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SPEECH ANALYSIS

The speech wave production mechanism can be divided into
three stages: sound source production, articulation by vocal
tract, and radiation from the lips and/or nostrils. Sound
sources are either voiced or unvoiced. A voiced sound source
can be modeled by a generator of pulses or asymmetrical tri-
angular waves which are repeated at every fundamental pe-
riod. The peak value of the source wave corresponds to the
loudness of the voice. An unvoiced sound source, on the other
hand, can be modeled by a white noise generator, the mean
energy of which corresponds to the loudness of the voice. Ar-
ticulation can be modeled by the cascade or parallel connec-
tion of several single-resonance or antiresonance circuits,
which can be realized through a multistage digital filter. Fi-
nally, radiation can be modeled as arising from a piston sound
source attached to an infinite, plane baffle.

The speech wave can be changed into a processible object
by converting it into an electrical signal using a microphone.
The electrical signal is usually transformed from an analog
into a digital signal prior to almost all speech processing for
two reasons. First, digital techniques facilitate highly sophis-
ticated signal processing which cannot otherwise be realized
by analog techniques. Second, digital processing is far more
reliable and can be accomplished by using a compact circuit.
Rapid development of computers and integrated circuits in
conjunction with the growth of digital communications net-
works have encouraged the application of digital processing
techniques to speech processing.

SPECTRAL ANALYSIS

Spectral Structure of Speech

The speech wave is usually analyzed using spectral features,
such as the frequency spectrum and autocorrelation function,
instead of directly using the waveform. There are two impor-
tant reasons for this. One is that the speech wave is consid-
ered to be reproducible by summing sinusoidal waves, the am-
plitudes and phases of which change slowly. The other is that
the critical features for perceiving speech by the human ear
are mainly included in the spectral information, with the
phase information rarely playing a key role.

The power spectral density in a short interval—that is, the
short-time spectrum of speech—can be regarded as the prod-
uct of two elements: the spectral envelope, which slowly
changes as a function of frequency, and the spectral fine
structure, which changes rapidly. The spectral fine structure
produces periodic patterns for voiced sounds but not for un-
voiced sounds, as shown in Fig. 1. The spectral envelope, or
the overall spectral feature, reflects not only the resonance
and antiresonance characteristics of the articulatory organs,
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Figure 1. Structure of short-time spectra for male voices when uttering vowel /a/ and consonant
/t�/. The short-time spectra of speech can be regarded as the product of the spectral envelope
and the spectral fine structure.

but also the overall shape of the glottal source spectrum and interval. The short-time spectra S(
) and �(m) constitute the
Fourier transform pair (Wiener–Khintchine theorem):radiation characteristics at the lips and nostrils. On the other

hand, the spectral fine structure corresponds to the periodic-
ity of the sound source.

Methods for spectral envelope extraction can be divided
S(λ) = 1

2π

N−1∑
m=−(N−1)

φ(m) cos λm (2)

into parametric analysis (PA) and nonparametric analysis
(NPA). In PA, a model which fits the objective signal is se- and
lected and applied to the signal by adjusting the feature pa-
rameters representing the model. On the other hand, NPA
methods can generally be applied to various signals since they

φ(m) =
∫ π

−π

S(λ) cos λm dλ (3)

do not model the signals. If the model exactly fits the objective
where 
 is a normalized radian frequency which can be repre-signal, PA methods can represent the features of the signal
sented by 
 � 2�f�T ( f is a real frequency, and �T is a sam-more effectively than can NPA methods.
pling period). S(
) is usually computed directly from the
speech wave using the discrete Fourier transform (DFT) facil-

Autocorrelation and Fourier Transform itated by the fast Fourier transform (FFT) algorithm:

When a sampled time sequence is written as x(n) (n is an
integer), its autocorrelation function �(m) is defined as S(λ) = 1

2πN

∣∣∣∣∣
N−1∑
n=0

x(n)e− jλn

∣∣∣∣∣
2

(4)

The autocorrelation function can also be calculated more ef-
ficiently by using the DFT (FFT) compared with the con-

φ(m) = 1
N

N−1−|m|∑
n=0

x(n)x(n + |m|), |m| = 0, 1, . . ., N − 1

(1) ventional correlation calculation method when higher-order
correlation elements are needed. With this method, the auto-
correlation function is obtained as the inverse Fourier trans-where N is the number of samples in the short-time analysis
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form of the short-time spectrum, which is calculated by using
Eq. (4).

Window Function

In order to extract the N-sample interval from the speech
wave for calculating the spectral features, the speech wave
must be multiplied by an appropriate time window. There-
fore, x(n), indicated in Eqs. (1) and (14) for calculating �(m)
and S(
), respectively, is usually not the original waveform
but rather the waveform multiplied by the window function.

The Hamming window, WH(n), defined as

WH(n) = 0.54 − 0.46 cos
(

2nπ

N − 1

)
(5)

is usually used as the window function for speech analysis.
Another window, called the Hanning window,

WN(n) = 0.5 − 0.5 cos
(

2nπ

N − 1

)
(6)

is also employed.
When the waveform is multiplied by either the Hamming

or the Hanning window, the effective analysis interval length
becomes approximately 40% shorter since the waveforms near
both ends of the window are attenuated. This results in a
consequent 40% decrease in the frequency resolution.

Hence, the multiplication of the speech wave by an appro-
priate window reduces the spectral fluctuation due to the
variation of the pitch excitation position within the analysis
interval. This is effective in producing stable spectra during

Low-pass filter

Speech wave

Parametric representation
(excitation parameters,
vocal tract parameters)

Cutoff frequency = 4 – 8 kHz

Sample frequency = 8 – 16 kHz
Quantization bit rate = 12 – 16 bit

Frame length = 20 – 30 ms
Frame interval = 8 – 10 ms

Window length = Frame length

A/D (Sampling and
quantization)

Analysis frame
extraction

Windowing
(Hamming, Hanning, etc.)

Spectral analysis
(FFT, LPC, etc.)

Feature extraction

the analysis of voiced sounds featuring pitch periodicity.
Since multiplication by the window function decreases the ef- Figure 2. Block diagram of a typical speech analysis procedure. Typ-
fective analysis interval length, the analysis interval should ical parameter values at each stage are also indicated.
be overlapping and shifted along the speech wave to facilitate
tracking the time-varying spectra.

The short-time analysis interval multiplied by a window Sound Spectrogram Analysis
function and extracted from the speech wave is called a

Sound spectrogram analysis is a method for plotting the timeframe. The length of the frame is referred to as the frame
function of the speech spectrum using density plots. Figure 3length, and the frame shifting interval is termed the frame
is an example of sound spectrograms for the Japanese wordinterval or frame period.
/ikioi/ uttered by a male speaker. The magnitude of the fre-A block diagram of a typical speech analysis procedure is
quency component is illustrated by darkness; in other words,shown in Fig. 2. Also indicated at each stage are typical pa-
the darker areas reveal higher-intensity frequency compo-rameter values.
nents.

Usually the bandwidth of the bandpass filter for the fre-
Digital Filter Bank

quency analysis (i.e., the frequency resolution) is either 300
Hz or 45 Hz, depending on the purpose of the analysis. WhenThe digital filter bank—more specifically, a set of bandpass

filters—is one of the NPA techniques. The filter bank requires the frequency resolution is 300 Hz, the effective length of the
speech analysis interval is roughly 3 ms; and when the resolu-a relatively small amount of calculation and is therefore quite

suitable for hardware implementation. Since there is a trade- tion is 45 Hz, the length becomes 22 ms. Because of the trade-
off occurring between the frequency and time resolutions, theoff between the time and frequency resolution of each band-

pass filter, it is necessary to design various parameters ac- pitch structure of speech is indicated by (1) a vertically
striped fine repetitive pattern along the time axis in the casecording to the purposes intended. Generally, the bandpass

filters are arranged so that the center frequencies are distrib- of the 300 Hz frequency resolution and (2) a horizontally
striped equally fine repetitive pattern along the frequencyuted with equal intervals on the logarithmic frequency scale,

Mel scale or Bark scale, taking human auditory characteris- axis in the case of the 45 Hz resolution.
Many of the sound spectrograms originally produced by an-tics into account, and so that the 3 dB attenuation points of

the adjacent filters coincide. The output of each bandpass fil- alog technology using the sound spectrograph are now pro-
duced by digital technology through computers and their pe-ter is rectified, smoothed by root mean square (rms) value

calculation, and sampled every 5 ms to 20 ms to obtain values ripherals. The digital method is particularly beneficial
because it permits easy adjustment of various conditions andwhich represent the spectral envelope.
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Figure 3. An example of wide-band sound spectrogram for a male voice when uttering the Japa-
nese phase /ikioi/. The magnitude of the frequency component is illustrated by darkness.

also because the spectrograms can be produced sequentially tially a coined word which includes the meaning of the in-
verse transform of the logarithmic spectrum. The indepen-and automatically with good reproducibility.
dent parameter for the cepstrum is called quefrency, which is
obviously formed from the word frequency. Since the cepstrumZero-Crossing Analysis
is the inverse transform of the frequency domain function, the

The zero-crossing number of the speech wave in a predeter-
quefrency becomes the time-domain parameter. The special

mined time inteval, which is counted as the number of times
feature of the cepstrum is that it allows for the separate rep-

when adjacent sample points have different positive and neg-
resentation of the spectral envelope and fine structure.

ative signs, approximately corresponds to the frequency of the
Voiced speech x(t) can be regarded as the response of the

major spectral component. Based on this principle, formant
vocal tract articulation equivalent filter driven by the pseudo-

frequencies can be estimated by zero-crossing analysis as fol-
periodic source g(t). Then x(t) can be given by the convolution

lows. First, the speech wave is passed through a set of four- or
of g(t) and vocal tract impulse response h(t) as

five-octave band-pass filters, and the power and zero-crossing
number of the rectified and smoothed output of each filter are
measured at short intervals, such as 10 ms. When the power x(t) =

∫ t

0
g(τ )h(t − τ ) dτ (7)

of a filter exceeds the predetermined threshold, this frequency
range is regarded as having a formant, with the formant fre- which is equivalent to
quency being estimated by the zero-crossing rate. This zero-
crossing rate can also be used to detect the periodicity of the X (λ) = G(λ)H(λ) (8)
sound source as well as to estimate the fundamental period.

where X(
), G(
), and H(
) are the Fourier transforms of x(t),Although the zero-crossing analysis method is well suited to
g(t), and h(t), respectively.hardware implementation, its drawback is that it is sensitive

If g(t) is a periodic function, �X(
)� is represented by lineto additive noise.
spectra, the frequency intervals of which are the reciprocal of
the fundamental period of g(t). Therefore, when �X(
)� is calcu-

CEPSTRUM
lated by the Fourier transform of a sampled time sequence
for a short speech wave period, it exhibits sharp peaks with

Principles of Cepstrum Analysis
equal intervals along the frequency axis. Its logarithm
log �X(
)� isThe cepstrum, or cepstral coefficient, c(�), is defined as the

inverse Fourier transform of the short-time logarithmic
log |X (λ)| = log |G(λ)| + log |H(λ)| (9)amplitude spectrum �X(�)� (1–3). The term cepstrum is essen-
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The cepstrum, which is the inverse Fourier transform of
log �X(
)�, is

c(τ ) = F−1 log |X (λ)| = F−1 log |G(λ)| + F−1 log |H(λ)| (10)

where F is the Fourier transform. The first and second terms
on the right side of Eq. (9) correspond to the spectral fine
structure and the spectral envelope, respectively. The former
is the periodic pattern, and the latter is the global pattern
along the frequency axis. Accordingly, large differences occur
between the inverse Fourier transform functions of both ele-
ments indicated in Eq. (10).

Principally, the first function on the right side of Eq. (10)
indicates the formation of a peak in the high-quefrency re-
gion, and the second function represents a concentration in
the low-quefrency region from 0 to 2 or 4 ms. The fundamen-
tal period of the source g(t) can then be extracted from the
peak at the high-quefrency region. On the other hand, the
Fourier transform of the low-quefrency elements produces the
logarithmic spectral envelope from which the linear spectral
envelope can be obtained through the exponential transform.
The maximum order of low-quefrency elements used for the
transform determines the smoothness of the spectral enve-
lope. The process of separating the cepstal elements into
these two factors is called liftering, which is derived from fil-
tering.

When the cepstrum is calculated by the DFT, it is neces-
sary to set the base value of the transform, N, large enough
to eliminate the aliasing similar to that produced during
waveform sampling. The cepstrum then becomes

(Low quefrency
elements)

(High quefrency
elements)

DFT Peak extraction

Fundamental periodSpectral envelope

Sampled sequence

Window

DFT

Log

IDFT

Cepstral window (liftering)

Figure 4. Block diagram of cepstrum analysis for extracting theCn = 1
N

N−1∑
k=0

log |X (k)|e j2πkn/N , 0 ≤ n ≤ N − 1 (11)
spectral envelope and fundamental period. The logarithmic spectral
envelope can be produced by the Fourier transform of the low-que-

The process steps for extracting the fundamental period and frency elements, and the fundamental period of the voice source can
spectral envelope using the cepstral method are given in be extracted from the peak at the high-quefrency region.
Fig. 4.

LPC Cepstrum If we now differentiate both parts of this equation by z�1

and then multiply by X(z), we haveLet us consider the cepstrum in a special case in which
X(
) � H(z) �z � exp( j
T). Here, H(z) is the z-transform of the
impulse response of the all-pole speech production system es- X (z)Ĉ′(z) = X ′(z) (14)
timated by the linear predictive coding (LPC) analysis method

This equation permits recursive equations to be obtained:[see section entitled ‘‘Linear Predictive Coding (LPC) Analy-
sis’’]. Accordingly,

H(z) = 1
1 +∑p

i=1 αiz−1
(12)

Equation (12) means that the all-pole spectrum H(z) is used
for the spectral density of the speech signal. This is accom-

ĉ1 = −α1

ĉn = −αn −
n−1∑
m=1

(
1 − m

n

)
αmĉn−m, 1 < n ≤ p (15)

ĉn = −
p∑

m=1

(
1 − m

n

)
αmĉn−m, p < n

plished by expanding the cepstrum into a complex form by
replacing the DFT, logarithmic transform, and inverse dis- This cepstrum is referred to as the LPC cepstrum, since it
crete Fourier transform (IDFT) in Fig. 4 with a dual z-trans- is derived through the LPC model. The original cepstrum is
form, complex logarithmic transform, and inverse dual z- sometimes called the FFT cepstrum to distinguish it from the
transform, respectively (4). When this complex cepstrum for LPC cepstrum.
a time sequence x(n) is represented by ĉn, and their dual z- Figure 5 compares the spectral envelope calculated using
transforms are indicated by X(z) and C(z), respectively, we the cepstrum directly extracted from the waveform with that
obtain calculated using the LPC cepstrum (5). In this figure, the

short-time spectrum and the spectral envelope extracted by
LPC (maximum likelihood method) are also shown for refer-Ĉ(z) = log[X (z)] (13)
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Another is how to correct the pitch extraction error owing to
the disturbance of periodicity. The other is how to remove the
vocal tract (formant) effects. Major errors in pitch extraction
are classified into double-pitch and half-pitch errors. The for-
mer are those errors occurring when extracting a frequency
which is twice as large as the actual value. The latter are
errors arising when extracting the half-value of the actual
fundamental frequency. The tendency toward which error is
most apt to occur depends on the extraction method em-
ployed.

The major pitch extraction methods are outlined in Table
1 (7). They can generally be grouped into waveform pro-
cessing (a), correlation processing (b), and spectral processing
(c). Group (a) is composed of methods for detecting the peri-
odic peaks in the waveform. Group (b) methods are those
most widely used in digital signal processing of speech, since
the correlation processing is unaffected by phase distortion in
the waveform. Among the methods in Group (c), the principle
of pitch extraction using cepstral analysis has already been
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Figure 5. Comparison of spectral envelopes by LPC, LPC cepstrum,
and FFT cepstrum methods. The spectral envelope derived from the
LPC cepstrum follows the spectral peaks more strictly than does the
spectral envelope obtained through the FFT cepstrum.

ence. The spectral envelope derived from the LPC cepstrum
clearly tends to follow the spectral peaks more strictly than
does the spectral envelope obtained through the FFT cep-
strum.

ANALYSIS-BY-SYNTHESIS

Analysis-by-synthesis (A-b-S), presented in Fig. 6, is the pro-
cess of determining the parameters which characterize the
system based on an assumed signal production model (6). The
model parameters are adjusted in the course of iterative feed-
back control so that the error between the observed value and
that produced by the model is minimized. Important in A-b-
S are selection of the assumed production model, the initial
parameter values, the error evaluation measure, and the min-
imization algorithm. A-b-S is useful not only for speech pa-
rameter extraction but also for many applications in which a
production model can be used.

PITCH EXTRACTION

Although the accurate extraction of the fundamental fre-
quency (pitch extraction) has been one of the most important
study concerns since the beginning of speech analysis re-
search, no definite approach has yet been established. This
difficulty with pitch extraction stems from three factors. First,
vocal cord vibration does not necessarily have complete peri-
odicity especially at the beginning and end of voiced sounds.
Second, it is difficult to extract the vocal cord source signal
from the speech wave separately from the vocal tract effects.

Initial value 
  set

Synthesis by
production model

Error calculation
between observed
and synthesized

values

Is
error minimum

and small?

Production model
parameter 

readout

Change 
parameters

Analysis results

Yes

No

Third, the dynamic range of the fundamental frequency is
very large. Figure 6. Principle of analysis-by-synthesis method. The model pa-

With these factors in mind, recent pitch extraction re- rameters are adjusted in the course of iterative feedback control so
search has been undertaken from three viewpoints. One is that the error between the observed value and that produced by the

model is minimized.how to reliably extract the periodicity of quasiperiodic signals.
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Table 1. Classification of Major Pitch Extraction Methods and Their Principal Features

Classification Pitch Extraction Method Principal Features

(a) Waveform pro- Parallel processing method Uses majority rule for pitch periods extracted by many kinds of
cessing simple waveform peak detectors.

Data reduction method Removes superfluous waveform data based on various logical pro-
cessing and leaves only pitch pulses.

Zero-crossing count method Utilizes iterative patterns in waveform zero-crossing rate.
(b) Correlation pro- Autocorrelation method Employs autocorrelation function of waveform. Applies center and

cessing peak clipping for spectrum flattening and computation simplifi-
cation.

Modified correlation method Utilizes autocorrelation function for residual signal of LPC analy-
sis. Computation is simplified by LPF and polarization.

SIFT (simplified inverse filter tracking) algo- Applies LPC analysis for spectrum flattening after down-sampling
rithm of speech wave. Time resolution is recovered by interpolation.

AMDF method Uses average magnitude differential function (AMDF) for speech
or residual signal for periodicity detection.

(c) Spectrum pro- Cepstrum method Separates spectral envelope and fine structure by inverse Fourier
cessing transform of log-power spectrum.

Period histogram method Utilizes histogram for harmonic components in spectral domain.
Pitch is decided as the common divisor for harmonic compo-
nents.

Analysis.’’ The modified correlation method and simplified in- samples:
verse filter tracking (SIFT) algorithm (8), which are correla-
tion methods, and the cepstral method are generally the most xt + α1xt−1 + · · · + αpxt−p = εt (16)
efficient since they explicitly remove the vocal tract effects.
The modified correlation method will be described in detail in where ��t� is an uncorrelated statistical variable having a
the section entitled ‘‘Source Parameter Estimation from Re- mean value of 0 and a variance of 
2.
sidual Signals.’’ This linear difference equation means that the present

The voiced/unvoiced decision is usually made using a sample value xt can be linearly predicted using the previous
method for pitch extraction, since, for the sake of simplicity, sample values. That is, if the linearly predicted value x̂t for
the cues for periodic/unperiodic decision are normally re- xt is represented by
garded as those utilized for voiced/unvoiced decisions. The
peak values of the autocorrelation or modified autocorrelation
functions are generally implemented in the decision. Because x̂t = −

p∑
i=1

αixt−i (17)

these methods do not work effectively for unperiodic voiced
sounds, improvement in decision accuracy has been at-

the following equation can be obtained from Eqs. (16) andtempted by employing several other parameters as additional
(17):cues (9). These parameters include the speech energy, zero-

crossing rate, first-order autocorrelation function, first-order
xt − x̂t = εt (18)linear predictor coefficient, and energy of the residual signal.

We thus consider Eq. (16) to be the linear prediction model
having linear predictor coefficients ��i�. �t is designated as theLINEAR PREDICTIVE CODING (LPC) ANALYSIS
residual error.

Let us now define the linear predictor filter asPrinciples of LPC Analysis

Since the term linear prediction was first coined by N. Wiener
(10), the technique has become popularly employed in a wide F(z) = −

p∑
i=1

αiz
−1 (19)

range of applications based on a number of formulations. This
technique, first used for speech analysis and synthesis by Ita-

and define X̂(z) } x̂t and X(z) } xt as the pairs of z-transformskura and Saito (11) and Atal and Schroeder (12), has pro-
and their sample values. The z-transform of Eq. (17) is thenduced a very large impact on every aspect of speech research
expressed by(13). The importance of linear prediction stems from the fact

that the speech wave and spectrum characteristics can be ef-
X̂ (z) = F(z)X (z) (20)ficiently and precisely represented using a very small number

of parameters. Additionally, these parameters are obtained
Based on Eqs. (17) and (18), the linear prediction model in z-by relatively simple calculation.
transform notation can be given byLet us express the discrete speech signal by �xt� (t is an

integer), and assume the following first-order linear combina-
X (z)(1 − F(z)) = E(z) (21)tion between the present sample value xt and the previous p
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or Minimization of � is obtained by setting to zero the partial
derivative of � with respect to �j ( j � 1, 2, . . ., p) and solv-
ing. Therefore, from Eq. (26),X (z)A(z) = E(z) (22)

where ∂β

∂α j
= 2

p∑
i=0

αici j = 0, j = 1, 2, . . ., p (27)

A(z) = 1 +
p∑

i=1

αiz
−1 = 1 − F(z) (23)

The predictor coefficients ��i� can be obtained by solving this
set of p linear simultaneous equations. The known parame-and E(z) } �t. A(z) is called the inverse filter (14). Based on
ters cij (i � 0, 1, 2, . . ., p; j � 1, 2, . . ., p) are defined fromthese definitions, the linear predictive model using the linear
the sample data by Eq. (25), which shows that the samplespredictor filter F(z) and inverse filter A(z) can be block dia-
xt from t0 � p to t1 are essential to the solution.grammed as in Fig. 7. This diagram shows that LPC—that

For the actual solution based on a sequence of N speechis, the process of applying the linear predictive model to the
samples, �xt� � �x0, x1, . . ., xN�1�, two specific cases have beenspeech wave—minimizes the output 
2 by adjusting the coef-
investigated in detail. These are referred to as the covarianceficients ��i� of either the linear predictor filter or the inverse
method and the autocorrelation method.filter.

The covariance method is defined by setting t0 � p and
t1 � N � 1 so that the error is minimized only over the inter-LPC Analysis Procedure
val [p, N � 1], whereas all the N speech samples are used in

Let us here consider the method for estimating the linear pre- calculating the covariance matrix elements cij (15). Accord-
dictor coefficients ��i� by applying the least mean square error ingly, Eq. (27) is solved using
method to Eq. (18). Specifically, let us determine the coeffi-
cients ��i� p

i�1 so that the squared sum of the error �t between
the sample values of xt and the linearly predicted values x̂t ci j =

N−1∑
t=p

xt−ixt− j (28)
over a predetermined period of [t0, t1] is minimized.

The total squared error � is
The covariance method draws its name from the fact that cij

represents the row i, column j element of a covariance matrix.
The autocorrelation method is defined by setting t0 � ��

and t1 � � and by letting xt � 0 for t � 0 and t � N (13).
These limits allow cij to be simplified as

β =
t1∑

t=t0

ε2
t

=
t1∑

t=t0

(
p∑

i=0

αixt−i

)2

=
t1∑

t=t0

p∑
i=0

p∑
j=0

αiα jxt−ixt− j

(24)

where �0 � 1. Defining

ci j =
∞∑

t=−∞
xt−ixt− j

=
∞∑

t=−∞
xtxt+|i− j|

=
N−1−|i− j|∑

t=0

xtxt+|i− j|

= r|i− j|

(29)

ci j =
t1∑

t=t0

xt−ixt− j (25)

Thus, �i is obtained by solving� can then be equivalently written as

p∑
i=0

αir|i− j| = 0, j = 1, 2, . . ., p (30)β =
p∑

i=0

p∑
j=0

αici jα j (26)

where

rτ =
N−1−τ∑

t=0

xtxt+τ τ ≥ 0 (31)

Although the error �t is minimized over an infinite interval,
equivalent results are obtained by minimizing it only over [0,
N � p � 1]. This is because xt is truncated to zero for t � 0
and t � N by multiplying by a finite-length window, such as

–

X(z) E(z)

X(z) E(z)

X(z)^

+

F(z)

A(z)
a Hamming window. The autocorrelation method is so named
from the fact that for the conditions stated, cij reduces to theFigure 7. Linear prediction model block diagram. LPC minimizes
definition of the short-term autocorrelation r� at the delaythe output E(z) by adjusting the coefficients ��i� p

i�1 of either the linear
predictor filter F(z) or the inverse filter A(z). � � �i � j�.
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Equation (31) can be expressed by matrix representa- where zi is the root of
tion as

1 +
p∑

i=1

αiz
−i = 0 (34)

and Ai is defined as




r0 r1
r1 r0
·
·
·

rp−1

· · ·

. . .

· · · r1

rp−1
·
·
·

r1
r0







α1
α2
·
·
·

αp




= −




r1
r2
·
·
·

rp




(32)

The p � p correlation matrix of the left term has the form of
Ai =

p−|i|∑
j=0

α jα j+|i|′ , α0 = 1 i = 0,±1, . . .,± p (35)

a Toeplitz matrix, which is symmetrical, and has the same
values along the lines parallel to the diagonal. This type of Furthermore, 
2 is the scaling factor for the magnitude of
equation is called a normal equation or a Yule–Walker equa- spectral density, and p is the number of poles necessary
tion. Since the positive definiteness of the correlation matrix for approximating the actual spectral density. Here, a pair
is guaranteed by the definition of the correlation function, an of conjugate poles is counted as two separate poles.
inverse matrix exists for the correlation matrix. Solving the
equation then permits ��i� to be obtained. On the other hand,

Assumption 2 corresponds to the AR process described inthe positive definiteness of the coefficient matrix is not neces-
the previous section. That is, the signal �xt�, exhibiting thesarily guaranteed in the covariance method.
spectral density of Eq. (33), satisfies the relationship of Eq.The equations for the covariance and correlation methods
(16) in the time domain. This correspondence can be under-can be efficiently solved by the Cholesky decomposition
stood if one traces back from Eq. (23) to Eq. (16).method and by Levinson–Durbin’s recursive solution meth-

Zeros are not included in the hypothesized spectral densityods, respectively. Levinson–Durbin’s method is equivalent to
for two reasons. First, the human auditory organs are sensi-the PARCOR (partial autocorrelation) coefficient extraction
tive to poles and insensitive to steep spectral valleys. Second,process which will be presented in the section entitled
removing zeros simplifies as well as facilitates the mathemat-‘‘PARCOR Analysis.’’ Although the covariance and autocorre-
ical process and the parameter extraction procedure.lation methods give almost the same results when �xt� is long

��i� p
i�1 values obtained by maximum likelihood spectral es-(N � 1) and stationary, their results differ when �xt� is short

timation are actually equal to the values derived by the auto-and features temporal variations.
correlation method. This means that linear predictive analy-In linear system identification in modern control theory,
sis employing the autocorrelation method and maximumthe process exemplified by Eq. (16) is called the autoregressive
likelihood spectral estimation, respectively, solve the same(AR) process, in which �t and xt are the system input and out-
passive linear system (acoustic characteristics of the vocalput, respectively. This system is also referred to as the all-

pole model since it has an all-pole system function. tract, including the source and radiation characteristics) in
the time domain and frequency domain, respectively. The

Maximum Likelihood Spectral Estimation maximum likelihood spectral estimation method is equivalent
to the process of adjusting the coefficients to minimize theFormulation of Maximum Likelihood Spectral Estimation. Max-
output power 
2 when the input signal is passed through animum likelihood estimation is the method used to estimate
adjustable pth-order inverse filter. Hence, this method is of-parameters which maximize the likelihood based on the ob-
ten referred to as the inverse filtering method (14).served values. Here, the likelihood is the probability of occur-

rence of the actual observations (the speech samples) under
the presumed parameter condition. The maximum likelihood Physical Meaning of Maximum Likelihood Spectral Estima-
method is better than any other estimation method in the tion. In spectral matching using the maximum likelihood
sense that the variance of the estimated value is minimized method, the matching error for neglecting a local valley in
when the sample size is sufficiently large. Ŝ(
) is evaluated as being smaller than that for neglecting a

In order to accomplish maximum likelihood spectral esti- local peak having the same shape. The nonuniform weighting
mation, let us make two assumptions for the speech wave

in the maximum likelihood method is preferred over uniform(11):
weighting since the peaks play a dominant role in the percep-
tion of voiced speech.1. The sample value xt can be regarded as the sample de-

The poles of the spectral envelope, zi (i � 1, 2, . . ., p), canrived from a stationary Gaussian process characterized
be obtained as roots of the equationby the power spectral density S(
).

2. The spectral density S(
) is represented by an all-pole
polynomial spectral density function of the form

1 +
p∑

i=1

αiz
−i = 0 (36)

in which complex poles correspond to quadrature resonances.
Their resonance frequencies and bandwidths are given by the
equations

Fi = arg zi

2π
T
[Hz] (37)

S(λ) = σ 2

2π

1∣∣∏p
i=1(1 − z/zi)

∣∣2
= σ 2

2π

1∣∣1 +∑p
i=1 αiz−i

∣∣2
= σ 2

2π

1
A0 + 2

∑p
i=1 Ai cos iλ

(33)
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and Estimation’’) are also made for the speech wave. When the
prediction errors for the linear prediction of xt and xt�m using
the sampled values �xt�i�m�1

i�1 are written asBi = log |zi|
π
T

[Hz] (38)

where �T is the sampling period. The formants can be ex- ε(m−1)

f t =
m−1∑
i=0

α(m−1)

i xt−i (41)
tracted by selecting the poles whose bandwidth-to-frequency
ratios are relatively small.

and

Source Parameter Estimation from Residual Signals

Let us consider the spectral fine structure of the residual sig- ε(m−1)

bt =
m∑

i=1

β(m−1)

i xt−i (42)

nal

the PARCOR (partial autocorrelation) coefficient km between
xt and xt�m is defined byεt = xt − x̂t =

p∑
i=0

αixt−i (39)

Since the fine structure is obtained by inverse-filtering the
short-term spectrum of input speech, Ŝ(
), using the spectral

km =
E{ε(m−1)

f t
ε(m−1)

bt
}

[E(ε(m−1)

f t
)2}E{(ε(m−1)

bt
)2}]1/2

(43)

envelope S(
), it is almost flat along the frequency axis and
This equation means that the PARCOR coefficient is theexhibits a harmonic structure for periodic speech. Therefore,

correlation between the forward prediction error �(m�1)
ft and thethe autocorrelation for the residual signal, called the modified

backward prediction error �(m�1)
bt (11). The definitional conceptautocorrelation function, produces large correlation values at

behind the PARCOR coefficient is presented in block diagramthe delays having the integer ratio of the fundamental period
form in Fig. 8. Since the prediction errors, �(m�1)

ft and �(m�1)
bt , arefor voiced speech, whereas no specific correlation is demon-

obtained after removing the linear effect of m sample valuesstrated for unvoiced speech (11).
between xt and xt�m from these sample values, km representsIn this way, the vocal source parameters can be obtained
the pure or partial correlation between xt and xt�m.using the modified autocorrelation function regardless of the

When Eqs. (41) and (42) are put into Eq. (43), the PARCORspectral envelope shape. The modified autocorrelation func-
coefficient sequence km (m � 1, 2, . . ., p) can be written astion can be easily calculated by the Fourier expansion of

Ŝ(
)/S(
) as follows:

km =
∑m−1

i=0 α(m−1)

i
rm−i∑m−1

i=0 α(m−1)

i
ri

= wm−1

um−1

(44)

where ri is the short-term autocorrelation function for the
speech wave. k1 is equal to r1—that is, to the first-order auto-

γτ = 1
2π

∫ π

−π

Ŝ(λ)

S(λ)
cos τλ dλ

= 1
σ 2

∫ π

−π

Ŝ(λ)

p∑
s=−p

As cos(τ − s)λ dλ

= 1
Nσ 2

p∑
s=−p

Asrτ−s

(40)

correlation coefficient. This is also clear from the definition
of km.

where As is a correlation function of linear predictor coeffi- Using Eq. (44) and the fact that the prediction coefficients
cients as previously defined by Eq. (35). Equation (40) means ��(m�1)

i �m�1
i�0 and ��(m�1)

i �m
i�1 constitute the solutions of the simulta-

that 	� can be calculated by the convolution of the short-term neous equations
autocorrelation function and �As� p

s�1 for input speech, followed
by normalization using N
2. 	� can also be obtained by di-
rectly calculating the correlation function for �t using Eq. (39).

m−1∑
i=0

α(m−1)

i ri− j = 0, α(m−1)

0 = 1 ( j = 1, 2, . . ., m − 1) (45)
In the course of pitch extraction, low-pass filtering is

widely applied to speech waves or residual signals for improv-
anding the resolution of the extracted pitch period. Low-pass fil-

tering is effective for removing the influence of high-order for-
mants and for compensating for the insufficiency of the time
resolution arising in the autocorrelation function. The latter

m∑
i=1

β(m−1)

i ri− j = 0, β(m−1)
m = 1 ( j = 1,2, . . ., m − 1) (46)

effect is especially important for pitch extraction using this
modified autocorrelation function. The double-period pitch er- the following recursive equations can be obtained (m � 1, 2,
ror due to the time resolution insufficiency can be consider- . . ., p):
ably minimized by employing low-pass filtering.

PARCOR Analysis

Formulation of PARCOR Analysis. The same two assump-
tions made for the maximum likelihood estimation (see sec-
tion entitled ‘‘Formulation of Maximum Likelihood Spectral

α(m)

i = α(m−1)

i − kmβ(m−1)

i , α(m−1)
m = 0,

i = 1, 2, . . ., m

β(m)

i = β(m−1)

i−1 − kmα(m−1)

i−1 , β(m−1)

0 = 0

(i = 1, 2, . . ., m + 1)

(47)

um = um−1(1 − k2
m)



SPEECH ANALYSIS 121

Figure 8. Definition of PARCOR coeffi-
cients. The PARCOR coefficient is the cor-
relation between the forward prediction
error �(m�1)

ft and the backward prediction

bt
(m – 1)

(m – 1)

xt – m
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Additionally, the following equation is obtained from Eqs. (45) Am(D) and Bm(D) as
and (46):

β(m−1)

i = α(m−1)

m−i , i = 1, 2, . . ., m − 1 (48) Am(D) =
m∑

i=0

α(m)

i Di (51)

Based on these results, the PARCOR coefficients �km�p
m�1 and

and linear predictor coefficients ��m�p
m�1 are obtained from

�ri�p
i�1 through the flowchart given in Fig. 9 by using Eqs. (44)

and (47). This iterative method is equivalent to Levison– Bm(D) =
m+1∑
i=1

β(m)

i Di (52)

Durbin’s recursive solution for simultaneous linear equations.
The numbers of multiplications, summations, and divisions

where D is the delay operator such that Dixt � xt�i. Equations
necessary for this computation are roughly p(p � 1), p(p �

(41) and (42) can then be written as
1), and p, respectively. When these computations are done us-
ing a short word length, the truncation error in the computa-
tion accumulates as the analysis progresses. In the iteration

ε(m−1)

f t = Am−1(D)xt (53)

process, each km (m � 1, 2, . . ., p) is obtained one by one,
andwhereas the �m values change at every iteration. Finally, �m

values are obtained as
ε(m−1)

bt = Bm−1(D)xt (54)
αm = α(p)

m , 1 ≤ m ≤ p (49)
From Eq. (47), we can arrive at the recursive equations

Since the normalized mean square error �2 is equal to up

from its definition, �2 can be calculated using PARCOR coef- Am(D) = Am−1(D) − kmBm−1(D) (55)
ficients, instead of linear predictor coefficients, from

and

Bm(D) = D(Bm−1(D) − kmAm−1(D)) (56)
σ 2 =

p∏
m=1

(1 − k2
m) (50)

This equation is obtained from Eq. (47). Based on Eqs. (44), (53), (54), (55), and (56), the PARCOR
coefficients �km� can subsequently be produced directly fromIn order to derive �km� p

m� 1 directly from the signal �xt� let us
define the forward and backward prediction error operators the speech wave xt using a cascade connection of variable pa-
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Relationship Between PARCOR and LPC Coefficients. If either
one of the set of �km� p

m�1 or ��m� p
m�1 is given, the other can be

obtained by recursive computations. For example, when
�km� p

m�1 are given, ��m� p
m�1 are derived by recursive computa-

tions (m � 1, 2, . . ., p) using a part of Levinson–Durbin’s
solution:

α(m)
m = −km

α(m)

i = α(m−1)

i − kmα(m−1)

m−i , 1 ≤ i ≤ m − 1
(57)

On the other hand, �km� p
m�1 can be drawn from ��m� p

m�1 using
the recursive computations in the opposite direction (m � p,
p � 1, . . ., 2, 1) as indicated below, where the initial condi-
tion is �(p)

m � �m (1 � m � p):

km = −α(m)
m

α(m−1)

i =
α(m)

i
− α(m)

m α(m)

m−i

1 − k2
m

, 1 ≤ i ≤ m − 1
(58)

Line Spectrum Pair (LSP) Analysis

As with PARCOR analysis, LSP analysis is based on the all-
pole model. The PARCOR coefficients are essentially parame-
ters operating in the time domain as are the autocorrelation
coefficients, whereas the LSPs are parameters functioning in
the frequency domain. Therefore, the LSP parameters are ad-
vantageous in that the distortion they produce is smaller than
that of the PARCOR coefficients even when they are roughly
quantized and linearly interpolated.

The polynomial expression for z, which is the denominator
of the all-pole model, satisfies the following recursive equa-
tions, as previously demonstrated in Eqs. (55) and (56):

Am(z) = Am−1(z) − kmBm−1(z) (59)

m

i = 0

Entry

Initialization

α α

km
 = wm–1 / um–1

um
 = um–1 (1-km

2)

i
(m) =   i

(m-1) – km   m – i
(m – 1)

(i= 1, 2,...,m)

0
(m) =1,   m + 1 

(m) = 0

α

α α

α   α

  0
(0) =1,    1

(0) = 0,
w0

 = r1, u0
 = 1,

m = 1

m = p

wm =  Σ α rm + 1 – i
(m)
i

m = m + 1

Return

yes

no

andFigure 9. Flowchart for calculating �km� p
m�1 and ��m� p

m�1 from �ri� p
i�1.

This iterative method is equivalent to Levinson-Durbin’s recursive
solution of simultaneous linear equations. Bm(z) = z−1(Bm−1(z) − kmAm−1(z)) (60)

where A0(z) � 1 and B0(z) � z�1 (initial conditions).
Let us assume that Ap(z) is given; and represent two

Ap�1(z) types, P(z) and Q(z), under the conditions kp�1 � 1 andrameter digital filters (partial correlators), each of which in-
kp�1 � �1, respectively. Then a pair of delta function-like res-cludes a correlator as indicated in Fig. 10(a). Since E�(�(m�1)

ft )2�
onance characteristics (a pair of line spectra) which corre-� E�(�(m�1)

bt )2�, the correlator can be realized by the structure
spond to each boundary condition at the glottis are obtained.indicated in Fig. 10(b), which consists of square, addition,
The number of resonances are 2p.subtraction, and division circuits and low-pass filters.

From Eqs. (59) and (60), P(z) and Q(z) can be representedThe process of extracting PARCOR coefficients using the
aspartial correlators involves successively extracting and re-

moving the correlations between adjacent samples. This is an
P(z) = Ap(z) − Bp(z) (61)inverse filtering process which flattens the spectral envelope

successively. Therefore, when the number of partial correla-
andtors p is large enough, the correlation between adjacent sam-

ples, which corresponds to the overall spectral envelope infor- Q(z) = Ap(z) + Bp(z) (62)
mation, is almost completely removed by passing the speech
wave through the partial correlators. Consequently, the out- Although P(z) and Q(z) are both (p � 1)st-order polynomial
put of the final stage—namely, the residual signal—includes expressions, P(z) has inversely symmetrical coefficients
only the correlation between the distant samples which re- whereas Q(z) has symmetrical coefficients. Using Eqs. (59)
lates to the source (pitch) information. Hence, the source pa- through (62), we get
rameters can be extracted from the autocorrelation function
for the residual signal—in other words, from the modified au-
tocorrelation function.

Ap(z) = P(z) + Q(z)

2
(63)
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Figure 10. (a) PARCOR coefficient extraction circuit constructed by cascade connection of par-
tial autocorrelators and (b) structure of each partial autocorrelator. The PARCOR coefficients
�km� p

m�1 can be produced directly from the speech wave �xt� using the cascade connection of vari-
able parameter digital filters (partial autocorrelators).

and as

0 < ω1 < ω2 < · · · < ωp−1 < ωp < π (67)

Even-suffixed ��i� are proved to separate each element of

Bp(z) = z−(p+1)Ap(z−1)

= z−(p+1) + z−pα1 + · · · + z−1αp
(64)

odd-suffixed ��i�, and vice versa. In other words, even-suf-
fixed ��i� and odd-suffixed ��i� are interlaced. Under the condi-If p is assumed to be even, P(z) and Q(z) are factorized as
tion that p is odd, the LSP is obtained in the same way.

Using Eq. (63), the power transmission function for H(z)
can be represented as

P(z) = (1 − z−1)
∏

i=2,4,...,p

(1 − 2z−1 cos ωi + z−2) (65)

and

Q(z) = (1 + z−1)
∏

i=1,3,...,p−1

(1 − 2z−1 cos ωi + z−2) (66)

The factors 1 � z�1 and 1 � z�1 are found by calculating P(1)
and Q(�1) after putting Eq. (64) into Eqs. (65) and (66). The
coefficients ��i� which appear in the factorization of Eqs. (65)
and (66) are referred to as LSP parameters. ��i� are ordered

|H(e− jω )|2 = 1
|Ap(e− jω)|2

= 4|P(e− jω) + Q(e− jω)|−2

= 21−p

{
sin2 ω

2

∏
i=2,4,...,p

(cos ω − cos ωi)
2

+ cos2 ω

2

∏
i=1,3,...,p−1

(cos ω − cos ωi )
2

}−2

(68)
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Figure 11. Mutual relationships between parameters based on all-pole spectrum modeling
(LPC modeling).

The first term in braces approaches 0 when � approaches 0 Then, by replacing (z � z�1)/2�z�exp(�j�) � cos � with x, the
equations P(z)/(1 � z�1) � 0 can be solved as a pair ofor one of the ��i� (i � 2, 4, . . ., p), and the second term ap-

proaches 0 when � approaches � or one of the ��i� (i � 1, 3, (p/2)th-order algebraic equations with respect to x using
the Newton iteration method.. . ., p � 1). Therefore, when two LSP parameters, �i and

�j, are close together and when � approaches both of them, 2. DFT for the coefficients of the equations. The values of
the gain of H(z) becomes large and resonance occurs. Strong P(z) and Q(z) at zn � e�jn�/N (n � 0, . . ., N) are first
resonance occurs at frequency � when two or more �i’s are obtained through the DFT using the coefficients of P(z)
concentrated near �. That is, the LSP method represents the and Q(z). Zeros can then be estimated by the interpola-
speech spectral envelope through a distribution density of p tion of two points which produce a zero between them.
discrete frequencies ��i�. The procedure for searching for the zeros is largely re-

Either of the following methods can be used to obtain the duced using the relationship 0 � �1 � �2 � � � � � �p
zeroes for P(z) and Q(z) with respect to z�1 after deriving the � �. A value between 64 and 128 is considered large
coefficients for Ap(z)—that is, the linear predictor coefficients enough for N.
��i�.

Mutual Relationships between LPC Parameters
1. Root finding in algebraic quations. Equations (65) and

The mutual relationships between each parameter obtained(66) can be transformed into
based on all-pole spectral modeling (LPC modeling) are indi-
cated in Fig. 11 (16). For the parameters such as log-area
ratios and CSM parameters, please refer to Furui (17).

The relationship existing between the autocorrelation
function for the impulse response of the all-pole system r̃	 and

m∏
j=1

(1−2z−1 cos ω j +z−2) = (2z−1)m
m∏

j=1

(
z+z−1

2
−cos ω j

)
(69)
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��i� p
i�0 can be expressed as

p∑
i=0

αir̃|i− j| = 0, j ≥ 1 (70)

r̃	, which is often called the LPC correlation function, agrees
with the autocorrelation function for the signal r	 in the range
of 	 � 1 to p.
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