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information exchange is easy and accurate. However, if the
environment is noisy, the listener’s ability to understand
what is spoken is reduced. The quality of speech can also be
influenced in data conversion (microphone), transmission
(noisy data channels), or reproduction (loudspeakers, head-
phones). The purpose of many enhancement algorithms is to
reduce background noise, improve speech quality, or suppress
channel or speaker interference. In this article, the general
problem of speech enhancement is addressed with emphasis
on algorithms relating to removal of additive background
noise for improving speech quality. In our discussion, back-
ground noise will refer to any additive broadband noise com-
ponent (examples include white Gaussian noise, aircraft cock-
pit noise, or machine noise in a factory environment). Other
speech-processing areas that are sometimes included in a dis-
cussion of speech enhancement include suppression of distor-
tion from voice-coding algorithms, suppression of a competing
speaker in a multispeaker setting, enhancing speech as a re-
sult of a deficient speech production system (examples include
speakers with pathology or divers breathing a helium–oxygen
mixture), or enhancing speech for hearing-impaired listeners.
Since the range of possible applications is broad, we will gen-
erally limit our discussion to enhancement algorithms di-
rected at improving speech quality in additive broadband
noise for speakers and listeners with normal production and
auditory systems. Other sources that consider speech en-
hancement include the edited text by Lim (1), Chap. 8 in the
text by Deller, Proakis, and Hansen (2), and survey articles
by O’Shaughnessy (3) and Ephraim (4).

Speech-Enhancement Performance Criteria

As in any engineering problem, it is useful to have a clear
understanding of the objectives and our ability to measure
system performance in achieving those objectives. When we
consider noise reduction, we normally think of improving a
signal-to-noise ratio (SNR). It is important to note, however,
that this may not be the most appropriate performance crite-
rion for speech enhancement. All listeners have an intuitive
understanding of speech quality, intelligibility, and listener
fatigue. However, these areas are not easy to quantify in most
speech-enhancement applications since they are based on
subjective evaluation of the processed signal. A good overview
of subjective quality testing methods and objective speech
quality measures can be found in Quackenbush, Barnwell,
and Clements (5) or Ref. 2. One of the more successful quality
measures based on the speech magnitude spectrum is the Ita-
kura-Saito (IS) distance [Chu and Messerschmitt (6); Itakura
(7)]. This measure is briefly described here, since it will be
used as an evaluation tool for a number of enhancement algo-
rithms in this article. The symmetric form of this measure is
based on the dissimilarity between all-pole speech spectra of
the original 1/A(as, �) and degraded (or enhanced) waveforms
1/A(âs, �) as
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background interference can cause the quality or intelligibil-
ity of speech to degrade. When a speaker and listener commu- where as and âs are the all-pole model parameters from the

gain-normalized original and coded speech spectra. The sym-nicate in a quiet environment or across a clean data channel,
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metric IS measure is obtained as follows, methods, it is necessary to remember the issue of a nonuni-
form impact of the noise on speech quality across time.

dIS( j) = 1
2

{dj (aaas, âaas) + dj(âaas,aaas)}. (3)
Classification of Speech-Enhancement Methods

Speech-enhancement systems are classified into two broadThe measure has been shown to assign a large weight when
error is due to differences in the shape of spectral peaks and classes: those based on stochastic process models of speech

and those based on perceptual aspects of speech. Systemsa smaller weight for error in spectral valleys. This is desir-
able, since the auditory system is more sensitive to errors in based on stochastic process models rely on a given mathemat-

ical criterion (i.e., mean-square error, SNR).Systems based onformant peaks than to spectral valleys between peaks. If the
numerical value of dIS(j) is zero, then the speech signal ŝj at perceptual criteria attempt to improve aspects important in

human perception. For example, one technique may concen-frame j is the same as the noise-free reference sj.
Now, consider the speech signal plotted in Fig. 1. Figure trate on improving the quality of consonants, since conso-

nants are known to be important for intelligibility in a man-1(a) shows the clean speech waveform ‘‘You can talk the
game, but can you play the game?’’ Figure 1(b) shows the sen- ner disproportionate to overall signal energy (this is

particularly important for hearing-aid design). Figure 2 illus-tence degraded with additive white Gaussian noise with an
overall SNR of 5 dB. In Fig. 1(c), the IS objective speech qual- trates a flow diagram of speech-enhancement applications

and potential sources of distortion. Distortion may consist ofity measure is shown across time. The IS measure here as-
sesses the level of distortion for each frame location in time. background noise, competing speakers, room reverberation,

voice-coder distortion, or channel interference. Speech en-Since the energy and frequency content of the speech signal
varies across time, due to the sequence of phonemes needed hancement could then be used to improve characteristics in

the speech signal prior to human listening or other speechto produce the sentence, the impact of background distortion
will also vary. This variable level of speech distortion (or qual- processing algorithms (e.g., speech recognition).

In the area of digital hearing aids, a number of recentity) is reflected in the changing IS measure. Essentially, the
area under the IS plot versus time reflects the distortion studies have shown promise using better speech versus noise

detection and microphone arrays [Kates and Weiss (8)], wave-level. We can see that while the average SNR level is 5 dB,
noise will effect some sounds (e.g., stops /t/, /g/; or fricatives / let-based spectral attenuation [Whitmal, Rutledge, and Co-

hen (9)] and real-time DSP (digital signal processing) develop-s/, /z/) more than others (e.g., vowels /e/, /I/). Therefore,
when considering the performance of speech-enhancement ment using a previously formulated spectral estimator
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Figure 1. Nonuniform impact of background noise versus time for the sentence ‘‘You can talk
the game, but can you play the game?’’ (a) Original speech waveform; (b) degraded speech wave-
form; (c) distortion versus time as measured by Itakura-Saito objective speech quality measure.
Distortion is additive white Gaussian noise (WGN) at SNR � 5 dB.
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crophones to ensure that no speech leaks into the noise
reference channel. For multichannel methods, no acoustic
barrier exists so the enhancement algorithm normally em-
ploys a beam-forming solution. In our discussion, we shall
concentrate on methods that assume that (1) the noise distor-
tion is additive, (2) the noise and speech signals are uncorre-
lated, and (3) that generally only one input channel is
available.

The following four broad classes of enhancement tech-
niques exist and will be considered in the following sections:
(1) short-term spectral subtraction, (2) speech modeling using
iterative Wiener-filtering methods, (3) adaptive noise cancel-
ing, and (4) methods based on fundamental frequency
tracking.

In this article, we consider only a small subset of the possi-
ble topics of enhancement of speech degraded by noise. Spe-
cifically, we address the problem of speech degraded by addi-
tive noise as follows,

y(n) = s(n) + G d(n) (4)

where s(n) is the original ‘‘clean’’ speech signal, d(n) the de-
grading noise, y(n) the degraded speech signal, and G a gain
term that controls SNR.

SHORT-TERM SPECTRAL AMPLITUDE METHODS
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Short-term spectral domain methods perform all their pro-
Figure 2. A general flow diagram of speech-enhancement applica- cessing on the spectral magnitude. The enhancement proce-
tions and sources of distortion. dure is performed over frames by obtaining the short-term

magnitude and phase of the noisy speech spectrum, sub-
tracting an estimated noise magnitude spectrum from the

[Sheikhzadel, Brennan, and Sameti (98)]. It should also be speech magnitude spectrum, and inverse transforming this
noted that while it would seem obvious that speech enhance- spectral amplitude using the phase of the original degraded
ment would be useful for hearing-impaired listeners, other speech. Since background noise will degrade both the spectral
processing methods such as speech rate conversion may also magnitude and phase, it is reasonable to question the perfor-
be necessary for elderly hearing-impaired listeners [Naka- mance of a technique that does not address the noisy phase.
mura et al. (10)]. It has been shown, however, that the human auditory system

Speech enhancement has also been employed as front-end is relatively insensitive to phase for single-channel speech
processing stages for speech recognition [Juang (11), Hansen [Wang and Lim (21)]. For this reason, these methods seek to
and Clements (12,13), Gong (14), Hansen and Arslan (15)] or only enhance the noisy spectral magnitude.
back-end processing to improve speech-coding algorithms
[Sen and Holmes (16)].

Spectral SubtractionSpeech-enhancement algorithms can also be used to im-
prove communications or speech recognition in high-noise en- Linear spectral subtraction is one technique based on direct
vironments such as fighter aircraft cockpits [Harrison, Lim, estimation of the short-term spectral magnitude. It is as-
and Singer (17); Darlington, Wheeler, and Powell (18); Han- sumed that the noise is short-term stationary, with second-
sen and Clements (19,20)]. order statistics estimated during silent frames (single chan-

Enhancement algorithms can be classified into two groups nel) or from a reference channel (dual channel). The
depending on whether a single-channel or dual-channel (or estimated noise power spectrum is subtracted from the trans-
multichannel) approach is used. For single-channel applica- formed noisy input signal.
tions, only a single microphone is available. Characterization Let s(n), d(n), and y(n) be sample data sets from three ran-
of noise statistics must be performed during periods of silence dom processes as represented in Eq. (4). If we assume that
between utterances, thus requiring a stationarity assumption s(n) and y(n) are short-term stationary, then this equation
of the background noise. In situations such as voice telephone can be written in the spectrum domain as
or radio communications, only a single channel is available.
In dual-channel algorithms, the acoustic sound waves arrive �y(ω) = �s(ω) + �d(ω) (5)
at each microphone at slightly different times (one normally
is a delayed version of the other). Dual-channel enhancement because d(n) is an uncorrelated process. Here, the term spec-

trum is used to represent the frequency content of the eachassumes that a primary channel contains speech with addi-
tive noise and a second channel contains a noise signal refer- signal. Given �y(�) and an estimate of the noise spectrum

�̂d(�), it is possible to estimate the spectrum of the uncor-ence. Typically some acoustic barrier must exist between mi-
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rupted speech as and �̂d(�; m) can be estimated using any frame of the signal
in which speech is not present, or from a reference channel
with noise only. This method is referred to as traditional spec-�̂s(ω) = �y(ω) − �̂d(ω) (6)
tral subtraction, and is illustrated in Fig. 3(a).

While theoretically interesting, this analysis has little practi-
Variations to Spectral Substractioncal significance since we deal with real waveforms over short

time frames. It does, however, suggest the essence of the spec- Due to its simplicity in implementation, a number of varia-
tral subtraction approach to noise elimination. tions for spectral subtraction are found in the literature.

Let us now consider a more realistic approach and drop From a historical perspective, these are best illustrated by
the stationarity assumptions on �y(�) and �s(�). Given a sig- considering the generalized approach due to Weiss and Asch-
nal y(n), the task is to estimate the corresponding speech kenasy (22) given by
s(n). Recognizing that, at best, s(n) will be ‘‘locally stationary’’
over short time ranges, we select a frame of y(n), using a win- Ŝs(ω; m) = [|Sy(ω; m)|a − |Ŝd(ω; m)|a]1/ae jϕy (ω;m) (14)
dow of length N ending at time m, f y(n; m) � y(n)w(m � n).
It follows that the selected frame can be expressed in terms

where the power exponent a can be chosen to optimize perfor-of the underlying speech and noise frames as follows,
mance. Regardless of the value of a, these techniques are of-
ten collectively referred to as spectral subtraction, but specificfy(n;m) = fs(n;m) + fd(n;m) (7)
names are sometimes found in the literature. The case a � 2
as originally shown in Eq. (12) and used as the motivatingBy analogy to Eq. (6) it is possible to use the short-term power
case is sometimes referred to as power spectral subtractiondensity spectra (stPDS) and estimate
because the noise removal is carried out by subtracting stPDS
(squared short-term magnitude spectra). The name spectral�̂s(ω; m) = �y(ω; m) − �̂d(ω; m) (8)
subtraction is sometimes reserved for the case a � 1 in which
removal is carried out by subtracting magnitude spectra. Inwhere we recall that the stPDS is defined as
fact, much of the basis for the ideas above are originally found
in papers by Boll (23,24), which employs the a � 1 estimator,
and by McAulay and Lampass (29), who derived the approach�y(ω; m) = 1

N

∞∑
η=−∞

ry(η; m)e− jωη (9)
as a two-state power subtraction approach across individual
spectral lines. Techniques using Eq. (14) directly with other

with ry(�; m) the short-term autocorrelation. Whereas the values of a are sometimes called generalized spectral subtrac-
long-term PDS is part of a mathematical model that is only tion [Berouti, Schwartz, and Makhoul (25)].
related to time waveforms in an abstract way, the same is not Other variations exist in which the spectral subtraction is
true of the stPDS of Eq. (8). In fact, the stPDS is related to actually implemented in the time domain. A time-domain ap-
the short-term discrete-time Fourier transform (stDTFT) in a proach corresponding to Eq. (14) with a � 2 is called correla-
simple way, tion subtraction. When a � 2, the magnitude spectral portion

of the computation is essentially equivalent to estimating (the
square root of)�y(ω; m) = Sy(ω; m)S∗

y (ω; m)

N2
= |Sy(ω; m)|2

N2
(10)

�̂s(ω; m) = �y(ω; m) − �̂d(ω; m) (15)For convenience, we assume that the factor 1/N is omitted
from the definition in Eq. (9) so that we may write simply

or, equivalently,
�y(ω; m) = |Sy(ω; m)|2 (11)

|Ŝs(ω; m)|2 = |�y(ω; m)|2 − |�̂d (ω; m)|2 (16)

In effect, therefore, Eq. (8) offers a way to estimate the short-
Since the short-term inverse discrete-time Fourier transformterm magnitude spectrum of the speech, �Ss(�; m)�. Let us call
(stIDTFT) is a linear operation it follows immediately thatthe estimate �Ŝs(�; m)�. While it may appear that an estimate

of the noisy phase is also necessary, Wang and Lim (21) have
determined that for all practical purposes, it is sufficient to r̂s(η; m) = ry(η; m) − r̂d (η; m) (17)

use the noisy phase spectrum, �y(�; m), as an estimate of the
where r̂d(�; m) is an estimate of the short-term autocorrela-clean speech phase spectrum �̂s(�; m). Therefore, estimation
tion of the noise process. The time-domain approach can alsoof the frame of speech resulting from spectral subtraction is
be used for values of a, resulting in the name generalized cor-recovered from the stDFT estimate as
relation subtraction as shown in Fig. 3(b). Generalized spec-
tral subtraction is shown in Fig. 3(c). From a historical per-
spective, we point out that the INTEL system of Weiss,

Ŝs(ω; m) = |Ŝs(ω; m)|e jϕ̂s (ω;m)

= [�y(ω; m) − �̂d(ω; m)]1/2e jϕy (ω;m)
(12)

Aschkenasy, and Parsons (26), which was the first reported
spectral subtraction technique is based on correlation sub-

where �y(�; m) and �y(�; m) are both obtained from the stDFT traction. A generalized cepstral processing version of the
of the present noisy speech frame, spectral estimator in Eq. (14) was part of an enhanced version

of INTEL [Weiss and Aschkenasy (22)], which has been dis-
tributed and used extensively under the name speech en-Sy(ω; m) = |Sy(ω; m)|e jϕy (ω;m) = �1/2

y (ω; m)e jϕy (ω;m) (13)
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Figure 3. Variations in power spectral subtraction. (a) Original spectral subtraction; (b) general-
ized spectral subtraction; (c) generalized correlation subtraction; (d) improved INTEL correlation
subtraction method. Here, stDTFT refers to the short-term discrete-time Fourier transform, and
stIDTFT stands for the inverse of stDTFT.

hancement unit (SEU) by the U.S. Air Force (Rome Labora- In traditional spectral subtraction, a spectral estimate of
the background noise is subtracted from the input noisytory). Cepstral processing here refers to the inverse Fourier

transform of the log-magnitude spectrum of the input speech speech spectrum. One approach proposed by Ephraim and
Malah (27) was to formulate a direct minimum mean-squaresignal. The systems in Fig. 3 summarize four variations of

spectrum subtraction: (magnitude) spectral subtraction, gen- error (MMSE) estimator for the short-time spectral amplitude
component of speech in noise. This approach scales each noisyeralized spectral subtraction, generalized correlation subtrac-

tion, and generalized cepstral processing. spectral magnitude value as follows, �Ŝi(�k)� � Hi(�k)�Yi(�k)�,
based on estimating the kth spectral magnitude,

Negative Spectral Components and Further Enhancements

From Eq. (12) it is observed that the estimated speech magni-
tude spectrum is not guaranteed to be positive. Different sys-
tems remedy this by performing half-wave rectification or

Hi(ωk) =
(√

π

2

)(√vk

γk

)
exp

(
−vk

2

)
[
(1 + vk)I0

(vk

2

)
+ vkI1

(vk

2

)]
(18)

full-wave rectification, or using a weighted difference coeffi-
cient. Most techniques use half-wave rectification (i.e., set

where I0( � ) and I1( � ) represent modified Bessel functions ofnegative portions to zero). Forcing negative spectral magni-
the zero and first order, respectively, and vk depends on bothtude values to zero, however, introduces a ‘‘musical’’ tone arti-
the a priori and a posteriori SNR of the kth spectral compo-fact in the reconstructed speech. This anomaly represents the
nent. During enhancement, an estimate of the a priori SNR ismajor limitation of spectral subtraction techniques.
obtained from previously enhanced spectral components. ThisThe system proposed by Boll (23,24) attempts to reduce
estimator has been shown to be successful in suppressingspectral error by applying magnitude averaging, which re-
background noise with few of the artifacts normally seen asduces spectral error by performing local averaging of the spec-
musical tones in common spectral subtraction. A subsequenttral magnitudes. Magnitude averaging works well if the time
study by Cappe (28) explored the advantages of this estimatorwaveform is stationary. Unfortunately, the number of local
for restoration of musical recordings, and illustrated aaveraging frames K is limited by the short-term stationarity
smoothing procedure which could be used to obtain a moreassumption of speech. Therefore, only a few frames of data
consistent estimate of the SNR. Subsequent improvementscan be used in averaging (typically between 3 and 5 frames).
have been suggested to reduce these tone effects by CappeIn an evaluation using helicopter noise, Boll showed that
(28).spectral subtraction alone does not increase intelligibility but

Another approach which greatly influenced many ideas indoes increase quality, and that magnitude averaging does re-
spectral subtractions, was proposed by McAulay and Malpassduce the effects of musical tones caused by errors in accurate

noise bias estimation. (29), in which a particular spectral line is attenuated based
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on how much the speech plus noise power exceeds as estimate uated the correlation subtraction method proposed by Weiss,
Aschkenasy, and Parsons (26) called INTEL for wide-bandbackground noise floor. The noise at each frequency compo-

nent is assumed to be Gaussian, resulting in a maximum like- random noise under varying values of a. Figure 4(a) shows
intelligibility scores based on tests involving nonsense senten-lihood estimate of �Ss(�; m)�. A further extension, also by

McAulay and Malpass, is to scale the input frequency re- ces. Results with wide-band noise show that intelligibility is
not improved. It was also observed that processed speech withsponse �Sy(�; m)� by the probability that speech is present in

the input signal. Their reasoning is that if the probability of a � 1 or 0.5 sounded distinctly ‘‘less noisy’’ and of ‘‘higher
quality’’ at relatively high SNR.noise is high, it would be preferable to further reduce the sig-

nal estimate �Ŝs(�; m)�. This contribution was particularly im- In a later study, Hansen and Clements (19,46) compared
the performance of Boll’s spectral subtraction method withportant, since it is essentially a two-state version of a hidden

Markov model-based approach which was later formulated by that of traditional adaptive Wiener filtering (discussed in the
next section). Evaluation was performed for both half- andEphrain, Malah, and Juang (60,61). An extension to this ap-

proach was proposed by Hansen (30) in which a noise adap- full-wave rectification, employing one to five frames of magni-
tude averaging. Figure 4(b) summarizes some of these resultstive boundary detector was used to partition speech into

voiced, transitional, and unvoiced speech sections to allow for using the Itakura-Saito measure from Eq. (2). It was shown
that full-wave rectification resulted in improvement over aa variable noise suppression based on the input speech class,

followed by the application of morphological based spectral wider range of SNR; however, half-wave rectification had
greater improvement over the restricted SNR band of 5 to 10constraints to reduce frame-to-frame jitter of speech spectral

characteristics. Performance was demonstrated for a variety dB. In addition, magnitude averaging using frames that look
ahead in time performed poorer than the correspondingof speech sound types (vowels, nasals, stops, glides, fricatives,

etc.) over traditional spectral subtraction and noncausal Wie- equivalent looking back in time. For both rectification ap-
proaches, magnitude averaging provides improved levels ofner-filtering techniques. Peterson and Boll (31) considered

applying spectral subtraction in separate frequency bands, quality.
tuned to the loudness components perceived by the auditory
system. Other extensions that are related to those presented

SPEECH MODELING AND WIENER FILTERINGhere can be found in papers by Curtis and Niederjohn (32),
Preuss (33), and Un and Choi (34). One method that consid-

A second speech enhancement area involves methods basedered a time-frequency partitioning was developed by Whipple
on short-term Wiener filtering. Here, a frequency weighting(35) using a wavelet decomposition. Wavelet-based speech de-
for an optimum filter is first estimated from the noisy speech.composition can be very effective for speech enhancement
The linear estimator of the uncorrupted speech s(n), whichacross changing phoneme content (i.e., better improvement
minimizes a mean square error (MSE) criterion, is obtainedfor high frequency consonants such as fricatives or stops).
by filtering y(n) with a noncausal Wiener filter. This filter re-Nonlinear spectral subtraction (NSS) by Lockwood and Boudy
quires a priori knowledge of both speech and noise statistics,(36) takes into account the frequency-dependent SNR of col-
and therefore must also adapt to changing characteristics. Inored noise. This algorithm reduces subtraction for spectral
a single-channel framework, noise statistics must be obtainedcomponents of high SNR and increases subtraction for spec-
during silent frames. Also, since noise-free speech is not avail-tral components of low SNR. In addition, the noise model in-
able, a priori statistics must be based upon y(n), resulting includes both an averaged noise spectrum and an overestimated
an iterative estimation scheme. One way to approximate thenoise spectrum. Further spectral subtraction extensions have
noncausal Wiener filter is to adapt the filter characteristicsalso included a weighted subtraction term k in front of �Ŝd(�;
on a frame-by-frame basis by using the short-term PDS asm)�a in Eq. (14), which is dependent on SNR [Berouti,
follows:Schwartz, and Makhoul (25), Arslan, McCree, and Viswana-

than (37), George (38)] or an auditory masking threshold
[Tsoukalas, Paraskevas, and Mourjopoulos (39); Virag (40)].

Dual-channel spectral subtraction has also been consid- H†(ω; m) = �̂s(ω; m)

�̂s(ω; m) + �̂d(ω; m)
(19)

ered for the purposes of co-talker separation [Hanson, Wong,
and Juang (41), Childers and Lee (42), Naylor and Boll (43),

noting that �̂s(�; m) and �̂d(�; m) are the estimated speechMorgan et al. (44)]. These methods normally require some a
and noise spectra. Given the filter response H †(�; m), thepriori knowledge of the speaker characteristics (normally fun-
short-term speech spectrum is then obtained by filtering thedamental frequency contours) to assist in the enhancement
noisy speech signal asprocess.

Ŝs(ω; m) = H†(ω; m)Sy(ω; m) (20)
Spectral Subtraction Evaluation

Since a wide range of spectral subtraction methods exist, it either in the time or frequency domain. Since H †(�; m) has a
will not be possible to consider the performance of most meth- zero phase spectrum, the output phase of the enhanced
ods in different noise environments. Here, we briefly summa- speech spectrum Ŝs(�; m) is simply the noisy phase from
rize two studies that considered three factors that greatly in- Sy(�; m). Therefore, like spectral subtraction methods, adap-
fluence enhancement performance: (1) the enhancement tive Wiener filtering focuses its processing only in the spectral
domain, (2) the power factor term a (also related to the en- magnitude domain, but ends up attributing the same phase
hancement domain), and (3) processing of negative spectral characteristic to the speech that is used in the spectral sub-

traction method.components. In the first study, Lim and Oppenheim (45) eval-
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Figure 4. Performance evaluation of spectral subtraction methods: (a) intelligibility scores for
different power exponent a terms [Lim and Oppenheim (45)]; (b) distortion as measured by Ita-
kura–Saito objective speech quality measures for different levels of frame magnitude averaging
[Hansen (93)]. Here, M.A. refers to magnitude averaging across frames as discussed in Boll (24).

One issue to address is the estimation of �̂s(�; m) for the alternate way. The estimate-maximize (EM) method was first
filter in Eq. (20). Since it is the speech in the frame that we introduced by Dempster, Laird, and Rubin (49) as a technique
are trying to estimate, it is unlikely that we would have an for obtaining maximum likelihood estimation from incomplete
accurate estimate of its spectrum. One approach to the speech data. In the EM algorithm, the observations are considered
spectrum estimation problem is to use an iterative procedure ‘‘incomplete’’ with respect to some original set (which is con-
in which an ith estimate of �s(�; m), say �̂s(�; m, i) [or �Ŝs(�; sidered ‘‘complete’’). The algorithm iterates between estimat-
m, i)�2]is used to obtain an (i � 1)st filter estimate, say H†(�; ing the sufficient statistics of the ‘‘complete’’ data given the
m, i � 1). This approach to the estimation of speech parame- observations and a current set of parameters (E step) and
ters in an all-pole model assuming an additive white maximizing the likelihood of the complete data, using the es-
Gaussian noise distortion was investigated by Lim and Op- timated sufficient statistics (M step).
penheim (45) and later generalized for a colored-noise degra- The EM approach is similar to the two-step MAP estima-
dation by Hansen and Clements (19,20). The sequential tion procedure of Lim and Oppenheim; the main difference is
method attempts to solve for the maximum a posteriori esti- that the error criterion is to maximize the expected log-likeli-
mate of a speech waveform in additive white Gaussian noise hood function given observed or estimated speech data. Feder,
with the requirement that the signal be the response from an Oppenheim, and Weinstein (50,51) formulated such a method
all-pole process. The method was also generalized to include for dual-channel noise cancellation applications where a con-
a pole-zero speech model (ARMA: auto-regressive moving av- trolled level of cross-talk was present. Their results showed
erage) by Musicus and Lim (47). Generalizations of the basic improved performance over a traditional least-MSE estima-
Wiener filtering in Eq. (20) have also been studied in other

tion procedure.areas of signal processing. One approach for image restora-
Though traditional adaptive Wiener filtering is straightfor-tion employs a noise scale term k and a power exponent a

ward and useful from a mathematical point of view, there are[Lim (48)] similar to that seen in generalized spectral subtrac-
several factors that make application difficult. Hansen andtion [Eq. (14)].
Clements (12,13,46) consider an alternative formulationCrucial to the success of noncausal Wiener filtering is the
based on iterative Wiener filtering augmented with speech-accuracy of the estimates of the all-pole parameters at each
specific constraints in the spectral domain. This method wasiteration. From these studies, it was shown that the estima-
motivated by the following observations. First, although thetion procedures that result in linear equations without back-
sequential MAP estimation technique was shown to increaseground noise become nonlinear when noise is introduced.
the joint likelihood of the speech waveform and all-pole pa-However, by using a suboptimal procedure, an iterative algo-
rameters, a heuristic convergence criterion had to be em-rithm results that possesses the property that the estimation

procedure is linear at each iteration. ployed. Second, as additional iterations were performed, indi-
vidual formants of the speech consistently decreased in

Approaches Using Wiener Filtering bandwidth and shifted in location. Third, frame-to-frame pole
jitter was observed across time. Both of these effects contrib-The basic sequential MAP (maximum a posteriori) estimation

procedure by Lim and Oppenheim can be formulated in an ute to unnatural sounding speech and illustrate a potential
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loss of stability in the iterative scheme. Only if the PDF of quires MAP estimation of the predictor coefficients for both
denominator and numerator polynomials, followed by MAPthe unknown parameters is unimodal and the initial estimate

for the speech parameters ak is such that the local maximum estimation of the noise-free speech through the use of an
adaptive Wiener filter. Paliwal and Basu (53) considered aequals the global maximum is the procedure equivalent to the

joint MAP estimate of speech parameters âi,n and wave- speech enhancement method based on Kalman filtering. A de-
layed-Kalman-filtering method was found to perform betterform Ŝi,n.

Hansen and Clements (13) proposed a variety of con- than a traditional Wiener-filtering scheme. Another refine-
ment proposed by Gibson and Koo (54) considers scalar andstrained iterative Wiener-filtering methods in order to im-

prove parameter estimation, reduce frame-to-frame pole jitter vector Kalman filters in an iterative framework in place of the
adaptive Wiener filter for removal of colored noise. Furtheracross time, and provide a convenient and consistent termi-

nating criterion. These methods were based on introducing extensions based on aspects of the auditory system have been
formulated by Nandkumar and Hansen (55–57), resulting inspectral constraints between MAP estimation steps of LP (lin-

ear predictive) parameters and noise-free speech waveforms. auditory constrained enhancement methods (ACE-I and ACE-
II). The basic enhancement framework employs a dual-chan-The enhancement algorithms impose spectral constraints on

all-pole parameters across time (interframe) and iterations nel scenario using a two-step iterative Wiener-filtering algo-
rithm. Constraints across broad speech sections and over iter-(intraframe) that ensure that (1) the all-pole speech model is

stable, (2) the model possesses speechlike characteristics (e.g., ations were then experimentally developed on a novel
auditory representation derived by transforming the speechpoles are not too close to the unit circle narrow bandwidths),

and (3) the vocal tract characteristics do not vary wildly from magnitude spectrum. The spectral transformations are based
on modeling aspects of the human auditory process, whichframe to frame when speech is present. The most popular of

these was Auto-LSP (see Fig. 5). In Auto-LSP, interframe con- include critical band filtering, intensity to loudness conver-
sion, and lateral inhibition. Objective speech quality resultsstraints were applied on the line spectral pair (LSP) parame-

ters to produce speech model pole movements across time, en- shown in Fig. 6(b) for speech degraded by slowly varying air-
craft cockpit noise demonstrate the measurable improvementsuring that formants lay along smooth tracks. Intraframe

constraints were applied to the autocorrelation across itera- in IS measures when auditory processing constraints are em-
ployed.tions on a frame-by-frame basis. The imposition of these con-

straints helps in obtaining an optimal terminating iteration Finally, other enhancement techniques based on speech
modeling have employed vector quantization and a noisyacross all speech classes and improves speech quality by re-

ducing the effects of traditional Wiener-filtering anomalies. based distance metric to determine a more suitable noise-free
speech frame for enhancement [O’Shaughnessy (58); Gibson,As Fig. 5 illustrates, constraints are applied to the speech

model parameters, and a constrained Wiener filter is con- Fisher, and Koo (59)]. Such methods require a training phase
to characterize a speaker’s production system. Anotherstructed to obtain the next estimate of the speech waveform.

Next, we consider quality improvement using this approach. speaker-dependent enhancement approach by Ephraim, Ma-
lah, and Juang (60,61) employs a hidden Markov modelIt should be noted that a comparison of speech enhance-

ment algorithms can only be accomplished if evaluation con- (HMM) to characteize clean speech. The parameter set of the
HMM is estimated using a clustering algorithm, followed byditions are equivalent (i.e., speech material, noise type and

level, and quality or intelligibility testing methods). Figure sequential estimation of the noise-free speech and HMM state
sequences and mixture coefficients. The speech signal estima-6(a) briefly summarizes IS objective speech quality results

from a study by Hansen and Clements (13) that considered tion process also results in a noncausal Wiener-filtering pro-
cedure. A later approach by Hansen and Arslan (62) incorpo-(1) noncausal (unconstrained) Wiener filtering [Lim and Op-

penheim (45)], (2) spectral subtraction with magnitude aver- rated HMM phoneme class partitioning to impose a phone-
class-dependent terminating iteration. The method wasaging [Boll (24)], and (3) two inter- and intraframe spectral

constrained Wiener-filtering methods. Quality measures for a shown to improve the consistency of the resulting enhanced
speech over Auto-LSP constrained and unconstrained itera-theoretical limit were obtained by substituting the noise-free

LP coefficients into the unconstrained Wiener filter, thereby tive Wiener filtering.
requiring only one additional iteration to obtain the estimated
speech signal. These results show that good quality improve-
ment can be achieved with all three methods. Auto-LSP [plot ADAPTIVE NOISE CANCELING
e in Fig. 6(a)] did outperform noncausal Wiener filtering and
spectral subtraction with magnitude averaging across all The general technique of adaptive noise canceling (ANC) has

been applied successfully to a number of problems that in-SNRs tested, though with higher computational require-
clude speech, electrocardiography, elimination of periodic in-ments. However, Auto-LSP produces no musical tone arti-
terference, elimination of echoes on long-distance telephonefacts, as is common in spectral subtraction methods. Later
transmission lines, and adaptive antenna theory. Initial workstudies [Hansen and co-workers (12,15)] considered the per-
on ANC began in the 1960s and collectively refers to a classformance in a variety of colored-noise environments.
of adaptive enhancement algorithms that are based on the
availability of a primary input source and a secondary refer-Further Refinements to Iterative Filtering
ence source. While spectral subtraction and Wiener filtering

Although all-pole modeling of speech has been used in many can be generalized to operate in a dual-channel system, ANC
speech applications, it is known that some sounds are better usually requires a secondary reference channel. Initial stud-
modeled by a pole-zero system. Musicus and Lim (47,52) con- ies on ANC can be traced to Widrow and co-workers at Stan-
sidered a generalized MAP estimation procedure based on a ford in 1965 and Kelly at AT&T Bell Laboratories. This work

was later described by Widrow et al. (63). The adaptive linepole-zero model for speech. Essentially, the procedure re-



SPEECH ENHANCEMENT 167

P(5)

P(1)

Frame

time

Apply constraints:
inter-frame

Construct noncausal

Wiener filter:

Intra-frame

Convert  pi,n, di,n, RSS

Hi,n (  )

Hi,n (  )

SSS(  )
 =

ai,n

ai,n iθ

ai,n to LSP and Autocorrelation parameters

n – 1 n n + 1

n + N(En, j)

n

i-2

i-1
i

mψ

RSSn – N(En, j)

time

iteration

ω

ω

ω

+

To form:

Filter:

Repeat until: ∆    ≤
Auto:I,LSP:T

threshold

Si,n Si,n
^^ Si+1,n

Si+1,n

Si+1,n

Transform

ai,n (j) Si,n

Estimate from

ai,n (j)

Save pastIteration i
Frame n

Coefficient  j :1,10

dYn

Sn Noise-free
speech

Noisy
speech

Noise

LPC predictor LSP freq. Position, difference

pi,n, di,n

Autocorrelation

RSS

��QQ��

SSS(  )ω Sdd(  )ω

+

^ ^ ^ ^

^

^ ^

^

^

Figure 5. Speech enhancement based on all-pole modeling, noncausal Wiener filtering, and in-
ter- and intraframe spectral constraints.

enhancer and its application as an adaptive detector were adaptive filter theory can be found in texts by Haykin (69)
patented by McCool et al. in 1980 (64,65). Kelly, also in 1965, and Messerschmitt (70).
developed an adaptive filter for echo cancellation that uses
the speech signal itself to adapt the filter. This work was later ANC Based on the LMS Algorithm
recognized by Sondhi (66). The echo canceler and its refine-

The classical approach to dual-channel adaptive filtering,ments by Sondhi are described in patents by Kelly and Logan
(67) and Sondhi (68). Further details on the general area of based on a least (or ‘‘minimum’’) mean square error (LMS)



168 SPEECH ENHANCEMENT

–5 0 5 10

a
b

c

d

e

f

a

b

c

d

e

a

b

c
d
e

a
b
c

d
e

f

 Signal-to noise ratio
(a) Original degraded
(b) Spectral subtraction, mag. averaging
(c) Unconstrained wiener filtering
(d) Inter-frame constrained enhancement
(e) Inter- and Intra frame constrained enhancement
(f) Theoretical limit (Uses noise-free spectrum)

(a) Original degraded
(b) Dual-channel unconstrained Wiener filter
(c) ACE-1 Dual-channel auditory constrained 
(d) ACE-2 Dual-channel auditory constrained
(e) Theoretical limit (Uses noise-free spectrum)

(a)

6

5

4

3

2

1

0

6

5

4

3

2

1

0

D
is

ta
n

ce

5 10 15
 Signal-to noise ratio

(b)

6

5

4

3

2

1

6

5

4

3

2

1

D
is

ta
n

ce

0

Figure 6. A comparison of constrained iterative speech-enhancement performance using the
Itakura-Saito objective speech quality measure: (a) single-channel spectral subtraction and un-
constrained Wiener filtering methods compared with interframe (FF-LSP : T) and inter- and in-
traframe (LSP : T, Auto : I) constrained enhancement methods [Hansen and Clements (13,93)]. (b)
Dual-channel unconstrained Wiener filtering compared with auditory constrained interative
speech enhancement methods (ACE-I, ACE-II) [Nandkumar and Hansen (55,57)].

criterion was first formulated by Widrow and co-workers A natural optimization criterion is to minimize the mean-
square error (MSE) between the sequences d1(n) and d̂1(n).(63,71). This technique has the major advantage of requiring
Unfortunately, the signal d1(n) is not measurable. However,no a priori knowledge of the noise signal. Figure 7 illustrates
it can be shown that attempting to estimate d1(n) using d2(n)the LMS filter structure of a dual-channel adaptive noise can-
with a least MSE criterion is equivalent to estimating d1(n)celer. All signals in this figure are assumed to be realizations
plus any signal that is orthogonal to d2(n) [meaning thatof wide-sense-stationary stochastic processes with appro-
d1(n) and d2(n) are orthogonal random processes]. Since wepriate ergodicity properties so that we may use time wave-
generally assume that the speech signal s(n) is uncorrelatedforms in the analysis. The objective of the adaptive filter in
to the degrading noise signal d1(n) [and d2(n)], we may at-Fig. 7 is to estimate the noise sequence d1(n) from d2(n) in
tempt to estimate y(n) from d2(n) and derive an identical filterorder that the noise can be removed from y(n). With this in-
to that which would be obtained for estimating d1(n). Sinceterpretation, the output of the noise canceler can be interpre-
the only part of y(n) that is correlated with d2(n) is d1(n), theted as an estimate, say ŝ(n), of the uncorrupted speech s(n).
best estimate of y(n) will in fact be the best estimate of d1(n).The filter is far infrared (FIR) with estimated tap weights,
It is interesting to note that for this interpretation the signalsay ĥi, i � 1, . . ., M, so that
ŝ(n) is interpreted as an error [call it �(n)] that is to be mini-
mized in mean-square sense. Therefore, the ANC is some-
times described as having been designed by minimizing its
output power (or energy in the short-term case).

d̂1(n) =
M∑

i=1

hid2(n − i + 1) (21)

⋅ ⋅ ⋅
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⋅ ⋅ ⋅
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Figure 7. Flow diagram of adaptive noise canceling speech enhancement using the LMS algo-
rithm.
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With this alternative, but equivalent, optimization crite- Experimental Applications of ANC
rion, ĥ is chosen such that

One of the advantages of dual-channel adaptive noise cancel-
ing is that speech with either stationary or nonstationary col-
ored noise can be processed. In general, the two microphones
are required to be sufficiently separated in space, or contain
an acoustic barrier between the two microphones to achieve
noise cancellation. It should be noted also, that ANC cannot

ĥ = arg min
h
L {[y(n) − ŷ(n)]2}

= arg min
h
L



(

y(n) −
M∑

i=1

ĥid2(n − i + 1)

)2



(22)

remove white noise, since samples of white noise are uncorre-
lated, meaning that the adaptive filter could not predictor, in a matrix-vector notation,
d1(n) from d2(n).

One of the earlier dual-channel evaluations of ANC forRRRd2
ĥ = rrry,d2

(23)
speech was conducted by Boll and Pulsipher (75). Two adap-
tive algorithms were investigated: the LMS approach of Wi-The remaining issue is the solution of Eq. (23) for the filter
drow et al. (76) and the gradient lattice approach of Griffithstap weights ĥ. ANC designs have frequently employed the
(77), which employs a lattice filter framework rather thanLMS algorithm, which has been demonstrated to be an effec-
other methods that use tap-delay lines (FIR filters). The lat-tive and practical means for real-time approximation of the
tice filter approach was suggested since the typical FIR adap-filter solution in this application [Widrow et al. (72,73)]. Let
tive filter necessary to estimate the input noise characteris-us denote the MSE for the general filter ĥ by �(ĥ). The mini-
tics required 1500 tap weights. Such large filter lengths resultmum MSE is therefore �(ĥ†). The error �(ĥ), when considered
in misadjustment and are therefore an important design cri-as a function of the weights, is frequently called an error sur-
terion since large misadjustment leads to pronounced echo inface. Now, by definition
the resulting speech signal. Fortunately, the echo can be re-
duced by reducing the adaptation step size used in updating
the filter weights, but this increases the settling time of the
adaptive filter. Boll and Pulsipher also suggested a frequency-

ξ (ĥ) = L



(

y(n) −
M∑

i=1

ĥid2(n − i + 1)

)2

 (24)

domain LMS adaptive filter, which can result in a substantial
Since this expression is a quadratic in ĥ, there is a unique savings in computation, though additional throughput pro-
minimum that occurs at ĥ†. The LMS algorithm gradually cessing delay is experienced using this method. Figure 8(a)
moves toward the minimum by ‘‘slowly’’ moving against the summarizes background noise suppression versus time for
gradient of the error surface. A solution is obtained by differ- the three ANC methods. The major points from this study
entiating with respect to the entire weight vector at once, suggest that LMS or gradient-lattice-based ANC can provide

noise suppression in the time domain but that a large tap
delay filter is needed. While all three dual-channel methods
provide measurable noise suppression, the settling time is

∂ξ (ĥ)

∂ĥ
= rrry,d2

− RRRd2
ĥ (25)

less for the short-time Fourier transform approach (ANC-
The resulting recursion is STFT) than for the lattice approach (ANC-lattice). This comes

at the expense of additional processing delay between input
ĥn = ĥn−1 − �nĝn (26) and output speech samples.

An important application of dual-channel adaptive noise
where ĝn indicates the estimated gradient associated with cancellation in which large microphone spacing is not an is-
time n. In practice, a fixed step size, 
n � 
, is often used for sue is in aircraft cockpit environments. In this case, the pilot’s
ease of implementation and to allow for adaptation of the esti- oxygen facemask serves as acoustic barrier between the two
mate over time as the dynamics of the signal change. Since sensors, thereby ensuring that the SNR of the primary sensor
background noise characteristics can also change across time,

be much greater than the SNR of the reference sensor, while
the FIR filter coefficients are typically adapted as function of

permitting close sensor spacing. Many aspects of the cockpittime [note that in Fig. 7, the FIR tap weights ĥi( j), i � 1,
noise problem have been studied. The interested reader is re-. . ., M have a common time index j]. This simple algorithm
ferred to papers by Harrison, Lim, and Singer (17,78); Dar-was first proposed by Widrow and Hoff (71) and is now widely
lington, Wheeler, and Powell (18); Powell, Darlington, andknown as the LMS algorithm. The convergence, stability, and
Wheeler (79); and Rodriguez, Lim, and Singer (80). In theother properties of LMS have been studied extensively and
study by Harrison, Lim, and Singer, ANC was employed in aare discussed in great detail by [Widrow and Stearns (74)]. It
fighter cockpit environment. Results summarized in Fig. 8(b)has been shown using long-term analysis [Widrow et al. (63)]
show that the average SNR improvement ranged from �11.6that starting with an arbitrary initial weight vector, the algo-
to �11.2 dB for input SNRs of 3 to 10 dB respectively. Theyrithm will converge in the mean and remain stable as long as
concluded that a filter length of 100 taps was sufficient tothe following condition on the step size parameter 
 is satis-
achieve �11.4 dB improvement in SNR, and that increasingfied,
the filter tap length to 1000 with an exact least-squares
method only improved the SNR by 3 dB. They point out that
since there is typically more than one noise source in real0 < � <

1
λmax

(27)

fighter cockpit environments that may also be distributed
over a region, performance of ANC generally degrades whenwhere �max refers to the largest eigenvalue of the autocorrela-

tion matrix of the reference channel Rd2
. the noise source is not localized to one location.
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Figure 8. Enhancement performance of adaptive noise canceling: (a) a comparison of three dif-
ferent time- or frequency-domain implementations [Boll (94)]; (b) noise suppression versus time
for the ANC-LMS method [Harrison, Lim, and Singer (17,78)].

One final area which is related in some sense to ANC is such an approach where instead of canceling noise in the pri-
mary channel, the speech signal is canceled. While it may beActive Noise Cancellation (AcNC). Here, AcNC is a noise sup-

pression approach in which a secondary noise source is intro- difficult to form a noise reference channel, it is not difficult to
obtain a speech reference channel for some classes of speech.duced that destructively interferes with the unwanted noise.

These systems typically rely on multiple sensors to measure Due to the quasiperiodic nature of speech during voiced sec-
tions, a reference signal can be formed by delaying the pri-the unwanted noise field and produce an output acoustic sig-

nal which is out-of-phase with noise at the primary micro- mary data by one or two pitch periods. This reference signal
can then be used in the LMS adaptive algorithm, for whichphone. Since the artificially produced noise is out-of-phase, it

will add destructively with the noise in the primary micro- the criterion is to form the minimum MSE estimate of the
clean speech signal. Let the reference signal y2(n) be a delayedphone. Several recent studies have considered single-sensor

[Oppenheim, et al. (95)] and dual-sensor [Zangi (96)] ap- version of the primary signal, y2(n) � y1(n � T0), where T0

represents one pitch-period delay. Then under ideal periodicproaches. The general area of active noise cancellation has
been applied within car interiors, aircraft engines, and other speech conditions, we have
sound enclosures. An excellent review can be found in Elliott
and Nelson (97). y2(n) = s(n − T0) + d(n − T0) = s(n) + d(n − T0) (28)

The delayed speech signal s(n � T0) will be highly correlated
METHODS BASED ON FUNDAMENTAL with the original speech s(n), while the delayed d(n � T0) and
FREQUENCY TRACKING original d(n) noise signals will have low correlation with the

speech signal. The flow diagram shown in Fig. 9 represents
In the field of speech enhancement, there are a number of such an approach proposed by Sambur (82). Although the pri-
techniques that are based on tracking the fundamental fre- mary output is the ‘‘enhanced’’ noise signal d̂(n), an enhanced
quency contour. Such approaches include single-channel speech signal output ŝ(n), is also available. The LMS adaptive
ANC, adaptive comb filtering, and enhancement based on filter produces the following output,
harmonic selection or scaling. These techniques capitalize on
the property that waveforms during voiced passages are peri-
odic. This periodicity ideally results in a line spectrum in the ŝ(n) =

M∑
i=1

ĥiy1(n − T0 − i + 1) (29)
frequency domain. Any spectral components between these
lines represent noise which can be reduced. One useful appli-

where ĥi, � 1, . . ., M are the FIR filter weights, obtained incation for these techniques has been the competing speaker
a manner similar to that discussed in section entitled ‘‘ANCproblem, in which the enhancement takes advantage of differ-
based on the LMS Algorithm.’’ Since this method exploits in-ences in fundamental frequency contours.
put speech periodicity, in principle it should only be applied
for voiced speech. Therefore, noisy unvoiced speech could ei-

Single-Channel ANC
ther be passed through the system unprocessed, or the LMS
fitler response could be held constant and allowed to processIt has been shown that ANC employing the LMS algorithm

requires no a priori knowledge of the noise signal. Generally the unvoiced speech.
Sambur (81,82) evaluated this approach and showed im-speaking, ANC can only be employed when a second channel

is available. Suppose however, we could simulate a reference proved quality for additive white noise in the SNR range
0–10 dB. It was observed that the more severe the noise, theusing data from the primary channel. Sambur (81) proposed
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Figure 9. Single-channel adaptive noise cancellation based on fundamental frequency tracking.

more dramatic the improvement in SNR. Increased FIR filter the specified fundamental frequency F0 and its harmonics,
length also improved performance. Listeners concluded that and low values between. The filter is usually implemented in
the speech was more pleasant to listen to and ‘‘appeared’’ to the time domain as
have more intelligibility (though no formal intelligibility tests
were performed). Performance in the presence of speech coder
quantization noise from a variable rate delta modulation sys- ŝ(n) =

L∑
i=−L

c(i)y(n − iT0) (30)
tem was also determined. The LMS adaptive filter removed
some of the ‘‘granular’’ quality of the quantized speech. ANC

where c(i) are the 2L � 1 comb filter coefficients, T0 is thewas able to remove the granular noise since it is signal-inde-
fundamental period in samples, and L is a small constantpendent and broadband, but leaves slope overload noise unaf-
(typically 1–6) that represents the number of pitch periodsfected, since it is signal dependent. Later studies have also
used forward and backward in time for the filtering process.shown that spectral subtraction can be useful as a front-end

Since only voiced speech can be enhanced, alternative pro-processor for voice coding applications.
cessing is needed for unvoiced speech or silence. One ap-One of the main limitations of single-channel ANC is the
proach is to pass the unvoiced speech through the filter un-requirement of accurate pitch estimation. Modifications to
processed [i.e., set c(k) � 0 for all k � 0]. For this case, aSambur’s method have been proposed by Varner, Miller, and
scaling term (typically in the range 0.3 to 0.6) is necessaryEger (83) in which a reference signal is obtained through the

use of a low-order DPCM adaptive predictor (see the related because applying an adaptive comb filter to voiced sounds re-
article entitled ‘‘SPEECH CODING’’). Kim and Un (84) also at- duces the noise energy present. This ensures a proper balance
tempt to remove the pitch estimator by using both forward in the resulting signal strength between voiced and unvoiced
and backward adaptive filters. sections. A second processing approach for unvoiced speech is

to maintain a constant set of filter coefficients from the last
Adaptive Comb Filtering voiced speech frame and process the unvoiced sounds as if

they were voiced. This technique has not been as successfulCorrupting noise can take many forms. In some applications
as the first.speech is degraded by an underlying process which is peri-

In general, since F0 typically changes within an analysisodic, resulting in a noise spectrum which also possesses peri-
window, this can be addressed by including timing adjust-odic structure. Two methods are available for reducing such
ments �i for y(n � iT0) in Eq. (30) to align adjacent pitch peri-noise, which include adaptive comb filtering (ACF) [Lim and
ods. This results in a comb filter that is adaptive. It shouldOppenheim (85)] and time domain harmonic scaling (TDHS)
also be noted that it is desirable to include as many periods[Malah and Cox, 1979 (86)].
as possible, since the number L is inversely proportional toACF is similar in its basic assumptions to single-channel
the bandwidth of each tooth in the comb filter. Larger valuesLMS-based ANC. If the noise is nonperiodic, its energy will
of L therefore produce more narrow harmonics for the filterbe distributed throughout the spectrum. The basic process of
and therefore allow for furthernoise removal.comb filtering is to build a filter that passes the harmonics of

Malah and Cox (87) proposed a generalized comb-filteringspeech, while rejecting noise frequency components between
technique that applies a time-varying weight to each pitchthe harmonics. A typical block diagram for an adaptive comb

filter is shown in Fig. 10. The comb filter has large values at period. The generalized comb filter was shown to reduce
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h(n)

Pitch
extraction

+

×

Figure 10. Flow diagram of the adaptive comb-filtering algorithm.
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Figure 11. Intelligibility results for adaptive comb filtering for the problems of (a) competing
speaker [Perlmutter et al. (68)] and (b) wide-band random noise [Lim and Oppenheim (45)].

frame-rate noise for an adaptive transform coder [Cox and Four general classes of speech-enhancement algorithms
were considered: (1) short term spectral amplitude methods,Malah (88)]. Perlmutter et al. (89), using a competing speaker

[Fig. 11(a)], and Lim, Oppenheim, and Braida (90), using (2) speech modeling and iterative Wiener filtering, (3) adap-
tive noise canceling, and (4) fundamental-frequency-trackingwide-band random noise [Fig. 11(b)], evaluated this adaptive

technique for varying filter length. Using pitch information methods. Application-specific speech enhancement has also
played an important role in the development of algorithms inobtained from noise-free speech, decreases in intelligibility

were usually observed for various SNR. Both studies mention these areas. In the four areas, approaches based on spectral
subtraction (short-term spectral amplitude) have by far beenthat processed speech sounded ‘‘less noisy’’ due to the sys-

tem’s ability to increase the local SNR (though no quality test the most popular. The main reason for this is their ease in
implementation on computer workstations and real-time DSPwere performed).
platforms. However, the residual musical tone artifacts that
persist in the resulting enhanced speech have been the focusTime-Domain Harmonic Scaling
of much of the subsequent research since the studies by

An alternative to frequency-domain harmonic selection is
McAulay and Malpass (29), Boll (24), and Weiss and Aschken-

time-domain harmonic scaling (TDHS). TDHS can be viewed
asy (22,26). Methods based on iterative Wiener filtering have

as a time-domain technique that requires pitch synchronous
been shown to be effective in suppressing white and colored

block decimation and interpolation. The difference between
background noise beyond that in some forms of spectral sub-

TDHS noise reduction and adaptive comb filtering is that
traction. However, this comes at the expense of a measurable

TDHS moves the noise into the gaps under each pitch har-
increase in computational requirements and system complex-

monic (i.e., masking the background noise), while comb filter-
ity. Methods based on adaptive noise canceling have been

ing seeks to filter out the noise in the gaps between har-
popular for use in actual noise environments if a second refer-

monics.
ence microphone is available. Since a pilot’s oxygen facemask

TDHS was originally proposed by Malah and Cox (86) for
serves as a natural acoustic barrier between the two micro-

use in perceptually reducing periodicity structured noise in
phones, ANC has been shown to be effective in aircraft cock-

speech. In a later study, Cox and Malah (88) proposed a hy-
pit applications. ANC continues to be a strong reliable ap-

brid system that uses both ACF and TDHS. An additional
proach for a broad range of background noise environments.

benefit of their system is time-scale reduction of input speech
The main reason for this is that the FIR adaptive filter is

for waveform coding and isolated word recognition. Due to its
well suited for implementation on real-time DSP processing

time-domain implementation, the choice of an appropriate
platforms, and ANC makes no assumptions about the back-

window will greatly influence noise cancellation performance.
ground noise statistics. However, it has been shown that ANC
works better when the interfering noise source is localized to
one location [Harrison, Lim, and Singer (17)]. Methods basedFUTURE DIRECTIONS FOR SPEECH ENHANCEMENT
on fundamental frequency tracking have not been popular for
broadband noise distortion. This is because these methodsIn this article, we have considered a variety of approaches for

speech enhancement. Due to the wide number of applications can only improve the quality of voiced speech, and for such
environments the degradation in consonant sections contrib-and assumptions concerning interference and available input

channels, almost an unlimited number of enhancement sys- utes significantly to losses in intelligibility. However, funda-
mental-frequency-tracking methods such as comb filteringtems could have been considered.
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Process., ASSP-30: 545–560, 1982.speech-enhancement algorithms actually reduce intelligibil-
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12. J. H. L. Hansen and M. A. Clements, Constrained iterativeon its ultimate application.

speech enhancement with application to automatic speech recog-Future directions in the field of speech enhancement will
nition. In Proc. 1988 IEEE ICASSP, pp. 561–564, April 1988.

focus more on applications in which environmental interfer-
13. J. H. L. Hansen and M. Clements, Constrained iterative speechence (i.e., noise, channel, microphone, voice coding methods,

enhancement with application to speech recognition. IEEE Trans.or reverberation) impact the quality and intelligibility of
Signal Process., 39: 795–805, 1991.
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