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Automatic language identification is the process by which
the language of digitized spoken words is recognized by
a computer. It is one of several processes in which infor-
mation is extracted automatically from a speech signal
(see SPEECH RECOGNITION; SPEAKER IDENTIFICA-
TION).

Language-identification (LID) applications fall into two
main categories: preprocessing for machine systems and
preprocessing for human listeners. Figure 1 shows a ho-
tel lobby or international airport of the future that em-
ploys a multilingual, voice-controlled retrieval system for
travel information. If no mode of input other than speech
is used, then the system must be capable of determining
the language of the speech commands, either while the
system is recognizing the commands or before it has rec-
ognized the commands. Determining the language during
recognition would require many speech recognizers (one
for each language) running in parallel. Because tens or
even hundreds of input languages would need to be sup-
ported, the cost of the required real-time hardware might
prove prohibitive. Instead, a LID system could be used
first to list the most likely languages of the speech com-
mands quickly. Then the few most appropriate language-
dependent speech-recognition models could be loaded and
run. A final LID determination would be made only after
speech recognition was complete.

Figure 2 illustrates the second category of LID applica-
tions: preprocessing for human listeners. In this case, LID
routes an incoming telephone call to a human switchboard
operator fluent in the language of the caller. Today, for ex-
ample, AT&T offers a Language Line interpreter service
to, among others, police departments handling emergency
calls. When a caller to Language Line does not speak En-
glish, a human operator must attempt to route the call to
an appropriate interpreter. Much of the process is trial and
error (for example, recordings of greetings in various lan-
guages can be used) and can require several connections to
find a human interpreter who understands the caller’s lan-
guage. As reported by Muthusamy et al. (1) when callers to
Language Line do not speak English, the delay in finding a
suitable interpreter can be on the order of minutes, which
could prove devastating in an emergency. Thus, a LID sys-
tem that could quickly determine the most likely languages
of the caller could reduce the time required to find an ap-
propriate interpreter by one or two orders of magnitude.

LANGUAGE-IDENTIFICATION CUES

Both humans and machines can use a variety of cues to dis-
tinguish one language from another. The reader is referred
to the linguistics literature (2–4) for in-depth discussions of
how languages differ, from one another and to Muthusamy

et al. (5),who have measured how well humans can perform
language identification. To summarize, languages vary in
the following characteristics:

� Phonology. A phoneme is an underlying mental rep-
resentation of a phonological unit in a language. For
example, the eight phonemes that comprise the word
celebrate are /s eh I ix b r ey t/. A phone is a real-
ization of an acoustic–phonetic unit or segment. It is
the actual sound produced when a speaker is think-
ing of speaking a phoneme. The phones that comprise
the word celebrate might be [s eh 1 ax bcl b r ey
q]. As documented by linguists, phone and phoneme
sets differ from one language to another, even though
many languages share a common subset of phones
and phonemes. Phone and phoneme frequencies of
occurrence may also differ; that is, a phone may oc-
cur in two languages, but it may be more frequent
in one language than the other. Phonotactics, that is,
the rules governing the sequences of allowable phones
and phonemes, can also be different.

� Morphology. The word roots and lexicons are usually
different from language to language. Each language
has its own vocabulary and its own manner of forming
words.

� Syntax. The sentence patterns are different among
languages. Even when two languages share a word,
for example, the word bin in English and German, the
words that may precede and follow the shared word
will be different.

� Prosody. Duration of phones and syllables, pitch con-
tours, and stress patterns are different from one lan-
guage to another.

LANGUAGE IDENTIFICATION SYSTEMS

Research in automatic language identification from speech
began in the 1970s. A few representative LID systems are
described below. The reader will find references to other
LID systems in reviews by Mumusamy et al. (1) and Ziss-
man (6).

Figure 3 shows the two phases of LID. During the train-
ing phase, the typical system is presented with examples of
speech from a variety of languages. Some systems require
only the digitized speech utterances and the correspond-
ing true identities of the languages being spoken. More
complicated LID systems may require labeling, that is, ei-
ther 1) a phonetic transcription (sequence of symbols rep-
resenting the sounds spoken) 2) an orthographic transcrip-
tion (the text of the words spoken) along with a phonemic
transcription dictionary (mapping of words to prototypi-
cal pronunciation) for each training utterance. Producing
these transcriptions and dictionaries is an expensive, time-
consuming process that usually requires a skilled linguist
fluent in the language of interest. Each training speech
utterance is converted into a stream of feature vectors.
These feature vectors are computed from short windows of
the speech waveform (e.g., 20 ms) during which the speech
signal is assumed to be somewhat stationary. The feature
vectors are recomputed regularly (e.g., every 10 ms) and
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Figure 1. A LID system as a front end to a set of real-time speech recognizers. The LID system outputs its three best guesses of the
language of the spoken message (in this case, German, Dutch, and English). Speech recognizers are loaded with models for these three
languages and make the final LID decision (in this case, Dutch) after decoding the speech utterance.

Figure 2. A LID system as a front end to a multilingual group of directory-assistance or emergency operators. The LID system routes an
incoming call to a switchboard operator fluent in the corresponding language.

contain spectral or cepstral information about the speech
signal (the cepstrum is the inverse Fourier transform of the
log magnitude spectrum; it is used in many speech pro-
cessing applications). The training algorithm analyzes a
sequence of such vectors and produces one or more mod-

els for each language. These models are intended to repre-
sent a set of fundamental characteristics for each language
of the training speech. The sets are used during the next
phase of the LID process.
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Figure 3. The two phases of language identification. During training, speech waveforms are analyzed and language-dependent models
are produced. During recognition, a new speech utterance is processed and compared with the models produced during training. The
language of the speech utterance is hypothesized.

During the recognition phase of LID, feature vectors
computed from a new utterance are compared with the
models for each language. The likelihood that the new ut-
terance was spoken in the same language as the speech
used to train each model is computed and the most likely
model is found. The language of the new example is hypoth-
esized to be the same as the language of the most likely
model.

Spectral-Similarity Approaches

In the earliest automatic LID systems, developers capi-
talized on the differences in spectral content among lan-
guages, exploiting the fact that speech spoken in differ-
ent languages contains different phonemes and phones. To
train these systems, a set of prototypical short-term spec-
tra was computed and extracted from training speech ut-
terances. During recognition, test speech spectra were com-
puted and compared with the training prototypes. The lan-
guage of the test speech was hypothesized as the language
having training spectra that best matched the test spectra.

Several variations on this spectral-similarity theme ex-
isted. The training and testing spectra could be used di-
rectly as feature vectors, or they could be used instead
to compute formant-based or cepstral feature vectors. The
training exemplars could be chosen either directly from the
training speech or could be synthesized through the use of
K-means clustering. The spectral similarity could be cal-
culated by the Euclidean, Mahalanobis, or other distance
metric. Examples of spectral similarity LID systems have
been proposed and developed by Cimarusti and Ives (7) Foil
(8), Goodman et al. (9), and Sugiyama (10).

To compute the similarity between a test utterance and
a training model, most early spectral-similarity systems
calculated the distance between each test utterance vector

and each training exemplar. The distance between each
test vector and its closest exemplar was accumulated as
an overall distance, and the language model having the
lowest overall distance was found. In a generalization of
this vector quantization approach to LID, Riek et al. (11),
Nakagawa et al. (12), and Zissman (13) applied Gaus-
sian mixture classifiers to language identification. They as-
sumed each feature vector is drawn randomly according to
a probability density that is a weighted sum of multivariate
Gaussian densities. During training, a Gaussian mixture
model for the spectral or cepstral feature vectors is created
for each language. During recognition, the likelihood of the
test utterance feature vectors is computed for each training
model. The language of the model having maximum likeli-
hood is hypothesized. The Gaussian mixture approach is a
“soft” vector-quantization, where more than one exemplar
created during training impacts the scoring of each test
vector.

Whereas the language identification systems described
above perform primarily static classification, hidden
Markov models (HMMs) (14) which can model sequential
characteristics of speech production, have also been ap-
plied to LID. HMM-based language identification was first
proposed by House and Neuburg (15). Savic et al. (16), Riek
et al. (11), Nakagawa et al. (12), and Zissman (13) all ap-
plied HMMs to spectral and cepstral feature vectors. In
these systems, HMM training was performed on unlabeled
training speech (i.e., training speech with no correspond-
ing phonetic or phonemic transcription). Riek et al. and
Zissman found that HMM systems trained in this unsu-
pervised manner (i.e., with unlabeled speech) did not per-
form as well as some of the static classifiers that had been
tested, although Nakagawa et al. eventually obtained bet-
ter performance using HMMs (17).
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Li (18) has proposed using novel features for spectral-
similarity LID. In his system, the syllable nuclei (i.e., vow-
els and syllabic consonants) for each speech utterance are
located automatically and feature vectors are computed
near the spectral nuclei for each training speaker. Dur-
ing testing, syllable nuclei of the test utterance are located
and feature vectors are extracted. The set of feature vec-
tors for each training speaker is compared with the feature
vectors of the test speech, and the training speaker having
the most similar set of feature vectors is found. The lan-
guage used by the speaker of that set of training vectors is
hypothesized as the language of the test utterance.

Recently, Torres-Carrasquillo et al. (19) and Kohler and
Kennedy (20) have proposed a Gaussian mixture model
approach that incorporates additional information about
the speech dynamics. By stacking delta-cepstral vectors in
each feature vector, a process known as shifted-delta cep-
stra [SDC], and increasing the mixture model order, this
approach tries to overcome some problems with static clas-
sification in previous approaches. Burget et al. (21) has
obtained even better performance using a discriminative
training approach.

Campbell et al. (22) has incorporated the SDC feature
processing technique into a support vector machine classi-
fier. In this work, Campbell et al. generate a feature vector
for each utterance of interest using a degree 3 monomial
expansion. Each feature vector for each language of inter-
est is then used in a “one vs. all” training strategy. For
example, in the case of English, all utterances for English
are used for class A, whereas all other utterances for all
competing languages are pooled into class B. The result-
ing model is used as the English model, and the process is
repeated for each language of interest.

Phone-Recognition Approaches

Given that different languages have different phone in-
ventories, many researchers have built LID systems that
hypothesize exactly which phones are being spoken as a
function of time and determine the language based on the
statistics of that phone sequence. For example, Lamel and
Gauvain built two HMM-based phone recognizers: one in
English and another in French (23). These phone recogniz-
ers were then run over test data spoken either in English
or French. Lamel and Gauvain found that the likelihood
scores emanating from language-dependent phone recog-
nizers can be used to discriminate between English and
French speech. Muthusamy et al. ran a similar system on
English and Japanese spontaneous telephone speech (24).

The novelty of these phone-based systems was the in-
corporation of more knowledge into the LID system. Both
Lamel et al. and Muthusamy et al. trained their sys-
tems with multilahguage, phonetically labeled corpora. Be-
cause the systems require phonetically labeled training
speech utterances in each language, as compared with the
spectral-similarity systems that do not require such labels,
it can be more difficult to incorporate new languages into
the language-recognition process.

To make phone-recognition–based LID systems easier
to train, one can use a single-language phone recognizer
as a front end to a system that uses phonotactic scores

to perform LID. Phonotactics are the language-dependent
set of constraints specifying which phonemes are allowed
to follow other phonemes. For example, the German word
spiel, which is pronounced /sh p iy l/ and might be spelled
in English as shpeel, begins with a consonant cluster /sh
p/ that cannot occur in English (except if one syllable ends
in /sh/ and the next begins with /p/, or in a compound word
like flashpoint). This approach is similar to that used by
D’Amore and Mah (25), Kimbrell (26), Schmitt (27), and
Damashek (28), who have used n-gram analysis of text doc-
uments to perform language and topic identification and
clustering. By “tokenizing” the speech message, that is, con-
verting the input waveform to a sequence of phone sym-
bols, the statistics of the resulting symbol sequences can
be used to perform language identification. Figure 4 shows
the systems of Hazen and Zue (29) and Zissman and Singer
(30), who each developed LID systems that use one single-
language front-end phone recognizer. An important finding
of these researchers was that LID could be performed suc-
cessfully even when the front-end phone recognizer was
not trained on speech spoken in the languages to be recog-
nized. For example, accurate Spanish versus Japanese LID
can be performed using only an English phone recognizer.
Zissman and Singer (30) and Yan and Barnard(31) have
extended this work to systems containing multiple single-
language front ends, where there need not be a front end
in each language to be identified. Figure 5 shows an ex-
ample of these types of systems. Meanwhile, Hazen and
Zue (32) and Navratil and Zuhlke (33) have pursued LID
systems that use a single multilanguage front-end phone
recognizer.

In the last few years, the work of Zissman and Singer
(30) has been extended by Gauvain et al. (34), incorporat-
ing a more general approach at the phone-recognizer stage.
Instead of using the best phone sequences, that is, the most
likely, set of phones for the given utterance, Gauvain et al.
use lattices, allowing for a more general decoding of the
incoming speech. The work by Gauvain et al. show bet-
ter performance on similar data sets when compared with
Zissman and Singer’s system.

Speech-to-Text Approaches

By adding even more knowledge to the system, researchers
hope to obtain even better LID performance. Mendoza et al.
(35), Schultz et al. (36), and Hieronymus and Kadambe (37)
have shown that speech-to-text (STT) systems can be used
for LID. During training, one speech recognizer for each
language is created. During testing, each of these recogniz-
ers operates in parallel. The one yielding output with high-
est likelihood is selected as the winning recognizer—the
language used to train that recognizer is the hypothesized
language of the utterance. Such systems hold the promise
of high-quality,language identification because they use
higher level knowledge (words and word sequences) rather
than lower level knowledge (phones and phone sequences)
to make the LID decision. Furthermore, one obtains a tran-
scription of the utterance as a byproduct of LID. However,
these systems require many hours of labeled training data
in each target language and are the most computationally
complex of the algorithms proposed.
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Figure 4. The phone recognition followed by phone frequency and phone sequence language modeling LID system. Phone recognition
is performed in one language, in this case, English. Phone frequency and sequence statistics are used to determine the language of the
speech utterance.

Figure 5. A LID system that uses several phone recognizers in parallel.

EVALUATIONS

Since 1993, the National Institute of Standards and Tech-
nology (NIST) of the U.S. Department of Commerce has
sponsored formal evaluations of LID systems. At first,
these evaluations were conducted using the Oregon Grad-
uate Institute Multi-Language Telephone Speech (OGI-
TS) Corpus (38). The OGI-TS corpus contains 90 speech
messages in each of the following 11 languages: English,
Farsi, French, German, Hindi, Japanese, Korean, Man-
darin, Spanish, Tamil, and Vietnamese. Each message is
spoken by a unique speaker and comprises responses to
10 prompts. For NIST evaluations, the monologue speech
evoked by the prompt “Speak about any topic of your
choice” is used for both training and testing. No speaker
speaks more than one message or more than one language,
and each speaker’s message was spoken over a unique
long-distance telephone channel. Phonetically transcribed
training data are available for six OGI languages (English,
German, Hindi, Japanese, Mandarin, and Spanish).

Performance of the best systems from the 1993, 1994,
and 1995 NIST evaluations is shown in Fig. 6. This perfor-
mance represents each system’s first pass over the eval-
uation data, which means that no system-tuning to the
evaluation data was possible. For utterances having a du-
ration of either 45 s or 10 s, the best systems can discrim-
inate between two languages with 4% and 2% error, re-
spectively. This error rate is the average computed over
all language pairs with English, for example, English ver-
sus Farsi, English versus French, and so on. When tested
on nine-language forced-choice classification, error rates of
12% and 23% have been obtained on 45 s and 10 s utter-
ances, respectively. The syllabic-feature system developed
by Li and the systems with multiple phone recognizers fol-
lowed by phonotactic language modeling developed by Ziss-
man and Yan have exhibited the best performance in these
evaluations. Error rate has decreased over time, which in-
dicates that research has improved system performance.

Starting in 1996, the NIST evaluations have employed
the Linguistic Data Consortium’s CALLFRIEND corpus.
CALLFRIEND comprises two-speaker, unprompted, con-
versational speech messages between friends. North Amer-
ican long-distance telephone conversations were recorded

in each of 12 languages (the same 11 languages as OGI-TS
plus Arabic). No speaker occurs in more than one conversa-
tion. In the 1996 evaluation, the multiple phone recognizer
followed by language modeling systems ofYan and Zissman
performed best. The error rates on 30 s and 10 s utterances
were 5% and 13% for pairwise classification. These same
systems obtained 23% and 46% error rates for 12-language
classification. The higher error rates on CALLFRIEND are
from the informal conversational style of CALLFRIEND
versus the more formal monologue style of OGI-TS.

After the 1996 evaluation, NIST evaluations were not
conducted until 2003. In the 2003 evaluation, the CALL-
FRIEND corpus was used again by including an additional
set of conversations not previously exposed during the 1996
evaluation. Two new trends emerged from the 2003 evalua-
tion: 1) Spectral similarity approaches, particularly Gaus-
sian mixture models and support vector machines, were
proven to provide competitive performance to the phone-
recognition based approaches; and 2) system combination,
also known as system fusion, rather than individual stan-
dalone systems, were shown to provide additional perfor-
mance over the individual constituents. The system com-
bination concept arises from the fact that errors observed
within the individual systems can be corrected as long as
they occur independently. An example of the results ob-
tained by Singer et al. (39) for the 2003 evaluation set is
shown in Fig. 7.

The STT-based LID systems have not been fully eval-
uated at NIST evaluations, because orthographically and
phonetically labeled speech corpora have not been avail-
able in each requisite language. However, preliminary re-
sults on selected language pairs of the OGI-TS corpus indi-
cate near-perfect performance. As labeled corpora become
available in more languages, implementation and evalua-
tion of STT-based LID systems will become more feasible.
Whether the performance they will afford will be worth
their computational complexity remains to be seen.

CONCLUSIONS

Since the 1970s, language identification systems have be-
come more accurate and more complex. Systems can per-
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Figure 6. Error rates of the best LID systems at three NIST evaluations. Performance is shown on the left for average two-alternative,
forced-choice classification of the various OGI-TS languages with English. “N-way” classification refers to 10-alternative, forced-choice
performance in 1993;11-alternative, forced-choice performance in 1994;and 9-alternative, forced-choice performance in 1995. “SF” indicates
a syllabic feature system. “PR” indicates phone recognition followed by a language modeling system.

Figure 7. Error rates of the best LID system at the NIST 2003 evaluation. Performance is shown for all individual components of the
system and for the combination of the three systems, on a 12-alter native, forced-choice scenario. “GMM” indicates Gaussian mixture
models. “PR” indicates phone recognition followed by the language modeling system. “SVM” indicates a support vector machine. “Fuse”
indicates the combination of the previous three systems.

form two-alternative, forced-choice identification on extem-
poraneous monologue almost perfectly, with the newest
systems performing 12-way identification with roughly 3%
error. As shown from evaluations in 2003, error rates on
conversational speech have been reduced compared with
1996.

Although initially the improved performance of LID sys-
tems was from their use of higher levels of linguistic infor-
mation, in recent years, systems that do not require high-
level information have been steadily improving. Recent re-
sults in the 2003 evaluation show the spectral-similarity
systems outperforming phone-recognition approaches. Ad-
ditionally, the spectral-similarity approaches seem to be



Control and measurement, industrial. See INDUSTRIAL MEASUREMENT AND CONTROL. Measurement and control, industrial. See INDUSTRIAL MEASUREMENT AND CONTROL. 7

complementary to the phone-recognition approaches, as
shown by the improved performance obtained by the com-
bination of the systems.

Still, as the number of potential applications grows,
faster implementations are needed along with systems
that can easily be adapted to new conditions and lan-
guages.
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