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SPEECH RECOGNITION

Speech is our preferred medium for everyday human-to-hu-
man communication. Thanks to the recent developments in
speech recognition technology, this medium is now becoming
our premier choice for human-to-machine communication as
well. Speech recognition technology enables a computer to
transcribe spoken words. Gone are the days when we need to
master a computer keyboard to prepare a letter. Instead, we
can create it via our voice. We can issue normal formatting
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commands as well, such as ‘‘next paragraph’’ and ‘‘capitalize,’’ hand, attempts to identify different sounds in our speech from
their acoustic characteristics. When we say ‘‘roses’’ or ‘‘books’’simply by speaking them. Indeed, this technology has already

found its way in a wide variety of application. Medical prac- it attempts to recognize the specific acoustic signature of each
word. However, it cannot differentiate between ‘‘red’’ andtitioners, such as radiologists, pathologists, and internists,

use it to prepare diagnostic reports for their patients. Legal ‘‘read’’ of this example, since they both sound the same, and
it must call upon the language model to make the distinction.professionals depend on it to produce documents and briefs

for their clients. Students benefit by writing their homework The two ingredients of a speech recognition system help each
other out in this manner. We expound on this elemental de-essays with the help of this technology. An author can speed

up the production of a manuscript by dictating rather than scription of a speech recognition system in the following
section.typing it. We expect this trend to accelerate and this technol-

ogy to take its legitimate place as an indispensable computer Before we conclude these introductory notes, let us clarify
the distinction between speech recognition and some of theinterface such as a mouse or a keyboard.

A speech recognition system is configured in a variety of other closely related applications that operate on speech in-
put. For instance, the disciplines of speaker verification andways depending on its intended application (1–9). In addition

to dictation, other applications include automated operator- speaker identification seek to distinguish one speaker from
another. Language identification deals with the problem ofassisted call handling, home banking over the telephone,

package sorting, assembly line quality control, aid for the ascertaining a speaker’s language by examining a given sam-
ple of his or her speech. These disciplines share many com-handicapped, and educational software and voice-driven

games. To introduce the basic concepts of this technology, we mon speech recognition methodologies. However, the imple-
mentation details depend on the application at hand. We referconcentrate on describing one application—that of desktop

dictation—in detail. The block diagram of Fig. 1 illustrates it the readers for further study to other speech-related articles
in this encyclopedia.schematically. We note that the layout for some of the other

applications may differ considerably from this one. We point It is also important to distinguish between speech recogni-
tion and speech understanding. Unlike speech recognition,out some of these variations later in this article.

The user interface shown in Fig. 1 contains a microphone which deals with the problem of transcribing speech, a speech
understanding system is faced with the task of making somefor speech input in addition to the usual computer peripheral

hardware (not shown), such as a monitor, a keyboard, and a sense out of the spoken words so that it can respond properly.
In general, this is a complex unsolved problem, as a word ormouse. The other four components are called signal processor,

acoustic model, language model, and decoder. When we speak a sentence may be interpreted in a variety of ways depending
on factors such as the domain of discourse and semantic con-into the microphone, the signal processor analyzes this input

and derives a set of features. For instance, each feature may text. For instance, a ‘‘bank’’ can mean either a financial insti-
tution or the side of a river. However, in certain cases, we cancorrespond to a measure of acoustic energy over a particular

frequency bandwidth during a short time interval. The de- restrict the domain of discourse sufficiently to construct a
class of limited but useful speech understanding systems.coder acts upon these features with the help of the acoustic

model and the language model components, searching These are called conversational systems. For example, an air-
line travel information system (ATIS) can respond to naturalthrough all possible outcomes to determine what was said.

The decision of the decoder is displayed on the monitor built spoken queries regarding flights between major US cities (10).
A system called JUPITER developed at the Massachusetts In-into the user interface.

The functions of the acoustic model and the language stitute of Technology can provide weather information to
more than 500 cities worldwide through a telephone conversa-model components are complementary. The language model

maintains some knowledge of the language. It helps the de- tional interface (1).
We now indicate how the remainder of this article is orga-coder by predicting what we are likely to say next at a given

instant. For example, if we say ‘‘Roses are’’ the language nized. The first section is targeted to all readers without any
specialized scientific or technical background. We present themodel can guess that the next word is probably going to be

‘‘red’’ (or some other plausible color). But if we utter ‘‘Books basic concepts of this technology, highlight some of its appli-
cation potential, and indicate its current limitations. In theare’’ the next likely word is probably not ‘‘red,’’ but the ho-

mophonous word ‘‘read.’’ The acoustic model, on the other second section, we describe in considerable detail the theoreti-
cal underpinnings of this technology. We assume that a
reader of that section has a thorough background in informa-
tion theory and mathematics. For instance, we freely draw
upon concepts established in information theory such as Mar-
kov modeling and search strategy for an optimal path. Fi-
nally, the third section of the article is meant for speech spe-
cialists who may be engaged in speech recognition or related
activities.
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Figure 1. Schematic of a speech recognition system. Speech input Description of a Speech Recognition System
picked up by the microphone is processed by the system components.

We can implement a speech recognition system in a numberThe transcribed text is displayed at a monitor built into the user in-
terface. of different ways. We describe most of the important ap-
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proaches in the following section. However, our initial goal is a group of speakers reads a given text. The signal processor
to introduce some key concepts of this technology within a analyzes the acoustic data and derives a feature vector for
simple but standard framework shown in Fig. 1. To avoid each 10 ms time frame, as described in the previous sub-sub-
complications, we defer discussions of alternative methodolo- section. This text and the feature vectors are supplied to the
gies to a later subsection. acoustic model as shown in Fig. 2, so that it can correlate the

feature vectors with the text and learn to characterize the
Signal Processor. Turning our attention to the signal pro- speech sounds.

cessor of Fig. 1, one common strategy for implementing this A judicious choice for units of speech sounds to learn is
function is to derive a fixed set of spectral features at a regu- based on the phonetic spelling of a word, rather than the word
lar time interval. This time interval is on the order of 10 ms itself. In the English language, for example, there are only
(one-hundredth of a second). The number of features in a set some 50 phonemes. If we characterize these phonemes, we
is typically about 20. Speech frequency spans the bandwidth can then handle all the words in the language. On the otherfrom about 120 Hz to 8000 Hz. Each of the spectral features

hand, if we try to learn the acoustic signature of each wordin a set represents the acoustic energy in a particular portion
separately, we face the daunting task of categorizing severalof this bandwidth in a given time interval. For instance, the
hundreds of thousands of words, along with all their dialectalfirst feature may indicate the energy during a 10 ms time
variations. Our reliance on phonetic units as the basis for rec-interval in the 120 Hz to 150 Hz bandwidth range. Similarly,
ognition makes it unnecessary for the training text to includethe last feature may correspond to the energy in the 7000 Hz
every word of the vocabulary. Only sufficient examples areto 8000 Hz range. Notice that the frequency spacing is not
needed to model all the phonemes.uniform. More information in speech is carried by the lower

The first step in our acoustic model strategy is to install arange of frequencies. Consequently, we use narrower band-
table of phonetic spellings for each word under consideration.widths at lower ends of the frequency scale to capture the
This is called the table or dictionary of baseforms. Each entryfiner structure of a speech signal. The nonuniform parti-
in this table represents a way a word is pronounced. Theretioning of the speech bandwidth is called mel frequency scal-
are often multiple entries for a single word in this table, cor-ing. It is interesting to note that human auditory mechanism
responding to different possible pronunciations for that word.carries out a similar frequency scaling. For our purpose, we
In addition, people from different regions of the country orcan derive these spectral features by passing the input
nonnative speakers impart their own accents. Depending onthrough a bank of filters of different bandwidths tuned to dif-
the scope of our speech recognition system, we may want toferent center frequencies. Most modern implementation of the
include those phonetic spellings as well in our table offilter bank involves the use of fast Fourier transform (FFT)

along with some pre- and postprocessing. Often these features baseforms.
are further transformed by a cosine function to a cepstrum With the help of the baseform table, the acoustic model
(11) representation for improved performance. attempts to correlate the incoming feature vectors with the

Collectively all the features in a set produce a snapshot of phonetic spelling of the corresponding text. However, the task
the whole speech bandwidth during a 10 ms time frame. This is further complicated by the idiosyncrasies in our speech, as
collection of features is called a feature vector. If the utter- explained in the next paragraph. We are normally unaware
ance lasts for a second, for example, each of the 100 frames of these peculiarities because our auditory mechanism effec-
in that period is represented by a separate feature vector, tively deals with them.
leading to a total of 100 such feature vectors. When we say a word, we usually do not produce all the

Another goal of signal processing is to capture a measure sounds in that word at a uniform rate. In addition, if we re-
of dynamics of the speech signal in addition to the static snap- peat that word, the timings are likely to be different. Another
shot every 10 ms. This is often done by computing a difference artifact of our speech production process is that our vocal ap-
vector between the current vector and a previous one and ap- paratus wavers imperceptibly when making the sounds. For
pending this difference vector to the current one (12). Taking instance, when we say ‘‘Books’’ the resulting string of pho-
difference from a sample up to 90 ms in the past is fairly nemes with ‘‘oo’’ as the target will probably consist of several
common. instances of ‘‘oo’’ mixed with instances of other sounds, such

as ‘‘uh’’ and ‘‘eh,’’ which are close to the target sound. Also,Acoustic Model. We briefly discussed in the introduction
our vocal apparatus cannot instantly switch from producingthe role played by the acoustic model in a speech recognition
one sound to the next. Consequently, the portions of oursystem. The acoustic model learns to perform its task of dis-
speech during a transition between two sounds do not pre-crimination between different speech sounds through a design
cisely fit the characteristics of either the preceding or the fol-procedure called training, illustrated in Fig. 2. A speaker or
lowing sound.

To handle this lack of precision in speech production we
introduce the notions of observations and hidden states and
deal with them within a probabilistic framework. The obser-
vations are the imprecise renditions that we notice directly
by examining a string of feature vectors. The hidden states
are an idealized representation that we assume exist and are
related to the observable data. Our goal during training is to
examine the observations and discover both the parameters
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of a mathematical model producing the hidden states and the
relationships between the hidden states and the observations.Figure 2. Acoustic model training. The text and the corresponding

speech input are correlated to generate the acoustic model. A convenient approach to realize this goal is to cast this prob-
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lem in terms of a representation called the hidden Markov
model (HMM) (2–7). An HMM deals with two sets of probabil-
ities. The first set, called the transition probabilities, specifies
how transitions take place from one hidden state to another.

Language
model

Text for
language

model
training

The second set is termed the output probabilities. It indicates
Figure 4. Language model training. A large body of text is used forhow an observation is probabilistically generated during a
this purpose.transition between two hidden states.

Now we return to our description of training the acoustic
model component. Recall that a baseform for a word is a
string of phonetic symbols. Let us view each phonetic symbol

In contrast, the language model for more complex applica-as an HMM. So the word is represented by a concatenation of
tions, such as dictation, operates within a probabilistic frame-HMMs. An illustration of HMMs concatenated for the three
work. We train it, as shown in Fig. 4, by utilizing a largephonetic symbols of the word ‘‘one’’ is shown in Fig. 3. A self-
corpus of text, typically on the order of tens of million ofloop signifies repetition of a state, and a transition is indi-
words, which we assume is a representative sampling of thecated by an arrow to the next state.
language. Our goal is to model the contextual information in-When a speaker says a word, we look up its baseform, con-
herent in this text by counting how often a word occurs in astruct the corresponding HMM structure, and reconcile the
given context of previous words. Due to cost and robustnessobservations with the output generated by this structure. We
considerations, we typically limit our context lookup to a max-utilize a substantial body of text, consisting of some 1000 to
imum of two previous words. This type of count, made for a2000 words, and its corresponding feature vectors during
word within the context of two previous words, is called atraining. The purpose of training is to estimate the transition
trigram count. In practice, we normalize these counts by ex-and output probabilities so that the probability of the ob-
pressing them as probability values, called trigram probabili-served data is maximized. This is called the maximum likeli-
ties. Similarly we calculate bigram and unigram probabilitieshood principle. We cannot directly estimate the transition and
by examining the frequencies of occurrence of pairs of wordsoutput probabilities in a straightforward manner, due to the
and of each word by itself. The decoder typically uses ahidden nature of the states. The technique used for estima-
weighted sum of these three probabilities as the languagetion is called the estimation–maximization (EM) algorithm. It
model score.consists of repeated application of a procedure in which the

probabilities are successively adjusted to maximize the likeli-
Decoder. Let us now discuss the operation of the decoder.hood score over the whole body of training text and the corre-

There are many possible structures for decoding speech. Forsponding feature vectors. When applied to HMM parameter
instance, a dictation system designed to handle a vocabularyestimates, the algorithm is also known as the forward–
of tens of thousands of words typically uses a two-step proce-backward or Baum–Welch procedure (13).
dure, the steps being called the fast match and the detailedThe decoder depends upon the acoustic model to furnish it
match. For an input word, we cannot afford to examine allwith an acoustic match score corresponding to each input
words in the vocabulary thoroughly for the best match. Con-word. The score reflects how well the observations corre-
sequently, the fast match carries out an approximate searchsponding to the input match the states predicated by the
to trim down the list of possibilities quickly. The detailedtransition and output probabilities associated with a word in
match acts upon the trimmed list.the vocabulary. We provide a more detailed discussion of

On the other hand, if the speech recognition system dealsHMM and the EM algorithm in the section on detailed theory.
with a small vocabulary, as in the banking application men-
tioned in the previous section, we can skip the fast match and

Language Model. Design of the language model component
carry out only a detailed match.depends on the application under consideration. For example,

The decoder evaluates alternate hypothesized word stringsconsider a voice-driven banking application. The first step of
in parallel by maintaining a stack of top string choices. Thisa typical transaction may consist in uttering a sequence of
is called the stack decoder algorithm (14). Each time a stringdigits as the password. The second step, after password veri-
is extended by another word, after consulting both the acous-fication, may call for the customer to say one of three words
tic model and the language model scores, the top choices are‘‘savings,’’ ‘‘checking,’’ or ‘‘loan.’’ In this situation, the speech
reshuffled to reflect the current best selections. In the mean-recognition system is programmed to expect nothing but a
time, the choices made several words earlier begin to firm up,fixed number of digits during the first step and one of only
that is, not change with the latest extensions. We considerthree words in the second step. This type of simple language
these words as the ones recognized by the system. When wemodel is called a finite-state grammar.
reach the end of a sentence, we can firm up the whole string
and finish recognizing the whole sentence. We describe fur-
ther details of our decoder strategy in the section on detailed
theory.

This completes a general description of our speech recogni-
tion system. We saw how the signal processor generates a set

W AH N of feature vectors to represent the speech input, how the
acoustic model and the language model components areFigure 3. HMM representation of the word ‘‘one’’ with its three pho-
trained, and how they help the decoder to decide on the stringnetic symbols. Repetition of a state is shown by a self-loop. Transition

is indicated by an arrow to the next state. of recognized words.
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We can apply a database of new sentences never used for A simple but effective compensation technique that serves
a dual purpose is called mean normalization. In it, each fea-training to ‘‘test’’ the efficacy of a recognition system. A

speaker or a group of speakers utters the test sentences. We ture vector is scaled, mapping its mean value to a fixed quan-
tity. Its chief advantages are that it tends to take care of loud-compare the recognized output words against the known text

and determine recognition accuracy. Commercial recognition ness variations in both speech and background noise.
On-line adaptation is yet another method for combattingsystems with a vocabulary size in the range of 20,000 to

30,000 words claim typical word accuracy rates on the order the effects of noise and distortion. For instance, we can char-
acterize the speech and noise by a set of reference templatesof 90% to 98%. However, some users fare better than the oth-

ers. Often poor performance can be traced to a specific factor and update them as needed. The goal is to compare the cor-
rupted input speech against the updated templates and de-such as accented speech, background noise, or improper mi-

crophone placement. But in some cases, the culprit may turn rive a suitable correction factor.
out to be more elusive.

User Interface
Configurations and Compromises

Despite all such efforts towards robustness, a speech recogni-
tion system is likely to make some transcription errors. Tech-We can configure a speech recognition system in a number of

different ways to strike a compromise between accuracy and niques for handling these errors in an efficient manner consti-
tute an integral part of the design of the user interface.convenience. Consider a speaker-dependent speech recogni-

tion system that is specifically tailored to each user of the Consider the case of a typical dictation system. We may
want to correct an error made by the system as soon as wesystem. Compared to a speaker-independent system, it tends

to have better accuracy. However, a speaker-independent sys- see it, or, we may want to do it later at our own convenience,
for example, after dictating the whole document. There aretem is more convenient, since customization for each user is

unnecessary. A popular middle ground is to customize a other relevant issues. How do we position the cursor on the
erroneous word: by voice, by mouse clicks, or by keyboardspeaker-independent system by a rapid initial adaptation

step. A typical approach is to ask the user to read a short strokes? After positioning the cursor do we say the desired
word again, or do we type it in to make the correction? If thetext so that the acoustic model parameters can be adjusted.

Language model adaptation is also possible, for instance, by recognition system maintains a list of alternate top choices
for each spoken word, we can search through that list for themonitoring a user’s preferences for words and sentence con-

structions. correct one. Some recognition systems save the audio data,
usually in a compressed format, and can play them back laterAnother common alternative is to resort to isolated speech

input for performance gain. In this type of system, the user on demand to refresh our memory. Some can play a synthe-
sized version of the written text as well. This is helpful if wepauses briefly, at least on the order of a tenth of a second,

between successive words. The pauses provide helpful cues to prefer to listen to rather than visually examine a document
to make our corrections or changes. The audio playback fea-the recognition system regarding word boundaries. However,

this mode of speech entry is somewhat unnatural. Continuous tures are essential for a young child or a learning-disabled
adult user with reading problems.speech recognition systems boast of a more natural mode of

speech entry without such artificial pauses. But the accuracy Similarly, the user interface for a conversational system is
tailored to its specific needs. For example, if an ATIS systemmay suffer, particularly if the speech is spontaneous. Sponta-

neous speech tends to be more casual and often contains ex- recognizes ‘‘Houston’’ for ‘‘Boston’’ and provides flight infor-
mation for that city in Texas, we need an efficient and leasttraneous sounds, unconsciously produced by us, such as ‘‘uh’’

and ‘‘um,’’ which are problematic for a recognition system. irritating way of correcting that mistake, receiving travel
data for our desired destination, the city in Massachusetts.There are other external factors that can hurt the perfor-

mance of a speech recognition system. We discuss them in the
next subsection, along with some common remedies. Alternative Strategies

We discussed a standard configuration for a speech recogni-
Robustness Issues

tion system in the previous paragraph. However, there are a
number of other variants (3,5–7,15). For instance, instead ofA speech recognition system must not only be as accurate as

possible, but also be resistant to external detrimental factors representing the acoustic energy in a particular frequency
band, a feature may relate to some form of articulatory orsuch as background noise and channel distortion. Background

noise such as conversational babble and automobile and air- auditory parameter. Inclusion of pitch frequency as a feature
is important for some languages, such as Mandarin Chinese,craft din tend to degrade recognition accuracy. A telephone

line can introduce channel distortion, as its electrical charac- where tonal information is vital. A speech recognition system
designed to operate over a telephone line would containteristics may fluctuate from one instant to another.

We try to counteract the damaging effects of such extrane- special signal processing and acoustic modeling features to
handle the line noise.ous factors by a host of techniques. We can use directional or

noise-canceling microphones to reduce background noise. An Instead of using the FET technique for signal processing,
as described in a previous section, some systems resort to aalgorithmic approach is to learn to recognize various types of

noise from their acoustic signatures. That is, we deliberately time-domain based approach called linear predictive coding
(5–7). We used the unit of phoneme for our acoustic modeling.subject our recognition system to these noise sources during

training so that it can acoustically distinguish them from true Other possible choices include larger units such as diphones,
demisyllables, syllables, and words. We mentioned stack de-speech input. Subsequently, the decoder will utilize this

knowledge to try to ignore similar noise in the input stream. coding in describing our decoder strategy. Other possibilities
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include a beam search technique, which is discussed later in The important data entities are
the Detailed Theory section.

Artificial neural networks, described in the section on ex- • The acoustic speech signal a, for example a spoken sen-
ploratory work, can be used to implement an acoustic model. tence.
They learn to characterize different sounds by studying some • The text or message w.
speech data tagged with their class affiliations and generat-
ing complex decision surfaces while adjusting a set of innate

If A is the space of acoustic signals, and W the space of mes-weights and thresholds. Language models may be customized
sages, then an ASR is a functionto handle specific tasks. For example, a voice-enabled tele-

phone dialer is programmed to accept a fixed number of digit
D : A �→ W (1)strings only.

The function D, unfortunately, is not a simple or obvious en-History
coding. It cannot be derived entirely from theory, nor entirely

The idea of speech recognition has attracted and fascinated from empirical data. The approach usually taken is to assume
mankind since ancient times. An early example is in a tale that there exists a joint probability distribution p(a, w) that
from the Arabian Nights where a secret door to a treasure- belongs to some parametric family p(a, w��). By statistical es-
filled cave is activated by uttering the phrase ‘‘Open sesame.’’ timation methods, a value �̂ is then obtained for the parame-

Initial attempts to develop speech recognition systems (16) ter vector on the basis of a sample known as the training
tended to rely heavily on heuristic methodologies. Most mod- corpus, which, for a high-accuracy ASR, should contain at
ern recognition systems trace their roots to HMM-based work least tens of hours of speech. The mapping D is then con-
done in the IBM Corporation and Carnegie Mellon University structed from the estimated distribution:
in the early 1970s (17,18). More recently, researchers from
several countries—including the United States, Canada, En-
gland, France, Germany, Italy, Spain, Japan, China, and Rus-

D(a) = argmax
w

p(a,w|θ̂ ) (2)

sia—have made significant contributions to the development
On the training corpus, a and w are known, say aR and wR,of this technology (5–8,15,19).
and �̂ can be estimated for example by the maximum likeli-
hood (ML) method (see ESTIMATION THEORY) asDETAILED THEORY

Algorithms for Automatic Speech Recognition: Overview θ̂ = argmax
θ

p(aR, wR|θ ) (3)

Most of the speech recognizer components described above are
Equations (2) and (3) constitute a deceptively simple state-in practice implemented as software algorithms. Although the

ment of the entire procedure for designing an ASR system.task of an automatic speech recognizer (ASR) is ostensibly
The reality is much more complicated, because the distribu-one of decision making—choosing the correct sequence of
tion p(a, w��) is not simple like a Gaussian or a gamma distri-words from a vocabulary—the algorithms do not consist of
bution. It is, in fact, too complicated to write down in onesimple decision rules but require numerically intensive float-
piece in mathematical notation, and is ultimately defined bying-point computation. Natural human speech does not obey
the software that implements the ASR under real world con-simple engineering specifications, but exhibits a complexity
straints on bytes and flops. The software typically performs amore typical of biological systems. The success of early manu-
cepstral analysis on the incoming waveform to convert it toally designed, rule-based ASRs was therefore very limited.
a sequence of vectors, and then defines distributions in theModern ASRs rely instead on large mathematical models with
resulting space of vector sequences by means of a multilay-millions of parameter values empirically estimated through
ered hidden Markov source model, consisting of a languagenumerical optimization. Probability theory plays an impor-
model layer, a pronouncing-dictionary layer, and an acoustic-tant role in the design of these systems.
realization layer. The last contains probability distributionsFigure 5 shows the overall concept of a speech recognizer.
of thousands of allophone segments, each distribution being aThe user speaks into a microphone; the signal a goes to an
mixture of tens of multivariate Gaussians in a space of tensASR, which is usually a computer program; and the recog-
of dimensions. All the means and covariances of these Gaussi-nized message w emerges to be displayed as text or to cause
ans, as well as their mixture weights, and the many othersome requested action such as the closing or opening of a pro-
parameters in other layers and other parts of the system, in-gram window.
cluding the language model, together constitute the parame-
ter vector �, which may have well over 1,000,000 components.
ML estimation, Eq. (3), is used for some of these components,
but more complicated methods are needed for other compo-
nents.

In the following, we first take an intuitive approach to de-
scribing the operations that a typical ASR performs to imple-

Text or
actions

ASR
Automatic

speech
recognizer

Message wSignal a

ment D. To motivate some of the rather elaborate algorithms
found in actual ASRs, we start with simpler alternatives,Figure 5. The task of an Automatic Speech Recognition system is to
then describe their deficiencies and possible remedies to dem-translate an acoustic speech signal a into a computer- or human-read-

able message w. onstrate the need for more complicated schemes.
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After describing the operation of an ASR, we turn to the vector computation, and CEPSTRAL ANALYSIS OF SPEECH for
problem of training (i.e., optimizing) it, again considering sim- delta-cepstrum formulas. A typical acoustic vector might con-
pler algorithms first. We discuss both the philosophy and spe- tain 39 components: 13 each of cepstral coefficients, delta-
cific methods of optimization. coefficients and delta-delta-coefficients. The cepstrum de-

scribes the short-term power spectrum of the sound; its
Operation of an Automatic Speech Recognizer perceptual correlate is sound quality or timbre. Not only does

the cepstrum of a violin note differ from that of a humanTo extract the message from the audio signal, a typical ASR
voice, but a voice saying ‘‘ee’’ has a cepstrum different from aperforms the steps shown in Fig. 6:
voice saying ‘‘aw.’’ In fact, every speech sound has a somewhat
different cepstrum, as does the same sound spoken by a dif-1. Analog-to-digital conversion.
ferent person. Even the type of microphone and the acoustics

2. Signal processing. of the room can affect the cepstrum. Furthermore, because
3. Acoustic processing. frames are not phase-locked to components of the signal and
4. Statistical decoding. because the signal may itself be a stochastic process, acoustic

vectors will exhibit some random fluctuation even when the
Analog-to-Digital Conversion. Step 1 is implemented in input is nominally steady-state, as with white noise or a peri-

hardware. Its output is an electrical signal representing the odic tone. Each type of sound, therefore, produces a little
acoustic waveform sampled at a rate of 8000 s�1 or more, with cloud of points in the acoustic space. The location of the cloud
each sample represented as a binary 8 bit or 16 bit number. is different for each sound and thus can serve to identify the
This data format is known as PCM (pulse code modulation). sound, but there is some overlap between the clouds, pre-
The number of possible PCM waveforms is very large: even venting unambiguous identification.
a short segment of only 0.01 s constains at least 640 bits, Speech Sounds. Neither human listeners nor mathematical
yielding 2640 � 4.6 � 10192 different possible waveforms. With algorithms can definitely identify short segments of sound, of
such signal-space complexity, an ASR will never encounter the order of 10 ms to 20 ms in duration. As a general rule,
the same waveform twice—not only does every person have a the longer a speech segment is, the easier it is to recognize. A
unique voice, but even every reading of the same sentence by word is easier to recognize than is a single speech sound. A
the same person presents a unique waveform. sentence is easier to understand than a single word—you can

fill in poorly heard words from context. The number of possi-
Signal Processing ble sentences, however, is enormous; hence a recognizer must
Acoustic Vectors. Step 2, signal processing, reduces the break down sentences into smaller components. Even the

size of the signal space but still leaves it large enough that number of words is too large to allow us to get an adequate
no two utterances are identical. The output of this step is a sample of pronunciations of each word in a variety of con-
point, or vector, in a multidimensional acoustic feature space. texts. For this reason, large-vocabulary ASRs today use sound
As the sound changes, the point moves. The signal processor units shorter than words.
recomputes the acoustic feature vector typically 100 times per To a first approximation, a spoken word is a sequence of
second. Each such computation constitutes a frame.

sounds, each of which corresponds to a cloud or region in the
Each acoustic feature vector may be a set of mel frequency

acoustic space. Every language has its own set of distinctivecepstral coefficients (MFCCs) along with delta-cepstrum and
sounds, called phonemes, which suffice to differentiate thedelta-delta-cepstrum coefficients. See SPEECH PROCESSING for
words of that language from each other. In American English,motivation and details on MFCC and other types of feature
for example, the vowels in the words ‘‘eat’’ and ‘‘it’’ are differ-
ent, representing different phonemes, but the consonant ‘‘t’’ in
both words represents the same phoneme. Even though every
utterance of the word ‘‘eat’’ is actually slightly different, these
differences are not phonemic, and an ASR must ignore them,
but must detect phonemic differences such as those between
‘‘eat’’ and ‘‘it.’’ If an ASR could partition the acoustic space
into regions corresponding exactly to phonemes, it could gen-
erate a phonetic transcription containing just the information
necessary for speech decoding. This, unfortunately, is impos-
sible because the physical quality of each phoneme’s sound
depends strongly on context. Inertia prevents articulatory or-
gans—lips, tongue, jaw, etc.—from making step-function
changes; hence a given phoneme will be influenced by what
came before or after it. This phenomenon is called coarticula-
tion. The ‘‘r’’ sound in ‘‘tree,’’ for example, is physically quite
different from that in ‘‘through’’ and may, in fact, resemble a
‘‘sh’’ sound. Similarly, the ‘‘i’’ sounds in the words ‘‘bit’’ and
‘‘bib’’ are different, as shown in the spectrograms in Fig. 7.
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Different physical realizations of the same phoneme in differ-
ent contexts are called allophones. Coarticulation causes eachFigure 6. To accomplish its task, a speech recognition system per-

forms the four major processing steps shown here. phoneme to have so many allophonic variations that there ex-
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prototype can be identified simply by a number, e.g. i in Eq.
(4), or by some mnemonic label such as the name of a speech
sound frequently associated with that prototype.

Symbols for Speech Sounds. Linguists have traditionally la-
beled speech sounds with specialized, language-independent
symbols, such as those of the International Phonetic Alphabet
(IPA), loosely based on the Latin alphabet and Latin pronun-
ciation but with many additional symbols and diacritics. In
ASR technology, however, it has become customary to con-
struct phoneme or sound labels from standard ASCII alpha-
betic characters, incorporating vernacular spelling conven-
tions. Thus the pronunciation of the word ‘‘one’’ might be
represented in IPA symbols as ‘‘w�n’’ but in a typical ASR
system as ‘‘W AH N.’’

A More Powerful Labeling Algorithm. The simple VQ scheme
just described, which defines each prototype by means of a
single point, is not powerful enough for large-vocabulary rec-
ognizers. In those ASRs each prototype is, instead, a probabil-
ity density function in acoustic space. The labeler then selects
the prototype that has the highest likelihood. Let f i( � ) be the
density function that describes the ith prototype, and let x beFigure 7. Sound spectrograms show that the same speech sound—

the vowel ‘‘I’’ in the words ‘‘bib’’ and ‘‘bit’’—differs in duration and the acoustic vector for some frame. The label � for that frame
spectral pattern in different contexts. The horizontal axis represents is then
time and the vertical axis frequency. Darker areas represent higher
energy. �(xxx) = argmax

i
fi(xxx) (5)

or, if the prototypes are not equally probable and pi is theists no reliable frame-by-frame mapping from the acoustic
prior probability of the ith prototype, thenspace to phonemes.

The next step, acoustic processing, nevertheless attempts
to partition the acoustic space into linguistically or phoneti-

�(xxx) = argmax
i

pi fi(xxx) (6)

cally informative subregions.
These probability densities are usually modeled as mixtures

Acoustic Processing of multivariate Gaussians,
Labeling. Acoustic processing, step 3, partitions the acous-

tic space into subregions, again reducing the complexity of the
signal. At each frame (i.e., each ���� s) the acoustic processor fi(xxx) =

ni∑
j=1

pij

(2π)m/2
√|�ij|

e− 1
2 (x−µij )

′�−1
ij (x−µij ) (7)

compares the acoustic vector with a set of acoustic prototypes,
selects one or more of the best-matching ones, and thus at- where ni is the number of mixture components in the ith pro-
taches a label to each frame, or a list of labels ordered accord- totype, pij is the weight (prior probability) assigned to the jth
ing closeness of match, possibly accompanied by a numerical component of the ith prototype, m is the dimensionality of the
measure of the closeness for each label. The resulting label acoustic space, �ij is the covariance matrix of the jth Gaussian
stream may be thought of as an approximate phonetic tran- mixture component of the ith prototype (an m � m symmetric
scription, but its accuracy is limited by coarticulation and positive definite matrix), and �ij is the center of that compo-
random variations. The labels are an intermediate represen- nent (a vector of m elements). To reduce the computational
tation of the signal, closer to the message than is the original load and the size of the required training corpus, the covari-
PCM, but not so close that a simple table lookup could extract ance matrixes �ij are usually assumed to be diagonal. This
words of text from it. assumption is reasonably accurate in cepstrum space, but not

Simple Vector Quantization. In the simplest labeling in the power spectrum space, which is the main reason for
scheme, each acoustic prototype is just a point in the acoustic using cepstra as acoustic vectors. Other transformations of
vector space—perhaps the center of a cloud representing the power spectrum space, specifically designed to reduce er-
some particular sound. For each frame, the acoustic processor rors due to suppression of the off-diagonal terms in �ij, are
simply finds the prototype that is closest to the current acous- also sometimes used.
tic vector. Thus, if �i is the point representing the ith proto- The values of p, �, and � in Eq. (7) must be estimated on
type and x is the current acoustic vector, then the label � for the basis of a representative sample of speech—the training
the current frame is corpus. Methods for doing this are described in a later subsec-

tion under ‘‘Training of an automatic speech recognizer.’’
Allophones and Allophone Segments. The size of the label

�(xxx) = argmin
i

|xxx − πi| (4)

alphabet is typically in the thousands. English has only about
40 phonemes, or possibly 60 if vowels with primary stress areThis operation, known as vector quantization (VQ), maps the

acoustic vectors from a continuous domain into a finite set of considered phonemes separate from unstressed ones, but the
labels are associated with allophones rather than phonemes.codes. The set of point prototypes is called the codebook. Each
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The number of allophones is somewhat arbitrary, depending
on sensitivity to small pronunciation differences. In a large-
vocabulary ASR the number may well exceed 1000. Allophone
rules in these systems are usually implemented as decision
trees. Given an hypothesized phoneme string, the tree decides
which allophone to use at a given position in the string by
asking questions about several phonemes preceding and fol-
lowing the target. In this way, the hypothesized phoneme
string is translated into an allophone string by deterministic
rules. The advantage of decision trees as opposed to simple
table lookup of contexts is that the trees can handle contexts
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never seen in the training data. The decision tree is con-
structed by an automatic optimization scheme described in a Figure 8. ‘‘Dynamic time warping’’ is necessary when matching ac-
later subsection under ‘‘Training of an automatic speech rec- tual speech to idealized templates.
ognizer.’’ The label alphabet usually contains about three la-
bels for each allophone—the decoder expects each allophone
to consist of three segments: beginning, middle, and end. This

tion to reality, because not all sounds change their durationssegmentation is necessary because the beginning is most
equally when a talker speeds up or slows down.strongly influenced by preceding phonemes and the ending by

Dynamic Time Warping. A technique more powerful thansucceeding ones, and also because some phonemes are inher-
linear time adjustment is dynamic time warping (DTW). Al-ently dynamic. The vowel in ‘‘eight,’’ for example, is usually a
though seldom used today, this technique introduces the im-diphthong, and the consonant ‘‘t’’ in ‘‘two’’ consists of a silence
portant concept of a finite-state machine (FSM) for modelingfollowed by a burst of noise followed by an aspiration.
a speech source. Here prototype frames are skipped or re-Discrete Versus Continuous Labeling. The acoustic processor
peated as required, within prescribed limits, to match the ob-can produce either one label per frame, or a list of the most
served label string, as illustrated in Fig. 8. The rules for per-likely labels, or a list of labels together with the likelihood of
mitted skips and repetitions can be formulated in terms of aneach. Whatever data it produces serve as input to the next
FSM such as is shown in Fig. 9. Each frame of the prototypestep—decoding. The decoder sees neither the original PCM
is considered a state. Transitions are allowed from each statesignal nor the acoustic vectors, only the labels and possibly
to its successor. For some states, self-loops back to the samethe likelihoods of the labels as estimated by the acoustic pro-
state are also allowed, permitting the state to be repeated andcessor. If the acoustic processor passes at least some of the
the sound to be lengthened. From some states, transitionslikelihoods f (x) to the decoder, then the latter is known as a
skipping a state are allowed, making it possible for the soundcontinuous-parameter decoder; otherwise it is a discrete-label
to be shortened.decoder.

Dynamic Time Warping with Penalties. The additional flexi-
bility that DTW introduces allows more of the variations andDecoding. The final step, 4, determines the most probable
distortions of real speech to be matched, but also increasesmessage, given the sequence of labels.
the danger that a template might match a wrong word, per-Rigid Templates. A simple scheme for decoding a message
haps by skipping over some sounds entirely. To counteractmight look for matches between the label stream and a set of
this danger, a refinement of the DTW model introduces a pen-rigid templates—fixed sequences of labels to be matched ex-
alty cost C for each transition. For example, each transitionactly. This, in effect, would be a table lookup scheme. The
to the next state might have C � 0, but a transition skippingtemplate for the word ‘‘one’’ might, for example, be the se-
a state could have C � 1. In this way the template is able toquence W W W AH AH AH N N N. At a frame rate of 100
match words that have distorted duration patterns, but at as�1, this template would require that the word should last ex-
cost that increases with the magnitude of the distortion. Thisactly 0.09 s, and that each of the three sounds in that word
means that even if a template is able to match an incorrectshould last exactly 0.03 s. This scheme fails if the user speaks
word, the correct template for that word will match betterfaster or slower. It can also fail because the actual labels gen-
(with a lower penalty), and the decoder will then choose theerated by the acoustic processor are not always in strict one-
correct word. Figure 10 shows an FSM with penalty coststo-one correspondence with phonemes. A more typical real la-
attached to transitions. The decoder now has the additionalbel sequence might look something like W W UW AH AH EH
burden of finding the match that has the lowest penalty, butAH N M N M. The chief advantage of rigid templates was
it can do this efficiently by means of dynamic programmingcomputational simplicity, and the cost of computing has
(see DYNAMIC PROGRAMMING). Even a DTW with penalties,dropped enough to make this consideration now irrelevant.

Rigid templates are not used in practical ASRs today.
Linear Time Warping. To cope with varying durations, a

simple remedy would be to stretch or compress the template
linearly. Thus, if the length of the template is 9 frames, but
the spoken word is 12 frames long, then each third template W W W AH AH AH N N N
frame could be repeated, so that the template would turn into
W W W W AH AH AH AH N N N N. This is also computation- Figure 9. This finite-state machine is one example of a model capa-

ble of dynamic time warping.ally and conceptually simple, but is still a crude approxima-
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where C(St, St�1) is the penalty for the transition from St�1 to
St. Comparing the right-hand sides of Eqs. (10) and (11), it is
evident that the penalty plays a role analogous to the loga-
rithm of the transition probability.

Treating the label stream as if generated by a Markov

W W W

C = 1

C = 0
C = 0

C = 0
C = 0

C = 0
C = 0

C = 0
C = 0

C = 1 C = 1

AH AH AH N N N

source, that is, giving the penalties a probabilistic interpreta-
Figure 10. A finite-state machine with penalties exhibits a prefer- tion, has significant advantages for training the ASR, as dis-
ence for the more probable warping patterns. cussed in later subsections. For this reason, current ASRs al-

most invariably take the Markov source approach to speech
modeling. Because only the output of the Markov source, i.e.

however, is still too limited for high-performance ASR use, the label stream, is observable, and the states themselves are
because it can handle only changes in timing, not changes in hidden from direct observation, the model is called a hidden
labeling. If, for example, the acoustic processor generates the Markov model (HMM).
label UW (the final sound in ‘‘you’’) from one of the frames that The diagram in Fig. 10 shows a label associated with each
are labeled W in the template, then the FSM of Fig. 10 fails to state, but in an alternative, more widely used version of the
find any match at all. HMM outputs are associated with transitions rather than

To permit greater flexibility, each state might be permitted states. Figure 11 illustrates this scheme. Here, each phoneme
to match several different labels. Again, penalties could be is shown as a sequence of three states, to accommodate differ-
levied against the less probable labels. With such an arrange- ences in the sound between the beginning, middle, and end of
ment, however, the number of possible combinations of penal- a phoneme. All transitions actually have transition probabili-
ties becomes very large, and their effects difficult to foresee. ties, but to reduce clutter, only a few are shown in the dia-
For these reasons, parameters such as transition penalties in gram. Similarly, only one output is shown for each arc, but
a large-vocabulary ASR must be adjusted by automated meth- there could be several, each with its own output probability
ods. Ways for doing this are discussed in a later subsection value.
under ‘‘Training of an automatic speech recognizer,’’ but the Alternatively, in a continuous-parameter decoder, the
task is greatly facilitated if the penalties can be interpreted acoustic vector x is considered the output. Each arc then has
as logarithms of probabilities. The model then becomes a an output probability density in the acoustic space. When
Markov source. such an arc is labeled W1, for example, the W1 is the name of

Hidden Markov Model. An FSM with penalties, such as the a prototype, corresponding to a probability density fw1(x) in
one shown in Fig. 10, is closely related to a Markov source. the acoustic space. Although the decoder does not see the
The latter is an FSM in which each transition has a probabil- acoustic vector x, it receives the value of fW1(x) from the la-
ity attached to it, such that the probabilities of all transitions

beler provided the value is sufficiently high, i.e. provided theout of a given state are normalized to unity, and similarly
W1 prototype is sufficiently close to the top of the list. Theeach output alternative has a probability. The Markovian as-
labeler calculates the probability density according to a for-sumption states that these probabilities are independent of
mula such as Eq. (7).past history, i.e., independent of the path by which the cur-

Viterbi Decoder. If the decoder were to hypothesize a pathrent state was reached and independent of outputs of earlier
S through the state space such that at time t the state is s �frames. Let the transition probability from state q to state s
St, for t � 0, 1, 2, . . ., T, and if X is the acoustic vectorbe pt(s�q), normalized such that
sequence such that at time t the acoustic vector is x � Xt,
then the prior probability of that state-space path, before
looking at the acoustic signal, would be given by Eq. (9).

∑
s

pt(s|q) = 1 (8)

Given that path, the probability of the observed sequence X
Then the probability of a path S starting at some state S0, of acoustic vectors is
going through state St at time t, and ending at ST at time T
is

p(XXX |S) =
T∏

t=1

po(XXXt |St , St−1) (12)

p(S) = p(S0)

T∏
t−1

pt(St |St−1) (9)

where p(S0) is the probability that the system starts in state
S0. The logarithm of this probability is

log p(S) = log p(S0) +
T∑

t=1

log pt(St |St−1) (10)

For an FSM with transition penalties, going through the
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same path, the total penalty is
Figure 11. A ‘‘Hidden Markov Model’’ is a special kind of finite-state
machine with penalties, one that is particularly suitable for auto-
matic optimization. This figure shows a possible model for the word
‘‘one.’’

Ctot =
T∑

t=1

C(St, St−1) (11)
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where po(x�St, St�1) is the probability density f (x) correspond- where the denominator p(X) that appeared in Eq. (16) is omit-
ted, being independent of S and w. Substituting again froming to the transition from St�1 to state St.

The posterior probability of the hypothesized path S, then, Eqs. (9) and (12), we get
according to Bayes’s formula, is

ŵ = argmax
w

∑
S∈Sw

p(S0)

T∏
t=1

pt(St |St−1)po(Xt |St , St−1) (18)
p(S|XXX ) = p(S)p(XXX|S)

p(XXX )
(13)

As written above, the right-hand side calls for summation
The most probable path then is

over all possible alignments, i.e. all possible paths S for each
message w. The number of terms in such a sum grows expo-
nentially with the length T of the message. The sum can beŜ = argmax

S
p(S)p(XXX|S) (14)

factored, however, to yield a recursive computation
where the denominator p(X) in Eq. (13) has been ignored be-
cause it does not depend on S. Substituting from Eqs. (9) and
(12), the above becomes

∑
S∈Sw

p(S0)

T∏
t=1

pt(St |St−1)po(Xt |St, St−1) =
∑

s
αT (s) (19)

where �T(s) is the sum over all paths ending at ST � s. The
following recursion then holds:

Ŝ = argmax
S

p(S0)

T∏
t=1

pt(St |St−1)po(XXXt |St , St−1) (15)

This is the most probable path through the state space after
a given acoustic-vector sequence or label sequence has been

αt (s) =
∑

s′
αt−1(s′)pt(s|s′ )po(XXXt |s′, s) (20)

observed. The path specified by Eq. (15) can be found without
andexhaustive search by means of the Viterbi algorithm (20,21).

α0(s) = p(S0 = s) (21)Beam Search. Although the Viterbi algorithm is an efficient
method for finding the most probable path through the state

The quantity �t(s) represents the joint probability of thespace for a given set of observations, it can still require a
acoustic vector sequence x1, . . ., xt and the path goingprohibitive amount of computation if the number of states is
through state s at time t.large. A technique known as beam search is faster, although

In Eqs. (19), (20), and (21) the states s are to be restrictedit is not guaranteed to always find the most probable path. At
to those appearing in the set of paths allowed for a particularany given time point in the computation, beam search ignores
message w.those paths that are less probable than the best by some pre-

The recursion in Eq. (20) makes it feasible to calculate thedetermined margin, and it only extends the most probable
sum in Eq. (17). This is the method used in ASRs when suffi-paths. Confining the computation thus to a narrow ‘‘beam’’
cient computing power is available. When not, then the sumcan greatly reduce the amount of work without seriously de-
is replaced by the probability of the most probable path Ŝgrading accuracy.
defined by Eq. (15).Summing over Alternative Alignments. A hypothesized path

Composite Hidden Markov Model. In a large-vocabularyS represents one possible time alignment of one hypothesized
ASR, any word can follow any other word. We could thenmessage—a word or word sequence—and Ŝ is the most prob-
imagine a composite HMM for the entire language where aable time alignment for that message. To decide which mes-
transition would be permitted from the last state of any wordsage was spoken, the decoder needs to compare the posterior
to the first state of any word. With a vocabulary size of theprobabilities of all possible messages without, however, neces-
order of tens of thousands of words, such an HMM is far toosarily deciding on the alignment. For decoding a message, the
large to represent in a drawing, but Fig. 12 illustrates thealignments are nuisance parameters. The decoder is only in-
idea visually for a vocabulary of only three words. Even suchterested in the marginal probabilities, after the nuisance pa-
a large model, however, has a serious limitation: it allows therameters have been summed or integrated out. Let S w be the
probability of a given word to depend on the previous word,set of all paths S corresponding to a particular message w.
but not on any earlier words, because the Markov model hasThe marginal posterior probability that S � S w, ignoring the
no memory beyond the most recent state. A more complicatedalignment, is obtained by summing the posterior probabilities
Markov model could be constructed in which the probabilityof all alignment hypotheses in that set:
of the next word would depend on, say, two preceding words,
but such a model would have many more states and transi-
tions than the one illustrated.

The model in Fig. 12 leaves out another important detail:
each phoneme, such as the W at the start of ‘‘one,’’ is actually
an allophone depending on the preceding and following pho-

p(S ∈ Sw|XXX ) =
∑

S∈Sw

p(S|XXX )

=
∑

S∈Sw

p(S)p(XXX|S)

p(XXX )

(16)

nemes. Each word may therefore need several alternative be-
The most probable message ŵ is then ginnings and endings depending on the adjacent words. Thus,

although conceptually the entire operation of the decoder
could be described by one large HMM, in practice such a
model would be far too large to be precomputed and stored.

ŵ = argmax
w

∑
S∈Sw

p(S)p(XXX|S) (17)
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Figure 12. A ‘‘Hidden Markov Model’’ for only a
three-word vocabulary already requires a large num-
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ber of states and transitions.

In small-vocabulary applications, the composite HMM may The entries are called baseforms because they are the basis
from which the actual allophone string is derived. The latterbe small enough to permit probability values for all the states

to be computed, so that decoding can then be done by the may be different for the same word in different contexts. The
decoder uses a binary decision tree to decide which allophoneViterbi algorithm. For larger models, however, sequential de-

coding is used because it requires probabilities for only a to substitute for each phoneme in the new word, taking into
account the context in which the new phoneme now appears.small fraction of all the states to be computed.

Sequential Decoding. In a large-vocabulary ASR, the HMM This context may include phonemes in a preceding word. Hav-
ing determined the allophones, the decoder then replacesis not prestored, but the decoder constructs portions of it dy-

namically as needed for those hypotheses that the decoder is each one with a small (e.g., three state) HMM specifying the
detailed acoustic structure of that allophone.actually testing. At any time point in a hypothesis where a

new word might start, the decoder first uses an abbreviated After appending new branches to its hypothesis network,
the decoder calculates the acoustic match for each branch,acoustic match computation (‘‘fast match’’) to eliminate most

vocabulary words quickly from consideration. For each of the performing essentially the computation specified by Eq. (17),
by means of the recursive algorithm of Eq. (20). This compu-remaining words, the decoder constructs a branch of the

HMM, consulting the language model (described in a later tation is the same as the forward pass of the Baum–Welch
algorithm and is described in greater detail in the section onsubsection) to determine the probability of the transition into

the first state of the word. It then looks up the pronunication statistical training later in this article.
After performing the forward computation, the decoder se-of the word in the baseform dictionary. An excerpt from a

typical baseform dictionary might look like Table 1, using the lects the branches that have the best match scores, and ex-
tends them further in the same way, starting again with thevernacular phonetic symbols common in ASR technology.
fast match.

Whereas the structure of the HMM inside a word is deter-
mined by the baseform dictionary and the allophone models,
the transition probabilities between words come from the lan-
guage model.

Language Model. Traditional syntactic analysis relies on
rules constituting a grammar, but for ASR use such a deter-
ministic approach with manually written rules has enjoyed
little success, yielding instead to probabilistic n-gram lan-
guage models. Part of the power of the latter models comes
from their ability to incorporate limited semantic as well as
syntactic information. Furthermore, actual speech, especially
informal conversation, does not follow rules of grammar rigor-
ously. Probabilistic n-gram models are able to accommodate

Table 1.

Word
Spelling Baseform

.

.

.
AIRCRAFT’S EH AXR K R AE F TS
ALIGNS AX L AY N Z
ALLEYS AE L IY Z
ALLOCATOR AE L AX K EY DX AXR
ALLOCATORS AE L AX K EY DX AXR Z

.

.

.
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arbitrary deviations from strict rules while still giving higher larger training corpus. Finite computing speeds always im-
pose a practical limit on the size of the training corpus. If thatweights to more commonly occurring constructions. These ad-

vantages apparently outweigh the inherent limitations of this corpus is too small for a given family D 0, that is, if D 0 has
too many degrees of freedom for the available training corpus,simple concept.

Let the message w be a text consisting of a sequence of N then training may reduce the error rate on that corpus to a
very low value or even zero, without achieving any improve-words Wi (or syllables in languages such as Mandarin):
ment at all on new test data. This phenomenon is called over-
training. Historically, as computing speeds have risen, largerw = (W1,W2, . . .,WN ) (22)
speech corpora have become accessible. ASR design has thus

If we assume that the first word of every message is a special come to depend more on empirical speech data and less on
‘‘start-of-message’’ word (not actually written in the text) and prior human knowledge, and as a consequence, ASR accuracy
the last word similarly is ‘‘end-of-message,’’ then the following has improved. Complete removal of the human ingredient
identity is true: from the design procedure, however, is not plausible.

Human knowledge is incorporated into the ASR mainly
through the choice of the parametric family D 0 and through
the design of the training algorithm. If we could make D 0 �

p(w) =
N∏

i=1

p(Wi|W1, . . .,Wi−1) (23)

D , with a uniform probability distribution over D 0, then the
entire burden of ASR design would be shifted to the trainingThe n-gram language model approximates this relationship
algorithm, and no human knowledge would be built in at all.by assuming that the probability of the ith word depends not
In that case, however, the training algorithm would have noon all the preceding words, but only at most n � 1 preceding
prior knowledge about the nature of the acoustic space A andwords:
would be unable to judge the similarity between a new wave-
form and any that it had already seen. It would then need to
see in the training sample all waveforms that it might ever
encounter. This is clearly impossible; hence prior human
knowledge will always remain an important ingredient of

p(w) =
N∏

i=1

p(Wi|Wki
, . . .Wi−1)

where ki = max(1, 1 + i − n)

(24)

ASR design.
As computing power increases, however, the nature of theThe probabilities p(Wi�Wki

, . . . Wi�1) appearing in the right-
human knowledge required becomes more and more abstract.hand side of Eq. (24) are not known exactly; hence estimated
Instead of hard-coding numeric decision boundaries, we nowvalues must be substituted. These are estimated during lan-
introduce prior information through algorithm structure,guage model training on the basis of a training corpus, which
through design of statistical models, and through the selec-need not contain any acoustic data, only samples of text. Sev-
tion of training corpora. Nevertheless, humans still possesseral tens of millions of words are needed to get good estimates
kinds of information that has not been fully utilized in ASRof these probabilities. Even then, special treatment is needed
systems. Among these are semantic knowledge, rules of gram-for trigrams that have low counts or do not appear in the
mar, and knowledge about the physical structure of the vocaltraining corpus at all. These procedures are described in
tract. Active research is continuing towards incorporatinggreater detail in the subsection on ASR training.
more of this knowledge into the automatic algorithms.Typical values for n are 2 (bigram model) or 3 (trigram

model).
Training and Adaptation. A third phase, adaptation, can be

added to the two discussed above. ASRs perform better if theyTraining of an Automatic Speech Recognizer
are adjusted for a specific user rather than for the general

Statistical Training versus Human Knowledge. Designing an population. One way to adjust the ASR would be to have an
ASR is a two-stage procedure consisting of preliminary algo- entire training corpus spoken by one user, but this is gener-
rithm design followed by fine tuning through statistical ally neither feasible nor necessary. If an ASR is trained on a
training: number of speakers of the same language and broad dialect

(e.g. US English or UK English), then this speaker-indepen-
dent recognizer can be adapted to a specific user with a rela-1. If D is the space of all possible speech recognition algo-
tively small amount of additional speech data. Such adapta-rithms, then an ASR implements a subset of these—a
tion can be modeled as Bayesian estimation of the recognizerparametric family D 0 � D of functions D : A � W ,
parameters. Let � be the parameter vector, consisting for ex-where A is the space of acoustic signals, W the space
ample of transition probability values, output probability val-of messages, and D � D 0.
ues, etc. Then let p0(�) be the initial, prior distribution on �,2. A training algorithm, after extracting evidence from the
built into the recognizer before any training is done. This istraining corpus, selects one specific element D � D 0, i.e.
frequently a uniform or maximum-entropy (maximally unin-one set of parameter values, from those that the ASR is
formative) distribution. Now if a particular multispeakercapable of implementing. The training algorithm may
training corpus consisting of acoustic signals A1 and corre-start with some nonuniform prior probability distribu-
sponding messages (e.g. word sequences) W1, is observed, thention in the parameter space, thus biasing it hopefully
a new distribution on p1(�) is given by Bayes’s rule astoward the correct solution.

Increasing the size of the parametric family D 0 gives the
training algorithm more freedom to find the best recognizer
D, potentially improving the accuracy, but also requiring a

p1(θ ) = p(θ |A1,W1)

= p0(θ )p(A1,W1|θ )

p(A1,W1)

(25)
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This new distribution p1(�) is the result of speaker-indepen- of the language, given the model, Consider a vocabulary � of
words � � �. The language model, having seen a string ofdent training of the recognizer. It serves as the prior for

speaker-specific adaptation. The adapted distribution p2(�) is words (W1, W2, . . ., Wt�1), predicts a probability distribution
for the next word, pt(���w). When the actual text word Wt isthen obtained again by Bayes’s rule:
revealed, the amount of information conveyed by that releva-
tion is according to Shannon’s theory, �log2 pt(Wt��w) bits. Thep2(θ ) = p1(θ )p(A2,W2|θ )

p(A2,W2)
(26)

entropy of the language, conditioned on the model, is the ex-
pected value of this quantity:

where A2 and W2 constitute the adaptation corpus, spoken by
one user. Because p1(�) has a lower entropy, i.e., is more infor- H(θw) ≡ E[− log2 pt (Wt |θw )] (28)
mative, than p0(�), the adaptation corpus (A2, W2) does not
need to be as large as the speaker-independent training cor- This quantity is also known as the cross entropy between the
pus (A1, W1). true probabilities and those predicted by the model. It is a

minimum when the predictions agree with the true probabili-
Statistical Model. As briefly stated in the beginning of this ties. The value of this entropy is a measure of the perfor-

article, the usual approach to the training task is to first as- mance of the language model. It is customary to convert this
sume that the joint probability of signals and messages, p(a, to the perplexity Q by exponentation:
w), belongs to some parametric family p(a, w��). The selection
of this family is the step that injects most of the prior knowl- Q = 2H(θw ) (29)
edge into the ASR system. Additional prior information can
be introduced by specifying a prior probability distribution for The perplexity is frequently used as an objective function
the parameter vector �. During the initial design of the sys- for optimizing a language model. Because Q is a monotoni-
tem, a maximum entropy prior is usually assumed, at least cally increasing function of H in Eq. (29), minimizing either
implicitly. Such a prior provides the least amount of informa- quantity leads to the same result. The parameter vector �w of
tion and hence requires the largest training corpus. During the language model, therefore, is to be adjusted to minimize
adaptation to a new user, however, a much more informative the entropy and the perplexity. Depending on the application,
prior is derived from the initial training, and the needed num- this may require statistical training on hundreds of millions
ber of adaptation data from the new user, therefore, is sig- of words of text, or it may require no training data at all, as
nificantly smaller. in the case of manually designed finite-state grammars.

Separation into Language and Acoustic Models. The form of An n-gram Language Model. An n-gram language model pre-
the parametric family p(a, w��) that has been found particu- dicts the probabilities of the next word on the basis of the
larly useful in ASR technology splits � into two subvectors �w n most recent preceding words. Typical values for n are 2,
and �a by factoring p(a, w��) as follows: corresponding to a bigram model, and 3, for a trigram model.

In a trigram language model, the parameters of the modelp(a,w|θw, θa) = p(w|θw)p(a|w, θa) (27)
are the trigram probabilities p(Wi, Wi�2, Wi�1). The maximum
likelihood estimate of these parameters makes them equal toThis formulation partitions the optimization problem effec-
the empirical probabilities on the training corpus. If nR(Wi,tively into two more or less independent parts: language
Wi�2, Wi�1) is the number of times the trigram (Wi, Wi�2, Wi�1)model optimization and acoustic model optimization. The lan-
appears in the training corpus, and NR is the total number ofguage model p(w��w) deals only with word sequences, not their
trigrams in the training corpus, then the maximum likelihoodpronunciations. The acoustic model p(a�w, �a) deals with pro-
estimate isnunciations, including acoustic prototypes and allophone

HMMs. Instead of trying to minimize the overall error rate
directly, this approach gives each submodel its own objective
function and its own part of the parameter vector �, and then

p(Wi,Wi−2,Wi−1) = nR(Wi,Wi−2,Wi−1)

NR
(30)

estimates these parts separately by standard statistical esti-
mation methods. One of the advantages of partitioning the These values of the trigram probabilities minimize the en-

tropy and perplexity of the language on the training corpus,problem in this way is that the language model can now be
trained on text only, without requiring corresponding acoustic but they result in serious overtraining: Eq. (30) gives zero

probability to trigrams that do not occur in the training cor-signals. Acoustic models, on the other hand, can be trained
on speech samples for which the text is already known, so pus. If such a trigram subsequently appears in test data, the

decoder is guaranteed to make a mistake, since it assumesthat a language model is not required for acoustic training.
In this way much larger text corpora become available for that these trigrams can never occur.

To correct the overtraining, it is necessary to incorporatelanguage model training if needed, or, for small-vocabulary
interactive dialog applications where the language model is additional prior knowledge into the training algorithm. In

Bayes’s formula, prior information is explicitly contained in asimple finite-state grammar (FSG), the model can be designed
manually without statistical training. In either case the lan- prior probability distribution, but in ASR design prior knowl-

edge is often qualitative, not expressible as precise probabilityguage model can now be created without reference to spoken
text and without the need for trained acoustic models. Mean- values. Language model design illustrates this: We do not

know the probabilities of the unseen trigrams, but at least wewhile, acoustic training can proceed in parallel without the
need for a trained language model. know that all trigrams are possible, none has a zero probabil-

ity. Beyond this, we know from previous experiments that aStatistical Language Model
Objective Function for Language Model Training. A suit- bigram language model is not as good as a trigram model, but

is better than nothing at all. Even a unigram model is betterable objective function for the language model is the entropy
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than no model. This suggests that when the trigram model is For a given message, w, the acoustic model calculates the
probability p(a�w, �a) that appears in Eq. (27). This functionclueless, because its empirical count is zero, a bigram or sim-

pler model might still provide useful information. Even when is defined for all possible acoustic signals a, but we are inter-
ested in the a that was actually associated with the message.the trigram count is nonzero but low, it seems reasonable to

assume that the bigram count may give a better estimate or If the acoustic model could predict a exactly, given w, then we
would have p(a�w, �a) � 1 and �log p(a�w, �a) � 0. The condi-at least some additional useful information.

To translate these purely qualitative arguments into an tional entropy of the acoustic signal, given the message,
would then be zero. The higher the entropy, the less informa-algorithm, we need quantitative reasoning but must not make

any strong new assumptions. Let P be the probability of some tion the acoustic model provides. The objective function to be
minimized by acoustic model training is thereforetrigram in the population, and NR the size of the training cor-

pus, so that the expected count for this trigram in the training
corpus is n � NRP. Then the observed count n obeys, to a first Fa = E[− log p(a|w, θa)] (33)
approximation, a Poisson distribution

Baum–Welch Reestimation Algorithm. The goal of the model
is to predict the acoustic signal as accurately as possible,
given the message, because this also maximizes the informa-P(n) = nne−n

n!
(31)

tion that the acoustic processor is able to extract from the
signal about the message.

and its standard deviation is �n. For large n the standard During training, the text and the acoustic signal are both
deviation of log n is then approximately 1/�n. As the ex- available, but the exact time alignment of the speech sounds
pected count n decreases, the standard deviation (the sam- is not known. The training program, effectively, constructs an
pling error in n) increases. Bigram counts are typically larger HMM in the same way that the decoder dynamically con-
than trigram counts, but bigram probabilities are poorer pre- structs the HMM for each hypothesis. During training, how-
dictors of the next word than trigram. If the trigram count is ever, the text is known, so that the resulting HMM is much
very small, then its sampling error may be so large that the simpler. All paths through this model correspond to the same
bigram probability is a better predictor. In such situations, a message, though to different time alignments, but the paths
linear combination of the two may be a still better predictor will have different probabilities. The training algorithm cal-
then either alone. Furthermore, if even the bigram count is culates the sum of the probabilities over all paths, using a
low, then unigram and zerogram probabilities can be invoked recursion formula similar to Eq. (20). A two-pass modification
to improve the estimate. Thus we could write of this procedure, including a similar computation in the re-

verse direction, permits a separate sum to be obtained for
paths going through each transition. This permits the train-P = λ3P3 + λ2P2 + λ1P1 + λ0P0 (32)

ing algorithm to reestimate the probability of each transition,
and also to reestimate the output probability distribution forwhere Pi is the empirical i-gram probability and �i is its
each transition. In this way, the training algorithm updatesweight. If we knew the relative magnitudes of the systematic
the parameters of the HMM, which constitute the vector �a.and random erros in each predictor, we could calculate �i val-
It then repeats the computations starting from the updatedues to minimize the error in P. Because we do not know these
model. Four iterations typically suffice to converge to a rea-magnitudes and do not want to make arbitrary assumptions
sonably accurate estimate of �a. This procedure is known asabout them, we must estimate the weights empirically by tak-
the Baum–Welch reestimation algorithm, or the forward–ing the Pi values from one part of the training corpus and
backward algorithm. It is a special case of the estimate–then optimizing the �i on another part of the corpus (held-out
maximize (EM) algorithm.data). The optimization can be done over repeated trials using

To illustrate the computations involved in the Baum–different partitionings of the training corpus, so that all sam-
Welch algorithm, we consider the simple example shown inple points are used in held-out data equally often. The re-
Fig. 13, consisting of only three time frames and only threesulting values of � depend, in principle, on all the counts from

unigrams through trigrams, though some simplified scheme
is used in practice.

Another way to deal with low counts is to categorize words
into syntactic categories such as verbs, nouns, etc., or seman-
tic ones such as numbers, names, colors, etc., and to combine
counts for these with word trigram counts in the manner of
Eq. (32). Automatic methods exist for defining such cate-
gories.

Statistical Acoustic Model
Objective Function for Acoustic Model Training. The goal of

acoustic processing is to generate output that contains as
much information as possible about the message. Technically,
this is equivalent to maximizing the mutual information be-

States
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t = 0 1 2

Time

Observed acoustic
feature vectors

3

S2

S1

x1 x2 x3

tween the message and the output of the acoustic processor.
Because mutual information is symmetric, we can alterna- Figure 13. A trellis, in which each circle represents one possible
tively maximize the information that the message contains state of the speech source at one instant of time, is the basis of a fast

computational algorithm for speech decoding.about the acoustic processor output.
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HMM states, with transitions between states 1 and 3 forbid- Expressions such as that enclosed in curly braces in Eq.
(38) play an important role in the fast computational algo-den and all others permitted.

At time t � 0 there have been no observations. The proba- rithm, and are commonly designated �t(s). Each represents a
sum over all paths that pass through state s at time t, butbilities of the states at that time are the initial prior probabil-

ities: p(s1), p(s2), and p(s3). The probability of any one specific the sum is only over products of those terms that depend on
the path up to that time. Thus, the factor appearing in Eq.path is given by Eq. (9). For example, let S be the path (s1,

s2, s2, s3) shown in heavy arrows. Its probability is: (38) is designated �1(2) because it represents paths going
through state 2 at time 1. At time t � 0, the alphas are just
the initial probabilities, so that e.g. �0(1) � p(s1). Hence, the
expression in the curly braces in Eq. (38) can now be written
as

p(S) = p(S0)

T∏
t=1

pt(St |St−1)

= p(s1)pt(s2|s1)pt(s2|s2)pt(s3|s2)

(34)

Given this path, the conditional probability of observing the
acoustic feature vector sequence X � (x1, x2, x3) is, according
to Eq. (12),

α1(2) = {α0(1)[pt(s2|s1)po(x1|s1, s2)]

+ α0(2)[pt(s2|s2)po(x1|s2, s2)]

+ α0(3)[pt(s2|s3)po(x1|s1, s2)]}
(39)

The above example illustrates the basic concept in the fast
algorithm for computing the sum in Eq. (37). In general, the
alphas are computed according to Eq. (20). The sum in Eq.
(37) is then simply the sum over the alphas for the last time

p(X |S) =
T∏

t−1

po(XXX t |St , St−1)

= po(x1|s1, s2)po(x2|s2, s2)po(x3|s2, s3)

(35)

sample:
The joint probability of the path and the output is

p(X ) =
∑

S

p(XXX , S)

=
∑
ST

αT (ST )
(40)

p(X ,S) = p(XXX |S)p(S)

= p(s1)[pt(s2|s1)po(x1|s1, s2)]

× [pt(s2|s2)po(x2|s2, s2)][pt(s3|s2)po(x3|s2, s3)]
(36)

where T is the value of t at the last frame, and ST ranges overTo train the model, we want to adjust the parameters of
the possible states at that frame.the model, that is, the output probabilities po and the transi-

The object of training is to adjust the output probabilitiestion probabilities pt, so as to maximize the probability of the
po and the transition probabilities pt so as to maximize theobserved output, p(X). This marginal probability can be com-
probability of the observed output, p(X). Equation (40) per-puted by summing the joint probability p(X, S) over all possi-
mits this objective value to be calculated, but does not tell usble paths:
how to adjust po and pt. If we knew the actual path S, then
we could estimate transition probabilities by counting the ac-
tual transitions in the path, and we could similarly estimate

p(X ) =
∑

S

p(X ,S) (37)

the output probabilities by collecting statistics on the ob-
served output for each possible transition. Because we do notThe number of terms in this sum is the number of possible
know the actual path, we consider all possible paths, butpaths, which is very large in any realistic model. The sum,
weight them according to their a posteriori probability, givenhowever, can be factored to obtain a fast algorithm for its
the observed feature vector sequence.computation.

In Fig. 13, for example, we know that the feature vectorTo factor the sum, note first that each term in it is the
x2 was observed at time t � 2, but we do not know in whatproduct of factors such as those in square brackets in Eq. (36).
state the system was at times 1 and 2; thus we do not knowEach such factor depends only on the feature vector at one
what transition was associated with that feature vector. Wetime frame and the corresponding state transition. Now con-
consider, therefore, all possible transitions at this time step,sider a set of paths that differ only at time t � 0, for example
among them the one shown by the heavy arrow, from state 2all paths that follow the heavy arrows in Fig. 13 from time t �
to state 2. In this example, there are evidently nine possible1 onward, but differ at time t � 0. Then the last two square-
paths that are in state 2 at both times 1 and 2; in a realisticbracketed factors in Eq. (36) are the same for all three of
model the number of such paths would be very much larger.these paths, and can be factored out. Therefore, the sum of
The path consisting of the three heavy arrows is one suchthe probabilities p(X, S) over these three paths can be written
path. The a posteriori probability of such a path is

p(S|X ) = p(XXX, S)

p(XXX )
(41)

A fast algorithm similar to the alpha recursion is available
for summing over all paths that go through specified states

∑
p(XXX, S) = {p(s1)[pt(s2|s1)po(x1|s1, s2)]

+ p(s2)[pt(s2|s2)po(x1|s2, s2)]

+ p(s3)[pt(s2|s3)po(x1|s1, s2)]}
× [pt(s2|s2)po(x2|s2, s2)][pt(s3|s2)po(x3|s2, s3)]

(38)
at a specified pair of adjacent time values, but it involves a
computation in both the forward and backward directions.Note that the expression in the braces depends only on the

part of the path up to time t � 1 and the other factors depend The forward computation is done first, using Eq. (20), and all
the values of �t(s) are stored. The backward computation isonly on the part of the path from t � 1 onwards.
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then done according to an analogous formula: Figure 14 shows part of such an allophone decision tree for
the beginning segment of the phoneme ‘‘r.’’ There may be a
separate tree for each of the typically three segments of aβt (s) =

∑
s′

βt+1(s
′)pt(s

′|s)po(Xt|s, s′ ) (42)
phoneme. Because this tree is for the beginning segment,
most questions deal with the preceding phoneme. The first

It can be shown that the sum of the joint probabilities p(X, question asks whether the preceding phoneme is in the list of
S) over all paths going through state St�1 at time t �1 and sonorants shown. If it is, the next question asks whether that
through state St at time t is equal to sonorant is a low back vowel. If the answer again is yes, the

tree then asks whether it is the specific phoneme ɑ, and if it
is, the next question then asks about the phoneme following

p(St−1, St,XXX ) = αt−1(St−1)βt (St )pt(St |St−1)po(XXXt |St−1, St )

(43)
the ‘‘r’’—whether it is one of the stops or affricates. On the
other hand, if the answer to the first question is no, the treeDuring the backward computation, each newly computed �
then asks whether the preceding phoneme belongs to a speci-value is combined with previously stored � values according
fied list of consonants, and if the answer to this is also noto Eq. (43) to obtain p(St�1, St, X). From these joint probabili-
then it asks the same question as at the start of the tree, butties, the conditional probabilities p(St�1, St�X) can be obtained
this time not about the preceding phoneme but about the oneby appropriate normalization:
before that.

Only a small portion of the tree is shown; the entire tree
in this example has more than 300 nodes. At the bottom ofp(St−1, St |XXX ) = p(St−1, St,XXX )∑

S′
t−1 ,S′

t
p(S′

t−1, S′
t,XXX )

(44)

the tree each leaf represents one of the allophones for which
this ASR has a separate acoustic density function. Each of

With the aid of these probabilities, new estimated values for these functions typically is a mixture of Gaussians as shown
pt are then calculated as follows: in Eq. (7).

EXPLORATORY WORK
pt(s|s′) = 1

T

∑
t

p(St−1 = s, St = s′|XXX ) (45)

The statistics for the output probabilities are collected by Researchers are constantly exploring new ways to improve
distributing each observed feature vector xt among the possi- the performance of speech recognition systems. In this sec-
ble transitions in proportion to the probabilities of each tran- tion, we briefly introduce some of the interesting approaches,
sition at time t as given by Eq. (44). Thus, for example, if we citing references for further studies.
are interested in the average value of �x(s1, s2) for the transi-
tion (s1, s2), we calculate Artificial Neural Networks

We discussed the topic of phonetic probability estimation in
the preceding section. An alternative strategy for estimating
these probabilities is to employ the artificial neural network

µx(s1, s2) =
∑T

t=1 p(St−1 = s1, St − s2|XXX ) xt∑T
t=1 p(St−1 = s1, St = s2|XXX )

(46)

(ANN) technology (15,22). The term ‘‘neural’’ in ANN is de-
In an analogous manner, new covariances for the feature vec- rived from a tinuous similarity with the way neurons operate
tors can be estimated, and from these means and covariances, in the nervous system. The later operation is not fully under-
new probability densities can be obtained. Using these new stood. But we believe the basic building block of the ANN
output probability densities and the new transition probabili- shown in Fig. 15 roughly duplicates its function.
ties from Eq. (45), new alphas and betas can be computed. We take an inner product of the inputs x1, x2, . . ., xn with
Four or five such iterations are typically needed to obtain rea- a set of weights w1, w2, . . ., wn, threshold it by �, and apply
sonably good estimates of the transition probabilities and out- it to a nonlinear element as given in
put probabilities.

Allophone Tree Optimization. The objective of the allophone
tree is the same as the objective of the overall HMM, the func-
tion specified in Eq. (33). At each stage in tree construction,

y = f

(∑
i

wixi − θ

)
(47)

the design algorithm makes two decisions:
The nonlinear function f (x) is typically a sigmoid function

1. Which nodes to split.
2. What question to ask at that node. f (x) = 1

1 + e−x
(48)

If the number of samples at any node is too small, that node
Another nonlinear function used in many implementations isis automatically removed from the list of candidates for split-
the softmax function defined byting. After that, the algorithm tries all questions in its reper-

tory on all remaining leaves, and for each combination calcu-
lates the reduction in the objective function Fa defined by Eq.
(33). For each leaf, it chooses the question that brings the

f (xi ) = exi∑
j ex j

(49)

greatest reduction, and if that reduction is sufficiently large,
it then appends the question to the tree, splitting the node where the summation in the denominator is over all units in

the output layer.into two new leaves.
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Figure 14. A decision tree enables the recognizer to cope with context-dependent variations of
speech sounds. This is the beginning portion of the allophone decision tree for the phoneme ‘‘r.’’

There are a number of different ANN architectures using dure is called backward error propagation, since the error at
the output layer is propagated back through the network to-this type of building block. The nonlinear element permits us

to construct complex decision surfaces. These surfaces can be wards the input for adjustments of the weights and the
threshold at each layer. We start with an arbitrary assign-designed to differentiate between classes of patterns, in our

case, phonetic classes represented by cepstral data. A com- ment of the weights and the threshold to small values. We
successively test each training sample on this ANN. We notemon ANN architecture is called the multilayer perceptron

(MLP). It consists of an input and an output layer along with the error at a given layer and apply a gradient scheme to
adjust the weights in the preceding layer with the goal of min-one or more optional intermediate layers. The intermediate

ones are termed hidden, as they are not directly observable. imizing this error. We repeat this calculation for all layers in
the network. We iterate this procedure using all training dataFigure 16 illustrates an MLP with an input, a hidden, and an

output layer. until we satisfy some convergence criteria.
In the preceding section we explained how several centisec-We can compute the weights w1, w2, . . ., wn and the

threshold � iteratively by utilizing some training data. The ond time frames are appended together to capture the dy-
namic nature of speech. An alternative procedure is to applytraining data are presumed to be correctly labeled with their

class affiliations. (This, for example, could be done by Viterbi
alignment (20,21) using a previously trained system, as de-
scribed in the Detailed Theory section.) The iterative proce-
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Figure 16. A multilayer perceptron (MLP) with an input, a hiddenFigure 15. Artificial neural network element. The weighted sum of
its inputs is thresholded and applied to a nonlinear element. layer, and an output layer.
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several consecutive frames of speech data directly to a neural in HMM can be employed in this case as well. Other computa-
tional savings may be obtained by eliminating unlikely phonenetwork element. The resulting architecture is called a time

delay neural network (tdnn). candidates according to partial segment likelihoods, reducing
the set of segmentations, and rescoring based on a multipassAnother important network architecture is called the re-

current neural network (rnn). In this case, conventional input search strategy. In passing, we note that some researchers
have incorporated neural network technology within the seg-to each element is supplemented by another set of input rep-

resenting the state. Similarly, the usual output is accompa- ment model framework (27).
nied by another state output, which is fed back with a time
delay as the next state input. The purpose of these states is Noise Robustness
to retain some knowledge about the past, thereby furnishing

Handling noise is a perennial problem in speech recognitionsome context-related information.
systems. Noise may be introduced from ambient sources suchA prime example of this architecture is the one used in the
as background conversation and automobile sounds. OtherABBOT system (17a), shown in Fig. 17. This is a single-layer
possibilities include line noise, e.g., in a telephone-based rec-network where the output uses a softmax nonlinearity and
ognition system.the state nonlinearity is a sigmoid one. A delay of 4 time

We can apply a host of techniques to increase the immu-frames is used in the output so that the state mechanism can
nity of a speech recognition system to noise. One simple ap-account for acoustic context.
proach is to use a noise-canceling microphone. These micro-
phones typically sample the speech from multiple elementsSegment Model
and combine their outputs electronically to enhance the sig-

In HMM formulation described earlier, a Markov state gener- nal-to-noise ratio.
ates a single observable state, which is identified with a frame There are several algorithmic techniques to improve noise
of speech data. Each frame, representing a time duration of immunity as well. One straightforward algorithmic approach
typically 0.01 s, is usually not a meaningful entity in itself. is called spectral subtraction. In this technique, we dynami-
In contrast, a segment model (23) is assumed to produce mul- cally derive a spectral estimate of the background signal dur-
tiple states of duration l. We can identify these states with ing silence portions of the speech signal and subtract it out
some meaningful units, such as subphones (24), phones (25), from the speech data. Heuristics prevent any negative spec-
diphones (26), or syllables. Consequently, a segment model is tral values after subtraction. Other noise-immunity tech-
associated with a duration distribution in addition to a family niques include codeword-dependent cepstral normalization
of output densities. In the case of HMM, we can use modeling (CDCN) (28) and parallel model combination (PMC) (29).
distributions such as discrete distributions, full or diagonal
covariance Gaussian densities, or a mixture of Gaussian den-

OVERVIEW OF SPEECH RECOGNITION PRODUCTSsities. We can employ similar distributions in the case of seg-
ment models as well. However, the duration parameter pro- A wide spectrum of products driven by speech recognition
vides extra degrees of freedom, necessitating a more technology is available in the market. For example, a number
generalized formulation for training and recognition algo- of manufacturers sell dictation products. Typically, they are
rithms. Thus, both duration distribution and a set of output large-vocabulary systems with a built-in vocabulary of some
densities corresponding to observation sequences of different 20,000 to 30,000 words. In addition, custom words such as
lengths are used. For instance, Viterbi decoding (or dynamic names of regular correspondents can be added to the list. Un-
programming) is a standard way of finding the most likely til recently, dictation products operated under a number of
state in the case of HMM. For a segment model, the state constraints. With the advent of newer technologies, these con-
includes both the segment label and duration. The search al- straints are being relaxed. For instance, some of them were
gorithm includes explicit evaluation of different segmenta- isolated-speech systems, requiring the user to pause briefly
tions as well. Speedup techniques such as the pruning used between successive words. Some others were speaker-depen-

dent as well, so that a user had to go through an elaborate
enrollment session before using the product. The latest prod-
ucts in this category are continuous-speech speaker-indepen-
dent systems. The user can speak normally in a continuous
manner. Some speakers with no discernible accents may be
able to use the system without any enrollment. However, a
short enrollment session is usually necessary to get a reason-
able performance. The word accuracy rate is generally in the
range of 90% to 98%. The performance tends to deteriorate if
certain external factors are present, such as background
noise, disfluencies, and severely accented speech. To combat
background noise, some products feature noise-canceling mi-
crophones. Dysfluencies, such as ‘‘uh’’ and ‘‘um,’’ uttered dur-
ing dictation can get confused with speech and produce er-
rorful output. More generally, spontaneous speech, which
tends to have a casual manner and contain ungrammatical

Input Output

State
out

Time delay

State
in

and incomplete sentences, is problematic for recognition sys-
tems. Another drawback is that these systems usually workFigure 17. RNN architecture used in the ABBOT system. The time

delay helps to account for the acoustic context. poorly on children’s voices.
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this example, the majority of speakers, 60 percent of them,
perform at the level of 95% word accuracy. In other words,
these speakers need to correct, on the average, 5 out of every
100 words they dictate. A smaller fraction of speakers achieve
a higher recognition score. A significant portion of test speak-
ers perform worse than the median value as well. For fairness
in testing, none of the test speakers should be taken from the
speaker pool used for designing the recognition system in the
first place.
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Composition of speakers in the test pool is also an impor-
Figure 18. A sample performance plot for a hypothetical recognition tant consideration. For instance, a recognition system for US
system where a 95% word accuracy rate is observed for the majority English speakers should perform at an acceptable level for all
of the users. native speakers from any part of the United States. Thus, the

test pool should ideally reflect the dialectal demographics of
the country.Some speech recognition products are targeted to specific

Consideration of environmental conditions such as back-segments of professionals, such as radiologists, pathologists,
ground and line noise may be an important issue in testing.internists, and legal practitioners. For instance, a system de-
For instance, a voice-driven car phone dialer needs to worksigned for radiologists contains voice-driven boilerplate tem-
satisfactorily under a plethora of noise conditions routinelyplates to aid in the task of filling out a diagnostic report for a
encountered in an automobile. A recognition system designedpatient. In addition, the vocabulary is enriched with medical
to operate over telephone lines should be tested over a varietyterms frequently used by these professionals.
of line characteristics and noise conditions. Even dictationAnother common application category is command and
systems, ordinarily intended for operation in a relativelycontrol. Usually the vocabulary size is smaller than that of a
quite environment, should be somewhat resistant to commondictation system, on the order of several hundred to thou-
ambient noise, such as background conversation and tele-sands of words and phrases. For instance, during a dictation
phone ringing. It is also desirable to test a dictation systemsession the user may issue a command ‘‘new paragraph’’ when
on some extemporaneous speech to determine how its perfor-desired. In fact, the possible reach of command and control
mance is influenced by disfluencies usually present in suchfunctions is quite extensive. Examples range from personal
data.computer desktop manipulation, to hands-free dialing of a The National Institute of Standards and Technology

telephone number, to control of home appliances such as tele- (NIST) has taken an active role in the testing of some catego-
visions and VCRs. Command and control systems enhanced ries of speech recognition systems. The advantage is that rec-
with natural language processing features can be used to ognition systems are evaluated on standardized sets of train-
build an airline travel reservation system. The natural lan- ing and test data. Consequently, the strengths and
guage component lets an user ask a question in a variety of weaknesses of competing systems are relatively easily judged.
normal ways. If the system can handle reduced-bandwidth Two early examples of such standardized databases were TI
telephone-quality speech and is equipped with a speech syn- digits, a collection of utterances of digits from a number of
thesis feature for audio feedback, we can design a product for speakers recorded at Texas Instruments, and WSJ, consisting
remote interactive information retrieval. Such a product, for of read texts drawn from the Wall Street Journal. More re-
example, would be capable of handling a natural language cently, NIST has released the Hub 4 and Switchboard cor-
voice query regarding the location of a restaurant in a large puses. Hub4 is a collection of speech databases recorded off
city. Such voice controlled systems can also be used to re- the air from various television and radio news broadcasts
trieve E-mail, fax, and voice messages remotely from a per- (30). It is divided into seven different categories, called focus
sonal computer. conditions, depending on factors such as dialect, fidelity and

ambient noise conditions. For example, F0 focus deals withTESTING SPEECH RECOGNITION SYSTEMS
baseline high-fidelity broadcast data, from native English

We usually test the performance of a speech recognitioin sys- speakers, reading some prepared material in a relatively
noise-free environment. In contrast, the F3 focus data are cor-tem by aggregating the recognition scores over a set of test
rupted by background music and may include sections ofspeakers. The testing process requires careful consideration
spontaneous speech. Best word accuracy scores on F0 and F3of several factors. These include number and composition of
data are on the order of 81% and 67% respectively.speakers in the test pool and awareness of environmental con-

The switchboard database consists of conversations re-ditions such as background and line noise. Word recognition
corded off telephone lines. Consequently, they are subject toaccuracy is the usual criterion for performance evaluation.
a number of factors detrimental to speech recognition perfor-However, other considerations, such as decoding time and
mance. These factors include unpredictable line characteris-hardware configurations, may be important in specific circum-
tics, line noise, speech disfluencies, and casually utteredstances.
speech. State-of-the-art speech recognition systems typicallyWe know that a speech recognition system does not per-
reach no more than 60% word accuracy on such data. Theseform equally well on all speakers. For various reasons, some
relatively poor performance scores on Hub4 and Switchboardknown and some not so well understood, some speakers tend
data point out the need for further research in these areas.to fare better than the others. Thus, it is important to test a

speech recognition system on a large pool of test speakers, so
APPLICATION PROGRAMMING INTERFACESthat a histogram of performance versus percentage of speak-

ers reaching that performance benchmark, as shown in Fig. Application programming interfaces (APIs) handle the inte-
gration of speech recognition software in an operating system18 for a hypothetical recognition system, can be plotted. In
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SPEECH RECOGNITION, NEURAL NETWORKS.
See NEURAL NETS FOR SPEECH PROCESSING.

SPEECH RECOGNITION, NOISE. See SPEECH EN-

HANCEMENT.


