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NEURAL NETS FOR SPEECH PROCESSING

Neural networks (NNs) have historically been used in many
speech processing applications: speech recognition, speaker
recognition, language recognition, speech coding, and speech
synthesis. In many cases, NNs are used as general models for
supervised learning tasks (1–3) to represent a certain ab-
stract input/output mapping, or for unsupervised learning
tasks, here often to map high-dimensional data into struc-
tured lower-dimensional spaces (3,4), or for blind source sepa-
ration (5). While unsupervised techniques with NNs are not
yet commonly used in speech applications, using supervised
techniques with NNs has got some attention especially in
speech recognition, which is discussed to some extent in this
article.

Currently, successful use of NNs for speech processing is
mainly limited to speech recognition by machines—that is,
the problem of automatically transcribing spoken words or
sentences (utterances) that can be input to a microphone or
similar input devices. Speech recognition is a very broad topic
that includes as applications for example: (1) isolated word
recognition for understanding simple control commands in a
car, (2) continuous speech recognition for a dictation machine
to write a letter without typing it in, or (3) spontaneous
speech recognition as a part of a fully automatic translation
system for regular conversations over the telephone between
people speaking different languages. These three tasks seem
to be of very different nature, but the approach for a practical
implementation is based on a theory for treating a whole cate-
gory of problems called statistical pattern recognition prob-
lems, which include besides speech, speaker, and language
recognition also problems occurring in speech synthesis, im-
age recognition, time series prediction, character recognition,
and so on. This category of problems is often solved by statis-
tical approaches using the principle ‘‘supervised learning
from examples,’’ which has been used successfully for speech
recognition since about 1975 and has been used for many
other problems of engineering interest as well.

A finite amount of examples or training data (for speech
recognition a number of recorded waveforms reduced to a fea-
ture vector sequence xT

1 of length T frames plus their known
and correct transcriptions) is used to train a model M, which
can later be used to transcribe new, previously unseen data
(waveforms). The model corresponds to a given structure and
a number of W parameters combined in a vector w which are
estimated during training to maximize some predefined opti-
mality criterion, which, for speech recognition, would ideally
be the percentage of correct words.

Neural networks can be used as general tools or black
boxes to solve statistical pattern recognition problems by
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learning from examples either solely or for a part of the prob- neural networks is the same for word and phoneme recogni-
tion, discussion here is limited to the latter in order to sim-lem, and they have been used for that purpose since around

1988 for all kinds of applications. Speech recognition for an plify notation.
In principle, training a speech recognition system corre-arbitrary task is a very complex process and cannot be ex-

pected to be solved solely by neural networks. Successful use sponds to estimating the probability distribution P(C�X), which
includes (1) defining an appropriate model M and (2) estimat-of them is currently mainly limited to one specific subprob-

lem—the estimation of the probability P(ct�xT
1) of a certain ing its parameters w maximizing some predefined optimality

criterion. In practice the model M consists of several modules,phoneme ct at time point t in the given waveform in its pre-
processed form xT

1. Based on these local phoneme probability with each one being responsible for a different part of
P(C�X). Usage of the trained system or recognition for a givenestimates, further steps can be taken to search for more use-

ful outputs like words or sentences. These systems are often input sequence X corresponds principally to the evaluation of
P(C�X) for all possible symbol sequences to find the best onereferred to as hybrid systems, because NNs are used in com-

bination with other techniques like Hidden Markov Models C*. This procedure is called the search for which efficient al-
gorithms are known (9,10).(HMMs).

Neural networks are not the only way to approach the sub- Using Bayes’ rule P(B�A) � P(A�B)P(B)/P(A) and the prod-
uct rule of probability P(A, B) � P(A)P(B�A), the conditionalproblem discussed above, and in speech recognition they have

to compete with other techniques—for example, uncondi- sequence probability P(C�X) can for a simple example be bro-
ken down to three terms astional mixture density estimation with Gaussian kernels. Al-

though most of the current state-of-the-art speech recognition
systems don’t use neural networks, systems based on NNs C∗ = arg maxC P(cT

1 |xxxT
1 ) (2)

have a number of advantages, which include the following: (1) = arg maxC {P(xxxT
1 |cT

1 ) · P(cT
1 )} (3)For similar recognition rates, NN systems are often faster

than systems using the traditional techniques, often by a fac-
tor of 2 to 5; (2) for similar recognition rates, NN systems use,
because of implicit parameter sharing, less parameters in the
model, often by a factor of 5 to 10, which leads in turn to a

= arg maxC

{[∏T
t=1 P(xxxt |xxx1,xxx2, . . .,xxxt−1, cT

1 )
]

·
[

T∏
t=1

P(ct |c1, c2, . . ., ct−1)

]} (4)

system with lower memory requirements; and (3) NNs are,
because of their in general very regular structure, believed to
build easier in hardware than other model types. Most nota-
ble disadvantages of NN-based systems compared to their tra-

≈ arg maxC

{[
T∏

t=1

P(xxxt |ct )

]
·
[

T∏
t=1

P(ct |ct−1)

]}
(5)

ditional counterparts are currently as follows: (1) NN-based
state-of-the-art systems have slightly worse word recognition
results, (2) training of NN-based systems with large amounts

= arg maxC

[
T∏

t=1

P(ct |xxxt )

P(ct )
· P(ct |ct−1)

]
(6)

of data is complicated and time-consuming, often 10 to 20
making some simplifying approximations, which for this ex-times slower than using non-NN-based systems. It is likely
ample were as follows: (1) Every output state class ct dependsthat further effort in research will result in substantial im-
only on the previous state ct�1 and not on all previous stateprovements of the listed disadvantages.
classes, making it a first-order Markov model:

SPEECH RECOGNITION THEORY P(ct |c1, c2, . . ., ct−1) ⇒ P(ct |ct−1) (7)

Speech recognition using standard statistical methods (e.g., (2a) The feature frames are assumed to be statistically inde-
HMMs) is well-documented in several books (6,7), and an in- pendent in time:
troduction to speech recognition using neural networks is
given in Ref. (8). To introduce some necessary notation within P(xxxt |xxx1,xxx2, . . .,xxxt−1, cT

1 ) ⇒ P(xxxt |cT
1 ) (8)

the context of using neural networks, the speech recognition
problem can be written as (2b) The likelihood of feature vector xt given the complete

symbol sequence cT
1 is assumed to depend only on the symbol

found at t and not on any other ones, making it a context-C∗ = arg maxC P(C|X ) (1)

independent model or monophone, here with only one state
with X � xT

1 � �x1, x2, . . ., xT� being the input vector feature per HMM:
sequence (frames) calculated from the observed waveform, in
practical systems around 100 40-dimensional vectors/s input P(xxxt |cT

1 ) ⇒ P(xxxt |ct ) (9)
speech, with C � cT

1 � �c1, c2, . . ., cT� being any valid symbol
sequence and C* being the recognized symbol sequence with The remaining three probability expressions are: (1) P(ct�xt),

the posterior probability of phoneme ct given input vector xtthe highest probability among all possible sequences. In the
case of word recognition, valid symbol classes ct are any words (also observation probability), to be estimated by a neural net-

work; (2) P(ct), the prior probability of phoneme frame ct, towhich are listed in a pronunciation dictionary that contains
all words to be recognized as phoneme sequences; and in the be approximated by the relative frequency of observing pho-

neme frame ct in the training data; and (3) P(ct�ct�1), the tran-case of phoneme recognition, valid symbol classes ct are all
possible phonemes, which are, depending on the language to sition probability for the HMMs, also to be estimated by

counting from the training data. Often the expression lt �recognize, usually around 50. Since the principal usage of
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P(ct�xt)/P(ct) is referred to as the scaled likelihood, because it Classification. In the case of a classification problem, one
seeks the most probable class out of a given pool of K classesis proportional to the real likelihood P(xt�ct).

It is important to notice that although C* is the symbol for each input vector xn. To make this kind of problem suit-
able to be solved by an NN, the categorical target variablessequence with the highest probability, it is not guaranteed

that it corresponds to the symbol sequence with the highest are usually coded as vectors as follows. Consider that k is the
desired class label for an input vector x. Then construct a K-word or phoneme recognition rate (often called accuracy),

which is defined by r � (N � I � D � S)/N (N, number of dimensional target vector t such that its kth component is 1
and other components are 0. Any of the K components can besymbols in correct sequence; I, number of insertions in recog-

nized sequence; D, number of deletions; S, number of substi- interpreted as the probability of x belonging to class k. The
target vectors tn constructed in this manner along with thetutions) and has to be found by a dynamic programming pro-

cedure (7). This mismatch is a well-accepted fact and doesn’t input vectors xn can be used to train the NN under some opti-
mality criterion, usually the cross-entropy function,seem to be a problem in practical systems.

Since choosing an appropriate structure for the neural net-
work estimating P(ct�xt) and training it is a substantial part E = −

∑
N

∑
K

tk
n log(yk(xxxn;www)) (11)

of using NNs for speech recognition, basics of neural net-
works, which are important for training and using an NN-

which results from a maximum likelihood estimation assum-based speech recognition system, are reviewed here.
ing a multinomial output distribution (1). It has been shown
that the kth network output can be interpreted as an estimate
of the conditional posterior probability of class membership

NEURAL NETWORKS
(yk(xn;w*) � P(c � k�x)), with the quality of the estimate de-
pending on the size of the training data and the complexity of

Artificial neural networks (see Ref. 1 for an excellent intro-
the network.

duction) can be used for many supervised learning tasks.
Given as training data N input/target data vector pairs D � Neural Network Training
�xn, tn� (a mapping from input to target data), with dimensions

Training of neural networks is equivalent to adjusting theM and K, respectively, the aim of a supervised learning pro-
weights w iteratively such that an error function is mini-cess is to learn how to predict output data given new input
mized, which in the case of speech recognition for the estima-data, which is written as a K-dimensional function yk(xn;w)
tion of P(ct�xt) is usually the cross-entropy error function.depending on the current input vector x and the NN parame-
Function minimization is a problem occurring in many disci-ter value vector w with W weights. The weights are combined
plines of science, and standard procedures are well-docu-in structures, whose different types are discussed in more de-
mented (see Refs. 1 and 11 for an introduction).tail below. Inputs and targets can, in general, be continuous

Usual approaches for neural networks are (1) first-orderand/or categorical variables, thereby defining the two catego-
methods, which use the first derivative of the error functionries of supervised learning problems. When targets are con-
[(�/�w)E] to be minimized (for example gradient descent, gra-tinuous, the problem is known as a regression problem; when
dient descent with momentum, RPROP, Quickprop) and (2)they are categorical (class labels), the problem is known as a
second-order methods, which use also the second derivativeclassification problem. In this article, the term prediction is
(Hessian) or approximations to it (e.g., quasi-Newton, conju-used as a general term which includes regression and classi-
gate gradient, Levenberg–Marquardt). The first (and also sec-fication.
ond) derivative of the error function in feed-forward neural
networks can be calculated efficiently with a procedure called

Unimodal regression. For unimodal regression or function back-propagation (1), which requires a forward pass (calcu-
approximation, the components of the output vectors are con- late yk(xn;w) � k) and a backward pass [calculate (�/�w)E vec-
tinuous variables. The NN parameters are estimated to mini- tor] through the network for each of the N training vector
mize some predefined error criterion—for example, maximize pairs.
the likelihood of the output data P(D,w) � �N

n�1 P(tn�xn, w). All training procedures can be (1) off-line or batch meth-
When the distribution of the errors between the desired tar- ods, for which the weights w are updated after all N training
get and the estimated output vectors is assumed to be a single samples have been used to calculate the first derivative, or
Gaussian with zero mean and a fixed global data-dependent (2) on-line methods, for which only a part of the training sam-
variance, the likelihood criterion reduces to the convenient ples is used to get an estimate of the first derivative which is
Euclidean distance measure between the desired and the esti- then used to update the weights.
mated output vectors or the squared-error function: The use of neural networks for speech recognition added

two practical problems to training: (1) The number of parame-
ters W (weights) is often in the range of 10,000 to 2 million,E =

∑
N

∑
K

(yk(xxxn;www) − tk
n )2 (10)

being on average much higher than in other disciplines. (2)
The number of training data vectors N is often in the range

which has to be minimized during training. It has been shown of 1 million to 60 million, being also much higher than for the
that neural networks can estimate the conditional average of average NN application. These two problems rule out many
the desired target vectors at their network outputs; that is of the theoretically superior and more sophisticated second-
yk(xn;w*) � E[tk�x], where E[ 	 ] is an expectation operator and order training algorithms because of insufficient memory re-
w* is the parameter (weight) vector at the minimum of the sources and/or a too complicated implementation. Algorithms

used in practice for large-scale problems are currently mostlyerror function.
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first-order methods—for example, (1) on-line gradient descent Neural Network Architectures
and (2) on-line RPROP procedures.

For speech recognition, several different neural network ar-
chitectures are in use—for example, multilayer perceptrons

Gradient Descent Training. Gradient descent training refers
(MLPs), recurrent neural networks (RNNs), and hierarchical

to adjusting the weight vector w after each iteration i by
mixtures of experts (HMEs), which are briefly discussed be-

a small vector 
w proportional to the negative gradient
low. Common architectures like radial basis functions (RBFs)

�(�/�w)E(i) � (�/�w)E(D, w(i)):
and time–delay neural networks (TDNNs), which are used for
other problems, have interesting properties but have become
rare in speech recognition applications.�www(i) = −η

∂

∂www
E (i) (12)

The type of neural networks discussed here have as ele-
ments neurons connected by directed connection weights rep-www(i+1) = www(i) + �www(i) (13)
resenting scalar parameters w, which are combined in a

This procedure can be refined by making the weight change structure to provide an M- (input) to K-dimensional (output)

w linearly dependent on the previous change mapping. Each neuron has one output o and many (e.g., J)

inputs connected to outputs of other neurons or the input vec-
tor itself. The output o of each neuron is a function of its acti-�www(i) = −η

∂

∂www
E (i) + ρ · �www(i−1) (14)

vation a, so o � f act(a), with the activation calculated as a sum
of all inputs to the neuron multiplied by its correspondingwhich leads often to a considerable speed-up. Good values for
weight, a � �J oj wj. Usually there is also a bias with its own

� and 
 depend heavily on the used NN structure, the train-
weight which acts as an additional input constantly set to 1ing data, and the initialization of w (which is often random
and in general treated like one of the J inputs. The neuronsusing small values) and have to be found by experiments. If
are often organized in layers as groups of neurons, with con-an on-line procedure is used, then the estimated gradient to
secutive layers being usually fully connected, meaning thatbe used for one update depends only on a small part of the
each neuron of a layer is connected to all neurons of the nextavailable training data, which might lead to a large fluctua-
layer. When neurons’ outputs are at the same time one of thetion of the gradient and therefore to slower training. In this
K neural network outputs, they belong to the output layer;case the local gradient estimate may be smoothed and im-
otherwise they belong to one of the hidden layers. Activationproved by
functions for hidden layer neurons are commonly the sigmoid
function f act(a) � 1/(1 � e�a) or its equivalent by a linear
transformation, the tanh function f act(a) � (ea � e�a)/(ea �

∂

∂www
E (i) := (1 − α) · ∂

∂www
E (i−1) + α · ∂

∂www
E (i) (15)

e�a), with the latter one often leading to slightly faster conver-
gence using commonly used training procedures. The choicewith 0 � � � 1 controlling the amount of smoothing. As an
of the sigmoid activation function is motivated by its distinctadditional improvement � can be made variable, slowly in-
property of being the discriminant function for a two-classcreasing toward 1 during training.
classification problem that makes the output the posterior
probability of class membership, if the input distributions areRPROP Training. A procedure that has been named RPROP
Gaussian with equal covariance matrices (1). The choice ofin Ref. 12 is a simple, heuristic first-order procedure that has
activation functions for the output layer depends on the prob-been proposed in many variations by different researchers
lem to be solved. If it is a regression problem, usually the[see Ref. (1)], and that works reasonably well also for large-
linear activation function f act(a) � a is used; but if it is a clas-scale problems. The idea is to keep a stepsize �w for each
sification problem the softmax function; f act(a) � ea/�J eaj isweight individually and make the update dependent only on
used, which can be interpreted as the generalized sigmoid forthe sign of the wth component of the gradient (�/�w)E(i) as
the K-class classification problem.

Multilayer Perceptrons. Multilayer perceptrons (MLPs) are
the most common type of architecture, in many practical ap-

If
∂

∂w
E (i) > 0, then w(i+1)

w := w(i)
w − δ(i)

w

Else if
∂

∂w
E (i) < 0, then w(i+1)

w := w(i)
w + δ(i)

w
plications only with two layers of weights; a hidden layer and
an output layer (Fig. 1). More layers are possible but not nec-The stepsize itself is updated depending on the gradient com-
essary, since there are proofs that any mapping can be ap-ponent change as
proximated with arbitrary accuracy with only two layers (Ref.
1 and references there in), although using more layers can be
a more efficient realization of a certain mapping. In practice,
however, more than two layers are rarely used because of lit-

If
∂

∂w
E (i) · ∂

∂w
E (i−1) > 0, then δ(i+1)

w = δ(i)
w · τ+

Else δ(i+1)
w = δ(i)

w · τ−

tle expected performance gain and practical problems during
training.with good values being �� � 1.2 and �� � 0.5 for many prob-

For speech recognition, it is common to use not only thelems. It is useful to limit �w to not exceed a certain range,
current input vector xt but also information from its 2L neigh-which is not very critical and often set to 0.000001 � �w � 50.
boring vectors xt�L, xt�L�1,. . ., xt�1 and xt�1, xt�2, . . ., xt�L fromA good initial start value for �w is often �w � J/10, with J
a window as input to the MLP to relax the independence as-being the number of input weights to a certain neuron. For
sumption equation [Eq. (8)]. Common values are L � 4, butspeech recognition problems, RPROP is often applied on-line

using gradient smoothing like shown above. there are also systems that use up to L � 15. The size of
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Figure 1. General structure of (a) a
multilayer perceptron (MLP) and (b, c) a
recurrent neural network (RNN) shown (b)
with a delay line and (c) unfolded in time
for two time steps, like the RNN used for
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Hidden (state) neuron groups

��
��
�
�
�
�
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Group of weights with
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–1z

–1z

(a) (b) (c)

t – 1 t 

speech recognition applications.

the hidden layer is in general between 64 and 4096 neurons, at the beginning and the end of the training data sequence,
some special treatment is necessary. The state inputs at t �depending on the amount of available training data, which

results in about 10,000 to 2 million weights. 1 are not known, and in practice they can be set to an arbi-
trary, but fixed, value. Also, the local state derivatives at t �Time-delay neural networks (TDNNs) (13) have the same

structure as a regular MLP, but they have a reduced number T are not known and can be set to zero, assuming that input
information beyond that point is not important for the currentof total weight parameters and have proven to be a useful

improvement over regular MLPs in many applications, where update, which for the boundaries is certainly the case.
The RNNs used for speech recognition (9,15) have, in gen-the amount of training data is low compared to the number

of parameters to estimate. This is achieved by a user-defined eral, less parameters than their MLP counterparts for ob-
taining the same performance. It is common to have betweenhard-tying of parameters, meaning forcing certain parame-

ters to have the same values. Which parameters are useful to 64 and 1024 hidden units, leading to about 10,000 to 1 mil-
lion weights.tie depends heavily on the used data and can only be found

by experiments.
Hierarchical Mixtures of Experts. Hierarchical mixtures of

experts (HMEs) (16) provide an elegant way of dividing largeRecurrent Neural Networks. For many applications the
data D are not a collection of vector pairs in arbitrary order, problems into many smaller ones and have been applied suc-

cessfully to speech recognition problems since 1994. An exten-but the data come in sequences of vector pairs, where the or-
der is not arbitrary. Speech recognition is a typical example sive introduction to HMEs is beyond the scope of this article,

but a short discussion with respect to their use for speechfor this case: Every preprocessed waveform is an array of vec-
tors xT

1 that is to be mapped to an array of target classes cT
1 in recognition is given here.

HMEs consist of a number of expert and gating networks,the form of K-dimensional vectors tT
1.

One type of recurrent neural networks (RNNs) provides an which are combined in a tree structure with expert networks
at the leafs and gating networks at the nonterminal nodes.elegant way of dealing with this kind of problem. Figure 1

shows a basic RNN architecture with a delay line and un- The overall output at the root node is a weighted average of
the expert network outputs, with the weighting factors deter-folded in time for two time steps. In this structure, the input

vectors xt are fed one at a time into the RNN. Instead of using mined by the gating networks which are directly connected to
the input. The structure is called hierarchical when there isa fixed number of input vectors from a window as done for

the MLP and TDNN structures, this architecture can make more than one layer of gating networks. Gating networks al-
ways have a softmax output function, which allows their out-use of all the available input information up to the current

time frame tc (i.e., �xt, t � 1, 2, . . ., tc�) to predict ytc
. Future puts to be interpreted as posterior probabilities conditioned

on an input vector x. The output activation function of theinput information coming up later than tc is usually also use-
ful for prediction. With an RNN, this can be partially expert networks depends on the type of problem to be solved:

In the case of regression they should be linear, whereas in theachieved by delaying the output by a certain number of S
time frames to include future information up to xtc�S to pre- case of classification they are networks with a softmax output

function. In general, gating and expert networks can be anydict ytc
. Theoretically, S could be made very large to capture

all the available future information, but in practice it is found of the structures introduced so far—for example, simple one-
layer networks or MLPs, but also RBFs, RNNs, and TDNNs.that prediction results drop if S is too large. For speech recog-

nition, S is commonly set to around 3 to 6 frames, correspond- For a part of the training of HMEs the Expectation-Max-
imization (EM) algorithm (1,16) is used, which consists of twoing to a delay of about 30 to 60 ms. One possibility to get

around this user-defined delay is to use bidirectional recur- steps, the E-step (expectation) and the M-step (maximiza-
tion). In the case of HMEs the E-step corresponds to calculat-rent neural networks (BRNNs) (14).

Because of the recurrent connections of RNNs, the training ing intermediate target vectors for each individual gate and
expert for the complete training data set D. The M-step corre-of RNNS is slightly more complicated than for feed-forward

neural networks such as MLPs. An often-used training proce- sponds to solving a number of subproblems for each individ-
ual gate and expert using the targets from the E-step. Thesedure is back-propagation through time (BPTT). For BPTT,

first the RNN structure is unfolded up to the length of the subproblems are equivalent to regression or classification
problems of regular structures like MLPs or RNNs, and theytraining sequence like shown for two time steps in Fig. 1,

which transforms the RNN in a large feed-forward neural can be solved with any of the procedures known for these
(e.g., any variation of gradient descent). After a weight up-network. Now regular back-propagation can be applied; but
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date, new intermediate targets with a new E-step can be cal- SYSTEM TRAINING
culated.

For large databases like those used for speech recognition In the discussion up to now, it has been assumed that frame-
labeled training data are available, meaning for each input(100 h of recorded training data correspond to approximately

36 million training vectors), this procedure is used in its on- vector x there is a known target class c, which is usually not
the case. Instead, there is often only a transcription of theline version with an update after around 50 to 200 vectors.

Practical experiences with HMEs for large databases are re- utterance, which might include word boundary or phoneme
boundary information but not complete state alignments.ported, for example, in Ref. 17.
Complete state alignments have to be built in incremental
steps. Training all acoustic parameters of a complete system
(NN weights, transition probabilities, and prior weights) in-CONTEXT DEPENDENT MODELS
volves a number of iterative steps, which can be summarized
asUsing the assumption equation [Eq. (9)] made the models con-

text-independent one-state models, which is valid for simple
tasks and to introduce basic concepts. State-of-the-art speech 1. Assign a target class c to each frame of the training
recognition systems usually make less severe assumptions by data, which is done by aligning the known word tran-
introducing context-dependent models (depending on a con- scriptions to the waveforms using the acoustic models
text class �) and also more than one HMM state per model from the previous iteration. In the beginning there are
denoted by s. How to determine the optimal set of context no acoustic models available, and the initial state align-
classes and number of states per model for a given task is a ment has to be done by hand (or by using another ex-
current research issue and is beyond the scope of this article. isting speech recognizer) for at least a few sentences in
Detailed procedures can be found, for example, in Ref. 9 and order to bootstrap the system.
in references there in. The scaled likelihood with time t 2. Calculate the state priors P(c(i)) � N(i)/Nall and the tran-
dropped in notation then becomes l � P(c, �, s�x)/P(c, �, s) sition probabilities P(c(i)�c(j)) � N( j,i)/N( j), with N( 	 ) de-
instead of l � P(c�x)/P(c). This representation is not useful for noting the occurences of the corresponding frames (or
use in an NN-based system, since the number of different out- frame pairs) in the training data.
put classes for all combinations of phonemes, context classes,

3. Train the NN using the assigned target classes.and states is generally large (5000 to 30,000) and would lead
4. Goto 1, until there is no significant change in the align-to an NN with a huge output layer that couldn’t be trained in

ments anymore. In general it is found that around fourpractice. It is possible to decompose the scaled likelihood, for
iterations are sufficient.example, as

This procedure is called Viterbi training, because a distinct
target class is assigned to each frame. It is also possible tol = P(c, φ, s|xxx)

P(c, φ, s)
(16)

perform a more general but also more memory consuming
Forward–Backward training, where each frame gets assigned
to all target classes with a certain probability.

= P(φ, s|c,xxx)

P(φ, s|c) · P(c|xxx)

P(c)
(17)

= P(s|φ, c,xxx)

P(s|φ, c)
· P(φ|c,xxx)

P(φ|c) · P(c|xxx)

P(c)
(18)

ACOUSTIC ADAPTATION

which results in several terms that can be estimated indepen- Acoustic adaptation refers to improving the acoustic models
dently. The last term P(c�x)/P(c) is the regular monophone with new data after they have been trained. Adaptation can
scaled likelihood. The denominator of the middle term P(��c) be either (a) supervised, where the correct transcriptions, but
and the first term P(s��, c) can be estimated by the relative not the exact alignments (targets tT

1), of the data xT
1 used for

frequencies of the events in the training data. The numera- adaptation are known, or (b) unsupervised, where they are
tors P(s��, c, x) and P(��c, x) represent like P(c�x) classifica- unknown. Supervised adaptation is, for example, used for a
tion problems conditioned on a continuous input x, but they dictation system, that was originally trained for many speak-
depend also on the discrete inputs c and �, which could be ers, but is now to be adapted for one specific speaker who is
treated as additional input vector components that could, for going to use the system. This is usually done by reading a text
example, be set to one and zero depending on their discrete (which the dictation system provides) that is automatically
input state. For estimation of each of these terms there are aligned while the text is read. Unsupervised adaptation is
two possibilities: (1) with one NN that takes also discrete in- used to improve the models based on acoustic evidence (in-
puts as part of an enlarged input vector allowing parameter puts xT

1) alone, and it has to rely on a recognized alignment
sharing between different context-dependent models or (2) given the complete dictionary, which can, and usually will,
with many smaller NNs for each discrete possibility occurring include errors. It can be useful to assign a confidence score
on the right-hand side of the terms [for example, K networks between 0 and 1 to every frame of the recognized alignment
for the estimation of P(��c, x) if there are K monophone to express the degree of belief in the correctness of it. This
classes c], which allows greater control over the encapsulated confidence score can then be used to improve an unsupervised
context-dependent models and faster execution. Currently adaptation procedure.
common is the latter approach, which is, for example, dis- For NN-based speech recognition systems a common

framework for adaptation is to use a transformation for thecussed in Refs. 18, 19, and 20.
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data more accurately than with maximum likelihood methods
(Ref. 1 and references therein), (3) adaptation of model pa-
rameters on-line based on very few training data examples,
(4) provision of a useful framework to measure and compare

Adaptive Fixed

NN
NN

x x′ P(clx)

complexity of completely different models, and (5) use of un-
supervised methods to separate, filter, and organize dataFigure 2. Example setup for acoustic adaptation in neural-network-
based on the statistical properties of the data itself (4,5). Allbased speech recognition systems.
of these research areas, although not yet mainstream, are
likely to enlarge the usage of neural networks in speech pro-

feature vectors like shown in Fig. 2 instead of adapting all cessing applications.
parameters of the original model (21). After training, the pa-
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