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niques, applications, and modes of analysis with these areas.
In addition data visualization has broadened considerably
from its original focus on scientific, engineering, and other
spatial data. One of its fastest growing areas is in information
visualization (3), where the data may not have a spatial dis-
tribution at all. It may rather be the content and links of a
World Wide Web structure or the products, activity, costs, and
so on, in a large inventory database.

VISUALIZATION PROCESS

Richard Hamming has said, ‘‘The purpose of computing is in-
sight, not numbers.’’ For visualization, one might instead say,
‘‘The purpose of visualization is insight, not pictures.’’ The
point is that the end product of visualization is analysis and,
ultimately, comprehension rather than a striking picture. InDATA VISUALIZATION
fact a crude picture is quite adequate if it serves the purpose.
(It may even be better than a fancy picture if it lacks the

HISTORY AND DEVELOPMENT
artifacts due to rendering technique or coloring, which can
obscure important detail in the clutter.) Foley gave a useful

Use of computers to generate graphical representations of
and very general definition of data visualization as a binding

data has been around as long as there have been graphical
or mapping of data to a representation that can be perceived

displays. Among the earliest applications was the graphical
(4). This emphasizes the process of the mapping of data attri-

depiction of the three-dimensional (3-D) structure of mole-
butes or variables onto the graphical elements of the visual-

cules in the early 1950s. To enhance the 3-D view, stereo-
ization. It also highlights the importance of matching the us-

scopic images were produced, which were viewed by either
er’s perceptual capabilities with the visualization. For

crossing one’s eyes or using a viewer that separated left and
example, one should map data to color in such a way that

right eye images. Here as later the impetus for applying
color contrast is good between adjacent features and that

graphics was the need to comprehend often complicated spa-
shading differences are noticeable even for color-blind people

tial structures and relationships. Since then the development
(5). Finally this definition does not restrict itself to visual per-

of graphical representations of data has moved in step with
ception; any sensory perception is valid including auditory,

the development of workstations (and lately the development
tactile, kinesthetic, and the like. The point is that the process

of personal computers). The big impetus for data visualization
of mapping, if not the final result, is similar for all these rep-

was the appearance of interactive 3-D graphics workstations
resentations and that one could effectively use the whole sen-

with pipelined geometry hardware and fast, rasterized image
sory range in depicting data. Modern workstations and PCs

displays. Starting in the early 1980s such companies as Sili-
are responding to this idea by developing a wider range of

con Graphics, Stellar, and Pixar began to produce these work-
multimedia capabilities.

stations. At the same time the development of supercomput-
The process of mapping, graphical display, analysis, and

ers like those from Cray and CDC, which were generally
interaction is sometimes called the visualization pipeline (6).

available to scientists and engineers (starting in 1985)
The pipeline includes components for initial data representa-

through the national supercomputer centers, has meant the
tions, input of these data, filtering or sampling for visualiza-

appearance of more complicated applications generating sig-
tion or analysis, application of visualization procedures,

nificantly larger amounts of data.
transforming of the data into geometric or image form, and

The culmination of data visualization activity was the sem-
display. The sections below will discuss all these aspects. The

inal 1987 report ‘‘Visualization in Scientific Computing’’ (1)
visualization pipeline represents both a dataflow and a visu-

which defined the field and enumerated many of its goals. As
alization network. This concept has been implemented into

a result of this report, visualization came to be used generally
very flexible and widely used tools called dataflow visualiza-

to denote the graphical representation of data, and the term
tion systems (discussed later in the article). The components

scientific visualization was coined. Since then the field of visu-
of the pipeline can be separated into process and data objects.

alization has grown rapidly. It now has its own conferences,
The process function includes transformation, collection, sam-

symposia, and workshops including the IEEE Computer Soci-
pling, and other operations on the data. The data objects store

ety Visualization Conferences (2), sessions of the ACM SIG-
or prepare data for transfer between pipeline components.

GRAPH conference series, and others. It also has its own jour-
This modular functional structure for the pipeline has made

nals, including the IEEE Transactions in Visualization and
it easier to build flexible, efficient visualization tools and also

Computer Graphics, The Visual Computer, and special issues
has made environments like the dataflow systems easier to

and reports in IEEE Computer Graphics and Applications,
use.

among others.
Now the spread and activity of data visualization is quite

broad, and it overlaps with many other fields. These include VISUALIZATION METHODS
of course computer graphics and such specific areas as volume
visualization, medical visualization, flow visualization, and It is useful to classify data by the number of components or

dependent variables that they have for each data point. Thus,molecular graphics. Data visualization shares many tech-
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if a dataset has one component per point, it is a scalar data-
set; if it has N components per point, it is an N-dimensional
vector dataset; if it has N � N components per point, it is
an N-dimensional tensor dataset. If the dataset has multiple
components per point but is not arranged like a vector or ten-
sor, it is called multivariate data. In addition the dataset
might have combinations of scalars, vectors, or tensors per
data point; this is also multivariate data. Visualization tech-
niques have been developed to display each of these types of
data. [See (7) for many examples of these techniques.]

Commonly scalar, vector, and tensor data are considered
in terms of spatial fields. Suppose that one is studying data
from a global atmospheric simulation (8). The data elements
might be defined at 3-D positions in the atmosphere (e.g., at
some latitude, longitude, and altitude above sea level). If the
dataset contains a temperature value at each of these spatial
points, it would be a scalar field. If it contains 3-D wind vec-
tors at each point, it would be a vector field. If it had a 3 � 3
stress tensor defined at each point, the components of which
describe both pressure and shear forces, it would be a tensor
field. Note, however, that data do not have to be arranged in Figure 1. MRI images of a human head using different isovalues

and cut planes.spatial fields. Statistical data, such as are often attacked us-
ing information visualization, would have a number of dimen-
sions equal to the number of statistical variables. Further
each of the points might have no inherent spatial location. counters are mapped to color and transparency values, which

are then superposed to give a final color value for each pixel.This would be the case, for example, for a dataset containing
the height, weight, age, income level, education level, health The result is an overall rendering of the data volume where

there are no surfaces explicitly displayed, and the shapes ofcharacteristics, and so on, of a given population of indi-
viduals. colored regions represent patterns in the data.

The depiction of 3-D fields often poses difficulties due to
the size of the data and the inherent problem of clearly seeingScalar Methods
structure ‘‘inside’’ or behind other structure. One could have,

Whether data are spatial or not, visualization involves the for example, a visualization of the brain with outer lobe struc-
mapping of these data into 2-D or 3-D space. For 2-D scalar ture superimposed on inner folds. Or one could have a depic-
data, or a 2-D slice in 3-D space, this mapping might involve tion of molecular orbital structure overlaying inner atomic ar-
a simple color map. Here a range of the scalar variable is rangements and bonds. In both cases there are no definite
mapped onto a range of a color spectrum, often using simple boundaries or surfaces to depict. On modern graphics work-
linear interpolation. One might view two scalar variables si- stations, the alpha channel can be used to make outer layers
multaneously by using different color ranges (e.g., an orange- semitransparent and thus reveal inner structure. This ap-
red range and a blue-green range) to depict the variables. It proach has the drawback that the shapes of semitransparent
can be confusing to the viewer to use more than three color layers are hard to discern, as are their depths. More recently
ranges to depict variables. Also different color ranges can there have been methods using textured surfaces at key val-
bring out or obscure features in the data; they can even intro- ues of the field, with holes that reveal inner structure (9). The
duce visual artifacts such as discontinuities where none exist eye can easily translate a regular texture pattern into shape
in continuous data. For a further discussion of the use of color and depth information. See Fig. 2 for an example.
in visualization, see Refs. 4,5. Methods to select parts of the data can be combined with

The depiction of a 3-D scalar field S � S(x, y, z) at a given interactivity to reduce dataset size and focus on important
value S0 will be a 2-D surface. For a continuous field this will details. For example, one can use a cutting plane to define a
be a continuous surface, called an isosurface. (The 2-D analog 2-D slice of data that can then be depicted using color map-
is an isocontour.) For a given isovalue S0 there might be mul- ping or isocontours (6). The position and orientation of the
tiple surfaces, some of which could be inside others. By chang- plane could be interactively set. If the plane can be moved
ing the isovalue, one could get a depiction of the whole data- and rapidly updated, one can obtain a sense of the 3-D varia-
set. For example, if one had 3-D magnetic resonance imaging tions in the data and can also search for features. A 3-D ana-
(MRI) data for a human head, one could choose an isovalue log of this capability is a 3-D box, moved through the data
that shows the skull and then change the isovalue to show space and then sized and oriented by direct manipulation
different regions in the brain. This is because the MRI inten- (where the user interacts directly with the 3-D objects in the
sity at each point depends on the depth and density at that scene, rather than indirectly through knobs, sliders, etc.,
point. See Fig. 1 for an example. attached to an interface). A generalization of all these capabil-

Volume visualization or volume rendering is often used to ities is called a magic lens (10,11). Here the user controls an
depict 3-D scalar fields. Here images are built up by casting arbitrarily shaped region in 2-D or 3-D space, which changes
rays from each pixel of the display through the data volume. the appearance of objects viewed through that region. The

tool can act either as a lens through which the user looks orThe number and densities of data elements that the ray en-
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out. In fact, a rocking of the scene by as little as 2� will pro-
duce the same effect (12). Another aspect of interactivity is
animation, which is obviously effective in displaying the dy-
namic behavior of time-dependent data. Here, again, a rate of
at least 10 frames/s is effective. One can also map almost any
variable to time. For example, one might represent pressure
changes in a thunderstorm simulation by color and then rep-
resent each step in the change of a simulation variable, such
as the temperature gradient, with a separate time step.
Among other things the resulting animation could show areas
where there is a rapid buildup in pressure as the temperature
gradient increases. Because of the complexity of the data be-
ing rendered and/or the level of the graphics computer doing
the rendering, it is often not possible to achieve the requisite
level of interactivity. Some of the dataflow visualization sys-
tems discussed later in this article have frame collection and
playback tools to overcome this problem (e.g., the Sequencer
module in the IBM DX). With these the user can collect sev-
eral frames of an animation, rotation, or other set of interac-
tions and then play them backward or forward at higher

Figure 2. Textured surfaces revealing the structure of molecular or- rates.
bitals at different values.

Vector Methods
as a 3-D space, in either case controlled by the user. The Vectors are N component objects in N-dimensional space;
magic lens might provide a magnified view of objects in its thus we need ways to present all N components at once. A
path, provide views of variables or annotations hidden other- simple way to do this for 2-D or 3-D vectors is to use directed
wise, or offer a more detailed rendering of a variable (see Fig. lines, with or without arrows at the end. The problem for
3). Magic lenses are applicable to information of all sorts, not 3-D-directed lines is that it is hard to tell whether they are
just physical data; in the context of information visualization oriented into or out of the image plane. As discussed above,
they are sometimes called table lenses. one can use interactivity to rotate the image and reveal this

Interactivity is an important component for all types of vi- information. Alternatively, one could use a fully 3-D vector
sualizations, since it allows individuals to efficiently use their shape. In this case foreshortening, shading, and lighting com-
eye-brain systems to bring out otherwise hidden relations or bine to give additional information about orientation.
to quickly collect information on overall data structure and Vector fields are complicated to represent because they
dynamics. If a scene can be rotated at 10 frames/s (sometimes have N components at each data point throughout a 3-D
a lower rate is adequate), the eye-brain system can use paral- space. Among common methods to present vector fields are
lax to instantly clarify depth relations. Thus, for example, a particle traces, streaklines, and streamlines (13). Each of these
viewer will not be able to obtain any depth information from cases involves the integration of the vector field with respect
a stationary 3-D scatter plot (where information is displayed to time or a timelike parameter. Thus a particle trace would
just as points in 3-D space), but if she starts rotating it at 10 be drawn by integrating the vector field at successive time
frames/s, the 3-D spatial structure will immediately jump

steps

xxx(t) =
∫

t
VVV dτ

Animation of the resulting trace provides a sampling of both
the vector field direction and magnitude at each point the par-
ticle passes. Physically this is like inserting gas bubbles in
the vector field and then following their motion. Often a probe
is used to interactively insert lines of particles in different
regions of the field. Streaklines are modifications of the parti-
cle trace where continuous lines are traced by the particle (as
if they were trailing a tail of dye).

Streamlines are integrals of the vector field, but taken at
one point in time. For static vector fields, streamlines provide
trajectories that are identical to those for particle traces and
streaklines. However, the trajectories differ for time-depen-
dent fields. Streamlines have the property that at every point
the vector field is tangent to the streamline. Thus they depict
field direction but not magnitude, and one must use color, forFigure 3. Magic lens revealing additional detail in a data field.
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ber of components simultaneously, analysts often turn to
glyphs (sometimes also called 3-D icons). Glyphs are 2-D or
3-D objects whose graphical attributes (color, position, orien-
tation, size, shape, etc.) are mapped to the variables at each
point. They thus tend to be point objects, through higher-di-
mensional representations are also possible. The idea is to
construct the glyph with mappings that are visually distinct
so that one can see the mapped variables simultaneously. For
example, we have in Fig. 5 a glyph representing several com-
ponents of tensor and vector fields (14). The direction and
length of the vector represent velocity, the twisting stripes on
the vector represent rotation, the different colored rings at
the base represent direction and magnitude of shear (by com-
parison to a reference ring) and field divergence (or conver-
gence), and the half ellipsoid at the bottom represents acceler-
ation. These combinations of color and different shapes
permit the viewer to see each component distinctly. This
‘‘probe glyph’’ can be placed along streamlines, for example,
to probe the structure of a tensor field.

The expressiveness of glyphs can be demonstrated in the
following example. Here simulated flow of plastic in an
injection mold is depicted (15). Important quantities are the
pressure, temperature, and velocity of the flow. The plastic
must flow at the correct rate and temperature so that it
doesn’t harden too quickly or too slowly, and it must fill
all parts of the mold uniformly. Each glyph, placed ac-
cording to a finite-element grid, is a 3-D object with the
velocity field represented as a shape distortion of appro-
priate magnitude and direction along the glyph, and tem-
perature and pressure represented by different color scales
on the glyph and its base, respectively [see Fig. 6(a)]. When
the injected plastic has hardened, there is no flow and the
glyph assumes a round shape. Figure 6(b) displays one time
step from the simulation (15). We see that it is quite appar-
ent what regions of the injected plastic are hardened or
flowing, the direction of the flow, and the accompanying
pressure and temperature values. In addition time step se-
quences reveal that one can follow in detail the injection
process, including the advance of the molten plastic and
the effects of pressure and temperature.

Figure 4. (a) Colored streamlines showing the structure and magni-
tude of flow. (b) Streamribbons showing flat and twisting regions of
flow.

example, to show magnitude [see Fig. 4(a)]. In 3-D, stream-
lines can often have complicated trajectories; for example,
they may twist. To bring out such behavior, streamribbons
are often used. These objects are constructed by rendering
two adjacent streamlines and then connecting them with a
planar surface. This gives a clear representation of the twist-
ing or vorticity of the vector field as long as the adjacent
streamlines don’t diverge too much [see Fig. 4(b)].

Tensor and Multivariate Methods

Multivariate datasets have several components, usually more
than three per data point. For example, tensors in 3-D space Figure 5. A glyph representation of multiple tensor and vector com-

ponents.have up to nine independent components. To depict this num-
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tools will be the focus of this section. However, there are also
toolkits requiring some programming expertise in order to put
their modules together into visualization programs. The ad-
vantage of these over the higher-level systems discussed next
is that they give significantly greater flexibility in designing
and optimizing visualization capabilities for specific applica-
tions and datasets. One of the most widely used is the Visual-
ization Toolkit (VTK) (6), which offers a broad range of visual-
ization tools (with source code) for 2-D and 3-D data including
those for contouring, surface smoothing, cutting, slicing, deci-
mation, triangulation, volume rendering, building Web-based
visualizations, among others. VTK can be used on a broad
variety of platforms including those running Windows 95,
Windows NT, IRIX, Solaris, HP-UX, Digital UNIX, IBM AIX;

Color 1

A glyph example

z

y

x

Color 2

(a)

it also has Java bindings. The tools and their data structures
are constructed in an object-oriented fashion. The user should
know C�� to most effectively use VTK. However, Ref. 6 is
also a good source with detailed descriptions of visualization
techniques (including examples and the complete toolkit mod-
ules on an accompanying compact disk).

The most successful, high-level data visualization tools
have been dataflow visualization systems. Among the systems
in wide use today are AVS (18), IBM Visualization Data Ex-
plorer (IBM DX) (19), SGI Iris Explorer (20), Khoros (21), and
Vis-AD (22). These use visual programming methods whereby
the user sets up a program by direct manipulation of graphi-
cal icons. The dataflow systems are based on directed acyclic
graphs (DAGs) that map the flow of data from a source mod-
ule to a sink module. The source module is usually a data
reader, and the sink is usually a display module. A schematic
for a simple dataflow map is shown in Fig. 7(a); and an actual
interface with map for the IBM DX is shown in Fig. 7(b). As
can be seen from the schematic, one can set up a simple visu-
alization just by linking together appropriate modules andFigure 6. (a) Construction of glyphs for representation of details of
without any knowledge of the underlying program structureinjection molding. (b) A time step in the injection molding simulation
or data-handling characteristics. Each module may also haveusing the glyphs in Fig. 6(a).
controls and even its own interface. In addition most of the
dataflow systems permit the user to build her own interface
(employing a simple graphical interface builder) that might

Instead of attempting to display several variables at once
control a collection of modules.

in a single view, one can display multiple views, each with
One can see that the dataflow approach is highly flexible

different variables, simultaneously. For example one could
and allows rapid building of visualization and analysis tools

display side-by-side frames (16) of the time steps from a simu-
without programming knowledge. In most systems there is

lation where one frame contains shear forces with respect to
also the capability to build one’s own customized modules in

a 3-D object, one frame shows compressive forces, and another
C or Fortran; the system then automatically generates appro-

frame shows other variables such as temperature or velocity
priate wrappers for these so that they can be used just like

fields. If one then selects a region in one frame, the variables
other modules. This capability has led to large libraries of

for the selected points are highlighted in the other frames.
user-developed modules for systems such as AVS, IBM DX,

This interactive technique, called brushing (17), can signifi-
and Iris Explorer. There are also newsgroups and Web pages

cantly aid correlative analysis between the variables in the
devoted to these systems, and specific applications such as

simultaneous views and is often used in statistical visualiza-
molecular chemistry or biomedical visualization. In addition

tion. Other multivariate techniques are discussed later in
most of the systems come with capability for distributed, net-

this article.
worked operation. Thus one could run AVS, for example, on
a large computational server and on a graphics workstation.
Modules constructed in the same dataflow map could be onDATAFLOW VISUALIZATION SYSTEMS
the different machines and still pass data. To take advantage
of wide networking availability, dataflow systems such asHow can an individual who does not have experience in

graphics, visualization, or even computer programming em- IBM DX even provide Java applet front-ends with VRML con-
trols and 3-D display.ploy the methods discussed in this article for data analysis?

To answer this question, a variety of visualization tools have Such high-level yet flexible and powerful systems are
bound to have some drawbacks. One comes from the extensi-been developed on the premise that users should need little

other than knowledge of their data to employ them. These bility of the system and thus the proliferation of modules.
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DATA REPRESENTATIONS

Data for visualization systems and for many applications are
organized according to several attributes including dimen-
sionality (number of independent variables), attributes or de-
pendent variables (the data themselves at a given point, e.g.,
temperature or energy); type (byte, integer, float or real, com-
plex, etc.), geometry (actual position and shape information
for data objects), topology or mesh structure (general connec-
tivity information that is invariant under certain operations);
see Refs. 6,23,24. In addition there may be attributes associ-

Camera

Query

Iso-value Import

Isosurface GlyphInquire

Switch

Display

(a)
ated with each variable, such as rank (scalar, vector, or ten-
sor), or with groups of variables, such as aggregation (collec-
tions of independent variables or geometric structures treated
as a single entity). One should distinguish between geometry
and topology. The latter remains the same under geometric
transformations such as rotation, translation, or scaling while
the former does not. Thus the objects in Fig. 8 have the same
topology, they are both quadrilaterals, even though they have
different geometries (e.g., different orientations, scales, and
angles). The ordering of the set of points convey the topologi-
cal information. Thus in our example, there is an edge be-
tween 0 and 1, between 1 and 2, and so on.

There are a variety of topologies or mesh structures that
appear not only in visualization but also in finite element
simulations, computational fluid dynamics, and other applica-
tions that use meshes. Figure 9 shows some of these mesh
structures, which are enumerated in the following list. Sev-
eral of these structures are known by more than one name.

Figure 7. (a) A schematic of a simple dataflow map. (b) The actual
interface with map for the IBM Visualization Data Explorer. • Rectilinear or Deformed Regular Grid. A grid where the

topology is regular and parallel to the global x, y, z coor-
dinate system, but the geometry is only partially regular.

Some libraries now have a thousand or more modules. Such • Structured Points or a Regular Grid. Points arranged on
richness of capability means that there can easily be millions a regular rectangular lattice or parallelepiped.
of ways to hook these units together in a map. The nonexpert • Unstructured or Scattered Points. 2-D or 3-D scattered
user can quickly be overwhelmed. To help overcome this prob- data with no connectivity and no topology.
lem, improved organization and cataloguing of modules have

• Structured or Deformed Regular or Curvilinear Grid. A
been developed. In addition there is work on expert interfaces

grid where the topology is regular, but the geometry is
that suggest or refine visualization maps by asking the user

irregular (could be defined by an implicit function).
leading questions about her needs. Another drawback is that

• Unstructured or Irregular Grid. A grid where both topol-high-level, modular systems cannot be as efficient as carefully
ogy and geometry are unstructured. Any cell type canintegrated tools developed for specific applications. This is es-
be used in arbitrary combinations, so any dataset withpecially so in the data-passing part of the system and becomes
connectivity information can be expressed as an unstruc-a problem as datasets get larger. Most of the dataflow sys-
tured grid. A triangular irregular network (TIN) is a typetems have developed improved capabilities, like caching and
of unstructured grid, but more generally it can have aimproved use of pointers, so that data do not need to be copied
mix of cell types as shown in Fig. 9.repeatedly. In addition there is work to handle data so large

that they cannot be contained in memory or may even be dis-
These mesh structures imply different data storage formats.tributed.
However, they are all usually arranged as contiguous arraysA final drawback that occurs quite frequently is that the

user has trouble getting data read by the system and thus
cannot even begin the visualization process. Typically appli-
cation data will come in a form somewhat different than that
accepted by the dataflow system readers. Even though the
readers are often flexible in the formats they accept and the
differences may be small, nonexpert users may still be con-
fused. Indeed this problem may occur with any visualization
tools. Much of this problem can be cleared up by simply de-
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scribing the concepts used in graphical data representations,
since the confusion is often just a matter of terminology. We Figure 8. An example showing the difference between topology and

geometry.thus give an overview of these concepts in the next section.
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Figure 9. Examples of data mesh struc-
Rectilinear grid Structured grid Unstructured points TIN tures.

with a header that contains the total size of the array, its mation and visualization techniques (25). Data can be divided
type, the number of attributes per data point, and so on. Fol- into three categories: normal (N; are only equal or not equal
lowing the conventions of C, the arrays are often 0-offset; that to other values), ordered (O; obey an ordering relation), or
is, n data values would have IDs: 0, 1, 2, . . ., n � 1. The quantitative (Q; one can do arithmetic on them). Visualization
array structure for 3-D unstructured data, for example, might of these data are basically made from marks and their graphi-
consist of an x, y, z position for each point followed by the cal properties. The types of marks are point, line, area, sur-
attributes for that point. Often there are two arrays, one for face, and volume. The properties are color or size. All must be
positions and one for attributes. (The latter could also be mul- mapped in a 2-D or 3-D space for display (e.g., xy plane or
tiple arrays, one for each attribute.) Unless one wanted to xyzt—3-D space plus time). This general graphical taxonomy
display such data as, say, colored points or glyphs, it would of course applies also to the visualization techniques de-
be necessary to derive a connectivity structure for these data. scribed throughout this article. Just as with physical data,
Thus, for example, one might resample the data on a regular interactive techniques that control view, focus, or time are of
grid and then apply an isosurface algorithm. The format for importance in information visualization for exploration and
a regular grid would not need explicit position coordinates for revealing of detail.
each point. The header would contain the shape (number of Multidimensional plots are an information visualization
cells in the x, y, and z directions), the data spacing increment technique that involves mapping nonspatial data onto point
in each direction, and the origin of the grid. The array would marks in the xy plane. The result is often a traditional scat-
then contain a list of attributes, usually in increasing x, then terplot, frequently used in statistical visualization. One exam-
y, then z. A rectilinear grid would be arranged like the regu- ple of this technique is FilmFinder (26), where a scatterplot
lar grid (with implicit connectivity structure) but would have has been turned into an interactive, exploratory visualization
an additional position array (6). by the use of sliders and buttons that control a filter function

determining which films are shown on the scatterplot. The
filter function controls a set of variables such as title (O),INFORMATION VISUALIZATION
year (Q), rating (N), type (N), and others. As one moves the
slider, the display is instantaneously updated so that one canInformation visualization is the application of 2-D and 3-D
move rapidly through a large amount of information. This in-visualization techniques to information, whether these data
terface, with its tight limits on update times, is called a dy-are spatial or not. With this broad definition, scientific or en-
namic query interface (27).gineering data visualization would also fall under the infor-

Another way of showing higher-dimensional data is Worldsmation visualization mantle. More typically information visu-
Within Worlds (28). A series of nested coordinate systems isalization is understood to deal with data that has one or more
set up. Variables are mapped to the spatial dimensions innonspatial components. Thus the inventories of a chain of
each coordinate system. Thus, if we had six variables, therestores, whether or not their geographical distribution is taken
would be two coordinate systems whose mappings might beinto account, would be a subject for information visualization.
variables a, b, c for the outer system and d, e, f for the innerAs would be expected, many of the techniques discussed in
one—namely we would have a function f (a, b, c, d, e, f ). Ifother sections of this article could also be used for information
one positions the origin of the inner coordinate system at,visualization. However, information visualization has also
say, a0, b0, c0 with respect to the outer one, the function isbrought forth other techniques that are particularly useful for
f (a0, b0, c0, d, e, f ). As we move the inner coordinate systemthe types of data attacked in this field (3).
around, we get other values for a, b, c. This is a way to exploreThe research and interest in information visualization has
a six-dimensional space. See Fig. 10 for an example. Worldsgrown quite fast due to the need to rapidly analyze and un-
Within Worlds provides an overlapped coordinate space,derstand ever-growing information collections. This has en-
which is a kind of details-on-demand approach. Overlappinggendered an ongoing symposium in the subject (24) as well as
is a useful visualization technique but must be used with carepaper sessions in the IEEE Visualization conferences (2). In
so that the user can perceive how the spatial dimensions areaddition graphics workstations have become cheaper and
being used. Fast updates for any movement of coordinate sys-more widely available, and PCs with 3-D graphics are now
tems are quite helpful here.appearing. As a result interactive graphics capability is mov-

Yet another useful information visualization technique ising into offices and workplaces where the focus is on analyz-
the information landscape, where two independent variablesing nonspatial information.
are mapped to the XY coordinates of a surface; a dependentThe information to be visualized can take the form of any-
variable can then be used for the height coordinate, giving athing from spreadsheets to the text of novels. With this wide

range it is useful to provide a taxonomy for the types of infor- height field representation. The themescapes visualization
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In recent years one of the main research areas in terrain
visualization is to develop multiresolution terrain representa-
tions that can be used to build adaptive triangle meshes for
interactive, view-dependent rendering (32,33). View-depen-
dence means rendering according to the user’s viewpoint. Ob-
jects that project to small areas on the screen are rendered at
lower detail. An adaptive terrain meshing algorithm is
needed for this. Almost all existing algorithms are developed
to rely upon a hierarchical model representation in which ob-
jects are described at multiple levels of detail and can be
drawn with various rendering algorithms. The idea behind
recent algorithms is to adjust image quality adaptively to
maintain a uniform, user-specified target frame rate (32,33).

Among hierarchical representations, the quadtree is most
often used for terrain (34). In one approach the quadtree rep-
resentation is used to preprocess the terrain height field on a
uniform grid. Vertices at each quadtree level are computed
using an approximate least-squares fit to the level below. For
each frame at run time, a priority queue drives quadtree re-
finement top-down from the root, thus allowing specified tri-
angle counts to be achieved directly. The priority for a quad-Figure 10. Representation of a multivariate function using the
tree element is a heuristic involving view-independent (errorWorlds within Worlds overlapping coordinates system.
in surface) and view-dependent (screen-area coverage) compo-
nents aimed at minimizing the squared error in output image
pixel intensities (35).(29) is an information landscape example. The terrain visual-

In another approach one chooses continuous triangle-ization techniques outlined in the next section can be of use
bintree meshes, using a compact and efficient regular gridfor handling large information landscapes. In addition there
representation and employing a variable screen-space thresh-are Cone Trees (30) and other representations for showing
old to bound the maximum error of the projected image (32).large organizational structures. All the techniques outlined
A coarse level of simplification is performed to select discretehere are just a sampling of information visualization meth-
levels of detail for blocks of the surface mesh, followed by fur-ods. For more details, see Refs. 3 and 24.
ther simplification through repolygonalization in which indi-
vidual mesh vertices are considered for removal. These steps

TERRAIN VISUALIZATION compute and generate the appropriate level of detail dynami-
cally in real-time, minimizing the number of rendered poly-

The display of geospatial terrain, including elevation data, gons and allowing for smooth changes in resolution across
phototexture imagery or maps, and objects on the terrain, has areas of surface. Reductions in detail of a factor of 100 or
enjoyed significant recent growth. One reason is the explosive more are possible without noticeable loss in image quality,
growth of available digital terrain image and elevation data. and one can fly in continuously from a global overview to a

view at 1 M resolution or less, as shown in Fig. 11 (30). TheThe US Geologic Survey, for example, has on-line repositories
of world data at 8 km resolution and US data at 1 km resolu-
tion. There are commercial sources with data at 100 or even
10 m resolution. And the future will really be big. Commercial
satellites will be going up that will collect elevation and image
data from anywhere at 1 m resolution (for a fee).

The input to the terrain visualization is usually a large
digital terrain map (DTM), consisting of elevation data sam-
pled on a regular or irregular grid, and corresponding texture
data which are mapped onto the reconstructed terrain sur-
face. The output is rendered images of the terrain surface,
usually as part of a ‘‘flythrough’’ sequence that is often inter-
active. Terrain visualization is a difficult problem for applica-
tions requiring accurate images of large datasets at high
frame rates because a complete visualization system must
have components to manage disk paging of geometry and tex-
ture (because the datasets are too large to reside in memory),
level-of-detail (LOD) selection for texture blocks, LOD for tri-
angle geometry, culling to the view frustum (the volume con-
taining the parts of a scene in the view of the user at a given
moment), and triangle stripping (30,31). On current graphics
hardware, the problem is to maintain dynamic, view-depen-
dent triangle meshes, and texture maps that produce good Figure 11. Global view of hierarchical data structure that one can

navigate continuously to views at 1 m resolution or less.images at the required frame rate.



DATA VISUALIZATION 17

in some software packages, such as SGI’s Performer. Also
packages such as Multigen, used for the development of 3-D
models, permit the development of multiresolution terrain
datasets. In the future there will be packages that can ad-
dress global terrain and provide the capability to handle very
large datasets.

CURRENT AND FUTURE DIRECTIONS

Terrain is just one of the data applications where immense
data size must be handled at interactive rates. Other fields
also face this need. In the area of scientific visualization, the
input datasets are often very large, such as in computational
fluid dynamics (CFD). To address these very large datasets,
out-of-core visualization techniques are being developed (38).

In addition there is continuing work on visual steering of
computations (39,40). Visual steering denotes two-way com-
munication through direct manipulation of graphical repre-
sentations of data to bring about user involvement with theFigure 12. A flythrough of a cityscape with terrain, buildings, and
calculations as they occur. The typical approach to visualiza-roads.
tion, involving postprocessing data in static files, does not
work here. One must be able to insert on-the-fly parameter

regular grid can also be much more compact than the data changes, even over 4-D regions of the simulation and see re-
representations of other methods, and the preprocessing stage sults dynamically updated. This iterative push-pull between
can be significantly less time-consuming. control and response greatly improves analysis, locates subtle

Yet another approach uses a hierarchical triangular-irreg- errors, and contributes to deeper understanding of the simu-
ular-network (TIN) to represent the terrain mesh (33). This lated processes. Large-scale simulations are now so complex
is in some sense the ‘‘optimal’’ triangulation for the mesh and that often the contributing physical processes are not well un-
thus requires fewer triangles than other methods for a given derstood, even by the experts who run them; studies using
terrain. Two of the most comon methods are a base metric controlled simulations allow focus on the detailed process
derived from the edge-collapse operations inherent in progres- mechanisms and thus illuminate their workings.
sive meshes, which gives only a loose heuristic estimate of The landscape is rapidly changing for computer graphics
geometric or parametric screen-space distortions, and a met- and visualization. What was once only available on high-end
ric that separates nondirectional and normal-direction errors workstations is now appearing on desktop systems and even
to measure errors in approximating nonlinear texture coordi- PCs. Certainly PC graphics has arrived with substantive ca-
nate mappings. The TIN data structure can also have ‘‘near/ pability and real visualization applications (41). In the com-
far’’ annotations for vertex morphing (geomorphing), along ing years workstations or personal systems will be defined by
with queue-driven top-down refinement procedure for build- their capabilities and focus, not by their operating systems.
ing the triangle mesh for a scene. The method applies to gen- As a result a sort of grand unification is taking place so that,
eral base (coarsest-level) triangle meshes. The vertex morph- for the casual consumer, the line between UNIX and the lat-
ing capabilities are powerful, since they permit further est versions of Windows will be blurred to the point of irrele-
simplification of the terrain mesh without distracting ‘‘pop- vance. Graphics applications and customers will soon be
ping’’ of features as the algorithm switches from one LOD to much more numerous than they are now, and the traditional
another. graphics and visualization markets will become a niche. This

Once one has accurate displays of high resolution terrain, does not mean necessarily that traditional vendors of graph-
one wants to populate the landscape with buildings, trees, ics hardware and software will struggle, but rather that all
roads, moving vehicles, and myriad other objects. For exam- segments of the market will grow. However, new consumer-
ple, one might want interactive flythroughs of cityscapes with targeted applications will grow by far the fastest. Since PC
accurate placement of buildings and roads, as shown in Fig. home office, business, and Web products are already here
12. To handle this detail, which is quite different from terrain with their huge markets, we can expect to see an integration
detail, new methods have been developed. These include us- of 3-D graphics with these tools. If we are lucky, we will see
ing generic textures and building types to model the city- completely new tools as well, such as interactive visual
scape, with landmark buildings rendered more accurately browsers that permit one to quickly explore vast collections of
(36). Another method uses background images, something files (a PC may soon be able to hold tens of thousands), knowl-
like the backdrop paintings that were used to fill out land- edge bases, multimedia stores, and deep Web structures.
scapes in older movies. These images are cut and warped to
take into account the user’s moving viewpoint (37). With this
method new background images need be created only occa- BIBLIOGRAPHY
sionally rather than for every frame.
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