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Figure 1. Speech processing.

is a diverse field with many applications. Figure 1 shows a
few of these areas and how speaker recognition relates to the
rest of the field.

Speaker recognition encompasses verification and identifi-
cation. Automatic speaker verification (ASV) is the use of a
machine to verify a person’s claimed identity from his or her
voice. The literature abounds with different terms for speaker
verification, including voice verification, speaker authentica-
tion, voice authentication, talker authentication, and talker
verification. In automatic speaker identification (ASI), there
is no a priori identity claim, and the system decides who the
person is, what group the person is a member of, or (in the
open-set case) whether the person is unknown. General over-
views of speaker recognition have been given by Atal (1), Dod-
dington (2), Furui (3), O’Shaughnessy (4), Rosenberg (5), Ro-
senberg and Soong (6), and Sutherland and Jack (7).

Speaker verification is defined as deciding if a speaker is
who he or she claims to be. This is different than the speaker
identification problem, which is deciding if a speaker is a spe-
cific person or is among a group of persons. In speaker verifi-
cation, a person makes an identity claim (e.g., entering an
employee number or presenting his smart card). In text-de-
pendent recognition, the phrase is known to the system, and
it can be fixed or prompted (visually or orally). The claimant
speaks the phrase into a microphone. This signal is analyzed
by a verification system that makes the binary decision to
accept or reject the user’s identity claim or possibly to report
insufficient confidence and request additional input before
making the decision.

A typical ASV setup is shown in Fig. 2. The claimant, who
has previously enrolled in the system, presents an encrypted
smart card containing identification information. The claim-
ant then attempts to be authenticated by speaking a
prompted phrase(s) into the microphone. There is generally a
tradeoff between accuracy and test-session duration. In addi-
tion to the voice itself, ambient room noise and delayed ver-

SPEAKER RECOGNITION sions of the voice enter the microphone via reflective acoustic
surfaces. Prior to a verification session, users must enroll in

The focus of this article is on facilities and network access- the system (typically under supervised conditions). During
this enrollment, voice models are generated and stored (possi-control applications of speaker recognition. Speech processing

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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PROBLEM FORMULATION

Speech is a complicated signal produced as a result of several
transformations occurring at several different levels: seman-
tic, linguistic, articulatory, and acoustic. Differences in these
transformations appear as differences in the acoustic proper-
ties of the speech signal. Speaker-related differences are a re-
sult of a combination of anatomical differences inherent in
the vocal tract and the learned speaking habits of different
individuals. In speaker recognition, all these differences can
be used to discriminate among speakers.

Generic Speaker Verification

The general approach to ASV consists of five steps: digital
speech data acquisition, feature extraction, pattern matching,
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decision acceptance/rejection, and enrollment to generate
speaker reference models. A block diagram of this procedureFigure 2. Typical speaker verification setup.
is shown in Fig. 3. Feature extraction maps each interval of
speech to a multidimensional feature space. (A speech inter-

bly on a smart card) for use in later verification sessions. val typically spans 10 ms to 30 ms of the speech waveform
There is also generally a tradeoff between accuracy and the and is referred to as a frame of speech.) This sequence of fea-
duration and number of enrollment sessions. ture vectors xi is then compared to speaker models by pattern

Many factors can contribute to verification and identifica- matching. This results in a match score zi for each vector or
tion errors. Table 1 lists some of the human and environmen- sequence of vectors. The match score measures the similarity
tal factors that contribute to these errors, a few of which are of the computed input feature vectors to models of the claimed
shown in Fig. 2. These factors are generally outside the scope speaker or feature vector patterns for the claimed speaker.
of algorithms or are better corrected by means other than al- Last, a decision is made either to accept or to reject the claim-
gorithms (e.g., better microphones). However, these factors ant according to the match score or sequence of match scores,
are important because, no matter how good a speaker recogni- which is a hypothesis-testing problem.
tion algorithm is, human error (e.g., misreading or misspeak- For speaker recognition, features that exhibit high speaker
ing) ultimately limits its performance. discrimination power, high interspeaker variability, and low

intraspeaker variability are desired. Many forms of pattern
matching and corresponding models are possible. Pattern-MOTIVATION
matching methods include dynamic time warping (DTW), hid-
den Markov modeling (HMM), artificial neural networks, andASV and ASI are probably the most natural and economical
vector quantization (VQ). Template models are used in DTW,methods for solving the problems of unauthorized use of com-
statistical models are used in HMM, and codebook models areputer and communications systems and multilevel access con-
used in VQ.trol. With the ubiquitous telephone network and microphones

bundled with computers, the cost of a speaker recognition sys-
tem might only be for software. OVERVIEW

Biometric systems automatically recognize a person using
distinguishing traits (a narrow definition). Speaker recogni- The purpose of these introductory remarks is to present a
tion is a performance biometric (i.e., you perform a task to general framework and motivation for speaker recognition, an
be recognized). Your voice, like other biometrics, cannot be overview of the entire article, and a presentation of previous
forgotten or misplaced, unlike knowledge-based (e.g., pass- work in speaker recognition.
word) or possession-based (e.g., key) access control methods. The section entitled ‘‘Speech Processing’’ contains an over-
Speaker-recognition systems can be made somewhat robust view of speech processing, including speech signal acquisition,
against noise and channel variations (8,9), ordinary human the database used in later experiments, speech production,
changes (e.g., time-of-day voice changes and minor head linear prediction (LP), transformations, and the cepstrum.
colds), and mimicry by humans and tape recorders (10). The section entitled ‘‘Feature Selection and Measures’’ pre-

sents feature selection, the divergence measure, and the
Bhattacharyya distance. This section is highlighted by the de-
velopment of the divergence shape measure and the Bhatta-
charyya distance shape. The next section introduces pattern
matching. It is followed by a section that presents classifica-
tion, decision theory, and receiver operating characteristic
(ROC) curves. The section entitled ‘‘A New Speaker Recogni-
tion System’’ describes a simple, but effective, speaker-recog-
nition algorithm. The section entitled ‘‘Performance’’ demon-
strates the performance of various speaker-recognition
algorithms, and the last section summarizes this article.

Table 1. Sources of Verification Error

Misspoken or misread prompted phrases
Extreme emotional states (e.g., stress or duress)
Time varying (intra- or intersession) microphone placement
Poor or inconsistent room acoustics (e.g., multipath and noise)
Channel mismatch (e.g., using different microphones for enrollment

and verification)
Sickness (e.g., head colds can alter the vocal tract)
Aging (the vocal tract can drift away from models with age)
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Figure 3. Generic speaker verification
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system.

PREVIOUS WORK The general trend shows accuracy improvement over time
with larger tests (enabled by larger databases), thus increas-

There is considerable speaker recognition activity in industry, ing our confidence in the performance measurements. For
high-security applications, these speaker recognition systemsnational laboratories, and universities. Among the institu-

tions that have researched and designed several generations would need to be used in combination with other authentica-
tors (e.g., smart card). The performance of current speakerof speaker-recognition systems are AT&T (and its deriva-

tives); Bolt, Beranek and Newman (BBN); the Dalle Molle In- recognition systems, however, makes them suitable for many
practical applications. There are over a dozen commercialstitute for Perceptual Artificial Intelligence (IDIAP, Switzer-

land); ITT Industries (ITT); Massachusetts Institute of ASV systems, including those from ITT, Lernout & Hauspie,
T-NETIX, Veritel, and Voice Control Systems. Perhaps theTechnology Lincoln Laboratory (MIT-LL); National Tsing

Hua University (Taiwan); Nagoya University (Japan); Nippon largest scale deployment of any biometric to date is Sprint’s
Voice FONCARD, which uses TI’s voice-verification engine.Telegraph and Telephone (NTT, Japan); Rensselaer Polytech-

nic Institute (RPI); Rutgers University; and Texas Instru- Speaker verification applications include access control,
telephone banking, and telephone credit cards. The account-ments (TI). The majority of ASV research is directed at veri-

fication over telephone lines. Sandia National Laboratories, ing firm of Ernst and Young estimates that high-tech com-
puter thieves in the United States steal $3 to $5 billion annu-the National Institute of Standards and Technology (11), and

the National Security Agency (12) have conducted evaluations ally. Automatic speaker recognition technology could
substantially reduce this crime by reducing these fraudulentof speaker-recognition systems.

Table 2 shows a sampling of the chronological advance- transactions.
As automatic-speaker verification systems gain wide-ment in speaker verification. The following terms are used to

define the columns in Table 2: ‘‘Source’’ refers to a citation in spread use, it is imperative to understand the errors made by
these systems. There are two types of errors: the false accep-the references (13–26), ‘‘Org’’ is the company or school where

the work was done, ‘‘Features’’ are the signal measurements tance of an invalid user (FA or Type I) and the false rejection
of a valid user (FR or type II). It takes a pair of subjects to(e.g., cepstrum), ‘‘Method’’ is the heart of the pattern-match-

ing process, ‘‘Input’’ is the type of input speech (laboratory, make a false acceptance error: an impostor and a target. Be-
cause of this hunter and prey relationship, in this work, theoffice quality, or telephone), ‘‘Text’’ indicates whether text-de-

pendent or text-independent mode of operation is used, ‘‘Pop’’ impostor is referred to as a wolf and the target as a sheep.
False acceptance errors are the ultimate concern of high-secu-is the population size of the test (number of people), and ‘‘Er-

ror’’ is the equal error percentage for speaker verification sys- rity speaker verification applications; however, they can be
traded off for false rejection errors.tems v or the recognition error percentage for speaker identi-

fication systems i given the specified duration of test speech After reviewing the methods of speaker recognition, a sim-
ple speaker recognition system will be presented. A databasein seconds. These data are presented to give a simplified gen-

eral view of past speaker-recognition research. The references of 186 people collected over a 3 month period was used in
closed-set speaker identification experiments. A speaker rec-should be consulted for important distinctions that are not

included [e.g., differences in enrollment, differences in cross- ognition system using methods presented here is practical to
implement in software on a modest personal computer. Thegender impostor trials, differences in normalizing ‘‘cohort’’

speakers (27), differences in partitioning the impostor and co- example system uses features and measures for speaker rec-
ognition based upon speaker discrimination criterion (the ul-hort sets, and differences in known versus unknown impos-

tors (12)]. It should be noted that it is difficult to make mean- timate goal of any recognition system). Experimental results
show that these new features and measures yield 1.1% closed-ingful comparisons between the text-dependent and the

generally more difficult text-independent tasks. Text-indepen- set speaker identification error on databases of 44 and 43 peo-
ple. The features and measures use long-term statistics baseddent approaches, such as Gish’s segmental Gaussian model

(28) and Reynold’s Gaussian Mixture Model (9), need to deal upon an information-theoretic shape measure between line
spectrum pair (LSP) frequency features. This new measure,with unique problems (e.g., sounds or articulations present in

the test material, but not in training). It is also difficult to the divergence shape, can be interpreted geometrically as the
shape of an information-theoretic measure called divergence.compare between the binary-choice verification task and the

generally more difficult multiple-choice identification task The LSPs were found to be very effective features in this di-
vergence shape measure.(2,29).
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Table 2. Selected Chronology of Speaker Recognition Progress

Source Org Features Method Input Text Pop Error

Atal (13) AT&T Cepstrum Pattern match Lab Dependent 10 i: 2%@0.5s
v: 2%@1s

Markel and STI LP Long-term Lab Independent 17 i: 2%@39s
Davis (14) statistics

Furui (15) AT&T Normalized Pattern match Telephone Dependent 10 v: 0.2%@3s
cepstrum

Schwartz et al. BBN LAR Nonparamet- Telephone Independent 21 i: 2.5%@2s
(16) ric pdf

Li and Wrench ITT LP, cepstrum Pattern match Lab Independent 11 i: 21%@3s
(17) i: 4%@10s

Doddington (2) TI Filter-bank DTW Lab Dependent 200 v: 0.8%@6s
Soong et al. AT&T LP VQ (size 64) Telephone 10 isolated 100 i: 5%@1.5s

(18) likelihood digits i: 1.5%@3.5s
ratio dis-
tortion

Higgins and ITT Cepstrum DTW likeli- Lab Independent 11 v: 10%@2.5s
Wohlford hood scoring v: 4.5%@10s
(19)

Attili et al. RPI Cepstrum, Projected Lab Dependent 90 v: 1%@3s
(20) LP, long-term

autocorr. statistics
Higgins et al. ITT LAR, LP- DTW Office Dependent 186 v: 1.7%@10s

(10) cepstrum likelihood
scoring

Tishby (21) AT&T LP HMM (AR Telephone 10 isolated 100 v: 2.8%@1.5s
mix) digits v: 0.8%@3.5s

Reynolds (22); MIT-LL Mel-cepstrum HMM (GMM) Office Dependent 138 i: 0.8%@10s
Reynolds v: 0.12%@10s
and Carlson
(23)

Che and Lin Rutgers Cepstrum HMM Office Dependent 138 i: 0.56%@2.5s
(24) i: 0.14%@10s

v: 0.62%@2.5s
Colombi et al. AFIT Cep, eng d HMM Office Dependent 138 i: 0.22%@10s

(25) cep, dd cep monophone v: 0.28%@10s
Reynolds (26) MIT-LL Mel- HMM (GMM) Telephone Independent 416 v: 11%/16%@3s

cepstrum, v: 6%/8%@10s
mel-d v: 3%/5%@30s
cepstrum matched/mis-

matched
handset

The following section contains an overview of digital signal proximately the Nyquist rate (half the sampling rate) before
sampling. The conditioned analog signal is then sampled toacquisition, speech production, speech signal processing, lin-

ear prediction, and mel cepstra. form a digital signal by an analog-to-digital converter (ADC).
Today’s ADCs for speech applications typically sample with
12 to 16 bits of resolution at 8,000 to 20,000 samples per sec-

SPEECH PROCESSING
ond. Oversampling is commonly used to allow a simpler ana-
log antialiasing filter and to control the fidelity of the sampled

Speech processing extracts the desired information from a
signal precisely (e.g., sigma–delta converters).

speech signal. To process a signal by a digital computer, the
In local speaker verification applications, the analog chan-signal must be represented in digital form so that it can be

nel is simply the microphone, its cable, and analog signal con-used by a digital computer.
ditioning. Thus, the resulting digital signal can be very high
quality, lacking distortions produced by transmission of ana-Speech Signal Acquisition
log signals over long-distance telephone lines.

Initially, the acoustic sound pressure wave is transformed
into a digital signal suitable for voice processing. A micro- YOHO Speaker Verification Corpus
phone or telephone handset can be used to convert the acous-

The work presented here is based on high-quality signals fortic wave into an analog signal. This analog signal is condi-
benign-channel speaker verification applications. The pri-tioned with antialiasing filtering (and possibly additional
mary database for this work is known as the YOHO Speakerfiltering to compensate for any channel impairments). The

antialiasing filter limits the bandwidth of the signal to ap- Verification Corpus, which was collected by ITT under a U.S.
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government contract. The YOHO database was the first large-
scale, scientifically controlled and collected, high-quality
speech database for speaker verification testing at high con-
fidence levels. Table 3 describes the YOHO database (30).
YOHO is available from the Linguistic Data Consortium (Uni-
versity of Pennsylvania) and test plans have been developed
for its use (12). This database already is in digital form, emu-
lating the third-generation Secure Terminal Unit’s (STU-III)
secure voice telephone input characteristics, so the first signal
processing block of the verification system in Fig. 3 (signal
conditioning and acquisition) is taken care of.

In a text-dependent speaker verification scenario, the
phrases are known to the system (e.g., the claimant is
prompted to say them). The syntax used in the YOHO data-
base is ‘‘combination lock’’ phrases. For example, the prompt
might read: ‘‘Say: twenty-six, eighty-one, fifty-seven.’’

YOHO was designed for US government evaluation of
speaker verification systems in ‘‘office’’ environments. In addi-
tion to office environments, there are enormous consumer
markets that must contend with noisy speech (e.g., telephone
services) and far-field microphones (e.g., computer access).

Speech Production
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There are two main sources of speaker-specific characteristics Figure 4. Human vocal system. Reprinted with permission from
of speech: physical and learned. Vocal tract shape is an impor- Springer-Verlag (31).
tant physical distinguishing factor of speech. The vocal tract
is generally considered to be the speech production organs

Voice verification systems typically use features derivedabove the vocal folds. As shown in Fig. 4 (31), this includes
only from the vocal tract. As seen in Fig. 4, the human vocalthe laryngeal pharynx (beneath epiglottis), oral pharynx (be-
mechanism is driven by an excitation source, which also con-hind the tongue, between the epiglottis and velum), oral cav-
tains speaker-dependent information. The excitation is gener-ity (forward of the velum and bounded by the lips, tongue,
ated by airflow from the lungs, carried by the trachea (alsoand palate), nasal pharynx (above the velum, rear end of na-
called the wind pipe) through the vocal folds (or the arytenoidsal cavity), and the nasal cavity (above the palate and ex-
cartilages). The excitation can be characterized as phonation,tending from the pharynx to the nostrils). An adult male vocal
whispering, frication, compression, vibration, or a combina-tract is approximately 17 cm long (31).
tion of these.The vocal folds (formerly known as vocal cords) are shown

Phonated excitation (phonation) occurs when airflow isin Fig. 4. The larynx is composed of the vocal folds, the top of
modulated by the vocal folds. When the vocal folds are closed,the cricoid cartilage, the arytenoid cartilages, and the thyroid
pressure builds up underneath them until they blow apart.cartilage (also known as the Adam’s apple). The vocal folds
Then the folds are drawn back together again by tension,are stretched between the thyroid cartilage and the arytenoid
elasticity, and the Bernoulli effect. This pulsed air stream,cartilages. The area between the vocal folds is called the
arising from the oscillating vocal folds, excites the vocal tract.glottis.

As the acoustic wave passes through the vocal tract, its The frequency of oscillation is called the fundamental fre-
frequency content (spectrum) is altered by the resonances of quency, and it depends upon the length, tension, and mass of
the vocal tract. Vocal tract resonances are called formants. the vocal folds. Thus, fundamental frequency is another dis-
Thus, the vocal tract shape can be estimated from the spectral tinguishing characteristic that is physically based.
shape (e.g., formant location and spectral tilt) of the voice Whispered excitation is produced by airflow rushing
signal. through a small triangular opening between the arytenoid

cartilages at the rear of the nearly closed vocal folds. This
results in turbulent airflow, which has a wideband noise char-
acteristic (32).

Frication excitation is produced by constrictions in the vo-
cal tract. The place, shape, and degree of constriction deter-
mine the shape of the broadband noise excitation. As the con-
striction moves forward, the spectral concentration generally
increases in frequency. Sounds generated by frication are
called fricatives or sibilants. Frication can occur without pho-
nation (e.g., ‘‘s’’ as in sass) or with phonation (e.g., ‘‘z’’ as in
zoos).

Compression excitation results from releasing a completely
closed and pressurized vocal tract. This results in silence
(during pressure accumulation) followed by a short noise

Table 3. The YOHO Corpus

‘‘Combination lock’’ phrases (e.g., ‘‘twenty-six, eighty-one, fifty-
seven’’)

138 subjects: 106 males, 32 females
Collected with a STU-III electret-microphone telephone handset

over 3 month period in a real-world office environment
4 enrollment sessions per subject with 24 phrases per session
10 verification sessions per subject at approximately 3 day intervals

with 4 phrases per session
Total of 1380 validated test sessions
8 kHz sampling with 3.8 kHz analog bandwidth (STU-III like)
1.2 Gb of data
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burst. If the release is sudden, a stop or plosive is generated. imation ŝn, depending only on past output samples, is
If the release is gradual, an affricate is formed.

Vibration excitation is caused by air being forced through
a closure other than the vocal folds, especially at the tongue

ŝn = −
p∑

k=1

ak · sn−k (2)

(e.g., trilled ‘‘r’’).
This greatly simplifies the problem of estimating the ak be-Speech produced by phonated excitation is called voiced,
cause the source (i.e., the glottal input) and filter (i.e., thespeech produced by phonated excitation plus frication is
vocal tract) have been decoupled. The source un, which corre-called mixed voiced, and speech produced by other types of
sponds to the human vocal tract excitation, is not modeled byexcitation is called unvoiced. Because of the differences in the
these PCs. It is certainly reasonable to expect that somemanner of production, it’s reasonable to expect some speech
speaker-dependent characteristics are present in this excita-

models to be more accurate for certain classes of excitation tion signal (e.g., fundamental frequency). Therefore, if the ex-
than others. Unlike phonation and whispering, the places of citation signal is ignored, valuable speaker verification dis-
frication, compression, and vibration excitation are actually crimination information could be lost.
inside the vocal tract itself. This could cause difficulties for Defining the prediction error en (also known as the resid-
models that assume an excitation at the bottom end of the ual) as the difference between the actual value sn and the pre-
vocal tract. For example, the linear prediction model assumes dicted value ŝn yields
a vocal tract excited at a closed end. Phonation excitation is
the only one that approximates this assumption. Thus, it is
reasonable to use different models or different weighting for

en = sn − ŝn = sn +
p∑

k=1

ak · sn−k (3)

those regions of speech that violate any modeling assump-
Therefore, the prediction error en is identical to the scaled in-tions.
put signal G � un. Letting E represent the mean squared errorThe respiratory (thoracic area) plays a role in the reso-
(MSE),nance properties of the vocal system. The trachea is a pipe,

typically 12 cm long and 2 cm in diameter, made up of rings
of cartilage joined by connective tissue joining the lungs and
the larynx. When the vocal folds vibrate, there are resonances

E =
∑

n

e2
n =

∑
n

[
sn +

p∑
k=1

ak · sn−k

]2

(4)

above and below the folds. Subglottal resonances are largely
The minimum MSE criteria resulting fromdependent upon the properties of the trachea (33). Because

of this physiological dependence, subglottal resonances have
speaker-dependent properties.

∂E
∂ai

= 0,∨ i = 1, 2, . . ., p (5)
Other physiological speaker-dependent properties include

vital capacity (the maximum volume of air one can blow out is
after maximum intake), maximum phonation time (the maxi-
mum duration a syllable can be sustained), phonation quo-
tient (ratio of vital capacity to maximum phonation time), and

p∑
k=1

ak ·
∑

n

sn−ksn−i = −
∑

n

snsn−i ∨ i = 1,2, . . ., p (6)

glottal airflow (amount of air going through vocal folds). Be-
where the summation ranges on n have been intentionallycause sound and airflow are different, these dimensions can
omitted for generality. If the summation is of infinite extentbe difficult to acquire from the acoustic signal alone; however,
(or over the nonzero length of a finite extent window) (36), thePlumpe (34) has shown encouraging speaker identification re-
summations on s are the autocorrelations at lags i � k for thesearch using the glottal flow derivative waveform estimated
left sum and at lag i for the right sum. This results in thefrom the acoustic signal.
‘‘autocorrelation method’’ of LP analysis. (Other LP methods,Other aspects of speech production that could be useful for
such as covariance and Burg’s, arise from variations on win-discriminating between speakers are learned characteristics,
dowing, the extent of the signal, and whether the summationsincluding speaking rate, prosodic effects, and dialect (which
on s are one or two sided.) The time-averaged estimates of themight be captured spectrally as a systematic shift in for-
autocorrelation at lag � can be expressed as

mant frequencies).

Linear Prediction
Rτ =

N−1−τ∑
i=0

s(i) · s(i + τ ) (7)

The all-pole LP models a signal sn by a linear combination of The autocorrelation method yields the system of equations
its past values and a scaled present input (35) named after Yule’s pioneering all-pole modeling in sunspot

analysis and given by Eq. (8).

sn = −
p∑

k=1

ak · sn−k + G · un (1)

where sn is the present output, p is the prediction order, ak

are the model parameters called the predictor coefficients
(PCs), sn�k are past outputs, G is a gain scaling factor, and un

is the present input. In speech applications, the input un is
generally unknown, so it is ignored. Therefore, the LP approx-




R0 R1 R2 · · · Rp−1

R1 R0 R1
. . . Rp−2

R2 R1 R0
. . . Rp−3

...
. . .

. . .
. . .

...
Rp−1 Rp−2 Rp−3 · · · R0







a1

a2

a3

...
ap




= −




R1

R2

R3

...
Rp




(8)
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The LP model parameters we seek are ak. For a pth-order domain, the majority of energy lost in the PCs occurs in the
vicinity of these ‘‘pitch peaks.’’prediction, the speech signal is modeled by a p-dimensional

ak vector. As the Yule–Walker equation shows, this requires Features are constructed from the speech model parame-
ters [e.g., the ak shown in Eq. (12)]. These LP coefficients arethe computation of p � 1 autocorrelations and matrix inver-

sion. The matrix inversion problem is greatly simplified be- typically nonlinearly transformed into perceptually meaning-
ful domains suited to the application. Some feature domainscause of the symmetric Toeplitz autocorrelation matrix on the

left-hand side of Eq. (8), R � R�i�j�, and the form of the auto- useful for speech coding and recognition include reflection co-
efficients (RCs); log-area ratios (LARs) or arcsin of the RCs;correlation vector on the right, which are exploited by Dur-

bin’s recursive algorithm. This algorithm is the most efficient LSP frequencies, introduced by Itakura (37–39); and the LP
cepstrum (40).method known for solving this particular system of equations

(35). Note that in the process of solving for the predictor coef-
ficients ak of order p, the ak for all orders less than p are ob- Reflection Coefficients. If Durbin’s algorithm is used to

solve the LP equations, the reflection coefficients are the in-tained with their corresponding mean-square prediction er-
ror: MSEi � Ei/R0. In each recursion of Durbin’s algorithm, termediate ki variables in the recursion. The reflection coeffi-

cients can also be obtained from the LP coefficients using thethe prediction order is increased and the corresponding error
is determined; this can be monitored as a stopping criterion backward recursion (40)
on the prediction order p.

α(p)

j = aj

ki = α(i)
i

α(i−1)

j
=

α(i)
j

+ α(i)
i

· α(i)
i− j

1 − k2
i

∨ 1 ≤ j ≤ i − 1


 ∨ i = p, p − 1, . . ., 1

(13)

Log Area Ratios. The vocal tract can be modeled as an elec-
trical transmission line, a waveguide, or an analogous series
of cylindrical acoustic tubes. At each junction, there can be
an impedance mismatch or an analogous difference in cross-
sectional areas between tubes. At each boundary, a portion of

E0 = R0

ki = −
Ri +

i−1∑
j=1

a(i−1)

j Ri− j

Ei−1
∨1 ≤ i ≤ p

a(i)
i

= k1

a( j)
j

= a(i−1)

j
+ kia

(i−1)

t− j
∨1 ≤ j ≤ i − 1

Ei = (1 − k2
i )Ei−1




∨ i = 1,2, . . ., p

aj = a(p)

j ∨ 1 ≤ j ≤ p (9)

the wave is transmitted and the remainder is reflected (as-
Using the ak model parameters, Eq. (10) represents the suming lossless tubes). The reflection coefficients ki are the

fundamental basis of LP representation. It implies that any percentage of the reflection at these discontinuities. If the
signal is defined by a linear predictor and the corresponding acoustic tubes are of equal length, the time required for sound
LP error. Obviously, the residual contains all the information to propagate through each tube is equal (assuming planar
not contained in the PCs. wave propagation). Equal propagation times allow simple z

transformation for digital filter simulation. For example, a se-
ries of five acoustic tubes of equal lengths with cross-sectional
areas A0, A1, . . ., A5 could look like Fig. 5. This series of five

sn = −
p∑

k=1

ak · sn−k + en (10)

tubes represents a fourth-order system that might fit a vocal
tract minus the nasal cavity. Given boundary conditions, theFrom Eq. (1), the LP transfer function is defined as
reflection coefficients are determined by the ratios of the adja-
cent cross-sectional areas (40). For a pth-order system, the
boundary conditions given in Eq. (14) correspond to a closedH(z) ≡ S(z)

U (z)
≡ Z[sn]

Z[un]
(11)

glottis (zero area) and a large area following the lips

which yields

H(z) = G
1 + ∑p

k=1 akz−k
≡ G

A(z)
(12)

A0 = 0

Ap+1 
 Ap

ki = Ai+1 − Ai

Ai+1 + Ai
∨ i = 1, 2, . . ., p

(14)

where A(z) is known as the pth-order inverse filter.
LP analysis determines the PCs of the inverse filter A(z) Thus, the reflection coefficients can be derived from an acous-

tic tube model or an autoregressive model.that minimize the prediction error en in some sense. Typically,
the MSE is minimized because it allows a simple, closed-form If the speech signal is preemphasized prior to LP analysis

to compensate for the effects of radiation and the nonwhitesolution of the PCs. Minimizing MSE error tends to produce
a flat (band-limited white) magnitude spectrum of the error glottal pulse, then the resulting cross-sectional areas are of-

ten similar to the human vocal tract configuration used tosignal. Hence, the inverse filter A(z) is also known as a ‘‘whit-
ening’’ filter. produce the speech under analysis (40). They cannot be guar-

anteed to match, however, because of the nonuniquenessIf a voiced speech signal fits the model, then the residual
is an impulse train that repeats at the rate of vocal-fold vibra- properties of the vocal-tract configuration. For example, to

keep their lip opening small, ventriloquists exploit this prop-tion. Therefore, the maximum prediction errors (residual
peaks) occur at the vocal-fold vibration rate. (Many ‘‘pitch de- erty by compensating with the remainder of their vocal tract

configuration.tection’’ algorithms exploit this property.) Thus, in the time
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Figure 5. Acoustic tube model of speech
production.
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Narrow bandwidth poles result in �ki� � 1. An inaccurate For example, an eighth-order 8 kHz LP analysis of the
vowel /u/ (as in foot) had the predictor coefficients shown inrepresentation of these RCs can cause gross spectral distor-

tion. Taking the log of the area ratios results in more uniform Table 4. Evaluating the magnitude of the z transform of H(z)
at equally spaced intervals on the unit circle yields the follow-spectral sensitivity. The LARs are defined as the log of the

ratio of adjacent cross-sectional areas ing power spectrum having formants (vocal tract resonances
or spectral peaks) at 390, 870, and 3040 Hz (Fig. 6). These
resonance frequencies are in agreement with the Peterson
and Barney formant frequency data for the vowel /u/ (40).

Because the PCs are real, the Fundamental Theorem of

gi = log
[

Ai+1

Ai

]
= log

[
1 + ki

1 − ki

]
= 2 tanh−1 ki ∨ i = 1,2, . . ., p

(15)
Algebra guarantees that the roots of A(z), P(z), and Q(z) will
occur in complex conjugate pairs. Because of this conjugateArcsin Reflection Coefficients. To avoid the singularity of
property, the bottom half of the z plane is redundant. Thethe LARs at ki � 1 while retaining approximately uniform
LSPs at zero and � are always present by construction of Pspectral sensitivity, the arcsin of the RCs are a common
and Q. Therefore, the PCs can be represented by the numberchoice
of LSPs equal to the prediction order p and are represented
by the frequencies of the zeros of P and Q in the top-half zg′

i = sin−1 ki ∨ i = 1, 2, . . ., p (16)
plane (Fig. 7).

The LSPs satisfy an interlacing property of the zeros of theLine Spectrum Pair Frequencies. The LSPs are a representa-
P and Q polynomials, which holds for all minimum phasetion of the PCs of the inverse filter A(z), where the p zeros of
A(z) polynomials (39)A(z) are mapped onto the unit circle in the z plane through a

pair of auxiliary (p � 1)-order polynomials: P(z) (symmetric)
and Q(z) (antisymmetric) (39) 0 = ω(Q)

0 < ω(P)

1 < ω(Q)

2 < · · · < ω(P)

p−1 < ω(Q)
p < ω(P)

p+1 = π (18)

Each complex zero of A(z) maps into one zero in each P(z) and
Q(z). When the P(z) and Q(z) frequencies are close, it is likely
that the original A(z) zero was close to the unit circle, and a

A(z) = 1
2 [P(z) + Q(z)]

P(z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z) − z−(p+1)A(z−1)

(17)

formant is likely to be between the corresponding LSPs. Dis-
tant P and Q zeros are likely to correspond to wide bandwidth

where the LSPs are the frequencies of the zeros of P(z) and zeros of A(z) and most likely contribute only to shaping or
Q(z). By definition, a stable LP synthesis filter has all its spectral tilt. Figures 6 and 7 demonstrate this behavior.
poles inside the unit circle in the z plane. The corresponding
inverse filter is therefore minimum phase inverse because it

Mel-Warped Cepstrum
has no poles or zeros outside the unit circle. Any minimum
phase polynomial can be mapped by this transform to repre- The mel-warped cepstrum is a very popular feature domain

that does not require LP analysis. It can be computed as fol-sent each of its roots by a pair of frequencies (phases) with
unit magnitude. The LSP representation of the LP filter has lows: (1) window the signal, (2) take the fast Fourier trans-

form (FFT), (3) take the magnitude, (4) take the log, (5) warpa direct frequency-domain interpretation that is especially
useful in efficient (accurate and compact) coding and smooth- the frequencies according to the mel scale, and (6) take the

inverse FFT. The mel-warping transforms the frequency scaleing of the LP filter coefficients (41).

Table 4. Example of Eighth-Order Linear Predictor Coefficients for the Vowel /u/ as in ‘‘Foot’’

Power of z 0 �1 �2 �3 �4 �5 �6 �7 �8
Predictor 1 �2.346 1.657 �0.006 0.323 �1.482 1.155 �0.190 �0.059
coefficient
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tors. In this section, the selection of appropriate features is
discussed, along with methods to estimate (extract or mea-
sure) them. This is known as feature selection and feature ex-
traction.

Traditionally, pattern recognition paradigms are divided
into three components: feature extraction and selection, pat-
tern matching, and classification. Although this division is
convenient from the perspective of designing system compo-
nents, these components are not independent. The false de-
marcation among these components can lead to suboptimal
designs because they all interact in real-world systems.

In speaker verification, the goal is to design a system that
minimizes the probability of verification errors. Thus, the un-
derlying objective is to discriminate between the given
speaker and all others. A comprehensive review of the state
of the art in discriminant analysis is given in Gnanadesikan
and Kettenring (43).
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Figure 6. Frequency response for the vowel /u/.

Feature extraction is the estimation of variables, called a fea-
ture vector, from another set of variables (e.g., an observedto place less emphasis on high frequencies. It is based on the
speech signal time series). Feature selection is the transfor-nonlinear human perception of the frequency of sounds (42).
mation of these observation vectors to feature vectors. TheThe cepstrum can be considered as the spectrum of the log
goal of feature selection is to find a transformation to a rela-spectrum. Removing its mean reduces the effects of linear
tively low-dimensional feature space that preserves the infor-time-invariant filtering (e.g., channel distortion). Often, the
mation pertinent to the application, while enabling meaning-time derivatives of the mel cepstra (also known as delta cep-
ful comparisons to be performed using simple measures ofstra) are used as additional features to model trajectory infor-
similarity.mation. The cepstrum’s density has the benefit of being mod-

Although it might be tempting at first to select all the ex-eled well by a linear combination of Gaussian densities as
tracted features, the ‘‘curse of dimensionality’’ quickly be-used in the Gaussian Mixture Model (9). Perhaps the most
comes overwhelming (44). As more features are used, the fea-compelling reason for using the mel-warped cepstrums is that
ture dimensions increase, which imposes severe requirementsit has been demonstrated to work well in speaker recognition
on computation and storage in both training and testing. Thesystems (28) and, somewhat ironically, in speech recognition
demand for a large amount of training data to represent asystems (42), too.
speaker’s voice characteristics grows exponentially with theThe next section presents feature selection, estimation of
dimension of the feature space. This severely restricts themean and covariance, divergence, and Bhattacharyya dis-
usefulness of nonparametric procedures (no assumed underly-tance. It is highlighted by the development of the divergence
ing statistical model) and higher-order transforms.shape measure and the Bhattacharyya distance shape.

The traditional statistical methods to reduce dimensional-
ity, and avoid this curse, are principal component analysisFEATURE SELECTION AND MEASURES
and factor analysis. Principal component analysis seeks to
find a lower-dimensional representation that accounts forTo apply mathematical tools without loss of generality, the
variance of the features. Factor analysis seeks to find a lower-speech signal can be represented by a sequence of feature vec-
dimensional representation that accounts for correlations
among the features. In other disciplines, principal component
analysis is called the Karhunen–Loève expansion (KLE) or ei-
genvector orthonormal expansion. Because each eigenvector
can be ranked by its corresponding eigenvalue, a subset of the
eigenvectors can be chosen to minimize the MSE in represent-
ing the data. Although KLE is optimum for representing
classes with the same mean, it is not necessarily optimum for
discriminating between classes (45). Because speaker recogni-
tion is a discrimination problem, as opposed to a representa-
tion problem, we seek other means to reduce the dimensional-
ity of the data.

Linear transformation are capable of dividing the feature
space by a hyperplane. If data are linearly separable, then it
can be discriminated by a hyperplane. In the case of a two-

LP poles
P(z) zeros
Q(z) zeros 3   /2

0

π

/2π

π 0

dimensional feature space, the hyperplane collapses to a line.
As shown in Eq. (19), given a random variable x distributedFigure 7. LSP frequencies and LP poles in the z plane for the

vowel/u/. normally with mean �x and covariance Cx and an m � n
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transformation matrix A, p(x) � N(�x, Cx), y � Ax is an m- quired to determine probability of error (except for the equal
covariance case) (46).component feature vector and p(y) � N(A�x, ACxAT), where T

denotes matrix transpose To make the problem mathematically tractable, one ap-
proach is to select a feature set that exhibits low intraspeaker
variability and high interspeaker variability. A technique
that can be used to find good features is analysis of variance
(ANOVA), which involves measuring Fisher’s F-ratio, Eq.
(20), between the sample pdfs of different features. For
speaker verification, high F-ratios are desirable.

y = Ax

µµµy = E[y] = E[Ax] = AE[x]

= Aµµµx

Cy = E[(y − µµµy)(y − µµµy)
T ] = E[A(x − µµµx)(x − µµµx))

T ]

= E[A(x − µµµx)(x − µµµx)
T AT ] = AE[(x − µµµx )(x − µµµx)

T ]AT

= ACxAT

(19)

F = Variance of speaker means
Average intraspeaker variance

(20)

Thus, a linear transformation of a multivariate normal vector Unfortunately, ANOVA requires evaluating the F-ratio for
also has a normal density. Any linear combination of nor- many different combinations of features to be really useful.
mally distributed random variables is again normal. This can For example, two features with high individual F-ratios might
be used to tremendous advantage if the feature densities of be highly correlated and as a feature vector, less effective
the speakers are assumed to be normal. This allows us to than two features that individually have low F-ratios. The
lump all the other speaker probability density functions (pdfs) usefulness of the F-ratio as a discrimination measure is fur-
into a single, normal pdf. Thus, pairwise (two-class) discrimi- ther reduced if the classes are multimodal or if they have the
nators can be designed to separate the claimant speaker from same means. This is a fatal flaw with any criterion that is
other speakers. dominated by differences between class means. This will now

In the special case where the transformation is a unit be demonstrated.
length vector a, y � ax is a scalar that represents the projec-
tion of x onto a line in the direction of a. In general, ACxAT is Normal Density with Equal Means. The normal pdf is often
the variance of the projection of x onto the column space of a good approximation to real-world density functions. Classes
A. Thus, knowledge of the covariance matrix allows us to cal- will exhibit normal densities when each pattern of a class is
culate the dispersion of the data in any direction. a random vector formed by superposition of a random vector

In Fig. 8, two classes are represented by boxes and circles upon a nonrandom vector, where the superimposed random
in a two-dimensional feature space (x1, x2). Here, we see that vectors are drawn from the same normal density. This is a
if feature x1 or x2 were used by itself, discrimination errors good approximation to real-world situations characterized by
would occur because of the overlap between the projected independent identically distributed additive Gaussian noise.
classes onto the x1 or x2 axes. It is quite clear, however, that The normal pdf has some striking advantages. It is one of the
the data are perfectly linearly separable by the dashed line. simplest parametric models, being characterized by a mean
If the data are linearly transformed onto the column space of and variance. In addition, the sum of normal random vari-
A, perfect discrimination is achieved. In addition, we can see ables yields a normal random variable.
a clustering effect by the reduced variance of the projection The n-variate normal pdf is defined as
onto the column space of A.

Note that data may not always be discriminated well by a
linear transformation. In these cases, a nonlinear transforma-

p(x) = (2π)−n/2|C|−1/2 exp[− 1
2 (x − µµµ)T C−1(x − µµµ)]

∼ N(µµµ, C) (21)
tion may lead to improved discrimination. An example is the
classes defined by the members of interlocking spirals. No where C is the n � n covariance matrix, and � is an n-dimen-
line can separate the spirals, but a nonlinear transformation sional column component mean vector. Note that in Eq. (21),
could yield perfect discrimination. contours of constant probability occur for values of x where

The goal of speaker-recognition feature selection is to find the argument of the exponential is constant. Neglecting the
a set that minimizes the probability of error. Unfortunately, scaling factor of �(1/2), the argument of the exponential is
an explicit mathematical expression is unavailable, except for referred to as the Mahalanobis distance d2

M between x and �
trivial cases, which hinders rigorous mathematical develop-
ment. Even for normal pdfs, a numerical integration is re- d2

M = (x − µµµ)T C−1(x − µµµ) (22)

Thus, the loci of points of constant density are hyperellipsoids
of constant Mahalanobis distance to �. The principal axes of
these hyperellipsoids are given by the eigenvectors of C, and
their eigenvalues determine the lengths of the corresponding
axes.

Samples drawn from a multivariate normal density tend
to cluster. The center of the cluster is determined by the mean
and the shape of the cluster is determined by the covariance
matrix. In the bivariate (n � 2) case, it is convenient for visu-
alization to show the 1-sigma ellipse. The 1-sigma ellipse is

x2

x1

y = AxColumn
space of A

centered on the means, its major axes are determined by the
1-sigma standard deviations, and its orientation is deter-Figure 8. Linear transformation with perfect discrimination.
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Figure 9. Unequal covariance.
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Figure 11. LSP covariance matrices: Different sessions, same
speaker.

mined by the covariance between the variables. For example,
Fig. 9 shows the bivariate 1-sigma ellipses for two classes
with equal means, �1 � �2 � [0 0]T and unequal covariance

To estimate the mean and covariance when all samples arematrices.
not yet available or when dealing with a large number of sam-Although there is no line that can perfectly discriminate
ples, recursive computation methods are desirable. Denotingthese two classes, it’s easy to visualize that a 45� projection
an estimate based upon N samples as �̂N and on N � 1 sam-would provide some discrimination power. However, the F-
ples as �̂N�1, the sample mean isratio would indicate that these features, x1 and x2, are power-

less because the classes have the same means in the x1 � x2

space.
Now consider a bimodal pdf. Figure 10 shows class 1 as

being bimodal in x1. The means of both classes are the same;
hence, the F-ratio would show feature x1 as powerless. It is

µ̂µµN+1 = 1
N + 1

N+1∑
k=1

xk

= µ̂µµN + 1
N + 1

(xN+1 − µ̂µµN ) (24)
clear from Fig. 10, however, that x1 is powerful because sig-
nificant discriminatory information exists along feature x1. Similarly, the UBE sample covariance matrix recursion ĈN�1
Thus, caution should be used with any criterion, such as the is
F-ratio, that relies on class means. If the classes have the
same means or are not unimodal, the F-ratio can be a poor
measure of discrimination power. Clearly, we seek a criterion
that more accurately portrays discrimination power.

Mean and Covariance Estimation

ĈN+1 = 1
N

N+1∑
k=1

(xk − µ̂µµN+1)(xk − µ̂µµN+1)T

= N − 1
N

ĈN + 1
N + 1

(xN+1 − µ̂µµN )(xN+1 − µ̂µµN )T (25)

The unbiased estimate (UBE) of the covariance is given by Sample covariance matrices using LSP features are shown
the sample covariance in the mesh plots of Figs. 11 and 12. In each plot, the vari-

ances and covariances of 10 LSP coefficients are represented
in the vertical direction on a 10 � 10 mesh. From a total of
80 s of speech, each matrix (mesh plot) was generated from

Ĉ = 1
N − 1

N∑
i=1

(xi − µµµ)(xi − µµµ)T (23)

the LSP vectors corresponding to voiced speech. Notice that
The UBE and maximum likelihood estimate (MLE) of covari-
ance differ only by their scaling factors of 1/(N � 1) and
1/N, respectively, and they are both referred to as sample co-
variance matrices. When the mean is being estimated too, the
UBE is generally preferred; however, they are practically
identical when N is large.

p(x1 I class1)

p(x1)

x1

p(x1 I class1)

p(x1 I class2)

i

Cij

LSPi LSPj

Speaker 79788
Session 1^

j

i

Cij

LSPi LSPj

Speaker 79865
Session 2^

j

Figure 12. LSP covariance matrices: Different speakers.Figure 10. A bimodal class.
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these covariance matrices for different sessions of the same The divergence (the symmetric directed divergence) is defined
as the total average information for discriminating class �ispeaker appear to be similar.

These LSP covariance matrices appear to have more differ- from class �j

ences between speakers than similarities for the same
speaker. As shown later, the LSP covariance matrices can
capture speaker identity.

Jij = I(i, j) + I( j, i)

=
∫

x
[pi(x) − pj (x)] ln

pi(x)

pj(x)
dx (34)

Divergence Measure

Now, to select features with this measure, we need the fea-Divergence is a measure of dissimilarity between two classes
ture pdf for each pattern class. Assuming the pattern classesbased upon information theory (47). It provides a means of
are n-variate normal populationsfeature ranking and evaluation of class discrimination effec-

tiveness. The following development is based upon Tou and
Gonzalez’s derivation (45). Let the likelihood of occurrence of pi(x) ∼ N(µµµi, Ci ) pj (x ∼ N(µµµ j, C j ) (35)

pattern x, given that it belongs to class �i, be
Substituting Eq. (21) into Eq. (28) yields the log likelihood
ratiopi(x) = p(x|ωi) (26)

and likewise for class �j,

pj (x) = p(x|ω j ) (27)
uij = 1

2 ln
|C j |
|Ci|

− 1
2 tr[C−1

i (x − µµµi )(x − µµµi)
T ]

+ 1
2 tr[C−1

j (x − µµµ j )(x − µµµ j )
T ] (36)

Then, the discriminating information of an observation x, in
where tr is the matrix trace function. The average informa-the Bayes classifier sense, for class �i versus class �j can be
tion for discrimination between these two classes ismeasured by the logarithm of the likelihood ratio

uij = ln
pi(x)

pj (x)
(28)

Entropy is the statistical measure of information or uncer-
tainty. The population entropy H for a given ensemble of pat-
tern vectors having a pdf p(x) is the expectation

H = −E[ln p(x)]

= −
∫

x
p(x) ln p(x)dx (29)

Similarly, the entropy of the ith class of population of pat-

I(i, j) =
∫

x
pi(x)uij dx

=
∫

x
(2π)−n/2|Ci|−1/2 exp[− 1

2 (x − µµµi)
T C−1

i (x − µµµi)]

×
{

1
2 ln

|C j |
|Ci|

− 1
2 tr[C−1

i (x − µµµi)(x − µµµi )
T ]

+ 1
2 tr[C−1

j (x − µµµ j )(x − µµµ j )
T ]

}
dx

= 1
2 ln

|C j |
|Ci|

+ 1
2 tr[Ci(C

−1
j − C−1

i )]

+ 1
2 tr[C−1

j (µµµi − µµµ j )(µµµi − µµµ j )
T ]

(37)

terns is
Let the difference in the means be represented as

H1 = −
∫

x
pi(x) ln pi(x) dx (30)

δδδ = µµµi − µµµ j (38)

The average discriminating information for class �i versus The average information for discrimination between these
class �j over all observations, also known as directed diver- two classes is
gence, Kullback–Leibler number (47) or discrimination (48), is
then

I(i, j) = 1
2 ln

|C j |
|Ci|

+ 1
2 tr[Ci(C

−1
j − C−1

i )] + 1
2 tr[C−1

j δδδδδδT ] (39)

Hence, the divergence for these two normally distributed
classes is

I(i, j) =
∫

x
pi(x)uij dx

=
∫

x
pi(x) ln

pi(x)

pj (x)
dx (31)

Likewise, the discriminating information for class �j versus
class �i can be measured by the logarithm of the likelihood
ratio

uji = ln
pj (x)

pi(x)
(32)

The average discriminating information for class �j is then

I( j, i) =
∫

x
p j (x) ln

pj (x)

pi(x)
dx (33)

Jij = 1
2 ln

|C j |
|Ci|

+ 1
2 tr[Ci(C

−1
j − C−1

i )]

+ 1
2 tr[C−1

j (µµµi − µµµ j )(µµµi − µµµ j )
T ]

+ 1
2 ln

|Ci|
|C j |

+ 1
2 tr[C j (C

−1
i − C−1

j )]

+ 1
2 tr[C−1

i (µµµ j − µµµi)(µµµ j − µµµi)
T ]

= 1
2 tr[(Ci − C j )(C

−1
j − C−1

i )]

+ 1
2 tr[(C−1

i + C−1
j )(µµµi − µµµ j )(µµµi − µµµ j )

T ]

= 1
2 tr[(Ci − C j )(C

−1
j − C−1

i )] + 1
2 tr[(C−1

i + C−1
j )δδδδδδT ]

(40)
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Divergence Shape. Note that Eq. (40) is the sum of two The divergence is
components, one based solely upon differences between the
covariance matrices and the other involves differences be-
tween the mean vectors, �. These components can be charac-

Jij = 1
2 tr[(Ci − C j )(C

−1
j − C−1

i )]

= 1
2 tr[CiC

−1
j ] + tr[C jC

−1
j ] − n (49)

terized, respectively, as differences in shape and size of the
pdfs. This shape component, the divergence shape, will prove

Divergence Properties. The divergence satisfies all the met-very useful later on
ric properties except the triangle inequality. Thus, divergence
is not termed a distance (49). The following properties of di-J′

ij = tr[(Ci − C j )(C
−1
j − C−1

i )] (41)
vergence are proven in the landmark paper of Kullback and
Leibler (49). Positivity (i.e., almost positive definite) and sym-

Equation (40) is slightly complicated, so let us consider two metry properties are satisfied
simplifying special cases.

Equal Covariance Divergence. First, for the equal covari-

Jij ≥ 0 and Jij = 0 iff pi 
= pj

Jij = Jji
(50)

ance case, let
By counterexample, divergence can be shown to violate the
triangle inequality by taking p1 � N(0, 1), p2 � N(0, 4), andCi = C j = C (42)
p3 � N(0, 5); thus, J13 � J12 � J23.

Additional measurements (increased dimensionality) can-This leaves only the last term from Eq. (37)
not decrease divergence

Jij(x1, x2, K, xm ) ≤ Jij(x1, x2, . . ., xm, xm+1) (51)

As should be expected from an information-theoretic mea-

I(i, j) = 1
2 tr[C−1(µµµi − µµµ j )(µµµi − µµµ j )

T ]

= 1
2 tr[C−1δδδδδδT ]

= 1
2δδδT C−1δδδ (43) sure, processing cannot increase divergence (48). Thus, trans-

formation of the feature space must maintain or decrease di-
and, therefore, vergence. Furthermore, divergence can be shown to be

invariant under onto measurable transformation (49). Kull-
back’s real-analysis-based proof is rather difficult to follow, so
let us consider the special case of proving the invariance of
the divergence measure under nonsingular linear transforma-
tion (affine transformation could be similarly shown)

Jij = 1
2 tr[C−1(µµµi − µµµ j )(µµµi − µµµ j )

T ]

+ 1
2 tr[C−1(µµµ j − µµµi )(µµµ j − µµµi )

T ]

= tr[C−1(µµµi − µµµ j )(µµµi − µµµ j )
T ]

= δδδT C−1δδδ (44)

Comparing this with Eq. (22), the divergence for this normal
equal covariance case is simply the Mahalanobis distance be-
tween the two class means.

For a univariate (n � 1) normal equal variance �2 popula-
tion

I(i, j) = 1
2

(µi − µ j )
2

σ 2
(45)

Reassuringly, the divergence in this equal covariance case is
the familiar F-ratio

Jij = (µi − µ j )
2

σ 2
(46)

Equal Mean Divergence. Next, for the equal population
means case,

µµµi = µµµ j δδδ = 0 (47)

The average information is

I(i, j) = 1
2 ln

|C j |
|Ci|

+ 1
2 tr[Ci(C

−1
j − C−1

i )]

= 1
2 ln

|C j |
|Ci|

+ 1
2 tr[CiC

−1
j ] − n

2
(48)

if p(x) ∼ N(µµµx, Cx) where x ∈ �n and A ∈ �m×n

let y = Ax where y ∈ �m

thenµµµy = E[y] = E[Ax] = AE[x] = Aµµµx

Cy = E[(y − µµµy )(y − µµµy)
T ]

= E[(Ax − Aµµµx)(Ax − Aµµµx)
T ] = ACxAT

� p(y) ∼ N(Aµµµx, ACxAT )

let J(x)
ij = 1

2 tr[(C(x)

i
− C(x)

j
)((C(x)

j
)−1 − (C(x)

i
)−1)]

+ 1
2 tr[((C(x)

i
)−1 + (C(x)

j
)−1)(µ(x)

i
−µµµ(x)

j
)(µµµ(x)

i
−µµµ(x)

j
)T ]

then J(y)

ij = 1
2 tr[(AC(x)

i AT − AC(x)

j AT )

· ((AT )−1(C(x)

j )−1A−1 − (AT )−1(C(x)

i )−1A−1)]

+ 1
2 tr[((AT )−1(C(x)

i
)−1A−1 + (AT )−1(C(x)

j
)−1A−1)

· (Aµµµ(x)

i − Aµµµ(x)

j )(Aµµµ(x)

i − Aµµµ(x)

j )T ]

= 1
2 tr[A(C(x)

i
− C(x)

j
)AT (AT )−1((C(x)

j
)−1

− (C(x)

j )−1)A−1]

+ 1
2 tr[(AT )−1((C(x)

i
)−1 + (C(x)

j
)−1)A−1A(µµµ(x)

i
−µµµ(x)

j
)

· (A(µµµ(x)

i − µµµ(x)

j ))T ]

= 1
2 tr[AA−1

(C(x)

i
− C(x)

j
)((C(x)

j
)−1 − (C(x)

i
)−1)]

+ 1
2 tr[(AT )−1AT ((C(x)

i
)−1

+ (C(x)

j )−1)(µµµ(x)

i − µµµ(x)

j )(µµµ(x)

j )T ]

= J(x)
ij (52)
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This is a powerful result because of the many useful linear
transformations (e.g., discrete Fourier transform, discrete co-
sine transform, and discrete convolution). For example, if the
frequency domain can be attained via linear transformation,
there is no need to separately consider this mapping of the
features. This invariance also implies that linear feature se-
lection is unnecessary unless dimensionality reduction is de-
sired.

Divergence is additive for independent measurements

C = E[(x − µµµ)(x − µµµ)T ]

= E[(x − µµµ)(xT − µµµT )]

= E[xxT − xµµµT − µµµxT + µµµµµµT ]

= E[xxT − 2xµµµT + µµµµµµT ]

= E[xxT ] − 2E[xµµµT ] + E[µµµµµµT ]

= E[xxT ] − 2µµµµµµT + µµµµµµT

= E[xxT ] − µµµµµµT

≈ −µµµµµµT + 1
N

N∑
j=1

x jx
T
j (56)Jij(x1, x2, . . ., xm ) =

m∑
k=1

Jij(xk) (53)

For each class, plugging in the observation vectors, we find
This allows ranking the importance of each feature according that the means are unequal and the covariances are equal
to its associated divergence.

Example of Equal Covariance Divergence. The preceding con-
cepts are demonstrated here based upon an example taken
from Tou and Gonzalez (45). Intermediate steps have been

µµµ1 = 1
4




3
1
1


 µµµ2 = 1

4




1
3
3


 C = C1 = C2 = 1

16




3 1 1
1 3 −1
1 −1 3




(57)
added to aid the reader. Given the observations of Eq. (54)

δδδ = µµµ1 − µµµ2 = 1
4




2
−2
−2


 C−1 =




8 −4 −4
−4 8 4
−4 4 8


 (58)

To maximize divergence in this special case, choose the trans-
formation matrix as the transpose of the nonzero eigenvalue’s
corresponding eigenvector of C�1��T (a closed-form solution
does not exist for the general case) (50)

x11 =




0
0
0


 x12 =




1
0
0


 x13 =




1
0
1


 x14 =




1
1
0




x21 =




0
0
1


 x22 =




0
1
0


 x23 =




0
1
1


 x24 =




1
1
1




(54)

where the first index indicates class �1 or �2. These patterns
are shown in Fig. 13. From this figure, it is obvious that the

C−1δδδδδδT = 1
4




1 −1 −1
−1 1 1
−1 1 1


 (59)

data could be perfectly discriminated by a plane slicing
through the data. Let us see how the divergence measure sep-
arates the classes.

To estimate the population means, we approximate the
λ = 3

4
e =




−1
1
1


 (60)

mean vectors by the sample average over N samples
A = eT = [−1 1 1] (61)

y = Ax (62)

y11 = 0 y12 = −1 y13 = 0 y14 = 0
y21 = 1 y22 = 1 y23 = 2 y24 = 1

(63)

A perfect discrimination rule would be to choose class 2 if

µµµ = E[x]

=
∫

x
xp(x)dx

≈ 1
N

N∑
j=1

x j (55)

the feature y is greater than zero. These transformed pat-
terns are nonoverlapping between the classes and, hence, the
three-dimensional (3-D) observation vectors have been suc-If the mean is not considered a random variable, the covari-
cessfully mapped to one-dimensional (1-D) points with perfectance may be similarly estimated using a sample average
discrimination. For comparison, the KLE transformation to
1-D fails to discriminate the data perfectly (45).

Bhattacharyya Distance

The calculation of error probability is a difficult task, even
when the observation vectors have a normal pdf. Closed-form
expressions for probability of error exist only for trivial, unin-
teresting situations. Often, the best we can hope for is a

x3

x2

1ω∈
2ω∈x2 closed-form expression of some upper bound of error probabil-

ity. The Bhattacharyya distance is closely tied to the probabil-Figure 13. Original observation vectors [after Tou and Gonzalez
(45)]. ity of error as an upper bound on the Bayes error for normally
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distributed classes (46). For normal pdfs, the Bhattacharyya tios can then be formed using global speaker models or co-
distance between class �1 and �2, also referred to as �(1/2), is horts to normalize L.

The template model and its corresponding distance mea-
sure is perhaps the most intuitive method. The template
method can be dependent or independent of time. An example
of a time-independent template model is VQ modeling (55).
All temporal variation is ignored in this model, and global

d2
B = 1

2 ln

∣∣∣∣Ci + C j

2

∣∣∣∣
|Ci|1/2|C j |1/2 + 1

8 (µµµi − µµµ j )
T

( Ci+C j
2

)−1
(µµµi − µµµ j )

(64)
averages (e.g., centroids) are all that is used. A time-depen-
dent template model is more complicated because it must ac-The Bhattacharyya distance directly compares the estimated

mean vector and covariance matrix of the test segment with commodate human speaking rate variability.
those of the target speaker. If inclusion of the test covariance
in the metric is useful, Bhattacharyya distance will outper-

Template Modelsform Mahalanobis distance. Neglecting scaling, the second
term is the Mahalanobis distance using an average covari- The simplest template model consists of a single template x,
ance matrix. As will be shown later, if the Mahalanobis dis- which is the model for a frame of speech. The match score
tance using an average covariance matrix performs poorly, a between the template x for the claimed speaker and an input
different pair of scale factors can yield better discrimination. feature vector xi from the unknown user is given by d(xi, x).

The model for the claimed speaker could be the centroid
Bhattacharyya Shape. Note that Eq. (64) is the sum of two (mean) of a set of N training vectors

components, one is based solely upon the covariance matrices
and the other involves differences between the mean vectors.
These components can be characterized, respectively, as an
average shape and the difference in size of the pdfs. This x = µµµ = 1

N

N∑
i=1

xi (67)

shape component, the Bhattacharyya shape, will prove very
useful later on

Many different distance measures between the vectors xi and
x can be expressed as

d′
B = ln

∣∣∣∣Ci + C j

2

∣∣∣∣
|Ci|1/2|C j |1/2 (65)

d(xi, x) = (xi − x)T W(xi − x) (68)

The Bhattacharyya distance and the divergence measure
where W is a weighting matrix. If W is an identity matrix,have many similarities (51–54). As will be seen later, they
the distance is Euclidean; if W is the inverse covariance ma-both yield similar speaker identification performance.
trix corresponding to mean x, then this is the MahalanobisThe next section introduces statistical pattern matching.
distance, as shown in Eq. (22). The Mahalanobis distance
gives less weight to the components having more variance

PATTERN MATCHING and is equivalent to a Euclidean distance on principal compo-
nents, which are the eigenvectors of the original space as de-

The pattern-matching task of speaker verification involves termined from the covariance matrix (44).
computing a match score, which is a measure of the similarity
of the input feature vectors to some model. Speaker models
are constructed from the features extracted from the speech Dynamic Time Warping. The most popular method to com-
signal. To enroll users into the system, a model of the voice, pensate for speaking-rate variability in template-based sys-
based on the extracted features, is generated and stored (pos- tems is known as DTW (56). A text-dependent template model
sibly on an encrypted smart card). Then, to authenticate a is a sequence of templates (x1, . . ., xN) that must be matched
user, the matching algorithm compares/scores the incoming to an input sequence (x1, . . ., xM). In general, N is not equal
speech signal with the model of the claimed user. to M because of timing inconsistencies in human speech. The

There are two types of models: stochastic models and tem- asymmetric match score z is given by
plate models. In stochastic models, the pattern matching is
probabilistic and results in a measure of the likelihood, or
conditional probability, of the observation given the model.
For template models, the pattern matching is deterministic.

z =
M∑

i=1

d(xi, x j(i) ) (69)

The observation is assumed to be an imperfect replica of the
template, and the alignment of observed frames to template

where the template indices j(i) are typically given by a DTWframes is selected to minimize a distance measure d. The like-
algorithm. Given reference and input signals, the DTW algo-lihood L can be approximated in template-based models by
rithm does a constrained, piecewise linear mapping of one (orexponentiating the utterance match scores
both) time axis(es) to align the two signals while minimizing
z. At the end of the time warping, the accumulated distanceL = exp(−ad) (66)
is the basis of the match score. This method accounts for the
variation over time (trajectories) of parameters correspondingwhere a is a positive constant (equivalently, the scores are

assumed to be proportional to log likelihoods). Likelihood ra- to the dynamic configuration of the articulators and vocal
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As shown in Fig. 15, the interframe distance matrix is com-
puted by measuring the distance between test session frames
(the input) and the claimant’s enrollment session frames
(stored). The NN distance is the minimum distance between
a test session frame and the enrollment frames. The NN dis-
tances for all the test session frames are then averaged to
form a match score. Similarly, as shown in the rear planes of
Fig. 15, the test session frames are also measured against a
set of stored reference ‘‘cohort’’ speakers to form match scores.
The match scores are then combined to form a likelihood ratio
approximation (30) as described in the section entitled ‘‘A
New Speaker Recognition System.’’ The NN method is one of
the most memory- and compute-intensive speaker verification
algorithms. It is also one of the most powerful methods, as
illustrated later in Fig. 21.

M

N
n

n

m
m

Template
energy

Sample
energy

Start

End

Stochastic Models
Figure 14. DTW of two energy signals.

Template models dominated early work in text-dependent
speaker recognition. This deterministic approach is intu-
itively reasonable, but stochastic models recently have been
developed that can offer more flexibility and result in a more

tract. Figure 14 shows what a warp path looks like when the theoretically meaningful probabilistic likelihood score.
energies of the two speech signals are used as warp features. Using a stochastic model, the pattern-matching problem

If the warp signals were identical, the warp path would be can be formulated as measuring the likelihood of an observa-
a diagonal line, and the warping would have no effect. The tion (a feature vector of a collection of vectors from the un-
Euclidean distance between the two signals in the energy do- known speaker) given the speaker model. The observation is
main is the accumulated deviation off the dashed diagonal a random vector with a conditional pdf that depends upon the
warp path. The parallelogram surrounding the warp path speaker. The conditional pdf for the claimed speaker can be
represents the Sakoe slope constraints of the warp (56), which estimated from a set of training vectors, and, given the esti-
act as boundary conditions to prevent excessive warping over mated density, the probability that the observation was gen-
a given segment. erated by the claimed speaker can be determined.

The estimated pdf can be either a parametric or a nonpara-
metric model. From this model, for each frame of speech (or

Vector Quantization Source Modeling. Another form of tem- average of a sequence of frames), the probability that it was
plate model uses multiple templates to represent frames of generated by the claimed speaker can be estimated. This
speech and is referred to as VQ source modeling (55). A VQ probability is the match score. If the model is parametric,
code book is designed by standard clustering procedures for then a specific pdf is assumed, and the appropriate parame-
each enrolled speaker using his training data, usually based ters of the density can be estimated using the maximum like-
upon reading a specific text. The pattern match score is the lihood estimate. For example, one useful parametric model is
distance between an input vector and the minimum distance the multivariate normal model. Unbiased estimates for the
codeword in the VQ code book C. The match score for L parameters of this model, the mean � and the covariance C,
frames of speech is are given by Eqs. (24) and (25), respectively. In this case, the

probability that an observed feature vector xi was generated
by the model is

z =
L∑

j=1

min
x∈C

{d(x j, x)} (70)
p(xi|model) = (2π)−k/2|C|−1/2 exp{− 1

2 (xi − µµµ)T C−1(xi − µµµ)}
(71)

The clustering procedure used to form the code book averages Hence, p(xi�model) is the match score. If nothing is known
out temporal information from the codewords. Thus, there is about the true densities, then nonparametric statistics can be
no need to perform a time alignment. The lack of time warp- used to find the match score.
ing greatly simplifies the system; however, it neglects speaker The match scores for text-dependent models are given by

the probability of a sequence of frames without assuming in-dependent temporal information that may be present in the
dependence of speech frames. Although a correlation ofprompted phrases.
speech frames is implied by the text-dependent model, devia-
tions of the speech from the model are usually assumed to be

Nearest Neighbors. A new method combining strengths of independent. This independence assumption enables estima-
the DTW and VQ methods is called nearest neighbors (NN) tion of utterance likelihoods by multiplying frame likelihoods.
(30,57). Unlike the VQ method, the NN method does not clus- The model represents a specific sequence of spoken words.
ter the enrollment training data to form a compact code book. A stochastic model that is very popular for modeling se-
Instead, it keeps all the training data and can, therefore, use quences is the HMM. In conventional Markov models, each

state corresponds to a deterministically observable event;temporal information.
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Figure 15. Nearest neighbor method.

thus, the output of such sources in any given state is not ran- CLASSIFICATION AND DECISION THEORY
dom and lacks the flexibility needed here. In an HMM, the
observations are a probabilistic function of the state [i.e., the Having computed a match score between the input speech-

feature vector and a model of the claimed speaker’s voice, amodel is a doubly embedded stochastic process where the un-
derlying stochastic process is not directly observable (it is hid- verification decision is made whether to accept or reject the

speaker or request another utterance (or, without a claimedden)]. The HMM can be viewed only through another set of
stochastic processes that produce the sequence of observa- identity, an identification decision is made). The accept or re-

ject decision process can be an accept, continue, time-out, ortions (42). The HMM is a finite-state machine, where a pdf
(or feature vector stochastic model) p(x�si) is associated with reject hypothesis-testing problem. In this case, the decision

making, or classification, procedure is a sequential hypothe-each state si (the main underlying model). The states are con-
nected by a transition network, where the state transition sis-testing problem (60).
probabilities are aij � p(si�sj). For example, a hypothetical
three-state HMM is illustrated in Fig. 16. The probability Hypothesis Testing
that a sequence of speech frames was generated by this model

Given a match score, the binary choice ASV classification
is found by using Baum–Welch decoding (58,59). This likeli-

problem involves choosing between two hypotheses: that the
hood is the score for L frames of input speech given the model

user is the claimed speaker or that he is not the claimed
speaker (an impostor). Let H0 be the hypothesis that the user
is an impostor, and let H1 be the hypothesis that the user is,
indeed, the claimed speaker. As shown in Fig. 17, the match

p(x(1;L)|model) =
∑

all state
sequences

L∏
i=1

p(xi|si )p(si|si−1) (72)

scores of the observations form two different pdfs according
to whether the user is the claimed speaker or an impostor.This is a theoretically meaningful score. HMM-based methods

have been shown to be comparable in performance to conven-
tional VQ methods in text-independent testing (21) and more
recently to outperform conventional methods in text-depen-
dent testing (23).

Classification methods and statistical decision theory com-
plete the system presentation and are presented in the follow-
ing section.

1 2
a12

a11 a22

a13

a33

a23
3

�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
��

���
���

�����
�����
�����
�����

P(z)

z

D1: Accept D0: Reject

P1(z): Valid

P0(z): Imposter

Q1

Qd

Q0

T

Figure 17. Valid and imposter densities.Figure 16. An example of a three-state HMM.
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Table 5. Probability Terms and Definitions

Performance Decision Hypothesis Name of
Probabilities D H Probability Decision Result

Q0 1 0 Size of test Type I error False acceptance
‘‘significance’’ or alarm

Q1 0 1 Type II error False rejection
Qd � 1 � Q1 1 1 Power of test True acceptance
1 � Q0 0 0 True rejection

The names of the probability areas in Fig. 17 are given The threshold T can be determined by (1) setting T equal to
in Table 5. To find a given performance probability area, the an estimate of p1/p0 to approximate minimum error perfor-
hypothesis determines over which pdf to integrate, and the mance, where p0 and p1 are the a priori probabilities that the
threshold determines which decision region forms the limits user is an impostor and that the user is the true speaker,
of integration. respectively; (2) choosing T to satisfy a fixed FA or FR crite-

Let p(z�H0) be the conditional density function of the obser- rion (Neyman–Pearson); or (3) varying T to find different FA/
vation score z generated by speakers other than the claimed FR ratios and choosing T to give the desired FA/FR ratio.
speaker and likewise p(z�H1) for the claimed speaker. If the With cautious constraints, T could be made speaker specific,
true conditional score densities for the claimed speaker and speaker adaptive, and/or risk adaptive (e.g., break-ins may be
the other speakers are known, then the Bayes test with equal more likely at night).
misclassification costs, for speaker A is based upon the likeli-
hood ratio for speaker A, �A(z) (46)

Receiver Operating Characteristic

Because either of the two types of errors can be reduced at
the expense of an increase in the other, a measure of overall

λA(z) ≡ pA(z|H0)

pA(z|H1)
(73)

system performance must specify the levels of both types of
Figure 18 shows an example of two score pdfs. The proba- errors. The tradeoff between FA and FR is a function of the

bility of error, which is minimized by Bayes’ decision rule, is decision threshold. This is depicted in the ROC curve, which
determined by the amount of overlap in the two pdfs. The plots probability of FA versus probability of FR (or FA rate
smaller the overlap between the two pdfs, the smaller the versus FR rate). For example, Fig. 19 shows a hypothetical
probability of error. The overlap in two Gaussian pdfs with family of ROCs plotted on a log–log scale. The line of equal
means �0 and �1 and equal variance � can be measured by error probability is shown as a dotted diagonal line. The fam-
the F-ratio ily of lines at �45� represents systems with different FA � FR

products, with better systems being closer to the origin. For
any particular system, the ROC is traversed by changing theF = (µ0 − µ1)2

σ 2 (74)
threshold of acceptance for the likelihood ratio. The straight
line ROCs in Fig. 19 indicate that the product of the probabil-If the true conditional score densities for the claimed speaker
ity of FA and the probability of FR is a constant for this hypo-and other speakers are unknown, the two pdfs can be esti-
thetical system (this is not true in general) and is equal tomated from sample experimental outcomes. The conditional
the square of what is referred to as the equal error ratepdf given true speaker A, pA(z�H1) is estimated from the
(EER). The EER is the value for which the false acceptancespeaker’s own scores using his model. The conditional pdf for
errors and false rejection errors are equal.impostors, pA(z�H0), is estimated from other speakers’ scores

using speaker A’s model.
Now that the likelihood ratio for speaker A, �A(z) can be

determined, the classification problem can be stated as choos-
ing a threshold T so that the decision rule is

if λA(z)

{
≥ T, choose H0

< T, choose H1

(75)
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Figure 19. Hypothetical ROCs.Figure 18. An example of score densities.
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A NEW SPEAKER RECOGNITION SYSTEM

A simple speaker recognition system was constructed to eval-
uate the effectiveness of the LP-based features and informa-
tion theoretic measures presented in this article. The basic
building blocks needed are (1) signal acquisition, (2) feature

Table 6. Known Wolves and Sheep of the DTW System

186 Subjects of the YOHO Database

At Least One FA Error At Least Two FA Errors

17 wolves (9%) 2 wolves (1%)
11 sheep (6%) 5 sheep (3%)

extraction and selection, (3) pattern matching, and (4) deci-
sion criterion. The signal acquisition stage in Fig. 20 is shown
for completeness; however, it is unnecessary here because the

As shown in Fig. 20, feature selection consists of keepingspeech signal is already available in digital form from the
only voiced features (to reduce the effects of acoustic noiseYOHO CD-ROM. As shown in Fig. 20, the feature extraction
and comply with LP modeling assumptions) and forms vectorsbegins with an LP analysis, followed by transformation to log
consisting of one or more of the extracted features. For exam-area ratios [Eq. (15)], LSP frequencies [zeroes of Eq. (17)],
ple, if 10 dimensional LARs and 10-dimensional LP cepstraand LP cepstra (40). The LP coefficients are estimated on un-
are selected, the resultant feature vector is their 20-dimen-preemphasized speech sampled at 8 kHz every 10 ms using a
sional concatenation, and it is used only if the frame is voiced.10th-order autocorrelation analysis method with 20 ms over-

During training, each speaker’s mean vector [Eq. (67)] andlapping Hamming windows and 15 Hz bandwidth expansion.
covariance matrix [Eq. (23)] are computed and stored as aThe bandwidth expansion operation replaces the LP analysis
model. During testing, the recursive mean [Eq. (24)] and re-predictor coefficients ak by ak�k, where � � 0.994 for a 15 Hz
cursive covariance [Eq. (25)] are computed and compared withexpansion. This broadens the formant bandwidths by shifting
the stored models. Using the recursive estimates allows thethe poles radially toward the origin in the z plane by the
comparisons to occur as the speech sample is being taken soweighting factor � for 0 � � � 1. This LP analysis is used in
that early recognition decisions can be made. The mean vectorFederal Standard 1016 speech coding (41). Thus, this system
and covariance matrix used to model each speaker can beis applicable to remote speaker recognition via digital speech
compactly represented. For the shape measures, only the co-coding.
variance matrix is needed. For a 10-dimensional feature (e.g.,
the LSPs from a 10th-order LP analysis), each speaker is rep-
resented by the covariance matrix of his 10 LSP frequencies.
Because of symmetry, a covariance matrix can be uniquely
represented by its upper (or lower) triangular section. Ex-
ploiting this symmetry, a person’s 10 � 10 covariance matrix
can be represented with only 55 elements, thus allowing for
very compact speaker models.

Various measures are computed to be evaluated in combi-
nation with various features. The following measures are
computed for pattern matching: the divergence shape [Eq.
(41)], Bhattacharyya shape [Eq. (65)], Bhattacharyya distance
[Eq. (64)], divergence measure [Eq. (40)], Mahalanobis dis-
tance [Eq. (22)], and Euclidean distance [Eq. (68)].

Last, the decision criterion is to choose the closest speaker
according to the selected feature and measure (this criterion
suffices for evaluating features and measures, but it is incom-
plete for open-set conditions). For most real-world applica-
tions, where open set impostors exist, thresholding the match
score to ensure some degree of closeness is necessary before
making a recognition decision. Threshold determination
should account for the costs of different types of errors the
system can commit (e.g., a false acceptance error might be
more costly than a false rejection error) and the probabilities
of those errors occurring, which might vary (e.g., attacks
might be more likely at night than during the day).

The LSP features used with the divergence shape measure
is shown to have strong speaker discriminatory power in the

Analog filter

A/D converter

Digital filter

Decimate

Speech signal

LARs LP cepstrum
LSPs V

Linear prediction

Feature selection

Estimate mean
and covariance

Mahalanobis
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shape

Euclidean
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Divergence Bhattacharyya
distance

Bhattacharyya
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Measures

Training and ref data
means and covariances
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Figure 20. New speaker recognition system.

Table 7. Wolf and Sheep Sexual Characteristics

19 FA Errors Across 9,300 Impostor Trials

Number of FA Errors Wolf Sex Sheep Sex

15 Males Males
1 Female Female
3 1 male 3 females
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introduced likelihood ratio scoring via cohort normalization in
which the input utterance is compared with the claimant’s
voice model and with an alternate model composed of models
of other users with similar voices. Likelihood ratio scoring
allows for a fixed, speaker-independent, phrase-independent
acceptance criterion. Pseudorandomized phrase prompting,
consistent with the YOHO corpus, is used in combination
with speech recognition to reduce the threat of playback (e.g.,
tape recorder) attacks. The enrollment algorithm creates us-
ers’ voice models based upon subword models (e.g., ‘‘twen,’’
‘‘ti,’’ and ‘‘six’’). Enrollment begins with a generic male or fe-
male template for each subword and results in a speaker-spe-
cific template model for each subword. These models and their
estimated word endpoints are successively refined by includ-
ing more examples collected from the enrollment speech ma-
terial (10).

Cross-speaker testing (causal impostors) was performed,
confusion matrices for each system were generated, wolves
and sheep of DTW and NN systems were identified, and er-
rors were analyzed.

Table 6 shows two measures of wolves and sheep for the
DTW system: those who were wolves or sheep at least once
and those who were wolves or sheep at least twice. Thus, FA
errors occur in a vary narrow portion of the population, espe-
cially if two errors are required to designate a person as a
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wolf or sheep. The difficulty in acquiring enough data to rep-
Figure 24. Speaker versus FA errors for DTW and NN systems’ resent the wolf and sheep populations adequately makes it
sheep. challenging to study these errors.

From the 9,300 trials, there were 19 FA errors for the
DTW system. Table 7 shows that these 19 pairs of wolves and

following section. The LSP and LP cepstral features are also sheep have interesting sexual characteristics. The database
found to be powerful when used with the divergence measures contains four times as many males as it does females, but the
and Bhattacharyya distances. 18 : 1 ratio of male wolves to female wolves is disproportion-

ate. It is also interesting to note that one male wolf success-
fully preyed upon three different female sheep.PERFORMANCE

The YOHO database provides at least 19 pairs of wolves
and sheep under the DTW system for further investigation.Using the YOHO prerecorded speaker verification database,
It should be noted that because of computational limitations,the following results on wolves and sheep were measured.
not all possible wolf and sheep combinations have beenThe impostor testing was simulated by randomly selecting a
tested. Even with this large database, relatively few wolvesvalid user (a potential wolf) and altering his/her identity
and sheep have been discovered to date.claim to match that of a randomly selected target user (a po-

tential sheep). Because the potential wolf is not intentionally
attempting to masquerade as the potential sheep, this is re- ROC of DTW and NN Systems
ferred to as the ‘‘casual impostor’’ paradigm. The full YOHO

Figure 21 shows the NN system’s ROC curve and a point ondatabase has 10 test sessions for each of 186 subjects. For
the ROC for the DTW system (ROCs of better systems areonly one test session, there are
closer to the origin). The NN system was the first one known
to meet the 0.1% FA and 1% FR performance level at the 80%
confidence level, and it outperforms the DTW system by about

�
186
2

�
= 17,205

half an order of magnitude.
These overall error rates do not show the individual wolfpairwise combinations. Because of computational limitations,

and sheep populations of the two systems. As shown in thenot all pairwise combinations for all 10 test sessions were
following sections, the two systems commit different errors.tested. Thus, the simulated imposter testing drew randomly

across the 10 test sessions. Testing the system to a certain
Wolves and Sheepconfidence level implies a minimum requirement for the num-

ber of trials. In this testing, there were 9,300 simulated im- FA errors due to individual wolves and sheep are shown in
postor trials to test to the desired confidence (12,30). the 3-D histogram plots of Figs. 22–25. Figure 22 shows the

individual speakers who were falsely accepted as other speak-
DTW System ers by the DTW system. For example, the person with an

identification number of 97328 is never a wolf and is a sheepThe DTW ASV system tested here was created by Higgins et
al. (10). This system is a variation on a DTW approach that once under the DTW system.
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Figure 25. Speaker versus FA errors for
DTW and NN systems’ wolves.
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The DTW system rarely has the same speaker as both a Figure 25 shows that the wolves of the NN system are
dominated by a few individuals who do not cause errors inwolf and a sheep (there are only two exceptions in these data).

These exceptions, called wolf–sheep, probably have poor mod- the DTW system. Again, this suggests the potential for realiz-
ing a performance improvement by combining elements of theels because they match a sheep’s model more closely than

their own and a wolf ’s model also matches their model more NN and DTW systems. In fact, a speaker detection system
consisting of eight combined systems has been demonstratedclosely than their own. These wolf–sheep would likely benefit

from retraining to improve their models. recently (11).
Figure 26 shows the number of FA errors that occur forNow let us look at the NN system. Figure 23 shows the FA

errors committed by the NN system. various test sessions of the NN system. The figure clearly
shows that a couple of sessions (namely, numbers 880 andTwo speakers, who are sheep, are seen to dominate the NN

system’s FA errors. A dramatic performance improvement 1858) have an excessive number of FA errors. Upon listening
to sessions 880 and 1858, it sounds like these sessions havewould result if these two speakers were recognized correctly

by the system. more boominess than the other test (and enrollment) sessions.
The acoustic environment might have changed during theseNow we’ll investigate the relations between the NN and

DTW systems. Figure 24 shows the sheep of the NN and DTW problem sessions.
Wolves and sheep come in pairs. Figure 27 shows the DTWsystems. It should be noted from Fig. 24 that the two sheep

who dominate the FA errors of the NN system were not found system’s wolf and sheep pairings for the YOHO database. It
should be noted that under the DTW system, speaker 82798to be sheep in the DTW system. This suggests the potential

for making a significant performance improvement by com- is a particularly vulnerable sheep with respect to wolves
81920, 82866, and 79866. These speakers, in addition to thebining the systems.
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Figure 26. FA errors versus session number for NN system.

others shown in Fig. 27, will be of prime interest in the follow-
ing experiments.

New Speaker Recognition System
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The new speaker recognition system, described earlier, was Figure 27. Wolf and sheep pairings of the DTW system.
evaluated in close-set speaker identification testing. Speaker
identification experiments using 44 and 43 speaker subsets of
the YOHO database were performed. In the 44 person test Notice the nearly ideal prominent diagonal structure in

Fig. 28 provided by the LSP divergence shape; thus, its dis-from the YOHO database, each speaker is compared to a dif-
ferent session of himself and to 2 sessions of 43 other speak- crimination power is strong. The single confusion error made

by the LSP divergence shape, shown by an arrow in Fig. 28,ers using 80 s of speech for training and a separate 80 s of
speech for testing. is between session 1 of speaker 59771 and session 2 of

speaker 79082. It is interesting to note that this is not one ofIn the mesh plots of Figs. 28–31, each of the 44 people are
shown along the i and j axes; the i axis represents speech the DTW system’s pairs of wolves and sheep, as sheep in Fig.

27. It is also interesting to note that this same error occurscollected from session 1 versus the j axes, with speech col-
lected from session 2. Thus, there are 442 measures, each rep- in all the LSP-based divergence and Bhattacharyya distance

systems, as shown by a peak at the same location as theresented by a point on the mesh. The z axis is the reciprocal
of the measure indicated in the figure’s caption using LSP arrow in Fig. 28 in each of the mesh plots in Figs. 29–31.

Notice the similarity in structure between the mesh plotsfeatures. Thus, ‘‘close’’ speakers will cause a peak along the z
axis. The ideal structure, representing perfect speaker identi- of the LSP Bhattacharyya shape shown in Fig. 29 and the

LSP divergence shape. Not only do these measures performfication, would be a prominent diagonal such that aii � aij �
i � j. similarly well, but the measures also appear to be related.

Figure 28. LSP divergence shape (1
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error).



Figure 29. LSP Bhattacharyya shape (2
errors).
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from cooperative users in real-world office environments and
without adverse microphone or channel impairments.

A new speaker recognition system that uses an informa-
tion-theoretic shape measure and LSP frequency features to
discriminate between speakers was presented. This measure,
the divergence shape, can be interpreted geometrically as the
shape of an information-theoretic measure called divergence.
The LSP frequencies were found to be effective features in
this divergence shape measure. A speaker-identification test

Table 8. Confusions Using Various Features and Measures

LSP LP Cepstrum LAR

Divergence shape 0.05% 0.15%
Bhattacharyya shape 0.10% 0.10%
Bhattacharyya distance 0.21% 0.10%
Divergence measure 0.15% 0.21% 0.52%
Mahalanobis distance 1.08%
Euclidean distance 1.96%

yielded 98.9% correct closed-set speaker identification using
cooperative speakers with high-quality telephone-bandwidth
speech collected in real-world office environments under a

Note the slight degradation in performance of the LSP constrained grammar across 44 and 43 speaker subsets of the
Bhattacharyya distance in Fig. 30 versus the LSP Bhatta- YOHO corpus, with 80 s of speech for training and testing.
charyya shape. The inclusion of the means in the Bhatta- The new speaker recognition system presented here is practi-
charyya distance degraded its performance. This discovery cal to implement in software on a modest personal computer.
provided the insight toward the development of the shape
measures.
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