of equivalent circuit with links of 
identical length (2) at m=8, - of optimized equivalent circuit (3) at m=8 
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Synthesis of parameters of equivalent circuits in the frequency domain for 
rather simple problems do not represent any significant difficulties. Here 
"simple" refers to problems of synthesis of dipoles (two-terminal networks) 
with monotone frequency characteristics and a small number of varied pa­
rameters in the equivalent circuit. Thus, as shown in the first of the above-
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considered problems, the synthesized equivalent circuit reproduces the device 
frequency characteristic with a small error and in a wide frequency range. At 
that, the number of varied parameters should be 3-6. 

For more complex problems, such as synthesis of four-terminal networks 
with complicated frequency characteristics, parametrical synthesis in fre­
quency domain represents a rather complicated problem for solution. To re­
duce complexity of its solution it is necessary to consider specific properties 
of the problem. Thus, each problem (or a class of problems - for example 
above-considered class of problems of long line's equivalent circuit synthe­
sis) generally requires a specific approach to its solution. 

5.4 Optimization of current distribution over conductors of 
3-phase cables 

This section is concerned with the solution of discrete inverse problems, i.e. 
problems in which optimization variables can take on only discrete values. 
Such problems are often referred to as combinatorial problems. Here we shall 
consider optimization of a multicore three-phase cable on the basis of various 
criteria of optimality. One of the distinctive features of these problems is the 
impossibility of using gradient methods for their solution. Therefore, all prob­
lems considered in this section were solved by means of the genetic algorithm. 

Let's consider a multicore three-phase cable with cross-section shown in 
Fig. 5.24. Cable strands connected to various phases are marked with white, 
grey and black colors. Conductors of each phase are of circular section and 
have individual insulating coatings. They are arranged within the cable in 
concentric layers. If ric is the number of layers, then at such disposition the to­
tal number of conductors in each phase is equal to nph-ndric-l). The conduc­
tor radius thus will be equal to r-R/{2nc-\-\), where R is the radius of the ca­
ble's external sheath. 

R 
2r 

Fig. 5.24. The structure of a three-phase cable 

Layout of conductors across the cable is invariable, and the subject of op­
timization is to what phases (a, b or c) each of the conductors is connected to. 
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Condition of the cable symmetry from the electromagnetic point of view will 
be the constraint zone of possible solutions. It corresponds to the symmetric 
arrangement of conductors in each third of the cable, i.e. the pattern of phase 
distribution over conductors of one third of the cable completely defines the 
internal structure of the whole cable. Moreover, one of the conductors can be 
connected arbitrarily to a certain phase (for example, to a) that will reduce 
the number of optimization variables by unit. Thus, the total number of opti­
mization variables becomes riph-l. 

Let's consider the minimality of external magnetic field generated by the 
cable current as optimization criterion. Such a cable will create minimum dis­
turbance at transmission of three-phase current through it. Due to the recip­
rocity principle such a cable will be best protected from disturbances in it, 
generated by a three-phase current field. 

The minimized functional is defined by a loop integral on the circle of ra­
dius Ro from the module of magnetic field strength 

IE. J 

F{p)~^]^H{R,,(p,p,t)\dtd<p, (5.20) 
27rT 0 0 

where the magnetic field strength H is calculated as the vector sum of fields 
created by currents of all cable conductors, and elements p^ of optimized 
variables' vector p can take on integer values 1, 2, 3. Assume p}c=\ if the 
conductor is connected to phase a, pk =2 if the conductor is connected to 
phase b, and pk=3 if the conductor is connected to phase c. 

Owing to symmetry of the cable structure, distribution of the magnetic 
field module is symmetric on each third of the circle, therefore we carry out 
integration by ^within the sector [0, 2;7/3]. Radius RQ, on which the field is 
calculated, can have an arbitrary value; so it has been assumed Ro=\.5R, It al­
lows neglecting conductor sizes and considering that the current of each con­
ductor is concentrated in its center. If we assume that phase currents and 
magnetic field strength are harmonic functions, they can be written down in 
complex form. 

The magnetic field strength caused in point (x,y) by current 7,̂ , k = \,3n, 

located in point (xk,yk) (Fig. 5.25), is defined by the following expressions: 

H, = - = ^ , H^, = H, cos a, H^, = H, sin a. 
27rr, 

Total components of the strength vector defined as sums H^j^ and Hyj^, 

accordingly, for all currents in the cable are: 
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k=\ k=\ 

After changeover to pre-images and fulfilling integration for H, we have 

^ . ( 0 = //„.^miojt + «?,), H^{t) = H„^ smiox + <p^), Hit) = ̂ Hl(t) + Hl(t), 

H=l^]H\Odt -pl + Hl. 

^k'Yk 

Fig. 5.25. Magnetic field strength //̂  in the point (x,y), created by current located in 
the point (Xk.yk) 

Fig. 5.26. Diagram for calculation of currents in cable conductors 

Furthermore, it is necessary to find currents in the cable conductors. We 
assume that the cable is fed from a symmetric three-phase emf system: 

= 1, E, -y2 ;r /3 E =^^''"/' . In case of symmetry of the cable and its 
load, the current distribution in each phase does not depend on the load value. 
Therefore, the diagram shown in Fig, 5.26 with zero-resistance loads can be 
used for calculation of currents. For simplicity of the picture, only three con­
ductors in each phase are shown. We shall find currents in the circuit by solv­
ing the following system of equations: 

(R + ;^M) I = Z I = E, (5.21) 

where R=diag(/? ,̂̂ ) is the diagonal matrix of conductors' active resistance, M 
is the matrix of self- and mutual inductances of conductors, I is the vector of 



288 Inverse Problems in Electric Circuits and Electromagnetics 

currents in conductors, E is the vector of emf sources connected to each con­
ductor, and CO IS the circular frequency. 

All cable conductors are identical and their active resistance is 

^ M = — T ' ^=l'3n^.' (5.22) 

where / is the cable length, r is the conductor radius, and y is the specific con­
ductance of the conductor material. 

Matrix M diagonal elements are equal to self-inductances of conductor 
wires, and off-diagonal elements - to mutual inductances of two parallel wires: 

< ' - ' 
k,m=U^,,M,,=^ , ,2/ 

In ul 

Here, jU is the magnetic permeability, and d is the distance between the 
centers of wires k and m. 

Values of resistances and inductances do not depend on which phase a 
conductor is connected to, therefore matrix M should be inverted of the con­
ductor material only once in the beginning of calculation. Then at each calcu­
lation of the functional (5.20), a multiplication of matrix M"̂  by a vector 
should be performed. Owing to the symmetry of the problem, finding the cur­
rents in only one phase of the cable will be enough. To normalize current 
values they should be divided by the phase total current. 

Let's assume the following geometrical and physical parameters: length of 
the cable /=100 m, cable radius R=l cm, conductor material is aluminum 
(^3.57-10^ Sm/m, ju=jUo), and 6^500 rad/s. The circular frequency 
€0=500 rad/s corresponds to depth of penetration 

(J = V27w, (̂ -24) 

that is approximately equal to the cable radius R. 
Results of optimization by criterion (5.20) of a three-phase multicore cable 

with number of conductors n equal to 12, 20, 30 and 42 are shown in Table 
5.15 and in Fig. 5.27. 

Values of the minimized functional (5.20) for traditional Fref (each phase 
completely occupies a third of the cable cross-section (see Fig. 5.24)) and for 
optimum configuration of phases are shown in Table 5.14. One can easily see 
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that minimization results in a significant diminution of the functional value. 
Figure 5.27 shows optimum configurations of phases at various numbers of 
conductors n. Distributions of H along the arc [0, 2;7/3] on the radius RQ for 
traditional (Fig. 5.24) and optimum distribution of conductors over the cable 
phases are shown in the same figure. 

Table 5.14.Values of the functional (5.20) at minimization of the cable external field 

1 Number of conductors 
1 Reference value of the functional F^ef, 

corresponding to the arrangement of 
conductors shown in Fig. 5.24 

1 Minimal value of the functional Fopt 
(^-KjKef)'^00% 

12 

5.545 

0.910 
83.6 

20 

4.618 

0.562 
87.8 

30 

4.184 

0.237 
94.3 

42 1 

3.958 

0.282 
92.9 

7.15 

nl6 /r/3 

Angle, rad. 

TftIZ /r/6 nIZ nil 

Angle, rad. 

2jtlZ 
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Fig. 5.27. Optimum arrangement of conductors in cable phases by the criterion of the 
external field minimum for ^=12, 20, 30, 42, and distribution of// along the arc 

[0, 2;7z/3] for optimal and traditional arrangement of conductors 

Table 5.15 and graphs in Fig. 5.27 show that relative diminution of the 
minimized functional has averaged up to 90% that corresponds to diminution 
of the external field 10 times in average as a result of thus performed minimi­
zation. One might say that by connection of cable conductors to a three-phase 
system in accordance with this optimum, an increase of its noise immunity 
about 10 times may be achieved. If there are conducting structures or screens 
near the cable, the magnitude of induced currents in them will decrease 10 
times as well. 
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Analysis of sensitivity of the functional to the three-phase system asymme­
try represents practical interest. Let's consider two cases: 

- asymmetry of currents caused by one-conductor breakage in the cable; 
- asymmetry of currents caused by asymmetry of voltage in the three-phase 

emf source. 

Table 5.15.Values of the functional (5.20) at analysis of its sensitivity to the system 
asymmetry and optimization of the cable by criterion of minimum of its external field 

1 Number of conductors n in a 
phase of the cable 

1 Symmetric system 
1 One-conductor breakage (in the 
1 outer layer) 
1 One-conductor breakage (in the 
1 inner layers) 

Emf source £•«+10% 
1 Emf source E -̂10% 

Minimal value of the functional (5.20) | 
20 

0.562 

0.871... 1.750 

0.642...0.838 

0.570 
0.619 

30 1 
0.237 

0.683...1.351 

0.525... 1.020 

0.290 
0.259 1 

Table 5.15 shows values of the minimized functional (5.5) for the specified 
cases of asymmetry for 20- and 30-core cables. The table also shows mini­
mum and maximum values of the functional for the case of one-conductor 
breakage. Apparently breakage of a conductor in the outer layer impairs the 
functional to the utmost (1.5-5.5 times on average), whereas for a conductor 
from the inner layers the functional increases 1.1-4 times on average. This is 
caused by the surface effect - the current in conductors of the outer layer 
considerably exceeds the current in conductors of inner layers. Therefore, 
breakage of an outer layer conductor makes a stronger impact upon the exter­
nal field. Nevertheless, even at breakage of a conductor optimum distribution 
of phases gives a gain about 2.5-4 times in comparison with the traditional 
distribution. For the case of emf source, asymmetry increase of the external 
field has averaged roughly -10%. 

The structure of three-phase multicore cable can be optimized on the basis 
of other criteria of optimality as well. Let's consider cable optimization by 
the criterion of minimum active losses in cable conductors. At a given total 
phase current, the minimum of active losses can be reached at uniform distri­
bution of current over the conductors. Therefore, optimization requires mini­
mization not of the currents, but of their deviation from the average value. 

The multicore cable structure was the same as in the problem considered 
above. Currents in conductors were also calculated by Eq. (5.21). After 
changeover to dimensionless currents of conductors we have: 

/ . = 
max(/J 
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The problem of minimization of losses in the cable was solved in the fol­
lowing statement: 

(5.25) 

where I^^^ is the average current in the cable conductor: 

/ „ 
1 " 

Minimum values of functional (5.25) in comparison with its value for the 
configuration of cable in Fig. 5.24 are shown in Table 5.16. One can easily 
see that the functional has essentially decreased for all values of n. 

Table 5.16.Values of the minimized functional at minimization of losses in cable 
conductors 

1 Number of conductors 
1 Reference value of the functional Fref, 

corresponding to the arrangement of 
conductors shown in Fig. 5.24 

1 Optimized functional Fopt 

1 {\-F^jF,,,)^\00% 

12 

0.3247 

0.0620 

80.9 

20 

0.3294 

0.0627 

81.0 

30 

0.3270 

0.0572 

82.5 

42 1 

0.3227 

0.0593 

81.6 1 

Table 5.17.Relative diminution of losses in cable conductors at minimization of the 
functional (5.25) 

1 Number of conductors 

A,=^—100% 

in 
=̂1 

12 

85.0 

20 

83.0 

30 

83.4 

42 1 

81.2 

Optimum cable configurations from the condition of minimum of losses 
and diagrams of currents distribution over the conductors are shown in 
Fig. 5.28. As can be seen from graphs of currents, distribution in phase con­
ductors optimization has led to appreciable leveling of current values, and the 
functional has decreased approximately 5 times for all values of n. To esti­
mate diminution of losses, let's assume the total phase current to be equal to 
1 and then calculate the power ratio as the sum of quadrates of currents mul­
tiplied by the conductor resistance. Values of ratio of losses in the optimized 
cable to the losses in traditional cable for various numbers of phase conduc-
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tors are shown in Table 5.17. It is apparent from this table that diminution of 
losses in conductors corresponds to the degree of minimized functional dimi­
nution. 
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Fig. 5.28. Distributions of conductors over the cable cross-section (n=12, 20, 30, 42) 
and corresponding distributions of currents over conductors in one third of the cable 

resulting from optimization by (5.25) 

By analogy with the first problem let's consider the influence of cable 
asymmetry (one-conductor breakage) and asymmetry of emf source on these 
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results. Values of the minimized functional (5.25) at analysis of its sensitivity 
for 20- and 30-core cables are shown in Table 5.18. 

Table 5.18. Values of the functional (5.25) at the analysis of its sensitivity to the sys­
tem asymmetry 

1 Number of conductors n in a phase of 
the cable 

1 Symmetric system 
1 One conductor breakage 
1 Emf source Ea+10% 
1 Emf source EQ-10% 

20 

0.0627 
0.185...0.202 

0.0643 
0.0662 

30 

0.0572 
0.166...0.172 

0.0602 
0.0616 1 

Apparently, breakage of one conductor increases the functional 3 times on 
average. A similar result has been obtained for the cable optimized by the 
minimum of external field. Asymmetry of emf source barely affects the qual­
ity of optimization results (at 10% asymmetry of source the functional in­
creases only by 2-7%). 

The problem presented above of obtaining a three-phase multicore cable 
with minimum losses can be converted into the problem of determination of 
the optimum shape of conductors in a three-phase cable at a given filling fac­
tor. In this case, the cable cross-section is divided into segments by the same 
principle as in the case of separate conductors that were arranged in previous 
problems. Each segment is filled either by conductor material or by dielec­
tric, at that ratio of the number of segments occupied by the conductor to the 
total number of segments, which should be equal to the set filling factor ki. 
The number of segments into which the cable cross-section is divided is 
equal to the number of conductors 3nph in the cable of the previous problem 
and in this case acts as the degree of digitization, when defining the shape of 
a conductor. This approach leads to the problem of topological optimization, 
methods of solution of which are intensively developed nowadays. 

The following condition was superimposed on each conductor of the cable: 
each conductor should be entirely located in its third of the cable. This condi­
tion has simplified the problem statement and has accelerated the calculation 
of functional. The obligatory condition of connectivity was not superimposed 
on segments occupied by conductor, i.e. each segment could be filled with 
conductor or dielectric irrespective of the condition of adjoining segments. 
Similar to previous problems, the cable should be symmetric from the elec­
tromagnetic point of view, therefore conductors in each phase should have 
identical shapes, and the total of optimization variables is equal to the num­
ber of segments into which one third of the cable is divided, i.e. equal to the 
number of conductors in each phase in the previous problem: n=nph. 
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Minimum loss in the cable is reached when the current is most uniformly 
distributed over the segments occupied by conductors. Calculation of currents 
in this problem is more laborious than in previous problems. Elements of ma­
trixes R and M are calculated by formulas (5.22) and (5.23). Then during 
each calculation of the functional, new matrixes R̂ ^H^ and Mnew should be de­
rived that are composed of those rows and columns of matrixes R and M 
which correspond to the cable segments occupied by a current on the given 
step of solution. A system of equations of dimensionality m=6kinph is set up 
according to Eq. (5.21). The right members' vector E is filled sequentially by 
values Ea, Ef,, and Ec. The vector of optimization variables p, which defines 
the conductor shape, is determined not by the right members' vector, but by the 
matrix of coefficients which should be inverted at each calculation of currents. 

The minimized functional was defined as mean square deviation from the 
average value of the current in the cable conductor according to Eq. (5.25). 

The optimum shape of cable conductors depends on the value of circular 
frequency O) in connection with the degree of manifestation of the surface ef­
fect. Let's consider three cases: 

- co=300 rad/s: The surface effect is weakly expressed; equivalent depth of 
current penetration (5.9) is larger than the cable radius R; 

- 6^5000 rad/s: The surface effect is sharply expressed; equivalent depth 
of current penetration is approximately equal to the size of the cable cross-
section digitization element; 

- op^lSOO rad/s: The average degree of surface effect; equivalent depth of 
current penetration is equal to 0.3/?. 

Shapes of cable conductors were optimized for two values of the filling 
factor ki - 0.5 and 0.7. 

Figures 5.29, 5.30 and 5.31 show results of optimization of the shape of 
three-phase cable cross-section for three values of frequency. Results are pre­
sented for two various numbers of digitization of the cable cross-section: 
n=20 and n=42. Current distributions over the cross-section of conductors 
corresponding to these designs of conductors, and values of the functional 
(5.25) are shown in the same figures. 

In case of weak manifestation of the surface effect the optimum arrange­
ment and the shape of the cable conductors represent a **three-leaved" pat­
tern. Sharp manifestation of the surface, which effect each conductor is 
horseshoe-shaped whereas the intermediate variant corresponds to some tran­
sitional form. 

These results show that the genetic method effectively solves optimization 
problems of combinatorial type in electrical engineering. The above de­
scribed problem can be formulated as a problem of searching of optimum 
shape or as a problem of topological optimization when the shape of the 
phase conductors is unknown beforehand. Its particular feature involves as-
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signing specific constraints for desired distribution of cable currents. It 
should be noted that at its first stage this problem can be solved by search of 
continuous distribution of current over the cable cross-section as well. 

n=20 P=0.0317 n=42 F=0.0316 
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Fig. 5.29. Optimized shapes of cable conductors and current distribution over the ca­
ble conductor cross-section at 6^300 rad/s for a) /:/=0.5 and b) ki=0.1 
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Fig, 5.30. Optimized shapes of cable conductors and current distribution over the ca­
ble conductor cross-section at co=l500 rad/s for a) /:/=0.5 and b) ki=0.1 
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n=20 F=0.0806 n=42 P=0.0996 

Fig. 5.31. Optimized shapes of cable conductors and current distribution over the ca­
ble conductor cross-section at ty=5000 rad/s for a) ki=0.5 and b) ki=0.7 

5.5 Search of the shape of a deflecting magnet polar tip for 
producing homogeneous magnetic field 

Let's consider the optimization problem of the polar tip for electromagnets 
used in optics of charged particles. Similar devices are used in high and ul­
trahigh energy particles' accelerators, and in delivery lines of beams of parti­
cles from the accelerator to the end user. 

The cross-section of a deflecting dipole electromagnet is schematically 
shown in Fig. 5.32. This electromagnet consists of poles 1, where the upper 
and lower pole pieces that are both extensions of poles and covers of the vac­
uum chamber are attached. These elements are steel sheet packages and are 
not shown in the figure. Region 2 of the magnet is the system's work area. 

Fig. 5.32. The cross-section of a deflecting dipole electromagnet 

In modern technical specifications the mean-root-square error for installa­
tion works is 1-2 mm at characteristic dimension of the whole structure up to 

10 m, and mean square deviation a = — / \(B-B^fds of the magnetic in-
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duction B from its nominal value B^ is approximately 0.510'^-1.010"^. At 
that, much larger local deviations are allowed. Correct arrangement of blocks 
of packages, of which the electromagnet is assembled, and correct allocation 
of iron sheets before assembly of packages allow achieving rather low mean 
square deviations of magnetic induction in the work area at relatively large 
local deviations. 

Designing of an electromagnet of minimum weight, ensuring specified pa­
rameters of magnetic field in the working area, is a rather complex problem. 
It can be solved by calculations only as a first approximation. When design­
ing an electromagnet up to ten models, often full-scale ones are made and in­
vestigated. Only after that, successful selection of the best configuration for 
the sheet 3 of laminated ferromagnetic core is possible (Fig. 5.32). 

Static and dynamic distortions of the field in the work area are usually 
compensated by means of special correcting windings mounted on the poles' 
surfaces. At use of correcting windings the width of the working area can be 
increased from 35 cm up to 80 cm, which is considered to be sufficient. 

The quarter of cross-section of an electromagnet is shown in Fig. 5.33. 
Here, 1 is the electromagnet core (made of steel sheets), 2 - the winding, 3 -
air gap, 4 is the work area (air), and 5 is the magnet polar tip. The problem 
consists in determining a shape for the pole tip, at which magnetic induction 
in the work area 4 has the required degree of homogeneity. 

!.:_...L-....._: _._ LA 
Fig. 5.33. Quarter of electromagnet cross-section 

In various variants of calculation, various constant values of required in­
duction v̂v in work area 5*0 have been accepted. 

The magnetic field in the calculation area was assumed to be plane-
parallel. For its analysis the vector magnetic potential was used. The calcula­
tion area of the investigated device and accepted boundary conditions for the 
vector magnetic potential are shown in Fig. 5.34. The winding current density 
has been set equal to 7=2.5-10^ A/m^. The shaded area in Fig. 5.34 shows the 
permissible region S^ for change of the polar tip shape. 

When searching for the optimal shape of the polar tip, the Lagrange 
method described in Chapter 4 was used. The numerical solution has been 
obtained by use of the finite-element method. 
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The objective function has been assumed to take the form of 

/ = 0.5 \(By - B^Yds . Here, By, is the vertical component of magnetic induc-

tion in the region SQ. The direct problem was solved relative to the vector 
magnetic potential A. The augmented functional was given by 

L = / + \X[x,y)A\ygrdiAAds . 

^ /\ = o 

/\ = 0 
/ \=0 

0.37 

Fig. 5.34. Calculation area and boundary conditions for the vector magnetic potential 

Electric currents, which are sources of the field in the adjoint problem, 
have been arranged within the region 5*0 and on its boundaries. Boundary 
conditions for the potential X of the adjoint problem coincide with conditions 
for the potential A of the direct problem (see Fig. 4.1). 

Modification of magnetic permeability of each element in the area S^ dur­
ing calculation at motionless peaks of elements does not give substantial im­
provement of field homogeneity in the area 5o in comparison with the initial 
field. Therefore, optimization has been carried out by means of moving the 
pole boundary. Twenty one moving peaks with coordinates that were pa­
rameters of optimization have been chosen on it. Movements of peaks were 
set in the direction of the normal to the initial rectangular pole shape shown 
in Fig. 5.34. Estimation of the obtained solution was carried out by evalua­
tion of magnetic induction mean square deviation on the lower boundary /Q of 
the area 5*0. 

Optimization was performed for cases when the core and poles were as­
sumed to be made of a material with constant magnetic permeability 
///rg=1000//o or steel with a nonlinear characteristic ju=ju(H), i.e. taking into 
account the saturation phenomena. 

At the beginning of the calculation of the first case, the mean square devia­
tion of magnetic induction from the required value in the area 5o was 
(y=0,000n. The required value B^ of the normal component of induction has 
been set equal to 1.475 T. The obtained optimum shape for the pole at use of 
quadratic interpolation of the potential at ju=\000jUo is shown in Fig. 5.35. 



Solving Practical Inverse Problems 299 

0.0282 

0.05 0.09 0.10 

Fig. 5.35, The optimum pole shape at use of quadratic interpolation of the potential 

Distribution of the magnetic induction for the obtained pole tip shape 
along the line IQ and in the area So are shown in Fig. 5.36a and Fig. 5.36b, ac­
cordingly. 
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Fig. 5.36. Distribution of magnetic induction for the optimum pole tip shape along 
the line IQ a), and in the area ô b) 
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The mean square deviation of induction for the pole of this shape was 
(7=0.0000248. 

When optimizing the shape of the pole made of steel, nonlinear depend­
ence of its magnetic permeability from magnetic induction has been taken 
into account, as noted above. The account of saturation was carried out by the 
relaxation method. The initial mean square deviation of induction in the area 
So was (7=0.000907. The required value of the induction normal component 
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was assumed to be 1.456 T. The potential in the elements was defined by a 
polynomial of the second order. The resulting pole shape is shown in Fig. 5.37. 

0.0280 
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Fig. 5.37. The optimum pole shape at account of nonlinear properties of the material 

Distribution of magnetic induction for the obtained pole tip shape along 
the line /Q and in the area SQ are shown in Fig. 5.38a and Fig. 5.38b, accord­
ingly. 
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Fig. 5.38. Distribution of magnetic induction for the optimum pole tip shape along the 
line /o a), and in the area ̂ 'o b) at account of nonlinear properties of the material 

In this case, the mean square deviation of induction was (7=0.00021. 
The obtained shape is in good agreement with known results given in pub­

lications, and with designs used in practice. 
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5.6 Search of the shape of magnetic quadrupole lens polar 
tip for accelerating a particle 

Let's consider the optimization problem of a polar tip for quadrupole lenses 
used in accelerators of particles, applying for its solution the Lagrange 
method described in Chapter 4. 

In practice of w ôrk with accelerators there is a necessity of focusing a 
charged particles' beam, since the cross-section of the beam can increase at 
rectilinear motion of particles by virtue of various reasons. Such focusing is 
carried out by means of magnetic lenses. 

Cross-sections of two magnetic lenses are shown in Fig. 5.39. Four poles 3 
with windings 4 are attached at the surface 1 of core 2. Magnetic fields cre­
ated by the currents in the windings of both lenses are shown. If a beam of 
positively charged particles moves perpendicular to the plane of figure out 
the page, then the left lens focuses the beam in the horizontal direction 
whereas the right lens focuses it in the vertical direction. Two such lenses ar­
ranged (as shown in Fig. 5.40), focus a moving particle in both directions. In 
this figure the cross-section of two lenses by the plane rz is shown. 

4 

Fig. 5.39. Cross-sections of magnetic lenses 

The thickness of each lens is /i, and the distance between their adjacent 
sides is k. Curve 1 represents the trajectory of a beam of particles. It moves 
between poles of lenses through their central apertures. 

1 

->* 

-< >-
/. 

- < >H 

Fig. 5.40. The cross-section of two magnetic lenses by the plane rz. Line 1 is the tra­
jectory of a beam of particles 
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With deviation of the beam in either the horizontal or vertical directions, 
the acting forces should return it to its initial position near the axis of lenses 
where the strength of magnetic field is zero. The required strength of mag­
netic field created by external sources should vary linearly both in the hori­
zontal, and in vertical directions from the axis of lenses. 

Application of electromagnetic lenses allows moving accelerated particles 
to distances of tens and hundreds of meters without substantial increase in the 
beam diameter. In some cases, elements of focusing magnets design six-field 
lenses are used, as well. 

By optimum we imply such a shape of quadrupole lens pole that provides 
constant value of magnetic induction module on a circle enveloping the beam 
of particles. Let's consider the problem of search of the shape of such a pole. 

The cross-section of quadrupole lens with optimized curvilinear profile of 
the poles is shown in Fig. 5.41. Here, 1 is the magnet steel core, and 2 is the 
winding with current. 

Fig. 5.41. Cross-section of a quadrupole lens with optimized curvilinear profile of 
the 3rd pole a) and lines of magnetic induction b) for some shape of the pole 

As may be seen from this figure, the field is symmetric relative to the hori­
zontal and vertical axes and is antisymmetric relative to axes passing through 
the center at an angle of ±45° to the horizontal line. Therefore the magnetic 
field calculation zone can be only one eighth part of the full cross-section of 
the lens that allows reduction of the number of elements into which the calcu­
lation area is divided, and, hence, reducing the calculation time. 

Figure 5.42 presents the one eighth part of cross-section of the accelerator 
quadrupole for which the optimum shape of poles ensuring magnetic induc­
tion constancy on concentric arcs /Q of radiuses 0.025 m or 0.03 m was 
searched. The quadrupole lens under consideration should provide a gradient 
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of 27 T/m for the magnetic field at the radius of the pole's extreme point 
equal to 0.037 m. 

The shaded area in Fig. 5.42 indicates a region S^ in which modification of 

material properties is possible. / = J( | B\-B^fdlQ was used as the objective 

functional. 
The augmented functional is given by: 

—gradA Ids , L=l(\B\-Bjdl,+ JMiv\ 
/o S \ 

Boundary conditions for the vector magnetic potential at the solution of the 
direct problem are also shown in Fig. 5.42. Boundary conditions for the po­
tential /I of the adjoint problem coincide with conditions for the potential A. 
Current density in the winding is assumed equal to 7=5.07 10^ A/m^. 

/\ = o 

0 0.025 0.037 
0.030 / \ = 0 

0.235 

Fig. 5.42. Area of calculation and boundary conditions for the vector magnetic po­
tential 

The number of moving nodes arranged on the surface of the polar tip is 22. 
For each of the nodes the direction of movement is conterminous, as a rule, 
where the normal to the pole initial surface has been set. Calculations were 
carried out in view of nonlinear properties of the ferromagnetic material of 
the pole. It should be noted that when searching for solution, optimum pa­
rameters of additional correcting coils also to be used for obtaining the de­
sired field, were not defined. 

After 100 iterations, a shape of polar tip has been found that ensures mean 
square deviation of magnetic induction c^l.2610"^ from its average value on 
the target line IQ of radius 0.03 m. The initial mean square deviation was 
0^5,40'10"^. If the target line is of radius 0.025 m, the mean square deviation 
of magnetic induction from its average value was (7=6.74-10'̂  after 100 itera­
tions (at initial mean square deviation <7=3.7410"^). The pole shape is shown 
in Fig. 5.43 (for the target line of radius 0.025 m). 
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0.030 0.037 

Fig. 5.43. The pole shape at setting the objective functional on the line of radius 25 mm 

In the case of transfer of the objective functional setting the line closer to 
the optimized surface of the pole (at the radius 30 mm) in order to prevent 
grid degeneration the number of moving peaks has been reduced to 19 at the 
same resolution of the finite-element grid, as in the previous case. The results 
have been improved under such conditions. After 200 iterations, the mean 
square deviation of magnetic induction on the line of radius 0.03 m was equal 
to cr=6.55-10 ^ and on the line of radius 0.025 m - to (7=6.72-10'l The mag­
netic induction distribution on the line of radius 30 mm is shown in Fig. 5.44. 
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Fig. 5.44. Distribution of magnetic induction on the line of radius 30 mm 
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For this case the process of modification of the shape of quadrupole lens' 
magnetic pole tip can be seen in Fig. 5.45. 

The shape of magnet pole 
^after 1 iteration (initiai shape) 
"^ after 10 iteration 
^ after 20 iteration 
' after 50 iteration 
' after 200 iteration 

(conservative shape) 

Fig. 5.45. The shape of quadrupole lens' magnetic pole tip at realization of various 
numbers of iterations 

As a result of analysis of various approaches for the realization of the La­
grange method as well as the solution of the applied problems and compari­
son with results obtained by other methods of optimization, one can arrive at 
the following conclusions: 

- an important property of the method is the possibility of determination of 
both the optimum shapes of bodies and their structure; 

- as distinct from other methods of optimization, the Lagrange method al­
lows calculating the objective function gradient by a single iteration in all 
points of the region at once on the basis of medium characteristics. This al­
lows reducing the solution time of optimization problems; 

- use of the Lagrange method allows finding close to optimum shape for 
bodies as a first approximation with short calculation times. As can be seen 
by the example of the problem of finding homogeneous distribution of mag­
netic induction along a line (see Section 4.4), the pole shape characterizing 
optimum distribution of magnetic material as a first approximation is ob­
tained after 24 iterations when calculating by the Lagrange method. Finding 
similar results at solution of this problem by the modified Newton method 
will require approximately 10 times more calculation time; 

- the solution convergence and form essentially depend on the parameters 
defining the process of optimization. Minimum and maximum values of 
boundaries' relocation An, the number of iteration /̂ /„ at which the value of 
relocation reaches its minimum, the number of iterations imax with maximum 
value of relocations, and the chosen direction of shift for each movable node 
are among such parameters; 
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- it follows from the results described in this paragraphs and the previous 
that the Lagrange method allows solving practical problems with high accu­
racy; 

- the solution time weakly depends on the number of optimization parame­
ters, including the case when accounting the effect of saturation of ferromag­
netic materials. 

5.7 Optimum distribution of specific electric resistance of a 
conductor in a magnetic field pulse 

Pulse magnetic field penetration into homogeneous conducting medium re­
sults in its non-uniform heating. Near to the medium surface, electric current 
density and thermal emission are higher, whereas with distance from the sur­
face, thermal emission as well as current density inside the medium decrease 
[9]. To obtain uniform distribution of the current one may use a conductor 
with specific conductance that has the least value at the surface and increases 
with distance from it. As a result, the current will be distributed more uni­
formly and, hence, the maximum value of thermal emission will decrease. 

The problem of diminution of temperature at the interior surface of pulse 
solenoids has been numerically solved [10] for a two-layer medium formed 
by a bronze conductor with stainless steel coating. The field specified on the 
solenoid surface was given by a unipolar sinusoidal impulse. Heating thus 
has decreased by 25% in comparison with the homogeneous conductor that 
was afterwards verified by experimental results. Bimetallic conductors allow 
reducing the maximum temperature of heating by 30%, as compared with the 
maximum heating of homogeneous conductors [11]. 

Estimations of heating modification in conducting media with exponen­
tially decreasing specific resistance show that accessible minimum of maxi­
mum thermal emission for them is roughly ~3 times less than this value for 
the homogeneous conductor. 

Thus, the problem of searching of optimum distribution of specific con­
ductance of the medium ensuring maximum reduction of heating in compari­
son with the homogeneous conductor is of interest. 

It has been shown in Section 4.6 that the Lagrange method can be applied 
for solution of similar problems. It allows the construction of an effective al­
gorithm for searching of distribution of medium parameters, ensuring a mini­
mum for a given functional. 

Several statements of the optimization problem represent practical interest. 
In one of these, it is necessary to obtain a given distribution of magnetic in­
duction and current density in the volume of a conducting body at the instant 
of time to under the influence of a pulse magnetic field on the body surface. 
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In the elementary case under the assumption of one-dimensionality of field 
and current distribution in a conductor of thickness 2d the functional can be 
written down as 

0 L 

where C is a constant, and x is the spatial coordinate. 
In another statement it is required to obtain uniform thermal emission 

Q{x) = (7{x)\E^{x,t)dt at the instant of time to through the whole thickness 
0 

of the conductor or to ensure minimum of maximal thermal emission 
h) 

max Q{x) = max G{X) \E^{x,t)dt to that instant of time. In the latter case, the 
0 

functional can be given by: 

1 'VdB{x,t)^ , 
I = max dt. 

(T{x) ^Q\ dx J 
Let's consider the solutions of these problems. Let the surfaces x=0 and 

x=2d of an infinite conducting plate of thickness 2d be under the action of 
2;r 

pulse magnetic induction B{x,t) equal to B{0,t) = B{2d,t) = B^s>'m—t at 

0 < r < 0.57 and ^(0,0 = 0 at t>0,5T, In a system of rectangular coordinates 
with axis y and z directed parallel to the plate surfaces we have B^By. Taking 
into account that the plane x^d is a plane of symmetry for the magnetic in­
duction, we have the condition dBJdx = 0 on it. 

With this statement of the problem, the equation for the vector of magnetic 
induction inside the plate is given by 

Af era)—1 = — 
dx\ dx J dt 

Magnetic permeability of the material - platinum, is assumed to be constant. 
Let's search for such distribution of specific conductance G(X) of the plate 

material, at which the electric current density J(x) = J = as less as 
ju dx 

possible differs from the constant J^(x) = C at 0<x<d to the instant of 

time r̂ ) =0.257 . At that, the desired function B^(x) is linear on the segment 

0<x<d, 
We shall write down the minimized functional in the form of 
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a 

I = 0,5\[B{x,t,)-B^{x)px, 

Then the augmented functional is given by: 
dh 

L = /+jj/l(;c,r) 
0 0 

— liiaix)—-
ox\ ox 

dB_ 

' dt 
dtdx. 

The equation and boundary conditions for the adjoint variable for the prob­
lem under consideration are described in Section 4.6. 

This problem has been solved numerically according to the algorithm de­

scribed in Chapter 4. Values ( i = 0.05 m, cr̂ ,̂  = 5.7 • 10 'Sm, ^ ^ = 2 T , 

0̂ = 0.005;r s, 7 = 0.02;r s have been assumed. 
The number of nodes in the plate was 100, and the time step was lO'^s. The 

specific conductance was calculated according to the following expression: 

Uh 

dB^dl 

dx dx 

jdB^m 
\\dx dx\\^ 

where A(x,t) is the adjoint variable, n is the number of iteration, and h is a 
numerical coefficient. 

Values of the functional at various values of h for n=l,2,3,4 are shown in 
the table below. 

Table 5.19. Values of the functional at various values of h 

Number of iteration 

1 0 (o=const) 
1 
2 
3 

1 4 

Values of the functional at 
/z=-0.5 
0.5085 
0.4035 
0.2691 
0.1360 
0.0305 

Values of the functional at 
h=-0J5 
0.5085 
0.3427 
0.1675 
0.0253 

The first row shows the value of functional at constant specific conduc­

tance of the plate material equal to cr = a^^ = 5.7 • lO' Sm. One can easily see 

that the functional rapidly decreases as soon as at the first 3-4 iterations. At 

subsequent iterations, the value of h has been gradually changed down to-

0.003 with deceleration of the functional decrease rate. 

Figure 5.46 shows the initial distribution of magnetic induction through the 

plate thickness obtained at a = a^^^ = 5.7 • 10' Sm (the concave curve), and the 

desired distribution (the straight line). Solution of the optimization problem 
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results in the distribution of the material's specific conductance, shown in 
Fig. 5.47. 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 

Fig. 5.46. Distribution of magnetic induction through the plate thickness at constant 
specific conductance and the desired distribution (the straight line) 
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Fig. 5.47. Optimized distribution of specific conductance through the plate thickness 

Dependence B(x) at optimum distribution of specific conductance, as well 
as the straight line of desired distribution B^ix) are shown in Fig. 5.48. 

2.00 r ^ 
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Fig. 5.48. Distribution of magnetic induction through the plate thickness at optimized 
specific conductance and the desired distribution (straight line) 

At the distribution found for specific conductance, the magnetic induction 
is close to linear, and the current - to the uniform distribution. 

Let's consider further the problem of determination of such a distribution 
of material conductance of a body when the maximum thermal emission 

max Q(x) = max (7(x) \E^(x,t)dt has minimum value at the instant of time to, 

under influence of a magnetic induction impulse on its surface. 
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We shall give its solution obtained in [12] during a research of pulse sole­
noids. It has allowed us find a distribution of the medium's electric conduc­
tivity which ensures a minimum thermal load of the system under impact of 
field impulses of various shapes. 

Assuming a condition of strong skin-effect, when the depth of penetration 
of the electromagnetic field is much less than the conductor thickness and the 
radius of curvature of its surface, it has allowed simplification of the analysis 
of the electromagnetic field penetration process into the conductor. In this 
case, the conductor was considered to be semi-infinite with a flat surface. 

Boundary conditions for magnetic induction at x=0 are defined by the 
shape of the field impulse generated on the conductor surface B(0,t). Tak­
ing into account the condition of strong skin-effect, we have i5(oo,0 = 0 . 
Initial conditions are as follows: B(xfi)=0, Q(xfi)=0. 

Thermal emission Q in the point of conductor with coordinate x can be 

written down as Q(x) = p(x) \J^(x,t)dt, where p(x) = is the medium 

specific electric resistance. Thus, the problem involves searching for such a 
distribution of medium specific resistance, at which the functional 

/ = max 
r to ^ 

p(x)jj^(x,t)dt 
V 0 

accepts its minimum value in the segment 

0<x<d. 
It can be noted that although in general the specific resistance depends on 

temperature, this can be neglected if the maximum induction on the conduc­
tor surface does not exceed 30-40 T. The essential constraint superimposed 

on the desired specific resistance is finiteness of its value p^ in the depth of 

the conductor (in the so-called base layer), that corresponds to the properties 
of real conducting media. 

The following impulse of magnetic induction acts upon the surface of the 
conductor: 

\B^sin(27rt/T)j<T/2 
B(0,t) = -

[0, t>T/2 
With the purpose of generalization of the results above, magnitudes have 

been transformed to dimensionless form. The following values have been as­
sumed to be basal elements: the amplitude of magnetic induction B,j=B^, 

the specific resistance of the base layer p^^ = p^, duration of the external field 

half-period r̂  = 7 / 2 , depth of the magnetic field penetration into the base 

layer substance x̂  = -yJpjJjUo > ^^^ the specific thermal emission Q^^=Bl I ju.. 
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It should be noted that stratified media represent the most practical interest. 
In this case the conductor is represented in the form of a thick homogeneous 
base layer exceeding at least ten times the depth of the skin-layer, coated by a 
large number of layers of identical thickness and various specific resistances. 
Therefore, optimization is realized by search of specific resistances of the 
layer material {pu pi, ..., ptd^ corresponding to the minimum possible value 
of the objective function /. The optimization problem was solved for various 
number Â  of coating layers. 

Figure 5.49 shows the influence of the number of Â  layers and the relative 
thickness of the whole coating D* =D/A^ on the heating of the body (here 
ZL is the depth of field penetration into the base layer). 

; ^ ̂  ^ ^ ^ C:— 

N=' 

N=4 
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—hh 26— 

0 
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Fig. 5.49, Dependence of thermal emission on full thickness of the coating at various 
number Â  of its layers 

These dependences are non-symmetrical and have minimum values corre­
sponding to some thickness of coating D*. Minimums are fuzzy, and, for ex­
ample, in the case of Â =25 it covers a range of values as large as (1.4-1.8)zL. 
The dependence for a two-layer conductor (A^=l), obtained at solution of the 
optimization problem, corresponds to known results. The optimum thickness 
of coating in this case is D*=0.68, and the relative specific resistance of the 
coating is p* =5. Maximum specific heat thus decreases down to 

Gmax ~ 0-6'7 (f̂ ^ ^ homogeneous conductor Q*=1.09). Use of a coating with 
a large number of layers (A ~̂25) with optimum distribution of specific resis­
tances allows lowering of the maximum specific heat to Q^^ = 0.35 , that is 
close to the value for substances with a continuous distribution of specific re­
sistance. This value is characteristic for exponential dependence of a me­
dium's specific resistance at p^/p^ =0.01 (here p^ is the specific resistance 
of boundary or near-surface layer of the coating). 

Increasing the number of layers results in increase of the optimum thick­
ness of coating corresponding to the largest reduction of heat, as well as in 
modification of optimum distribution of specific resistance. When increasing 
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the number of layers descending, dependences become sharper which is con­
nected with the increase of specific resistance of the coating boundary layer 
at optimum conditions. On the basis of this, one can assume that the bound­
ary layer specific resistance is defined by the thickness of coating. 

Analysis of the power distribution in the optimized multilayer conductor is 
of interest. Curves of heat emission power distribution, in an optimized 25-
layer conductor at D* =1.2 in various time instants during a pulse impact 
(0<ti<t2<t3<t4=T/2), are shown in Fig. 5.50. 
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Fig, 5.50. Power distribution of thermal emission in an optimized 25-layer conductor 
at D\ = 1.2, at various time instants: 1- t-t\l- ti> 1̂,3- h> h^ 4- U> tz 

The problem of searching of optimum distribution of a conductor's spe­
cific resistance has also been solved for the case of action of magnetic induc­
tion in the form of damped oscillating impulse: 

J5(0,0 = B^sin(27i^/r)exp( - lUIT). 

Two types of multilayer conductors have been considered with four- and 
twenty-layer coatings on the base material. Influence of damped oscillating 
impulse on the coating optimum thickness was found to be insignificant, 
which allows using results obtained for the case of unipolar impulse action 
when manufacturing multilayer conductors. In this case decrease of maxi­
mum heating was about 54%, as compared with the homogeneous conductor 
for the four-layer coating, and 68% for the twenty-layer one. This is essential 
for small damping factors when significant heating is observed. At damping 
factors 522 when the impulse practically becomes unipolar, parameters of the 
multilayer conductor are close to the corresponding parameters under action 
of unipolar impulses. 

Conductors with inhomogeneous distribution of specific resistance are real­
ized in the form of discrete stacks of conducting layers with different specific 
resistances. In this connection the following problem arises: how much is the 
possible limiting number of layers to replace the optimum continuous depend­
ence by stratified conductor in order to access decrease of heating not too dif­
fering from the ideal. Replacement of continuous distribution by a stratified 
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one with a large number of layers complicates the design of the conductor, and 
the use of small numbers of layers does not ensure sufficient decrease of heating. 

Based upon the connection of coating optimum thickness with the specific 
resistance of the boundary layer, it is possible to change the statement of op­
timization problem by assumption that the specific resistance of the boundary 
layer is a given parameter. It allows obtaining a series of results describing 
dependence of the heating decrease degree on the number of layers for each 
preset value. Increasing the number of layers in the coating up to 20-25 en­
sures fulfillment of the required condition of closeness of discrete association 
p(x) to the continuous one. We shall consider this problem for the case of 
unipolar sinusoidal pulse magnetic field as results for damped sinusoidal im­
pulse do not lead to any basic differences. 

Dependences of relative maximum heating of the optimized stratified con­
ductor on the number of layers Â  for various specific resistances of the 
boundary layer, approximated by continuous curves (l-/V/^oo=5, 2-/V/^-=10, 
3'Po/po.=l6) are shown in Fig. 5.51. 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 2 4 6 8 10 12 14 16 18 20 22 
Number of layers 

Fig. 5.51. Dependences of relative maximum heating of the optimized stratified con­
ductor on the number of layers Â  for various specific resistances of the boundary 

layer (l-/7(//7«,=5, 2-pQ/p^=lO, 3-po/p^=l6) 
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Heating change at maximum rate occurs in the range of the first 3-4 layers. 
Largest diminution of maximum heating, that makes 52-62 % from the heat­
ing of the homogeneous medium depending on the value of the boundary 
layer, specific resistance occurs within this same area. When increasing the 
number of layers decreasing of the heating gradually decelerates and be­
comes insignificant in the range of 10-20 layers when the maximum level of 
its drop, depending on the boundary layer, specific resistance is reached. 
Thus, coatings with 4-8 layers are most expedient. 

Figure 5.52 shows the optimized ideal continuous dependence of the coat­
ing specific resistance (1) and its 5-layer approximation (2) at the given rela­
tive resistance of the boundary layer po/Poo=lO. 
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Fig. 5.52 Optimized ideal continuous dependence of the coating specific resistance 
(1) and its 5-layer approximation (2) 

The problem of combined optimization of the pulse shape and dependence 
of specific resistance according to the criterion of minimum heating has been 
solved. 

Combined optimization of functions B{0,t) and p{x) results in an insignifi­
cant decrease of heating in comparison with the case of optimization of func­
tion p{x) under influence of a unipolar impulse of external magnetic field in 
the shape of the first half-cycle of sinusoid. In particular, for the optimized 
25-layer coating with relative thickness D*=1.5 under influence of a unipolar 
impulse field, the maximum specific heating was (2*=0.345. Combined opti­
mization has allowed decreasing the maximum specific heating down to 
2*=0.318. For a 10-layer coating with relative thickness D*=1.2, the corre­
sponding values are 0.415 and 0.384 accordingly, and for the one-layer coat­
ing they are equal to 0.68 and 0.63. For all considered cases the additional 
decrease of heating does not exceed 8 % as compared to corresponding val­
ues obtained under the action of a unipolar impulse. 

Thus, replacement of the optimum continuous distribution of a specific re­
sistance with a large number (up to 20) of layers allows reaching a triple drop 
of specific heat in comparison with the homogeneous conductor. As effec­
tiveness of heating decrease, due to adding of layers, sharply drops beginning 
from the case of 8-layer coating, this allows considering conductors with 
such number of layers as a good approximation for optimum continuous de­
pendences of specific resistances. 

Both for unipolar, and for oscillating damped impulse external field, the 
four-layer conducting coatings that are more practical from the point of view 
of their manufacturing allow more than twice the reduction of the maximum 
heating. 
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Appendix A. A Method of Reduction of an Eddy IVIagnetic 
Field to a Potential One 

This method of reduction of eddy magnetic field into potential one is based 

on resolution of the magnetic field vector H into eddy H^^^^^ and potential 

Hp^j components. Let's represent the strength of magnetic field in the form 

of the sum H = H^^^ + H^^i^i^. At that, we assume that the current with density 

/ creates only the unknown field Z/̂ ,̂̂ ,̂ , which defines the eddy part of the 

magnetic field, i,e rot H^^f^^^ = / . As shown below, the component H^^^^ of 

the desired field can be expressed by the scalar magnetic potential cp^. 

The method under consideration proves useful to calculate both stationary 
and quasi-stationary fields. Here we shall limit ourselves to its statement for 
the case of magnetic fields generated by direct currents. In literature, the 
eddy component H^^^^^ is often designated as vector T and the method is 

named T-Vl method. This method is based on the possibility of finding the 
eddy component H^^j^^ by the given spatial distribution of current density / 
in the conductor by means of simple calculations. 

As div H^^f^f^ is not a given quantity, then equation rot H^^^^^ = J has a set of 

solutions not depending on magnetic properties of the medium. Therefore, the 
equation rot H^^^y = J can be solved for the case of homogeneous medium. 

As d iv / = 0 and / = rot H^^i^jy, then the equation 

r o t ( / f ~ / / , , , J = ro t f f , ,=0 , 

is valid for the eddy component equal to H^^^^ =H-H^^j^^. 

Thus, the component H^^^ can be presented in the form of the gradient of 

scalar magnetic potential (p^. Then the magnetic field strength is given by 

H = H^^j^,y-gYad(p^. In this case, the equation divB = 0 can be written 

down as div// (Ẑ ^̂ ,̂ ,̂  - grad ^^) = 0, Then we have: 

div ju grad (p^ = div juf^ecuy' (^' 1) 
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where (p^ and î ,̂/,/̂  are unknown quantities. 

In the general case of three-dimensional magnetic field it is necessary to 
find four scalar functions, i.e. three components of H^^^^^y and the scalar 

magnetic potential cp^. In the equation (A.l), sources of the potential cp^ 
are defined by H^^^^^y. Therefore, at first we shall find the solution of equa­
tion rot H^^i^^y -J , Since only the curl of the vector H^^i^i^ is given, then the 
divH^^j^iy can be an arbitrary quantity. The possibility of arbitrary choice of 
diwH^^j^y distribution is an essential advantage of the method of transforma­
tion of the eddy magnetic field into potential one. Then there is a possibility 
to choose a solution from the set of solutions that allows calculation of the 
desired field with strength vector H at minimal costs. One of the possible 
methods of calculation of H^^,^jy is based on use of the Biot-Savart law: 

H =A.{yL}.dV (A.2) 

where volume V is a simply connected domain. 
The expression (A.2) allows finding the magnitude of H^^^^^y in all points 

through the domain of calculations, including conductors with currents. The 
magnitude of H^^i^iy can be equal to zero everywhere where there is no cur­
rent. When / ?̂  0, then we have H^^^^^^ i^ 0. 

As noted above, the domain V of integration in (A.2) should be simply 
connected. If it is multiply connected, it is possible to specify a current en­
veloping loop / on which [jĤ ŷ̂ ŷ  ^ 1 = 0. As the integral -[|grad(^^(^ is 

equal to zero, then their sum [Jfl'^,/,/^d\-\\gradq)j^ = [Jff d\ also becomes 
/ / / 

zero. However, the integral [jHc/1 should be equal to the current. This in-

consistency is eliminated if the integration domain is simply connected. 
To provide simple connectedness of the integration domain we shall 

introduce cuts that are forbidden for intersection by the contour of integra­
tion. In case of contour / with current / (Fig. A.l) this cut can be any surface 
S stretched by the contour /. 
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Fig. A.l. A contour / with current / and surface S of the cut, transforming the domain 
into a simply connected one 

From the analogy of equations for the potential of electrostatic field 
d\v£gmd(p^=- p and for the scalar magnetic potential 

div//grad (p^ = divjuR^^i^y, follows that the quantity -diwjuR^j^jy can be con­

sidered as the volume density p^ =-divjuH^^^jy of fictitious magnetic charge. 

This magnetic charge is a formally introduced quantity for calculations. From 
this analogy also follows that for the relation -\Jegrad(p^dS = q there is a 

s 
similar relation 

-[jjUgYad(pJS = m, 
s 

where m is the magnetic charge. 
In a homogeneous medium with magnetic permeability ju the scalar mag­

netic potential satisfies the Poisson equation divgrad<p^ =divĤ ^̂ /̂̂  = 

= -p^/ju. In view of the aforesaid, its solution can be written down as 

Then, the expression for the magnetic field strength becomes 

Thus, determination of vector H in the whole space, including the domain 
with currents, requires solving a single equation concerning the scalar mag­
netic potential inasmuch calculation of H^^j^jy by (A.2) does not require solu­
tion of any equations. 
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As an example, let's consider the procedure of reduction of the magnetic 
field of current in a toroidal conductor of rectangular cross-section and given 
dimensions h and (Re-Rd (Fig. A.2) into a potential field. 

Fig. A.2. A toroidal conductor of cross-section h'^(R(,-Rj) with current / and simple 
layers of magnetic charges of radiuses R^ (at z=0 and z=h) that are equivalent to the 

current 

Here h is the conductor height, and Re, Ri are its external and internal radi­
uses, accordingly. The current density J in the conductor is constant. 

Let the magnetic permeability be constant everywhere. We shall limit the 
simply connected domain with the current by the lower (with coordinate 
z=0), upper (with coordinate z=h) and the lateral surfaces of the cylinder of 
radius R^. At that, we assume H^^j^y = 0 everywhere outside of the volume 

formed by these surfaces. In the cylindrical system of coordinates r, a, z the 
vector / has a single component /«• 

Since rot H^^j^y = / , then at /= / Ja (here7 is the unit vector of axis z) we 

can use the single component H^^,. = H^^j. . Then, for H^^j. we have 

dH eddy 

dr 

r 

'•Ky^eddyir)'=-\jadr = {Re-r)J^ . 

Therefore, H^^j^i^ [r) = {R^-r)J^ when /?, <r<Re and 

ffe.Uy{r) = {Re-Ri)Ja Whcn 0<r</? , 

The dependence H^^,^,y (r) is shown in Fig. A.3. 
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R, Re 

Fig. A.3. Dependence of eddy component of the magnetic field H^j^iy on radius 

Let the current be directed in such a way that the positive direction of vec­
tor H^^f^jy[r) coincides with the direction of axis z. At that, H^^j^jy[r) varies 

stepwise by a magnitude H^^i^jy on the surface z=0 and by a magnitude 

-H^^j^iy on the surface z=h. According to the condition 

there will be magnetic charges on these surfaces, i.e. charge -m on the lower 
surface, and charge +m on the upper surface. There are no magnetic charges 
in all remaining points of the domain. 

The volume density of magnetic charges on these surfaces is infinite, but 

their surface density a^ is finite: a^[r) = -juH^^ijy[r)<0 on the lower sur­

face and (^^{r)^ +ju^ecidy {^)>^ on the upper surface. 

Thus, found magnetic charges completely define the magnetic field in all 

points of the domain, where H^j^^y = 0 , i.e. in all points where it can be de­

scribed by means of the scalar magnetic potential. In those parts of space 

where the eddy component H^^i^^y is present, we have the following expres­

sions for components of the magnetic field strength: 

^ rda ' 

H^ 
'''' dz 
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Thus, application of the method of reduction of eddy magnetic field to po­
tential one allows fulfilling equivalent replacement of electric currents with 
magnetic charges. Generally magnetic charges are volume distributed, but 
they can also form simple or double surface layers. 



Appendix B. The Variation of a Functional 

Under the variation Sy of a function y(x) set on an interval (a,i>), one under­
stands such function of the argument x which is defined as a difference 
dy=Y(x)-y(x) of a new function Y(x) and the function y(x). The new function 
Y(x) can be defined as Y(x)=y(x)-¥ari(x), where a is a number tending to zero, 
and rjix) is an arbitrary smooth function. The function Y(x) coincides with 
y(x) at boundary values x=a and x=b. Therefore, rj(a)=ri(b)=0. Thus, the 
variation of function y(x) is equal to dy^arjix) when a—>0. 

b 

Increment of functional I(y) = \f(x,yy)dx at variation dy=arj(x) of func-
a 

h h 

tion y{x) is equal to zJ/= \f{x,y-\-ay\y-\-av()dx-\f{x,yy)dx. Let's ex-
a a 

pand it in Taylor's series in powers of a: 
dl a^ d^I a" d'l 

A/ = a — + 7 + r- + ... 
da \'2da^ \'2'3da^ 

The leading, linear part of the functional increment is designated as 
Si = a and is referred to as its first variation. Accordingly, the expres-

da 
oc^ d^l 

sion 5^1 is referred to as second variation of the functional /, etc. 
2 da" 

In order that function y{x) provides an extremum to the functional /, it is nec­
essary that equality — = 0 or (57=0 was valid for small a. Thus, setting a 

da 
variation dy^ar\{x) for functions y{x), one can search for an extremal of the 
functional from the necessary condition ^/=0 or — = 0. The extremal is un-

da 
derstood as such a function y{x) at which it becomes its extreme value. 

Examples of calculation of some functionals' variation are given below. 

Let's find the variation of functional / =— \(p^{x,y,z)dV, in which (p(x,y,z) is 

the field scalar potential. Assuming d(p=arj(x,y,z), we find 
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Sl^a 
da = a-

a=0 da 
\\{(p+arifdV 

a \{(p+ari)ridv\ = a [(prjdV = \(pd(pdV. 

Similarly, variation of the functional / = 0.5 || — | dV can be calculated: 

Sl--a 
dl 

da 

d 
^a— 

a=o da 

rdcpdri 
-"IT-i^'-i 

2}y dx 

d(pd{d(p) 

dx dx 

\ 2 

dV 

dV. 
V ^-^ ^"^ V 

Using this expression we can write down variation of the functional 

I=:W^ =- JDEdV = ^ jeE^dV =- J£ 
. ^v ^v ^v 

' '9^Y (d<p^' 
dx dy 

v^/y 

d(p 
kv, 

which defines the energy of electric field in the volume V: 

/d(pd(8(p) dcpdibcp) d(pd{b(p)^ 

'i«=o v\^^ ^^ dy dy dz dz 

)dV 

31 = a— 
da\ 

dV = 

When / = - J | dS where n is the normal to the surface 5, we have 

dl = a 
dl_ 

da a-
flr=0 da 

1 ^d{(p^-ar])^ 

dn 
dS 

p3^3r| -es^^=f d(pd{h(p) 

dx dn 
dS, 

s ^"^ ^'^ s 
It should be noted that if the functional includes the function y{x), as well 

as its derivative y = —, then variation dy caused by variation Sy is equal 
dx 

ioS/ = S^=:—(Sy). 
dx dx 
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accuracy of linear connec­
tions, 137 
active /^C-filters diagnostic,97 
adjoint variables, 197,202,217 

admittance matrix, 163,164 
algorithms, 

-genetic,25,109,111 
-search for shape 

andstructure,201 
-for searching the node 

number, 177 
analogy of, 

-electric current and magnetic 
charges,319 

-equations for forward 
and conjugate problems, 199 

-forward and conjugate 
potentials, 199 

anisotropy axes,216 
antigradient,62 
antigradient vector,62,63 
a priori information, 107,202 
area 

-of effective solution,49 
-with magnetic flux 

concentrations,222 

Biot-Savartlaw,8,318 
boundary condition for 

-forward variable, 195 
-conjugate variable, 197 

boundary layer 
-duration, 128 

boundary-value problem, 193 

chromosome, 112,113 

circuit 
-diagnostic, 156 
-modeling,275 
-nonreciprocal,171 
-observable, 158 
-reduced, 176,178 
-reciprocal, 174 

circuit branches 
-admittances, 157 
-resistances,3,157 

circuit with 
-a single special cut, 165 
-independent special 

cuts, 164 
-two special cuts, 165 

classification 
-of the fault character,93 
-problems,93 

closeness of neurons,96 
clusters,97 
cluster algorithm, 107 
concentration of substances,216 
concept of smallness,94 
conditionality number, 10,135 
condition number,161 
conditional extremum,71 
constraints 

-equality,69 
-inequality,60,69 

convergence 
-acceleration,63 
-rate,91 

correlation,94 
criteria of closeness,94 
criterion 

-scalar,55 
-vector,51,52 
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crossover,! 13 

defectoscopy ,4,43,44 
delta function,203,204 
degeneration, 114,116,241,304 
derivatives 

-"material",201 
-numerical,62,76 
-of objective function,91,194 
-partial,85,251,278 

descendants,! 12 
directed crossbreeding, 

-graphic interpretation,! 16 
discontinuous function,246 
discrete analogues,! 1,14 
discreteness, 11,18,118 
distance 

-definition,94,148,239,288 
-Euclidean,!7,95,!33,147 

distributed parameter 
systems,42 

domain of 
-admissible position of 

optimized body,202,217 
-external sources,239,240 

duality of forward and 
conjugate problems, 199 

eddy current,5,42,44 
electrical circuit 

-diagnostic,4,13,43,97, 
121,145,156 

-graph links,30 
-graph tree,3 0,158 
-synthesis,4,7,12,257 
-topology,l,21,33,188 

eigenvalues,9,65,126 
-small, 148,150,164,171 
-large, 172 

eigenvectors,67,146 
-right, 146 
-left, 147 

electromagnetic force,206,229 

electromagnetic transient 
analysis, 122 

elite,115 
equation 

-of electric circuit,42,79 
-descrete,ll 
-integral,36,239,240 
-Kirchhoff,3,278 
-operator,44 
-state,83,102 
-stiff,10,125,136 

equivalent magnetic 
charges,319 

evolutionary 
-inheritance,113 
-natural selection, 112,113 
-principles,113 
-variability,112,113 

error 
-approximation, 101,255 
-construction of linear 

connections, 180 
-identification, 161,164,178 
-matrix elements, 148 
-modeled process, 135 
-measurement, 13,16,170,173 
-numerical integration of 

equations, 129,281 
-numerical solution, 11 
relative, 134,141 
-root-mean-square,59,101, 
-experimental data, 145,155,152 

fast and slow components, 124 
field 

-electrostatic,3,39 
-homogeneous,296 
-quasistatic,42,306 
-steady magnetic,6,40,48,296, 

301 
finite-difference derivative,62,76 
fitness-function, 112 
floating-point arithmetic 



Index 327 

standards, 172 
forecasting of power systems 

performance,97 
Fourier-image of the kernel, 100 
frequency dependences 

of the condition numbers, 179 
function 

-bipolar,87 
-identifying, 185 
-membership,57,59 
-neuron activation,87 
-objective,2,60 
-sigmoid unipolar,87 
-transfer,93 
-unit step,87 

functional,2,9,38 
-augmented, 194,196 
-derivatives,61,109,194 
-expanded,69,71,73,74,80,84 
-ravine,63,67,133 
-variation,73,196,323 

fundamental tree 
with branches, 158 

fuzzy 
-logic,56 
-method, 5 9 
-sets,56 

gemmating process, 114 
gene, 112 
genetic algorithm, 111 

-disadvantage,! 18 
-multiple processor,! 17 
-practical accuracy,! 18 

global 
-membership,59 
-minimum, 105 

gradient methods,62 
gradient of functional,62 
Green's theorem, 196 

heuristic rules,97 
homogeneous magnetic 

fields,234,296 
half-fall time, 122 

identifications of AC circuits,29 
individual,! 12 
induction heating,42 
inductively connected coils,74 
isolated subcircuit,!73 
isoperimetric variational 

problems,73 
iterative calculation,241 
iterative process convergence, 
inverse problem, 1,2,37 

-criteria,3,4 
-defectoscopy,44 
-diagnostics,5 
-electrostatics,39 
-identification,5,32,43 
-incorrect,!! 
- incorrectness,!! 
-in frequency domain,275 
-in operator domain,24 
-in time domain,8! 
-macromodeling 
(macromodel),5,26 
-magnetostatics,40 
-multiobjective,10 
-multicriterion, 10,47 
-non-uniqueness,6 
-optimization,33 
-quasistatics,42 
-restrictions,6 
-rigid,9,!0 
-r-ravine,67 
-stability,7 
-stiffness,8 
-synthesis,4 

Hemming interval,94 kernel of ^-th order,28,!00 
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kernel of the class,95 
Kirchhoff equations,3 
Kohonen's rule,96 

Lagrange multipliers, 
-continious,196 
-discrete,? 1 

layer of magnetic charges 
-double,205 
-single,210 

level lines,60 
linear connections, 137,143, 

150,151 
-independent, 172,177,178 

Lipschitz constant, 108 
local minimum,60 
loop 

-admittances, 160,162 
-resistances, 160,163 

macromodel of,5,26 
-nonlinear electric circuit, 

79,102 
-non-unimodal,105 
-operational amplifier circuit, 

macromodeling,5,26,l 02 
-object,27 
-problem,5,26,98 
-synthesis,27 

magnetic charge,319 
magnetic flux,202 

-focusing,221 
-redistribution,223 

magnetomotive force,36,206 
magnetostatics,40 
main criterion method,52 
matrix 

-degenerate, 128 
-generalized, 16 
-Hesse,9,10,64,66,133 
-Jacobi,126 
-magnetic permeability, 1,216 
-nodal, 159 

admittances, 162,165,176 
-of contours,3 
-of cutsets,3 
-pseudo-inverse, 16,17 

media 
-anisotropic,35,216 
-homogeneous,214 
-isotropic,214 

medium 
-classes,200 
-composite,216 
-homogeneous,216 

membership function,57 
method 

-configurations, 134 
-convolution,50,54,55 
-coordinate rotation, 134 
-criterion,55 
-evolutionary,! 12 
-finite difference,220 
-finite element,235 
-global optimization, 105 
-gradient,62 
-linear convolution,50 
-loop resistances, 160,163 
-loop admittances, 15 8 
-minimax,54 
-minor alterations, 121 
-multistart,107 
-Nelder-Mead simplex, 130 
-nodal impedances, 158,159 
-penalty,68 
-Rosenbroke,63 
-simulated annealing,! 10 

minimization 
-constrained,68 
-unconstrained,59,68 
-weighting coefficients,50 

minimum of approximation 
error, 101 

modification of a diagnosed 
circuit, 168 

multicriterionity, 10 
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multistart,107 
multiterminal network,5,157 
mutation,! 17 

nervous pulse,87 
neural networks,29 

-classification without 
a teacher,95 

-coefficients,87 
-error of inverse 

transmission,91 
-error on the network output,92 
-layers,89 
-leaming,94 
-learning factor,91 
-learning steps,91 
-learning without a teacher,95 
-learning with a teacher,91 
-matrices of neural network,89 
-self-organizing,95 
-single layer,88 
-three-layer,89 
-testing,5,27 

neuron,87 
-activation function,87 
-model,88 
-properties,88 

non-uniform, 193,200 
norm of matrix, 147 
norms of discrepancies,90 
numerical gradient 

approximation,62,76 

objective function,2,60 
observability of electric 

circuit, 161 
Ohm's law,3 
optimal exponent, 172 
optimal pole shape,234 
optimality conditions,248 
optimality criteria,285 

optimization, 
-criteria,! 
-one-parameter,61 
-parametric, 18,22 
-problem,24,41 

-multicriteria,24 
-topology,200 
-shape,200 
-unconstrained,59 

optimization method 
-Broyden-Fletcher-Goldfarb-

Shanno,66,237 
-conjugate gradients,67 
-Davidon-Fletcher-Powell,66 
-gradient,62 
-Hook and Jeeves,61 
-multi-criterion,49 
-Newton,65 
-quasi-Newtonian,66 
-quickest descent,62 
-random search,62 

parametric 
-identification, 166 
-optimization, 18,22 
-synthesis,22 

parents' generation,! 12 
Pareto,49 

-optimal set,49 
-optimal solutions,49 

penalty functions method,68 
pole optimum shape,234 
population,! 12 
potential,3 

-vector of current,42 
-electric,206 
-scalar magnetic,205 
-vector magnetic,202,205 

principle of 
-quasi-stationarity of 

derivatives, 121,136 
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-repeated 
measurements, 121,168 

problem 
-identification,4,5,29,33,43 
-minimax,53 
-multiextremal,49,52 
-two-criterion,54,55 
-stiff, 122 
-synthesis,8,127 

quasi-stationarity of 
-derivatives "in reverse",141 
-first derivative of 

variables vector, 139 

random search algorithms,61,109 
ravine,9,60,132 
ravine functional,9,63 
ravine functional definition, 133 
regularization 

-parameters, 14 
-procedure, 13 
-Tikhonov,14 

removing a topological 
singularity, 173 

Roth-Hurwitz conditions,21 
roots of the characteristic 

equation, 123 
roulette rule,l 13,115 
saddle point, 106 
scalarization,50 
self-organizing network,97 
sensitivity 

-of coefficients, 147 
-of eigenvalues, 151,154 
-of equation solution, 10 
-of objective functional, 108 

separated spectrum, 148 
sets of 

-tree currents 
and voltages, 158 

-cotree currents 
and voltages, 158 

shape of 
-ferromagnetic pole,300 
-polar tip,47,90,234,236 

simply connected region,318 
simulated annealing method, 110 
singularly 

perturbed problem, 127 
small parameters, 121,127,147 
soft optimization methods, 109 
solution 

-analytical, 12,24,71,125,253 
-effective, 18,49,136 
-generalized, 16 
-normal, 14 
-non-unique,6,13,17,25, 

68,105,177 
-pseudo, 16 
-system 

of equations, 14,76,141 
-weakly effective,49 
-of identification 

problem, 168 
sources 

-of adjoint variable,202 
-extemal,239 

special 
-cuts,161,178 
-loops, 161,179 
-split signal,28 

splitting stiff problems, 125 
stabilizer, 14 
stiffness,8 

-of mathematical model, 121 
-of initial problem, 125,154 
-system of 

differential equations, 126 
-of state equations, 127 

style of evolution,l 13 
subcircuits,163,173 

-poorly connected, 163 
synthesis 

-parametrical,22,36 
-structural,20,35 
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system of equation 
-ill-conditioned, 128 
-overdetermined, 15 
-poorly conditioned, 168 
-stiff,124,126,136 
-underdetermined, 15 

Taylor expansion, 
theorem 

-Bauer-Fike,147 
-Frechet,98 
-Green, 196 
-Vieta,124 

Tikhonov's functional, 14 
time constant, 123 
Todd's number, 161 
topological singularities 

-of the circuit, 161,172,177 
-of embedded type, 163 

trajectory of 
quickest descent,63,133 

TTL-logic element,92 
transfer function,93 
transient 

-characteristic, 1,122,257,284 
-process, 139,149 
-response, 128,251 

transient conductivity, 122 
transient process, 122 

-boundary layer part, 128,154 
-outside of the boundary 

layer part, 128,154 
transmission line,251 
type of repeated experiments, 169 
types of identification 

problems, 157 

Volterra 
-amplitude and phase of 

polynomials, 101 
-convergence of series,98 
-functional polynomial,98 
-functional series,27,28 
-kemel,28 
-series,28 

Volterra - Picard series,27 

weakactions,121 
winner 

-neuron,96 
-gets all strategy,96 

variation 
-calculus,323 
-of function,323 
-of augmented functional, 197 
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