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SPEECH PROCESSING

Speech processing refers to the manipulation or transforma-
tion of speech signals, mostly by computer, to more useful
forms of information. Usually, of course, signals identified as
speech are produced by humans, and they do the processing
necessary to produce or generate speech; similarly, humans
receive speech via their ears and process it in their brains to
understand the spoken message. In this article, we deal with
ways that computers can simulate either production and/or
perception of speech. There are many applications for such
computer simulation using speech: speech synthesis from text
(e.g., a reading machine for the visually handicapped, or a
voice response system from a database), speech recognition
(e.g., voice control of machines, or entry/interrogation of data-
bases), speaker verification (e.g., allowing access to secure
systems by voiceprint), and speech coding (i.e., compressing
speech into a compact form for storage or transmission, and
subsequent reconstruction of the speech). All of these uses re-
quire converting the original sound waves of pressure (which
actually constitute speech) into a compact digital form suit-
able for computer manipulation, or vice versa.

Such processing usually involves analysis and/or synthesis
of speech. Recognition of speech (where the output is the text
usually associated with the speech) or of speakers (where the
output is the identity of the source of the speech, or a verifi-
cation of a claimed identity) requires analysis of the speech,
to extract relevant (and usually efficient) features that char-
acterize how the speech was produced (e.g., features related
to vocal tract shape). Text-to-speech synthesis converts nor-
mal text into an understandable synthetic voice. In speech
coding, both the input and output are in the form of speech;
thus text is not directly involved, and the objective is simply
a compression of the information rate, for efficient and se-
cure transmission.

SPEECH ANALYSIS

The first step in speech analysis is to convert the continu-
ously-varying speech waves into a bit stream [i.e., analog-to-
digital (A/D) conversion], so that computers may receive and
process the speech signal. Two key factors here are the sam-
pling rate (number of samples/second) and the sampling pre-
cision (number of bits/sample). The rate is directly propor-
tional to the preserved bandwidth of the speech; the Nyquist
sampling theorem specifies that the rate be at least twice the
highest frequency in the speech (1). The minimum rate used
in practical applications is usually 8000 samples per second,
thus preserving from 0 Hz to 4 kHz (in practice, an analog
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lowpass filter usually precedes the A/D converter, and there tone languages directly for semantic concepts, and cues many
aspects of stress and/or syntactic structure in other lan-is a gradual cutoff of frequencies before 4 kHz); this low rate

is suitable (and is standard) for telephone applications, be- guages. Although F0 (or its inverse, the pitch period—the
time between successive closures of the vocal cords) is rarelycause the switched network only preserves the 300–3200 Hz

range. The highest rate typically employed is 44,000 sam- extracted for speech recognizers, it is often used in low-bit-
rate speech coders, and must be modeled well for speech syn-ples/s, which preserves frequencies well beyond the normal

hearing range and is used for audio on compact disks (2–5). thesizers.
The choice of bits/sample is not governed by a fixed rule,

such as the Nyquist law, but rather corresponds to how much
SPEECH CODING

distortion is tolerable in a given speech application. To be un-
able to hear distortion after A/D conversion, we typically need

The objective of speech coding is to represent speech as com-
11 bits/sample. This retains about 60 dB (decibels) in signal-

pactly as possible (i.e., minimal bits/second), while retaining
to-noise ratio, which allows for a typical 30 dB range between

high intelligibility and naturalness, with minimal time delay
strong vowels and weak fricatives in speech (speech sounds

in inexpensive hardware. There are many practical compro-
include vowels such as /i, a, u/, nasals such as /m, n/, frica-

mises possible here, ranging from zero-delay, cheap, transpar-
tives such as /f, s, z/, and stops such as /p, t, g/). Hence, 12

ent, high-rate pulse-code modulation (PCM) to systems that
bit A/D converters are acceptable, although 16 bit systems

trade off naturalness for decreased bit rates and increased
are more common. In the telephone network, where band-

complexity (5). We can distinguish higher rate waveform-
width is at a high premium, 8 bit logarithmic (nonuniform)

based coders (usually yielding high-quality speech) from
quantization is used on most digital links.

lower rate parametric coders. The former coders reconstruct
The objective of speech analysis is to transform speech

speech signals sample by sample and usually represent each
samples into a more informative representation, for specific

speech sample directly with at least a few bits, whereas the
objectives other than simply furnishing speech to human

latter coders typically discard phase information and process
ears. The transmission rate of basic digital speech (via simple

blocks (or frames) of many samples at a time, which allow the
or logarithmic A/D conversion) is typically 64 kbit/s or higher.

average number of bits/samples to be below one (i.e., speech
If we compare that rate to the amount of fundamental infor-

coding under 8 kbits/s).
mation in the signal, we can see a large discrepancy. An aver-
age speaking rate is approximately 12 phonemes (individual

Coders Exploit Structure in Speech
sounds) per second, and most languages have an inventory of
approximately 32 phonemes. Thus the phonemic sequence of Coders typically try to identify structure in signals, extract

it for efficient representation, and leave the remaining (lessspeech can be sent in approximately 60 bits/s (12 log2 32).
This does not include intonational or speaker-specific aspects predictable) signal components either to be ignored (in low-

rate systems) or coded using simple techniques (in high-rateof the speech, but also ignores the fact that phoneme se-
quences are not random (e.g., Huffman coding can reduce the systems). There are many sources of structure in speech sig-

nals (which, indeed, account for the three orders of magnituderate). The overall information rate in speech is about 100
bits/s. Current speech coders are far from providing transpar- difference between the 64 kbits/s of log PCM speech and an

approximately 100 bits/s theoretical limit). Sounds or pho-ent coding (i.e., speech without loss of quality) at such rates,
but some complex systems can reduce the rate to about 8 nemes average a lengthy 80 ms (e.g., perhaps ten pitch peri-

ods), largely due to the difficulty of articulating speech morekbit/s (at 8000 samples per second) without losing quality.
Typical analysis methods try to extract features that corre- rapidly (but also due to losses in human perception at higher

speaking rates). However, identification of each sound is pos-spond to some well-known aspects of speech production or
perception. For example, experiments have shown that speak- sible from a fraction of each pitch period (at least for speech

in noise-free environments). The repetition of information iners can easily control the intensity of speech sounds (and that
listeners can easily detect small changes in intensity) (6). multiple periods helps build redundancy in human speech

communication, allowing reliable communication even in dif-Thus intensity (or a related parameter, energy) is often deter-
mined in speech analysis, by simply summing a sequence of ficult conditions.

The spectra of most speech sounds show a regular struc-(squared) speech samples. Similarly, the positions of reso-
nance (or formant) peaks in the amplitude spectrum of speech ture, which is the product of a periodic excitation (due to vocal

cord vibration) and the set of resonances of the vocal tracthave been correlated with shapes of the vocal tract in speech
production; they are also well discerned perceptually (peaks (which appears as a series of peaks and valleys, averaging

about one peak every 1 kHz). Rather than code the speechare much more salient than spectral valleys). Many analysis
techniques try to extract compact parameterizations of these waveform sample-by-sample or the spectrum point-by-point,

efficient coders extract from the speech a number of parame-spectral peaks, either modeling the underlying resonances of
the vocal tract (including resonance bandwidths) or some ters directly related to the overall amplitude, F0, and the

spectral peaks, and use these for transmission.form of the detail (both broad and fine) in the amplitude
spectrum. One simple spectral measure sometimes used in speech

analysis is the zero-crossing rate (ZCR), which provides a ba-Another feature that is often examined in speech analysis
is that of the fundamental frequency (F0) of the vocal cords, sic estimate of the frequency of major energy concentration in

the signal. The ZCR for speech is just the number of timeswhich vibrate during voiced (periodic) sounds such as vowels.
(In unvoiced sounds, the cords do not vibrate.) The rate F0 the speech signal crosses the time axis (i.e., changes algebraic

sign) in a given time period (e.g., taking an overly simpleis directly controlled in speech production, and the resulting
periodicity is easily discriminated by listeners. It is used in case, a sinusoid of 100 Hz has a ZCR of 200/s). Background
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noise often has a flat or broad lowpass spectrum and thus a est resonance—usually also the lowest-frequency formant).
Each pitch period approximately corresponds to overlappedZCR corresponding roughly to a fixed frequency in the middle-

to-low range of the signal bandwidth. For speech obstruents impulse responses of the vocal tract and is directly related to
the resonances of the vocal tract. Because there are about(stops and fricatives), on the other hand, the ZCR is either

high (corresponding to the high-frequency concentration of four such formants (in a typical 0–4 kHz bandwidth employed
in 8000 samples per second speech) and since each formantenergy in fricatives and stop bursts) or very low (if a voicebar

dominates). Weak fricatives, which cause the most detection can be directly characterized by a center frequency and a
bandwidth, a predictor order of ten or so is adequate (higherdifficulties, have high ZCRs. Information about energy and

ZCR has low calculation cost and can be used in speech end- orders give more precision, but offer diminishing returns for
further increases in computation and bit rate).point detection (see below).

The ten to sixteen LPC parameters derived from such an
analysis form the basis of many coders, as well as for speechExploiting Simple Structure
recognizers. These parameters are the multiplier coefficients

Advanced coders require examination of at least several suc-
of a direct-form digital filter, which when used in a feedfor-

cessive speech samples as a block of data (which entails more
ward fashion (an all-zero filter), converts a modeled speech

computation and delay). The simplest coders (PCM) represent
signal into a residual or error signal, which is then suitable

each sample independently. Using a uniform quantizer, how-
either for simple coding (with fewer bits, typically 3–4/sam-

ever, is inefficient because most waveform samples tend to be
ple, in ADPCM) or further parameterization (as in LPC

low in size, and thus the quantizer levels assigned to large
systems).

samples are rarely used. Optimal encoding occurs when all
Using the coefficients in a feedback fashion, the all-pole

levels are equally used on the average. Because speech sam-
filter acts as a speech synthesizer, when excited by an im-

ples typically follow a gamma probability density function
pulse train (impulses spaced every 1/F0 ms) or a noise signal

(their likelihood decaying roughly as an exponential with in-
(simulating the frication noise generated at a narrow constric-

creasing amplitude), a logarithmic compression prior to uni-
tion in the vocal tract). This latter excitation is a very simple

form quantization is best (e.g., the �-law or A-law log PCM,
model of the LPC residual signal, which allows very low bit

common in telephone networks) (1).
rates in basic LPC systems (9). The result is intelligible but

Many coders adapt in time, exploiting slowly changing
synthetic-quality speech (less natural than the toll-quality

characteristics of the speech, related to either the shape or
speech, as in the telephone network with log PCM, or other

movements of the vocal tract. For example, the step size of
medium-rate, waveform-coding methods). The LPC model,

the quantizer can be adjusted to follow excursions of the
with its dozen spectral parameters parameterizing the vocal

speech signal integrated over time periods ranging from 1 to
tract shape (filter) and its three excitation parameters (F0,

100 ms. When the signal has large energy, larger step sizes
amplitude, and a single ‘‘voicing’’ bit noting a decision

are needed to avoid clipping (which causes highly nonlinear
whether the speech is periodic or not) modeling the residual,

and severe distortion). By reducing the step size for low-en-
operates around 2.4 kbits/s (using updates every 20 ms). The

ergy samples, the quantization noise is proportionally re-
LPC coefficients are usually transformed into a more efficient

duced without clipping.
set for coding, such as the reflection coefficients (which are
the multipliers in a lattice-form vocal tract filter, and can ac-

Exploiting Detailed Spectral Structure
tually correspond to reflected energy in simple three-dimen-
sional vocal tract models, modeling the two traveling waves,Many speech coders use a form of linear prediction to esti-

mate a current sample based on a linear combination of previ- one going up the vocal tract, the other down). Another popu-
lar set is the line-spectral frequencies (LSF) that displace theous samples (7). This is useful when the speech spectrum is

nonuniform (unlike speech, pure white noise, with indepen- resonance poles in the spectral z-plane onto the unit circle,
which allows more efficient differential coding in one dimen-dent samples and a flat spectrum, achieves no gain through

such prediction). The simplest prediction is found in delta sion around the circle, rather than the effectively two-dimen-
sional coding of the resonances inherent in other LPC forms.modulation, where one previous speech sample directly pro-

vides the estimate of the current sample, the assumption be- These latter structures guarantee stable synthesis filters, as
well.ing that a typical sample changes little from its immediately

prior neighbor. This becomes truer if we sample well above
the Nyquist rate, as is done in delta modulation, which allows Exploiting Structure across Parameters
the use of a one-bit quantizer (trading off sampling rate for

The most efficient coders go beyond simple temporal and spec-bit precision) (8).
tral structure in speech to exploit correlations across parame-The power of linear prediction becomes more apparent
ters, both within successive frames of speech data and acrosswhen the order of the predictor (i.e., the number of prior sam-
frames. Even relatively efficient spectral representations suchples used) is approximately 10, and when the predictor adapts
as the LSFs do not produce orthogonal parameter sets; thatto movements of the vocal tract (e.g., is updated every 10–30
is, there remain significant correlations among sets of param-ms). This occurs in two very popular speech coders, the adap-
eters describing adjacent frames of speech. Shannon’s theo-tive differential PCM (ADPCM) and linear predictive coding
rem states that it is always more efficient to code a signal in(LPC). They exploit the fact that the major excitation of the
vector form, rather than code the samples or parameters as avocal tract occurs at the time that the vocal cords close (once
succession of scalars. Thus, we group related parameters as aper pitch period), which causes a sudden increase in speech
block and represent the ensemble with a single index. Foramplitude, after which the signal decays exponentially (with

a rate inversely proportional to the bandwidth of the strong- example, to code a speech frame every 20 ms, a set of 10 re-
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flection coefficients might need 50 bits as scalar parameters nals and ask linguists to transcribe each with its correct cor-
(about 5 bits each), but need only 10 bits in vector quantiza- responding text. Given faster computation and the decreasing
tion (VQ). In the latter, we chose 1024 (� 210) representative cost of computer memory, one might wonder if this radically
points in 10-dimensional space (one dimension/parameter). simple approach will eventually solve the ASR problem. To
The points are usually chosen in a training phase (coder de- see that this is not true, just consider the immense number
velopment) by examining many minutes of typical speech of possible utterances. Typical utterances last a few seconds;
(ranging over different speakers and phonemes). Each frame at 10,000 samples per second, we potentially have, say, 230,000

provides one point in this space, and the chosen points for the signals. Even with very efficient coding (e.g., 100 bits/s), we
VQ are the centroids of the most densely populated clusters. would have an immense 2300 signals. Most of these would not
Because there are only approximately 1000 different spectral be recognizable as speech, but it is impossible a priori to just
patterns that are easily discriminated in speech perception consider ones that might eventually occur as an input to an
(ignoring the effects of F0 and overall-amplitude), a 10 bit ASR system (even enlisting millions of speakers talking for
system is often adequate. A 10 bit VQ represents effectively hours would only scratch the surface of possibilities).
a practical limit computationally as well, because a search for Thus we must find ways to process each speech signal to
the optimal point among much more than 1024 possibilities be recognized so that the amount of information is reduced
every 20 ms exceeds current hardware capacity. Basically, VQ from perhaps 64 kbits/s to a much lower figure. Obvious can-
trades increased computation in the analysis stage for lower didates are low-rate coders, since they generally preserve
bit rate in transmission or storage. The most common use to- enough information to reconstruct intelligible speech.
day for VQ is in code-excited linear prediction (CELP) speech, (Higher-rate waveform coders preserve too much information,
in which short sequences of LPC residual signals are stored in which may be needed for naturalness but not for intelligibil-
a codebook to excite an LPC filter. CELP provides toll-quality ity; the latter is the essence of ASR.)
speech at low rates, and has become very popular in recent Unlike speech coding, where the objective of speech analy-
years (8). sis is to reproduce speech from a compact form, speech recog-

nition instead transforms speech into its corresponding tex-
FUNDAMENTAL FREQUENCY (F0) tual equivalent. The direct relationship between the spectral
ESTIMATION (PITCH DETECTORS) envelope of speech and vocal tract shape (and hence the pho-

neme being uttered) has led to intense use of efficient repre-
Both low-rate speech coders and text-to-speech synthesizers sentations of spectral envelope for ASR. (The relative inde-
require estimation of the F0 of voiced speech signals, as well pendence of F0 and phonemes, on the other hand, has led
as the related estimation of the presence versus absence of ASR to largely ignore F0, except with tone languages, despite
periodicity (voicing). At first glance, it seems a simple task to its use for semantic and syntactic information in human
detect periodicity and measure the period. However, despite speech recognition.) One difficulty has been how to extract
hundreds of algorithms in the literature (10), no one pitch compact yet relevant information about the envelope for ASR.
detector (so-called due to the close correlation of F0 and per- Simple energy is useful, but is often subject to variations (e.g.,
ceived pitch) can handle more than approximately 95% of automatic gain control, variable mouth-to-microphone dis-
speech without errors. Environmental noise often obscures tance, varying channel gain) that are irrelevant for phonemicthe periodicity, and the interaction of phase, harmonics, and

distinctions; as a result, energy is often not used for ASR, butspectral peaks often creates ambiguous cases where pitch de-
change in energy between frames is used.tectors can make mistakes.

Linear predictive coding parameters were once popular forThe basic approach to F0 estimation simply looks for peaks
ASR, but they have been largely replaced by the mel-fre-in the speech waveform, spaced at intervals roughly corre-
quency cepstral coefficients (MFCCs) (11–12). Mostly due tosponding to typical pitch periods. Periods can range from 2
empirical results showing superior ASR performance, thems (for small infants) to 20 ms (for large males), but each
MFCC enjoy widespread use in ASR. The mel-scale refers toindividual speaker usually employs about an octave range
a frequency-axis deformation, to emphasize the lower fre-(e.g., 80–160 Hz for a typical adult male). Many estimators
quencies more than higher ones (which is quite difficult to douse heuristics, such as the fact that F0 cannot change
in LPC analysis). This follows critical-band spacing in audi-abruptly (except when voicing starts or ceases) in successive
tion (4), where perceptual resolution is fairly linear below 1periods. Because F0 is roughly independent of which pho-
kHz, but becomes almost logarithmic above that. The cep-neme is being uttered and the structure of formants (and re-
strum is the inverse transform of the log-amplitude of thelated phase effects) in a voiced spectrum can obscure F0 esti-
Fourier transform of speech. The amplitude spectrum ofmation, we often eliminate from analysis the frequencies
speech in decibels is warped by triangular filters spaced atabove 900 Hz (via a lowpass filter), thus retaining one strong
critical bands, and then coefficients are produced byformant containing several harmonics to supply the periodic-
weightings from increasingly higher frequency sinusoids (inity information. At extra cost, more spectral flattening can

be provided by autocorrelation or by LPC inverse filtering, to the inverse Fourier transform). The first 10 or so MFCCs pro-
further reduce F0 estimation errors. Other pitch detectors do vide a good spectral envelope representation for ASR. The
peak-picking directly on the harmonics after a Fourier trans- first MFCC C0 is effectively the overall speech energy (and is
form of the speech (10). often omitted from use); C1 provides a simple measure of the

balance between low- and high-frequency energy (the one-pe-
riod sinusoid of the inverse transform weights low frequenciesAUTOMATIC SPEECH RECOGNITION
positively and high ones negatively). Higher coefficients pro-
vide the increasingly finer spectral details needed to distin-Automatic speech recognition (ASR) is a pattern recognition

problem; in principle, one could store all possible speech sig- guish, say, the vowels /i/ and /e/.
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Timing Problems in Automatic Speech Recognition from speaker-independent models and adapt the models while
each new speaker uses the system.

The major difficulty for ASR is the large amount of variability
It is clear that stochastic modeling has an important place

in speech production. In text-to-speech synthesis, one syn-
in speech processing, given the large amount of variability

thetic voice may suffice, and all listeners must adjust to its
in speech production. Humans are incapable of regenerating

accent. However, ASR systems must accommodate different
exactly the same utterance twice. With effort, they can pro-

speaking styles, by storing many different speakers’ patterns
duce utterances that sound virtually the same to listeners,

or by integrating knowledge about different styles. Variations
but at the sampling and precision levels at which speech ana-

occur at several levels: for example, timing, spectral envelope,
lyzers function, there are always differences that result in

intonation. There is much freedom in the timing of articula-
variable parameters. If the ASR parameters are well chosen

tions and how the vocal tract moves. In the past, ASR com-
and the variation is minimal, system performance can be high

monly stored templates consisting of successive frames of
if proper stochastic models are used. However, all too often,

spectral parameters (e.g., LPC coefficients), and compared
variability is large and beyond the modeling capability of cur-

them with those of an unknown utterance. Because utter-
rent ASR systems. Future ASR must combine deterministic

ances of the same text could easily have different numbers of
knowledge modeling (e.g., the so-called expert system ap-

frames, the alignment of frames could not simply be one-to-
proach to artificial intelligence tasks, like ASR) with well-con-

one. Nonlinear dynamic time warping (DTW) was popular
trolled stochastic models to accommodate the inevitable vari-

because it compensated for small speaking rate variations.
ability. Currently, the pendulum has swung far away from

Unfortunately, it was still computationally expensive and ex-
the expert-system approach common in the mid-1970s (11).

tended awkwardly to long utterances; in addition, it was dif-
Most ASR is done using the maximum likelihood (ML) ap-

ficult to improve the model with more training speech.
proach, in which statistical models for both speech and text
are estimated based on prior training data. After training es-

General Stochastic Approach
tablishes the models, an input speech signal is analyzed at
recognition time and the text with the highest likelihood ofIn the early 1980s, the hidden Markov model (HMM) ap-

proach gradually took over as the dominant method for ASR. corresponding with the speech is chosen as the recognition
output. Thus, given a signal S, we choose text T which maxi-It traded large amounts of computation during an initial

training phase for a more flexible and faster model at recogni- mizes the a posteriori probability, using Bayes Rule,
tion time. Furthermore, it provided a mathematically elegant
and computationally practical solution to the serious prob- P(T|S) = P(S|T )P(T )/P(S)

lems of variability in speech production. Dynamic time warp-
ing had partially solved the timing problem by allowing non- It is impossible to get good estimates for P(T�S) because of the

extremely large number of possible speech signals S. Instead,linear time paths in the recognition search space but was
unsatisfactory with regard to variations in pronunciation we develop estimates for P(S�T) (the acoustic model) and for

P(T) (the language or text model). When maximizing across(e.g., differences in spectrum due to perturbations in vocal
tract shape, different speakers, phonetic contexts). Essen- possible texts T, we can ignore the denominator P(S) term,

because it is the same for all T. Even for large vocabularies,tially, DTW was a deterministic approach to a stochastic
problem. the number of text possibilities is much smaller than the

number of speech signals; thus it is more practical to esti-With HMMs, speech variability was handled in terms of
probabilities. The likelihood of a speaker uttering a certain mate P(S�T). For each possible text, the statistics are obtained

from speakers repeatedly uttering that text (in practice, suchsound in a certain context was modeled by probability distri-
butions, which were estimated from large amounts of training estimates can be obtained for small text units, such as words

and phonemes, while using speech of sentences). The a prioridata speech. The current dictum of ‘‘there’s never enough
data’’ or ‘‘there’s no data like more data’’ rules the current likelihood of a text T being spoken is P(T), which is obtained

by examining computerized textual databases.approaches toward ASR. Given sufficient computer power and
memory, ASR systems tend to have improved recognition ac- There are efficient methods to develop such statistics and

to evaluate the large number of possibilities when searchingcuracy as more and more data are included in the stochastic
models to make them more reliable. Although computer re- for the maximum likelihood. (The search space for a vocabu-

lary of thousands of words and for an utterance of severalsources are never infinite, this approach is feasible to improve
systems for speaker-independent ASR, where training speech seconds, at 100 frames per second, is quite large.) The for-

ward–backward method examines all possible paths, sum-is obtained from hundreds of different speakers, and the sys-
tem accepts input speech from all users. ming many small likelihoods, while the more efficient Viterbi

method looks for the single best path (11). The latter is muchFor alternative speaker-dependent recognizers, which need
training for each individual user and only employ models faster and is commonly used at the recognition phase, because

it tends to sacrifice little in recognition accuracy. The for-trained on that speaker’s voice at recognition time, the end-
less possibility of increasing the training data is much less ward-backward method is popular in the training phase,

where computational speed is less important. When trying tofeasible, given most users’ reluctance to provide more than a
few minutes of speech. Speaker-dependent systems have bet- discriminate similar words, however, the ML approach some-

times fails, because it does not examine how close alternativeter recognition accuracy, because the HMM models are di-
rectly related to each user’s speech, whereas speaker-indepen- possible texts are. In addition, all speech frames are treated

as equally important, which is not the case in human speechdent HMMs must model more broadly across the diversity of
many speakers (as a result, such models are less discrimina- perception. Alternative methods such as Maximum Mutual

Information Estimation or Linear Disciminant Analysis aretive). A third category, speaker-adaptive recognizers, start
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more expensive, but are more selective in examining the data, model and minimize computer memory. Attempts to use
higher-order models have not been successful to date, becausefocusing on the differences between competing similar texts,

when examining a speech input. of the immense increase in complexity needed to accommo-
date reasonable amounts of coarticulation. The HMM is called
hidden because the vocal tract behavior being modeled is notHidden Markov Model Approach Details
directly observable from the speech signal (if the input to an

The purpose of a Markov model is to model random dynamic ASR system were x-rays of the actual moving vocal tract dur-
behavior with a mathematical method in which different ing speech, we could use direct Markov models, but this is far
states represent some aspect of the behavior. The basic, first- from practical).
order Markov model has several states, connected by transi- The PDF to model states in an HMM is usually presumed
tions among states. The likelihood of leaving each state is to have the form of a Guassian PDF. Such a PDF for an N-
modeled by a probability distribution, and each state is mod- dimensional feature vector x for a spoken word i is
eled by a probability density function (PDF). For speech,
these two sets of distributions (using the abbreviation PDF
for both continuous and discrete distributions) attempt to
model the variable timing and articulation of utterances, re-
spectively. Very roughly, each state should correspond to a

Pi(x) = (2π)−N/2|Wi|−1/2 exp

[
− (x − µiµiµi )

TW−1
i (x − µiµiµi )

2

]

(PDF)
vocal tract shape (or equivalently a speech spectral envelope
with formants resulting from the vocal tract shape). Each where Wi is the covariance matrix. �Wi� is the determinant of
transition then can model the likelihood that the vocal tract Wi and �i is the mean vector for word i. Most systems use a
moves from one position to another. In practice, the corre- fixed W matrix (instead of individual Wi for each word) be-
spondence between vocal tract shape and HMMs is often cause (1) it is difficult to obtain accurate estimates for Wi from
weak. limited training data, (2) using one W matrix saves memory

The PDF for transitions out of a given state usually has a and computation, and (3) Wi matrices are often similar for
simple form: a relatively high likelihood of remaining in that different words. If one chooses independent parameters (i.e.,
state (e.g., 0.8), a smaller chance of moving to the next state no relationship among the numbers in the vector x), the W
in the time chain (e.g., 0.15), and a yet smaller chance of skip- matrix simplifies to a diagonal matrix, which significantly
ping to the state after the next one. The time course of speech simplifies calculation of the PDF (which must be repeatedly
does not allow backward transitions (e.g., we proceed through done, for each speech frame and for each HMM). Thus many
an HMM modeling a word, starting with its first sound and ASR systems assume (often without much justification, other
proceeding to its last sound). Because each state models than reducing cost) a diagonal W. Unless an orthogonalization
roughly a vocal tract shape (or often an average of shapes), procedure is performed, which is itself quite costly (e.g., a
we must stay in each state for several 10 ms frames typically Karhunen–Loeve transformation), most commonly used fea-
(hence the high self-loop probability). Allowing an occasional ture sets (LPC coefficients, MFCCs) have significant corre-
state to be skipped accounts for some variability in speech lation.
production, especially for rapid, unstressed speech; for exam- The elements along the main diagonal of W indicate the
ple, the training speech may be clear and slow, thus creating individual variances of the speech analysis parameters. The
states that need not always be visited in later (perhaps fast) use of W�1

i in the Gaussian PDF notes that those features
test speech. with the smallest variances are the most useful for discrimi-

The transition PDF described here leads to an exponential nating sounds in ASR. We usually try to choose parameter
PDF for the duration of state visits, which is an inaccurate sets that lead to small variances and widely spaced means
model for actual phoneme durations. There is too much bias �i, so that similar sounds can be consistently discriminated.
toward short sounds—very few phonemes last only 1–2 The Gaussian form for the state PDF is often appropriate
frames. Some more complicated HMM approaches allow di- for modeling many physical phenomena; the idea follows from
rect durational modeling but at the cost of increased com- basic stochastic theory: the sum of a large number of indepen-
plexity. dent, identically distributed random variables approaches a

In practice, every incoming speech signal is divided into Gaussian PDF. Natural speech, coming from human vocal
successive 10 ms frames of data for analysis (as in speech tracts, can be so treated, but only for individual sounds. If we
coding). During the training phase, many frames are assigned try to model too many different vocal tract shapes with one
to each given HMM state, and the state’s PDF is simply the HMM state (as occurs in multispeaker, or context-indepen-
average across all assigned frames. Similarly, the PDF de- dent ASR), the Gaussian assumption is much less reasonable
scribing which state B follows any given state A in modeling (see below for the discussion of mixtures of Gaussian PDFs).
the dynamics of the speech simply follows the likelihood of HMMs can be used to model different units of speech. The
moving to a nearby vocal tract shape (B) in one frame, given most popular approaches are to model either phonemes or
that the previous speech frame was assigned to state A. This words. Phonemic HMMs require fewer states than word-
simple approach in which the model takes no direct account based HMMs, simply because phonemes are shorter and have
of the history of the speech (beyond one state in the past) is less spectral variation than words. If we ignore coarticulation
called a first-order Markov model. It is clear, when dealing with adjacent sounds, many phonemes could be modeled with
with typical 10 ms frames, that there is certainly significant just one state each. Inherently dynamic phonemes, such as
correlation across many successive frames (due to coarticula- stops and diphthongs, would require more states (e.g., a stop
tion in vocal tract movements). Thus the first-order assump- such as /t/ would need at least a state for the silence portion,

a state for the explosive release, and probably another statetion is an unrealistic approximation used to simplify the
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to model ensuing aspiration). There is a very practical issue dent scheme and a complex triphone method; it has N2 mod-
els.) For English, with about 32 phonemes, the triphoneof how many states are appropriate for each HMM. There is

no theoretical answer; too few states lead to diffuse PDFs and method leads to tens of thousands of HMMs (which need to
be adequately analyzed and stored in the training phase, andpoor discriminability (especially for similar sounds such as

/t/ and /k/) because of averaging over diverse spectral pat- all must be examined at recognition time). Many systems
adopt a compromise by grouping or clustering similar modelsterns. Too many states lead to excessive memory and compu-

tation, as well as to undertraining, in which there are not according to some set of phonetic rules (e.g., the decision-tree
approach). If the clustering is done well, one could even ex-enough speech data in the available training set to provide

reliable model parameters for any given state. pand the analysis window beyond triphones, to accommodate
further coarticulation (e.g., in the word ‘‘strew,’’ lip roundingConsider the case in which the (very practical) task simply

distinguishes ‘‘yes’’ versus ‘‘no’’ (or perhaps just the ten digits: for the vowel /u/ affects the spectrum of the initial /s/; thus a
triphone model for /u/ looking leftward only at the neighbor0, 1, 2, . . ., 9); then it is efficient to create an HMM for every

word in the allowed vocabulary. There will be several states /r/ is inadequate).
in each HMM, to model the several phonemes in each word.
When there is a rough correspondence between the number Language Models for Automatic Speech Recognition
of states and the number of distinguishable sounds in the

In the recent past, less successful ASR methods concentratedspeech unit being modeled, HMMs seem to give good accu-
entirely on the acoustic input to make decisions. It wasracy. If the model creation during the training phase is done
thought that all the required information to translate speechwell, this produces state PDFs with minimal variance. At rec-
to text could be found in the speech signal itself; thus no cog-ognition time, such tight PDFs will more easily discriminate
nitive modeling of the listener was necessary. Some simplewords with different phoneme sequences.
experiments modeling language changed that approach, withAs the size of the vocabulary increases, it becomes much
positive results in recognition accuracy (11). Indeed, it can beless practical to have models for every word. Even in speaker-
easily observed that words in speech (as in text) rarely occurindependent ASR, where we could ask thousands of different
in random order. Both syntactically (word order structure)people to furnish speech data to model the many tens of thou-
and semantically (meaning), there is much redundancy insands of words in any given language such as English, the
word order. For example, when talking about a cat, one maymemory and search time needed for word-based HMMs goes
well find the semantically related words ‘‘large’’ or ‘‘brown’’well beyond current computer resources. Thus, for vocabu-
just beforehand. As for syntax, there are many restrictions onlaries larger than 1000 words, most systems employ HMMs
English word sequences, for example, the common structurethat model phonemes (or sometimes ‘‘diphones’’, which are
of article � adjective � noun for noun phrases, and stricttruncated sequences of pairs of phonemes, used to model coar-
order in verb phrases such as ‘‘may not have been eaten.’’ticulation during transitions between two phonemes). Di-

Thus researchers developed language models, in which thephones are obtained by dividing a speech waveform into pho-
likelihood of a given word in the context of a prior sequenceneme-sized units, with the cuts in the middle of each phone
is evaluated and used in the decision process of speech recog-(thus preserving in each diphone the transition between adja-
nition. The most common approach is that of a trigram lan-cent phonemes). In text-to-speech applications, when di-
guage model, in which we estimate the probability that anyphones are concatenated in a proper sequence (so that spectra
given word in text (or speech) will follow the preceding twomatch on both sides of a boundary), smooth spectral transi-
words (written or spoken). Textual redundancy in Englishtions usually result because the adjoining sounds at the
(and indeed many languages) goes well beyond a trigram win-boundaries are spectrally similar. For example, to synthesize
dow of analysis, but practical issues of computer memory andthe word straight, the six-diphone sequence /#s-st-tr-re-et-t#/
the availability of training data have so far limited most mod-would be used (where # denotes silence).
els to a three-word window. We note here that training forUsing phonemic HMMs has the big advantage of small
language models is almost exclusively done on written textsmemory and search time, as well as a fixed set of models,
(and rarely on transcriptions of speech), despite the inappro-which does not have to be updated every time we add a word
priateness of written compositions (i.e., most speech is spon-to the vocabulary. If the models are context independent (e.g.,
taneous, and rarely from written texts), for the simple reasonone model for each phoneme), however, their discriminability
of the cost of transcribing large amounts of speech. Research-is small; the states modeling the initial and final parts of each
ers find it much easier to use the many textual databasesphoneme will certainly result from a wide range of phonetic
available today.contexts, and the varying spectral patterns will cause broad

Trigram models incorporate various types of practical textPDF’s of poorer discriminability.
redundancies automatically (no semantic or syntactic analy-Today, more advanced ASR systems employ context-depen-
sis is needed). This lack of intelligent analysis, however, leadsdent phonemic HMMs (of which diphone models are one ex-
to serious inefficiencies. As the allowed vocabulary increases,ample), in which each phoneme has many HMMs, depending
for general applications not limited to specific topics of con-on its immediate neighbors. A simple and common (but ex-
versation, the availability of sufficient text to obtain reliablepensive) technique uses triphone models, where for a lan-
statistics is a major problem. Depending on what we count asguage with N phonemes we have N3 models; that is, each pho-
a word (e.g., do ‘‘eat, eats, eating, eaten’’ count as four?), thereneme has N2 models, one for each context (occuring before and
are easily hundreds of thousands of words in English; takingafter the phoneme). There is much evidence from the speech
a conservative estimate of 105 words, there are 1015 trigrams.production literature about the effects of coarticulation, which
As a result, many acceptable trigrams (and even many bi-are significant even beyond a triphone window. (A diphone

approach is a compromise between a simple context-indepen- grams and unigrams) do not occur in any training text (even
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ones containing millions of words). The estimation of proba- in a speech signal. In particular, cues to word boundaries in
speech are very few. Segmenting a long utterance intobilities simply divides the number of occurrences of each spe-

cific trigram (or bigram) by the total number of occurrences smaller units (ideally words) is hard, but it helps to reduce
computation and lower error rates. Periods of silence are un-of each word being modeled in the training text. For se-

quences found frequently, the estimates are reasonable, at reliable cues to linguistic boundaries. Long pauses are usually
associated with sentence boundaries, but they often occur in-least for the purposes of modeling (and recognizing speech

from) text from the same source; one may often create differ- ternal to a sentence, and even within words (as in hesita-
tions). Short pauses may be confused with phonemic silencesent language models for different types of text, for example,

medical and legal applications. (i.e., closures during unvoiced stops).
Segmenting speech into syllables is easier due to the riseThe serious problem with the above approach is what to do

about unseen sequences (e.g., the very large number of tri- and fall of speech energy between vowels and consonants, but
many languages (e.g., English) allow many different types ofgrams not existing in a given training text, but legal nonethe-

less in the language). Assigning them all a probability of zero syllables (ranging from those with only a vowel to those with
several preceding and ensuing consonants). Languages suchis inappropriate, because such word sequences will never ap-

pear in a recognizer’s output, even when they are actually as Japanese and Chinese are much easier to segment because
of their consistent alternation of consonants and vowels. Seg-spoken. One approach simply assigns all unseen sequences a

very small probability, and reduces the probabilities of all the menting speech into phonemes is also difficult if the language
allows sequences of similar phonemes, such as vowels, orothers by a compensatory amount (to make the total probabil-

ity equal to one). This is marginally better than assigning large variations in phonemic durations (e.g., English allows
severe reduction of unstressed phonemes, such that recogniz-zero likelihoods, but treats all unseen sequences as equally

likely, which is a very rough and poor estimate. A more popu- ers often completely miss brief sounds).
Many commercial recognizers require speakers to adopt anlar way is the back-off approach, in which the overall likeli-

hood for a word is a weighted combination of trigram, bigram, artificial style of talking, pausing briefly (at least 0.25 s) after
each word, to facilitate segmentation. Silences of more thanand unigram probabilities, with the weighting adjusted when

estimating the likelihood of unseen trigram sequences. If no 100 ms should not be confused with stop closures and allow
reliable segmentation of speech into words. In order of in-trigram (or bigram) estimate is available, we simply assign its

weighting to be zero, and use existing (bigram and) unigram creasing recognition difficulty, four styles of speech can be
distinguished: isolated-word or discrete utterance speech, con-statistics. Of course, words that never appear at all in a train-

ing set have no statistics to back-off to; their likelihoods must nected-word speech, continuous read speech, and spontaneous
speech. The last two categories require little or no adaptationbe estimated in another way.

Although the trigram method has considerable utility, of speaking style. Continuous speech allows the most rapid
input (e.g., 150–250 words/min) but is the most difficult tothere is considerable waste as well. The memory for trigram

statistics for large-vocabulary applications is quite large, and recognize. Requiring the speaker to pause after each word for
isolated-word recognition is unnatural for speakers and slowsmany probabilities are poorly estimated due to sparse train-

ing data. It is more efficient to cluster similar words together, the rate at which speech can be processed (e.g., to approxi-
mately 20–100 words per minute), but it alleviates the prob-to reduce memory and make the fewer statistics more reli-

able. One extreme case is the tri-POS (tri-part-of-speech) ap- lem of isolating words in the input speech signal and elimi-
nates coarticulation between words.proach, where all words are classified by their simple syntac-

tic category (such as noun, verb, preposition, etc.). Depending The search space for word units is much smaller than for
longer utterances, and leads to faster and more accurate rec-on how many categories are used, the statistics can be very

much reduced in size while still retaining some powerful syn- ognition. Unfortunately, few speakers prefer to talk in iso-
lated word style. There is also the serious issue of endpointtactic information and predicting common word-class se-

quences. Unfortunately, the semantic links across words are detection, where the beginning and end times for speech must
be determined; against a background of noise, it is often diffi-lost with this purely syntactic language model. One can easily

extend the tri-POS method to windows of more than three cult to discriminate weak sounds from the noise. Endpoint
detection is more difficult in noise: speaker-produced (lipwords, due to the reduced model size, or one can extend the

word categories to include semantic labels as well. Word-class smacks, heavy breaths, mouth clicks), stationary environmen-
tal (fans, machines, traffic, wind, rain), nonstationary envi-language models using perhaps hundreds of hybrid syntactic-

semantic classes may well be a good compromise approach ronmental (music, shuffling paper, door slams), and transmis-
sion (channel noise, crosstalk). The variability of durationsbetween the overly-simple tri-POS way and the huge tri-
and amplitudes for different sounds makes reliable speech-gram approach.
versus-silence detection difficult; strong vowels are easy to
find, but the boundaries between weak obstruents and back-Practical Issues in Automatic Speech Recognition
ground noise are often poorly estimated. Such endpoint loca-

Segmentation. In addition to the serious issue of speech tion uses energy as the primary measure to cue the presence
variability for ASR, there is another aspect of recognizing of speech, but also employs some spectral parameters as well.
speech that makes the task more difficult than synthesizing Endpoint decisions are required very often in isolated-word
speech: segmentation. In text-to-speech applications, the in- speech. For these reasons, most current research is focusing
put text is clearly demarcated into separate words, and the on more normal continuous speech.
listener must adapt to the accent of the synthetic speech. In
ASR, on the other hand, the machine must adapt to the users’ Noise. In many applications, the speech signal is subject

to distortion before it is received by a recognizer (13). Noisedifferent styles of speech, and there are few clear boundaries



SPEECH PROCESSING 203

may occur at the microphone (e.g., in a telephone booth on ognition applications, including speech recognition (15). The
ANN accepts a long vector of L parameters (e.g., for 10the street) or in transmission (e.g., fading over a portable tele-

phone). This leads to less accurate parameters during speech MFCCs over a 100 frame utterance, we have a vector of
L � 1000 dimensions), coming from the usual speech analysisanalysis, and hence to poorer recognition, especially if there

is a mismatch in conditions between the training and testing methods discussed above, and these numbers provide the in-
put to a set of M nodes. Each node makes a linear combina-speech. It is very difficult to anticipate all distortion possibili-

ties during training, and thus ASR accuracy certainly de- tion of a selected set of values from the input vector. The con-
ceptually simplest method is to assign one such output nodecreases in such cases.

In an attempt to normalize across varying conditions, to each possible output of the recognition process (e.g., if the
utterance must be one of the ten spoken digits, M � 10), andmany systems calculate an average parameter vector over

several seconds (e.g., over the utterance), and then subtract we design the weights in the ANN such that only one of the
M outputs will be 1; the label on that output node will providethis from each frame’s parameters, applying the net result to

the recognizer (13). This approach takes account of differ- the textual output. Thus, with proper training of the ANN to
select the appropriate weights, when one says ‘‘six’’ and theences in average energy and the filtering effects of the trans-

mission microphone and channel, which change slowly over 1000 resulting analysis parameters are fed through the ANN,
ideally only one of the 10 output nodes (i.e., the one corre-time. Such ‘‘mean subtraction’’ is simple and useful in noisy

conditions, but can add delay if we must determine the mean sponding to ‘‘six’’) will show a 1 (the others will show a 0).
This assumes, however, that each of the vocabulary words hasfor several seconds of speech and only then start to recognize

the speech. A similar method called RASTA uses a highpass a simple distribution in L-dimensional speech space, such
that simple hyperplanes can partition the space into 10 ap-filter (with a very low-frequency cutoff) to eliminate very

slowly varying aspects of a speech signal, as being specific to propriate clusters (and furthermore that a training algorithm
examining many utterances of the ten digits can determinethe transmission channel and irrelevant to the speech

message. the correct weights). It is very rare that these assumptions
are true, however. A partial solution has been to add on addi-More traditional speech enhancement techniques can also

be tried (14). These include spectral subtraction (or related tional layers of nodes in the ANN. We allow the number M of
nodes in the second layer to be larger, and allow their binaryWiener filtering), where the average amplitude spectrum ob-

served during estimated silent periods is subtracted from the outputs of those M nodes to feed through another layer of
weights and N nodes. Such a double-layer ANN can partitionspectrum of each speech frame. Thus stationary noise can be

partly suppressed. Frequency ranges dominated by noise can the speech space into the much more arbitrary shapes corre-
sponding to practical systems. In general, for speech it ap-be eliminated from consideration in the analysis to determine

relevant parameters. Such processed speech sounds more pears that a three-tier system is needed: the original input
vector feeds the lowest layer, and the information propagatespleasant, but intelligibility is not enhanced by this removal

of noise. through three weightings (two hidden layers of nodes) to fi-
nally appear at the output layer (with one node for each tex-Sometimes used for speech enhancement, ‘‘comb filtering’’

takes an F0 estimate for each frame and suppresses those tual label).
For static patterns, ANNs have provided excellent classifi-parts of the speech between harmonics. Again the output

speech sounds more pleasant, but this method requires a reli- cation when properly trained. However, speech is dynamic,
and the success of ANNs has been more limited for ASR. So-able F0 detector, and the resulting comb filter must dynami-

cally follow changes in F0. called time-delay ANNs feedback values within ANN layers
to try to account for the fact that small delays (variability inMuch more powerful speech enhancement is possible if

several microphones can record speech in a noisy environ- timing) in speech signals occur often in human speech com-
munication and cause no difficulty in perception. Shifting orment. For example, in a noisy plane cockpit, one microphone

close to the pilot’s lips captures a signal containing speech scaling the set of inputs to a basic ANN, however, usually
causes changes in the ANN outputs. As a result, ANNs haveplus some noise, whereas another outside the helmet captures

a version of the noise corrupting the first signal. Using adap- typically found application in ASR, not as a replacement for
HMMs, but as an additional helper to the basic HMM schemetive filtering techniques very similar to those for echo cancel-

lation at 2/4 wire junctions in the telephone network, we can (e.g., ANNs are sometimes used in the training phase for bet-
ter parameter estimation).improve significantly the intelligibility of such speech.

Artificial Neural Networks
SPEAKER VERIFICATION

In the last decade, artificial neural networks (ANN) have at-
tracted significant interest to attempt to solve problems of Speech analysis has been shown to be useful in coding, where
pattern recognition (15). These ANNs very roughly simulate we regenerate speech after efficient compression, and in ASR,
the behavior of neurons in the human nervous system. As where we convert it to text. Another application is speaker
such, each node of an ANN typically accepts a set of inputs, verification, where we determine if speakers are who they
computes a linear combination of weighted input values, com- claim to be. Using fingerprints or retical scans may be more
pares the result against a threshold, and provides a binary accurate in identifying people, but identification via speech is
output (1 if the linear combination of inputs exceeds the much less intrusive and is feasible over the telephone. Many
threshold, 0 otherwise). By combining such nodes in a net- financial institutions, as well as companies furnishing limited
work, quite complicated nonlinear decision spaces can be con- access to computer databases, would like to provide automatic

customer service by telephone. Since personal number codesstructed, which have proven useful in numerous pattern rec-
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(keyed on a telephone pad) can be lost, stolen, or forgotten, where utterances of the same text are used for training and
testing.speaker recognition might provide a viable alternative. The

There are two classes of errors in any binary classificationdecision process can be much simpler than for ASR, because
problem, such as speaker verification: false rejections anda given speech signal is converted into a simple binary digit
false acceptances. A false rejection occurs when the system(yes, accept the claim, or no, refuse it). However, the accuracy
incorrectly rejects a true speaker (one whose identity claim isof such verifiers has only recently achieved the point of com-
true). A false acceptance occurs when the system incorrectlymercialization.
accepts an impostor. The decision to accept or reject usuallyIn ASR, variation due to different speakers in speech sig-
depends on a threshold: if the distance between a test and anals corresponding to the same spoken text is viewed as noise
reference pattern exceeds the threshold (or equivalently, us-to be either eliminated by speaker normalization or (more
ing a PDF for the claimed speaker, the value is too low), thecommonly) accommodated through HMMs drawn from a large
system rejects a match. Depending on the costs of each typenumber of speakers. When the task is to identify the person
of error, systems can be designed to minimize an overall costtalking rather than what the person is saying, the speech sig-
by biasing the decisions in favor of less costly errors. Lownal must be processed to extract measures of speaker vari-
thresholds are generally preferred because false acceptancesability instead of segmental features. What to look for in a
are usually more expensive (e.g., admitting an impostor to aspeech signal to distinguish speakers is much more complex
secure facility might be disastrous, whereas excluding somethan for ASR. In ASR we look for spectral features to distin-
authorized personnel is usually only annoying). Many re-guish different basic vocal tract positions and can exploit lan-
searchers adjust system parameters so that the two types ofguage models to raise accuracy. One common verification ap-
error occur equally often. This is called an equal error rate con-proach indeed employs ASR techniques, except associating
dition.models with speaker names instead of word or phoneme la-

A recent popular method is called Gaussian mixture mod-bels. When two speakers utter the same word or phoneme, we
els (16), which follows the popular modeling approach in ASR,compare timing and spectral patterns to see which speaker
but eliminates separate HMMs for each phoneme as unneces-provides the more precise match. In ASR, the competing pho-
sary. A GMM is essentially a one-state Markov model, butneme or word candidates are often fairly distant in spectral
allows the PDF to be complicated. In ASR, we can often jus-space, making the choice relatively easy. In verification, how-
tify that each state’s PDF may be approximated by aever, many speakers are quite similar in vocal tract shape
Gaussian distribution (especially for triphone HMMs, whereand in speaking style. However, analysis over many frames
context is well controlled). When creating one PDF for allrenders the task feasible.
speech from a speaker, however, the PDF is far fromFor speech recognition, much is known about the speech
Gaussian. To retain the simple Gaussian statistics (completeproduction process linking a text and its phonemes to the
specification by only the mean and variance), however, bothspectra and intonation of a corresponding speech signal. Each
ASR and speaker verification often allow a state’s PDF to bephoneme has specific articulatory targets, and the corre-
a weighted combination of Gaussian PDFs. Using the same

sponding acoustic events have been well studied (but still re- set of Gaussians for all speakers, each speaker is character-
main far from being fully understood). For speaker recogni- ized by the corresponding set of weights. Evaluation is thus
tion, the acoustic aspects of what characterizes the differences quite rapid, even when all the frames of an utterance contrib-
between voices are obscure and difficult to separate from sig- ute to the overall speaker decision.
nal aspects that reflect ASR. There are three sources of varia- Such an approach ignores dynamic speech behavior (as
tion among speakers: differences in vocal cords and vocal well as ignoring intonation, as do ASR systems) and further
tract size and shape, differences in speaking style (including assumes that both training and testing utterances are
variations in both target positions for phonemes and dynamic roughly similar in phonetic composition. This latter can be
aspects of coarticulation such as speaking rate), and differ- assured by text-dependent verification, where the speaker is
ences in what speakers choose to say. Automatic speaker rec- asked to utter words already used during the training phase
ognizers exploit only the first two variation sources, examin- (e.g., one commercial system trains on two-digit numbers,
ing low-level acoustic features of speech, since a speaker’s such as ‘‘74,’’ and then asks each candidate speaker to utter
tendency to use certain words and syntactic structures (the a few such numbers at test time). Accuracy is much higher
third source) is difficult to quantify or control in an exper- for these systems than for text-independent verifiers, al-
iment. though the latter are needed for forensic work (e.g., there is

Unlike the clear correlation between phonemes and spec- no text control in wiretapped conversations). The former,
tral resonances, there are no acoustic cues specifically or ex- however, that risk an imposter may play a recording of the
clusively dealing with speaker identity. Most of the parame- desired speaker (over the telephone, or if there is no camera
ters and features used in speech contain information useful surveillance at a secure facility). Such impostors, of course,
for the identification of both the speaker and the spoken mes- cause problems with text-independent verifiers (which have
sage. The two types of information, however, are coded quite lower accuracy) as well, but imposters could not anticipate
differently. Unlike ASR, where decisions are made for every the requested text to speak with the much larger vocabulary
phone or word, speaker recognition requires only one decision, in the latter systems.
based on the entire test utterance, and there is no simple set In any pattern recognition task (including ASR), training
of acoustic cues that reliably distinguishes speakers. Speaker and test data should be kept separate, but this is all the more
recognizers typically utilize long-term statistics averaged over important in the case of speaker recognition. Speakers tend
whole utterances or exploit analyses of specific sounds. The to vary their style of speech over time (e.g., morning versus

evening, Monday versus Saturday, healthy versus ill). Train-latter approach is common in text-dependent applications
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ing a speaker verifier in one session, and then testing a few Most synthesizers reproduce speech of bandwidth ranging
from 300–3000 Hz (e.g., for telephone applications) to 100–months later rarely gives good results. Ideally, speaker recog-

nizers need months of training (or at least an adaptive sys- 5000 Hz (for higher quality). Frequencies up to 3 kHz are
sufficient for vowel perception, because vowels are adequatelytem, allowing periodic updates while being used). If the same

utterances are used to train and test a recognition system, specified by the formants F1–F3. The perception of some con-
sonants, however, is slightly impaired if energy in the 3 to 5artificially high accuracy results, because the model parame-

ters are often heavily tuned toward the training data. For kHz range is omitted (6). Frequencies above 5 kHz are useful
to improve speech clarity and naturalness but do little to aidgood results, the training data must be sufficiently diverse to

represent many different possible future input speech signals. speech intelligibility. If we assume that the synthesizer repro-
duces speech up to 4 kHz, a rate of 8000 samples per secondWith shared training and test data, it is difficult to know

whether the system has been designed to take advantage of is needed. Because linear PCM requires 12 bits per sample
for toll-quality speech, storage rates near 100 kbits/s result,specific speech or speaker characteristics, that may not be re-

liable for new data. Given K utterances per speaker as data, which are prohibitive except for synthesizers with very small
vocabularies.one common procedure trains the system using K � 1 as data

and one as test, but repeats the process K times treating each The memory requirement for a simple synthesizer is often
proportional to its vocabulary size. Because of decreasingutterance as test once. Technically, this leave-one-out method

designs K different systems, but it verifies whether the sys- memory costs, it is less imperative to minimize memory than
computational complexity. Nonetheless, storing all possibletem design is good using a limited amount of data, while

avoiding the problems of common training and testing data. speech waveforms (even with efficient coding) for synthesis
purposes is impractical for TTS. The sacrifices usually made
to reduce complexity and memory for large-vocabulary syn-
thesizers involve simplistic modeling of spectral dynamics, vo-TEXT-TO-SPEECH SYNTHESIS
cal tract excitation, and intonation. Such modeling yields
quality limitations that are the primary problems for currentOur last speech processing application concerns generation of

speech from text (17–19). Here the speech processing occurs TTS research (6).
both in the development stage of the system, where we record
spoken units from one or more speakers, and again at synthe- Steps Necessary to Produce Speech from Text
sis time, where we concatenate selected stored units to pro-

A series of steps are required in TTS to convert the textualduce the synthetic output voice. The units involved range
message into an acoustic message. The linguistic processingfrom full sentences (e.g., talking cars and ovens) to shorter
is, in a sense, an inverse of the procedures for ASR. First, aphrases and words (e.g., telephone directory assistance) to
preprocessing stage normalizes the input text so that it is aphonemes (e.g., for unlimited text applications).
series of spelled words (retaining punctuation marks). ThusWe distinguish here true text-to-speech (TTS) systems,
all abbreviations and digits are converted to words, typicallywhich accept any input text in a chosen language (including
by a look-up table or simple programs (sophisticated systems,new words and typographical errors), from voice-response sys-
however, might distinguish the several ways of saying ‘‘1997’’,tems of very limited vocabulary. The latter are essentially
‘‘$19.97’’ and ‘‘1,997’’); word context may be necessary to han-voice coders of much simpler complexity but are also inflexible
dle cases like ‘‘St. Mark St.’’ Then, the words are convertedand quite limited in applications. The recent increase in com-
into a string of phonemes (and often rudimentary intonationmercial synthesizers is due to both advances in computer
parameters as well), usually with a combination of a diction-technology and improvements in the methods of speech syn-
ary and pronunciation rules. With the continuing reductionsthesis.
in cost of computer memory, it is popular to use a large dic-The simplest applications with small vocabularies are just
tionary containing most words in the chosen language andspeech coders, playing back the speech when needed. Simple
their phonemic pronunciations. This way has the advantageplayback is impossible for general TTS, because no speaker
that additional information can be stored in the dictionary,can record all possible utterances. In the latter case, small
including lexical stress (i.e., which syllable is stressed), part-units such as phonemes or diphones are concatenated, and
of-speech, and possibly even semantics.significant adjustments must be made at unit boundaries to

The alternative approach of letter-to-phoneme rules hasavoid highly disjointed (jumpy) speech. The number and com-
the advantage of handling new or foreign words, as well asplexity of such adjustments vary in indirect proportion to the
mistyped words, for which few dictionaries are suitable. Com-number of boundaries, which in turn also varies inversely to
plex languages like English, which is derived from both Ro-quality (e.g., TTS using smaller units sounds less natural).
mance and Germanic languages, require many hundreds ofThe critical issues in current synthesis research concern
these rules to pronounce letter sequences correctly (e.g., con-tradeoffs among the conflicting demands of maximizing
sider the ways of uttering ‘‘-ough-:’’ rough, cough, though,speech quality and minimizing memory space, algorithmic
through, thought, drought). Other languages are much sim-complexity, and computation speed. Although simple TTS is
pler; for example, Spanish employs only one rule per letter.possible in real time with low-cost hardware, there is a trend
In any event, developing TTS capability requires establishingtoward using more complex programs (tens of thousands of
a dictionary and pronunciation rules for the language. Hencelines of code, megabytes of storage) to improve quality. Text-
commercial TTS exists only for approximately 20 of theto-speech systems constructively synthesize speech from text
world’s languages, whereas many commercial ASR systemsusing linguistic processing and concatenating small speech
(those based on word units and without a language model)units (e.g., phonemes). Real-time TTS systems produce speech

that is generally intelligible, but lacks naturalness (19). can handle virtually all languages, because most languages
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employ similar versions of stops, fricatives, vowels, and can be modeled by simple rules, such as lowering all resonant
frequencies during lip rounding, but others such as the under-nasals.

The next TTS step is intonation assignment, specifying a shoot of phoneme target positions (which occurs in virtually
all speech) are much harder to model accurately.duration and amplitude for each phoneme, as well as an F0

pattern for the utterance. This is much more difficult than It is typically because of this last step that TTS yields
poorer quality than many speech coders, because TTS isthe prior two TTS steps, and requires a syntactic and seman-

tic analysis of the input text. Most languages use intonation forced to employ synthetic-quality coding techniques. The ba-
sic excitation for vocal tract filters in TTS (either LPC or for-in complex and different ways to cue many aspects of speech

communication. Different classes of phonemes have different mant-based approaches, which constitute most commercial
methods) is a simple train of periodic pulses (for voiceddurational trends (e.g., a vowel tends to be longer when fol-

lowed by a voiced consonant). Many languages (including En- speech) or white noise (often using a random number genera-
tor for simplicity) for unvoiced speech. The combination ofglish) stress only a small number of syllables in an utterance.

Determining where to stress involves not just lexical stress overly simple excitation and the limited modeling accuracy of
the LPC or simple formant models has led to intelligible, butfrom a dictionary, but also a judgment about the semantic

importance of the words in a sentential context; for synthetic slightly unnatural, synthetic speech (6). Use of more compli-
cated excitation waveforrrms can raise quality.speech comparable to that of humans, this would require a

natural language processor beyond current capabilities. Syn- Recently, some commercial systems have been successful
in concatenating waveform-coded small units, with limitedtactic structure is often cued via intonation in natural speech;

for example, in English, long word phrases often start with numbers of perceptually annoying spectral jumps at unit
boundaries; for example, the pitch-synchronous overlap-and-an F0 rise and end with a fall. Questions in many languages

are cued with a large final F0 rise, if they request a yes/no add (PSOLA) method outputs successive smoothed pitch peri-
ods (20). While such speech sounds more natural, PSOLA can-answer (but not questions with the ‘‘wh’’ words: what, when,

why, who, how). Tone languages (e.g., Chinese, Thai) employ not easily produce alternative voices. It is typically based on
one speaker uttering a large inventory of diphones; for a lan-four or five different F0 patterns to distinguish different

words with the same phoneme sequence. Lastly, speech ut- guage like English with about 32 phonemes, about 1000 di-
phones must be uttered. One cannot simply adjust some syn-tered with emotion often has large changes in intonation.

The last TTS step concatenates speech units, using the thesizer parameters as uniformly as possible to get other
synthetic voices (as is possible with formant synthesizers).specified intonation, and does the necessary adjustments to

the model parameters at unit boundaries. Few manipulations
are needed for phrasal concatenation, but smaller units re-
quire smoothing parameters across the boundary, for several CURRENT TECHNOLOGY
frames. Such smoothing is relatively straightforward when
the units contain spectral parameters, such as LPC coeffi- Today’s speech coders can deliver toll quality (i.e., equivalent

to the analog telephone network) at 8 kbits/s with minimalcients or formants, although improved quality occurs with
more complicated smoothing rules. Storing small units with delay (and even at 4 kbits/s, if delay is not an issue). The

favored approach is that of CELP, for which there are severalwaveform coding (e.g., log PCM or ADPCM) is often not suit-
able (despite the higher general quality of such speech) be- standards accepted internationally (e.g., for use in digital cel-

lular telephony) (5). The digital links in most telephone net-cause smoothing the available parameters does not approxi-
mate well the coarticulation and F0 patterns found in human works still employ simpler 64 kbits/s log PCM coding; 24–32

kbits/s ADPCM and delta modulation are also still popularspeech production.
Smoothing of spectral parameters at unit boundaries is because of their relative simplicity, compared to CELP. The

last few years have seen significant reductions in transmis-most important for short units (e.g., phonemes), because of
the large number of boundaries per second in the synthesized sion rate; a decade ago, toll quality was limited to 16 kbits/s

and above. We are still far from an ultimate limit of 100 bit/s.speech. For units of equal size, smoothing is much simpler
when the joined units have approximately matching spectra Despite the reducing cost of computer memory and speed, fur-

ther research in coding is needed because of the increasingat the boundaries. Because diphones concatenate spectra
from similar sections of two realizations of the same pho- use of wireless telephony, where limited bandwidth is an im-

portant factor.neme, their smoothing rules are simple. Systems that link
phonemes, however, must use complex smoothing rules to The lack of standards in the area of human–machine ap-

plications for speech (i.e., synthesis and recognition) has hin-represent coarticulation. Not enough is understood about co-
articulation to establish a complete set of rules that describe dered easy comparisons across commercial systems. None-

theless, we can say that several companies offer unlimitedhow the spectral parameters for each phoneme are modified
by its neighbors. Diphone synthesizers try to circumvent this text-to-speech for several languages (typically the major Eu-

ropean languages, as well as Japanese and Chinese). The syn-problem by storing the parameter transitions from one pho-
neme to the next since coarticulation primarily influences thetic speech is largely intelligible, but is easily discerned as

synthetic and lacking naturalness. The remaining problemsonly the immediately adjacent phonemes. However, coarticu-
lation often extends over several phonemes. Using only aver- for TTS lie in the areas of excitation, coarticulation, and into-

nation. The majority of synthesizers (both LPC and formant-age diphones or those from a neutral context leads to lower-
quality synthetic speech. Improved quality is possible by based) employ a source-filter model of the vocal tract, where

the excitation is modeled with few parameters and onlyusing multiple diphones depending on context, effectively
storing triphones of longer duration (which may substantially coarsely approximates the actual residual signal. Relatively

simple models for the movements of vocal tract resonancesincrease memory requirements). Some coarticulation effects



SPEECH PRODUCTION 207

3. J-P. Adoul and R. Lefebvre, Wideband speech coding, in W. Kleijnlead to an inadequate representation of coarticulation. Wave-
and K. Paliwal (eds.), Speech Coding and Synthesis, New York:form-based synthesizers, on the other hand, do not always
Elsevier Science, 1995, Ch. 8.accept boundary smoothing well. All synthesizers suffer from

4. J. Johnston and K. Brandenburg, Wideband coding—perceptualour lack of understanding of the complex relationships be-
considerations for speech and music, in S. Furui and M. Sondhitween text and intonation. Thus synthesizers are clearly in
(eds.), Advances in Speech Signal Processing, New York: Marceluse for many languages, but wider public acceptance awaits
Dekker, 1992, pp. 109–140.

improvements in quality.
5. A. Gersho, Advances in speech and audio compression. Proc.People have always been very impressed by a machine able

IEEE, 82: 900–918, 1994.
to recognize what they say. Speech recognizers are increas-

6. D. O’Shaughnessy, Speech Communication: Human and Machine.ingly entering the commercial market, but their severe limita-
Reading, MA: Addison-Wesley, 1987.

tions (compared to humans) will continue to hinder wider ac-
7. P. Kroon and W. Kleijn, Linear predictive analysis by synthesisceptance. The need to pause between words, restrict the

coding, in R. Ramachandran and R. Mammone (eds.), Modern
choice of words, and do prior training, as well as frequent Methods of Speech Processing, Norwell, MA: Kluwer, 1995, pp.
recognition errors, have significantly limited the use of ASR. 51–74.
Systems eliminating all these restrictions (i.e., continuous, 8. A. Spanias, Speech coding: a tutorial review, Proc. IEEE, 82:
speaker-independent, large-vocabulary ASR) still suffer from 1541–1582, 1994.
high cost and frequent errors, especially if they are used in 9. R. Cox and P. Kroon, Low bit-rate speech coders for multimedia
noisy or telephone environments, conditions that occur often communication, IEEE Comm. Mag., 34(12): 34–41, 1996.
in practical applications. Progress in ASR in recent years has 10. W. Hess, Pitch and voicing determination, in S. Furui and M.
been more attributed to general improvements in computers Sondhi (eds.), Advances in Speech Signal Processing, New York:
and to the wider availability of training data, than to algo- Marcel Dekker, 1992, pp. 3–48.
rithmic breakthroughs. The basic HMM approach using 11. L. Rabiner and B. Juang, Fundamentals of Speech Recognition,
MFCCs largely was developed more than 15 years ago (11). Englewood Cliffs, NJ: Prentice-Hall, 1993.
Even more recent additions, such as delta coefficients, mean 12. J. Piconi, Signal modeling techniques in speech recognition, Proc.
subtraction, Gaussian mixtures, and language models, have IEEE, 81: 1215–1247, 1993.
been in wide use for several years. 13. J-C. Junqua and J-P. Haton, Robustness in Automatic Speech Rec-

Future systems will likely integrate more structure into ognition, Norwell, MA: Kluwer, 1996.
the stochastic approach. It is clear that the expert-system ap- 14. Y. Ephraim, Statistical-model-based speech enhancement sys-

tems, Proc. IEEE, 80: 1526–1555, 1992.proach to ASR common in the early 1970s will never replace
stochastic methods, because individual human phoneticians 15. N. Morgan and H. Bourlard, Continuous speech recognition,

IEEE Signal Proc. Mag., 12 (3): 25–42, 1995.can never assimilate enough information from hundreds of
hours of speech; probabilistic computer models can improve 16. D. Reynolds and R. Rose, Robust text-independent speaker iden-

tification using Gaussian mixture speaker models. IEEE Trans.with larger amounts of training data. The simple stochastic
Speech Audio Process. SAP-3: 72–83, 1995.models in current widespread ASR use, however, are too un-

17. D. Klatt, Review of text-to-speech conversion for English. J.structured and allow too much freedom (similar deficiencies
Acoust. Soc. Am., 82: 737–793, 1987.hold for more recent neural network approaches to ASR). For

18. J. van Santen, Using statistics in text-to-speech system construc-example, the MFCCs, although appropriately scaling the fre-
tion. Proc. ESCA/IEEE Workshop on Speech Synthesis, 2, 240–quency axis to account for perceptual resolution, do not take
243, 1994.account of the wide perceptual difference between resonances

19. T. Dutoit, From Text to Speech: A Concatenative Approach, Nor-and spectral valleys. First-order HMMs ignore the high de-
well, MA: Kluwer, 1997.gree of correlation across many frames of speech data (com-

20. E. Moulines and F. Charpentier, Pitch synchronous waveformpensating by using delta coefficients is only a very rough use
processing techniques for text-to-speech synthesis using di-of speech dynamics). Intonation is widely ignored (e.g., F0) or
phones, Speech Commun., 9: 453–467, 1990.treated as noise (e.g., durational factors), despite solid evi-

dence of its use in human speech perception. Of course, in a
DOUGLAS D. O’SHAUGHNESSYpractical world, you use whatever works, and current sys- INRS-Telecommunications

tems, despite their flaws, provide sufficiently high accuracy
for small vocabularies (e.g., recognizing the digits in spoken
telephone or credit-card numbers, or controlling computer
menu selections by speech). Practical use of speech in tele- SPEECH PROCESSING. See also COMPANDORS.
phone dialogs must await advances in both the quality of syn-
thetic speech and the recognition accuracy of spontaneous
conversations.
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