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SOFTWARE MANAGEMENT VIA
LAW-GOVERNED REGULARITIES

In his classic article No Silver Bullet, Brooks (1) cites complex-
ity as a major reason for the great difficulties we have with
large software systems, arguing that ‘‘software entities are
more complex for their size than perhaps any other human
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construct,’’ and that their ‘‘complexity is an inherent and irre- in particular, no language known to the authors in which one
can declare that the system being constructed should be lay-ducible property of software systems’’ [emphasis ours]. Brooks

explains this bleak assessment as follows: ‘‘The physicist la- ered—although similar constraints are built implicitly into
certain languages, such as the constraint in Oberon-2 thatbors on, in a firm faith that there are unifying principles to

be found . . . no such faith comforts the software engineer.’’ the import relation must be acyclic.
A different, and much more general, treatment of regulari-Brooks is surely right in viewing conformity to unifying

principles (i.e., regularities) as essential to our ability to un- ties in software is provided by the concept of law-governed
architecture (LGA) (2). Under this architecture a desired reg-derstand and manage large systems. The importance of such

regularities can be illustrated with examples in many do- ularity (in a certain range of regularities) can be established
in a given system simply by declaring it formally and explic-mains: The regular organization of the streets and avenues in

the city of Manhattan greatly simplifies navigation in the itly as the law of the system, to be enforced by the environ-
ment in which the system is developed. The environment, ofcity, and the planning of services for it; the protocol that all

drivers use at intersections of roads makes driving so much course, should have the capability to support LGA; in Ref. 2
such an environment, called Darwin/2, is described.easier and safer; and the layered organization of communica-

tion networks provides a framework within which these sys- Besides the ease of establishing regularities under this ar-
chitecture, the resulting law-governed regularities are muchtems can be constructed, managed, and understood. In all

these cases, and in many others, the regularities of a system more reliable and flexible than manually implemented ones,
and they can be maintained as invariant of the evolution ofare viewed as an important aspect of its architecture.

Yet, in spite of the general importance of regularities and the system. However, Ref. 2 presents an abstract model of
LGA, which is language-independent, and can be applied totheir critical role in the taming of the complexity of systems,

regularities do not play an important role in the architecture different contexts such as distributed systems, as has been
done in Ref. 3. In this article we specialize the abstract LGAof conventional software systems, as indicated by the above-

mentioned quote from Brooks’ article. This is partially be- model to deal with regularities in systems implemented by
traditional inheritance-based object-oriented languages. Morecause simple regularities of repetition can be easily ab-

stracted out and ‘‘made into a subroutine,’’ in Brooks’ words specifically, we introduce here an environment called Darwin-
E (which can be thought of as an extension of the Darwin/(1); but, as we shall see, there are other, more subtle kinds of

regularities that may ‘‘comfort the software engineer,’’ if they 2 environment that supports the abstract LGA model) that
supports LGA for Eiffel systems and use it to demonstratecan be easily and reliably established. We believe that the

main impediment for regularities in software is that they are how a practitioner can reap the benefits of LGA in the context
of object-oriented software systems written in traditionalinherently hard to implement reliably.

The problem with the implementation of regularities—to class- and inheritance-based languages.
The rest of this article is organized as follows: The sectionsummarize the argument made by Minsky in Ref. 2—stems

from their intrinsic globality. Unlike an algorithm or a data entitled ‘‘A Kernelized Design: A Motivating Example’’ pro-
vides a motivating example by introducing a useful regular-structure that can be built into few specific modules, a regu-

larity is a principle that must be observed everywhere in the ity, called kernelized structure, which is difficult to implement
in traditional methods; the section entitled ‘‘Aspects of Law-system, and thus cannot be localized by traditional methods.

Consider, for example, the well-known software regularity Governed Architecture Under the Darwin-E Environment’’
provides a partial overview of Darwin-E; the section entitledcalled ‘‘layered architecture.’’ This is a partition of all modules

of a system into groups called ‘‘layers,’’ along with the princi- ‘‘Interactions Regulated Under Darwin-E’’ introduces some of
the aspects of an Eiffel system that can be regulated underple that there should be no up-calls in the system—that is,

no calls from a lower layer to a higher one. This regularity Darwin-E, and it discusses the nature and use of such regula-
tions; the section entitled ‘‘Putting It All Together’’ presentscan, of course, be established ‘‘manually,’’ by painstakingly

building all components of the system in accordance with it. several applications of laws under Darwin-E, including the
kernelized structure of the section entitled ‘‘A Kernelized De-But such a manual implementation of regularities is labori-

ous, unreliable, and difficult to verify. Moreover, a manually sign: A Motivating Example,’’ and the concepts of immutable
classes, private features and side-effect-free routines; relatedimplemented regularity is difficult to maintain as invariants

of evolution because it can be violated by a change anywhere research is discussed in the section entitled ‘‘Related Work.’’
in the system.

While certain types of regularities, such as block structure,
encapsulation, inheritance, and strong typing, are often estab- A KERNELIZED DESIGN: A MOTIVATING EXAMPLE
lished by the programming languages in which a system is
written, conventional languages provide very few, if any, Consider a software system S embedded in an intensive care

unit. Suppose that in order to make this critical system asmeans for a system designer to establish a regularity which
is not built into the language itself. This is because program- reliable as possible, one decides to design it as follows:

There should be a distinct cluster of classes in S that dealsming languages tend to adopt a module-centered view of soft-
ware. They deal mostly with the internal structure of individ- directly with the gauges that monitor the status of the patient

and with the actuators that control the flow of fluids andual modules, as well as with the interface of a module with
the rest of the system. But languages generally provide no gases into his body, presenting the rest of the system with a

safe abstraction of the patient. We call this cluster of classesmeans for making explicit statements about the system as a
whole, and thus no means for specifying global constraints the kernel of the system, in analogy to the kernel of an op-

erating system that deals directly with the intricacies of theover the interactions between the modules of the system, be-
yond the constraints built into the language itself. There is, bare machine, presenting the rest of the system with a tamed
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through system calls. Second, we note that although Eiffel
provides no explicit means for making system calls, it allows
any class to define routines written in the language C, which
can carry out arbitrary system calls.

Under these conditions, Principle 1 of exclusive access can
be established by prohibiting classes not in the kernel cluster
from having C-coded routines. This is a constraint on the
structure of classes, which depends on their membership in a
cluster. Similarly, as we shall see in detail later, Principles 2
and 3 can be expressed as cluster-dependent constraints on
interaction between classes. But Eiffel provides no means for
stating such constraints. Note that an analogous set of con-
straints could be derived just as easily, had the system been
developed in another object-oriented language, but it would
be equally hard to state such constraints in that language.

Of course, even without the formal statement of such con-
straints, one can build a version of system S in Eiffel which
does in fact satisfy the first three principles above. In particu-
lar, one can designate certain of the classes in S to be kernel
classes and can build the system in such a way that all non-
kernel classes do not, in fact, have any C-coded routines, in
accordance with Principle 1. But this does not amount to
much for an evolving system, because there is nothing to pre-
vent one from introducing into the system new nonkernel
classes with a C-coded routine, or to add such a routine to an
existing nonkernel class. One clearly needs such constraints

Rest of the system
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to be explicit, formal, and enforced. Programming languagesFigure 1. Kernelized embedded system.
like Eiffel provide no means for establishing such constraints
[to be fair, Eiffel does provide syntactic means for grouping
classes into clusters, but it does not associate any semantics

abstraction of it. To be meaningful, this kernelized design with such grouping (4)]. In fact, it may be argued that such
should satisfy the following principles (see also Fig. 1): constraints, which often depend on project-specific concepts

such as the ‘‘kernel,’’ need not be defined at the language
Principle 1 (Exclusive Access). The kernel should have ex- level; rather they belong at the software development process

clusive access to the the gauges and actuators connected level. Unfortunately, traditional software development envi-
to the patient. ronments do not provide the required support either. As we

Principle 2 (Independence). The kernel should be indepen- shall see in the section entitled ‘‘Kernelized Design,’’ LGA em-
dent of the rest of the system. powers Darwin-E to do so.

Principle 3 (Limited Interface). The kernel should be us-
able by the rest of the system only via a well-defined in-

ASPECTS OF LAW-GOVERNED ARCHITECTUREterface.
UNDER THE DARWIN-E ENVIRONMENT

The reasons for these principles are, briefly, as follows: The
The main novelty of LGA is that it associates with every soft-

principle of exclusive access is necessary in order to make the
ware development project P an explicit set of rules L called

nonkernel part of the system unable to violate the patient
the law of the project, which is strictly enforced by the envi-

abstraction created by the kernel, by direct manipulation of
ronment that manages this project. The law governs the fol-

the actuators connected to the patient. (This is illustrated by
lowing aspects of the project under its jurisdiction: (1) the

a forbidden arrow in Fig. 1, which represents mortal danger
structure of the systems produced by this project, (2) the

to the patient and which is to be disabled by this principle.)
structure of the object base B which represents the state of

The principle of independence is necessary to make the pa-
the project, (3) the process of software development, and (4)

tient abstraction provable on the basis of the code in the ker-
the evolution of the law L itself. It is the first of these points

nel alone. Finally, the principle of limited interface is neces-
which will mostly concern us in this article, but this cannot

sary to allow the kernel to have some of its features accessible
be fully explained without a broader introduction of LGA,

to classes in the kernel but hidden from the rest of the
which is given in this section. Our discussion here is based

system.
on the Darwin-E software development environment for Eiffel

Unfortunately, conventional programming languages and
systems, which is really a layer on top of the Darwin/2 envi-

conventional software development environments provide
ronment that supports the abstract LGA model.

very little help in establishing these principles. To be con-
crete, let us examine the situation assuming that S is to be

The Object Base of a Project
built in Eiffel on top of the Unix operating system. We first
note that in Unix, access to any external device, like those The state of the project under Darwin-E is represented by an

object base B . It is a collection of objects of various kinds,connected to the patient in an intensive care unit, is done
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including: program modules, which, in the case of Darwin-E, teractions are regulated. In particular, the same set of inter-
actions regulated by Darwin-E may not be regulated by an-represent classes; builders, which serve as loci of activity for

the people (such as programmers and managers) that partici- other environment that supports LGA for C�� systems.
The rules that regulate the former kind of interactions,pate in the process of software development; configurations,

which represent a collection of modules (classes) that are to thus governing the process of evolution of P , are enforced
dynamically when the regulated operations are invoked. Theconstitute a complete system (what in Eiffel is called a ‘‘uni-

verse’’); and rules, which are the component parts of the law. structure of these rules has been described in Ref. 5, and its
knowledge will not be required for the rest of this article.The objects in B may have various properties associated

with them, which are used to characterize objects in various The rules that regulate the latter kind of interactions, thus
governing the structure of any system developed under P ,ways. Syntactically, a property of an object may be an arbi-

trary prolog-like term, but we use here only very simple cases are enforced statically when the individual class objects are
created and modified and when a system of classes is put to-of such terms whose structure will be evident from our exam-

ples. Some of the properties of objects are built-in; that is, gether into a configuration, to be compiled into a single exe-
cutable code. The nature of a special case of this second kindthey are mandated by the environment itself and have prede-

fined semantics; others are mandated by the law of a given of rule, along with the type of interactions (henceforth by in-
teraction we will mean interactions of the second kind only)project, which defines their semantics for the particular proj-

ects. We will give examples of both kinds of properties below. regulated by them, is discussed below.
An example of the kind of interactions between the compo-As an example of a built-in property, every class object c

has a property className(n), where n is the name of the nent parts of an Eiffel system that can be regulated under
Darwin-E is the relation inherit(c1,c2), which meansclass represented by object c. In general, B may have several

objects with the same class names, which may represent sev- that class c1 inherits directly from class c2 in S . Note that
contrary to the convention of Eiffel we use lowercase symbolseral versions of the same class. But for simplicity we shall

assume in this paper that all class names are unique, and to name classes, because uppercase symbols have a technical
meaning (explained soon) in our rules. Another regulated in-identical to the identifier of the objects representing them. As

another example, a class object c that inherits from a class teraction is the relation call(r,c1,f,c2) which means that
routine r of class c1 contains a call to feature f of class c2.c1 would have the property inherits(c1).

To illustrate the nature of properties that may be man- Proper definitions of these interactions are deferred until the
section entitled ‘‘Interactions Regulated Under Darwin-E’’; fordated by the law of a given project, we now introduce several

such properties which will be used later in our example rules. the examples presented in this section, these informal defini-
tions would be sufficient. There are quite a number of addi-In particular, consider a class object c. A property clus-

ter(x) of c is meant (in our examples) to mean that object c tional interactions that can be regulated by the law under
Darwin-E, some of which (but not all) will be discussed inbelongs to a cluster called ‘‘x’’. Also, a property tested of c

is meant to indicate that the class represented by c has been detail in the section entitled ‘‘Interactions Regulated Under
Darwin-E.’’tested, and the property owner(b) of c identifies the builder-

object b who is responsible for c. Similarly, given a builder To explain how interactions are regulated under Darwin-
E, suppose that an arbitrary interaction t(a1,a2,..) hasobject b, the property status(s) indicates the status of b,

which may be either trainee or master, and the property been identified in the system (this may, in particular, be the
interaction inherit(c1,c2), which means that class c1 in-role(r) of b indicates the role played by the builder b, which

may be programmer, tester, manager, and so on. herits from class c2). Darwin-E determines what to do about
this interaction by evaluating the goal t(a1,a2,..) with re-We will see later how the law can make distinctions be-

tween objects on the basis of their properties. In particular spect to the law L of the particular project at hand, producing
what we call the ruling of the law for this interaction. Thiswe may have a rule stating that modules in the cluster called

kernel must have the property tested and that only a ruling may have one of the following consequences:
builder marked as tester can mark a module as tested.

1. The interaction may be rejected, causing the offending
The Nature of the Law, and Its Enforcement module or the entire system to be declared illegal.
Broadly speaking, the law L of a given project P is a set of 2. The interaction may be admitted.
rules about certain regulated interactions between the objects 3. The interaction may be admitted with some changes.
constituting this project. We distinguish here between two
kinds of such interactions:

In this article we will limit ourselves to the first two effects
of the law, as well as to a certain structure of rules which is1. Developmental operations, generally carried out by peo-
explained in due course.ple—that is, the builders of the project. These interac-

For every interaction t with n arguments there is a built-tions include the creation, destruction, and modifica-
in rule in law L of the following form:tions of class objects and changes of the law itself by

the addition and deletion of rules. R 1. t(A1,A2,. . .,An) :-
2. Interactions between the component parts of the system cannot_t(A1,A2,. . .,An) �

being developed. $do(error([’interaction prohibited’]) �
(can_t(A1,A2,. . .,An) � true �
$do(error([’interaction notNote that the programming language(s) used to build the

component parts play an important role in defining what in- permitted’])).
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The effect of these built-in rules is as follows: The disposition This rule is, in effect, a blanket permission for all interaction
of type t, because it succeeds for every such interaction. Thisof an interaction t(A1,A2,..,An) is determined by rules

of the kind cannot_t(A1,A2,. . .,An) and leaves prohibition rules such as R 2 as the only means for
regulating t interactions.can_t(A1,A2,. . .,An) (whose structure is discussed

later) which are expected to be defined specifically for each
Permission-Based Regime. A permission-based regime withproject and which serve as prohibitions and permissions of

respect to a valid Eiffel interaction t is a regime under whichinteraction t(A1,A2,..,An), respectively. (Note the capital-
t is allowed if and only if it is explicitly permitted. This re-ized symbol such as A1 represent here variables.)
gime is in effect if law L has no cannot_t rules. To illustrateMore precisely, a given goal t(a1,a2,. . .,an) is eval-
this regime, suppose that L contains the following twouated by Rule R 1 as follows: First, the goal
can_call rules and no prohibitions of the call interaction.cannot_t(a1,a2,. . .,an) is evaluated. If this goal is

satisfied by the cannot_t(A1,A2,. . .,An) prohibition R 4. can_call(_,C1,_,C2) :-
rules in the law, then the interaction t(a1,a2,. . .,an) cluster(K)@C1,
at hand is rejected. If, on the other hand, the evaluation of cluster(K)@C2.
cannot_t(a1,a2,. . .,an) fails—that is, it is not explic- R 5. can_call(_,_,_,C2) :-
itly prohibited—then the goal can_t(a1,a2,. . .,an) is cluster(kernel)@C2.
evaluated. If this goal is satisfied by the

Rule R 4 permits all intra-cluster calls, while Rule R 5 per-can_t(A1,A2,. . .,An) permission rules in the law, then
mits calls made to kernel classes by any class from any clus-the interaction t(a1,a2,. . .,an) at hand is permitted;
ter. Assuming that these two are the only rules dealing withotherwise, this interaction is rejected for a lack of explicit per-
the call interaction, it follows that if routine r of a kernelmission for it.
class c1 calls the feature f of a nonkernel class c2, the evalu-To describe the structure of the rules involved here and
ation of the goal can_call(r,c2,f,c2) fails and the inter-the way they operate, consider an interaction inher-
action call(r,c1,f,c2) is rejected. Together, the above two

it(c1,c2). In evaluating the ruling of the law for this
rules implement a reasonable constraint over calls in a ker-interaction, Rule R 1 would evaluate the goal
nelized system.

cannot_inherit(c1,c2) with respect to L . Assuming, for
instance, that L contains the following prohibition rule: Regulation by Prohibitions with Permissions. In this regime,

the control over an interaction is split between prohibitions
R 2. cannot_inherit(C,D) :-

and permissions (with prohibition taking precedence over per-cluster(kernel)@C,
mission according to the built-in rule R 1). As an example,not cluster(kernel)@D.
consider the following constraints on call interaction:

the goal cannot_inherit(c1,c2) would unify with the
• Kernel classes cannot call nonkernel classes.head of this rule, invoking its body. Unification is meant here
• Any other call is legal if the called feature f is declaredin the Prolog sense. Note again, that a capitalized symbol rep-

to be an interface feature (noted as theresent a variable in Prolog, which unifies with any term. This
interface_feature(f) attribute) of the called class.body would succeed, making the interaction in question ille-

gal, if class c1 is in the kernel and if class c2 is not in the
This can be realized by the following two rules (these twokernel. This is so because ‘‘@’’ is a built-in operator defined

rules should be viewed independently of previously mentionedin such a way that a term of the form p@x succeeds if object
ones): The first is a prohibition, and the second is a permis-x has the property p in the object base B . Thus, rule R 2
sion (each of these rules is followed with a comment inmakes it illegal for kernel classes to inherit from nonkernel
italics).classes. (Note that, in general, that a rule may invoke auxil-

iary rules, some of which are built into Darwin-E itself, and R 6. cannot_call(_,C1,_,C2) :-
others may be included explicitly in L ; we will see examples cluster(kernel)@C1,
of both in due course.) not cluster(kernel)@C2.

This has been a description of a typical prohibition rule;
Prohibition preventing kernel classes to call nonkernel classes.permission rules have generally a very similar structure. (See
R 7. can_call(_,_,F,C2) :- interface_feature(F)@C2.Ref. 2 for a more detailed discussion of the structure and in-

terpretation of rules.) The existence of built-in rules of the Permission to call features listed as interface features.
type defined in Rule R 1 allows one to choose, for each regu- It may appear from the above discussion that the features
lated interaction t, one of the following three possible regula- that are not declared as interface features, cannot be called
tion regimes: a prohibitions-based regime, a permissions- at all, not even from the very class in which they are defined.
based regime, and a regime that uses both prohibitions and This is not the case, because as we shall see in the section
permissions. These three regimes are briefly described below. entitled ‘‘Feature Calls,’’ calls made by a class to itself is al-

ways legal. Therefore, the constraint that noninterface fea-
tures of a class c can only be called from c itself is implicit inProhibitions-Based Regime. A prohibitions-based regime
the above scenario and we do not need to define any explicitwith respect to a valid Eiffel interaction t is a regime under
rule for it.which t is allowed unless it is explicitly prohibited. Such a

regime is established under law L by including in L the rule:
Concluding Remarks. To appreciate the flexibility provided

by the availability of these three regimes, it is important toR 3. can_t(A1,A2,. . .,An) :- true.
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realize that, under Darwin-E, the complete law of the project Principles 1 through 3 of the section entitled ‘‘A Kernelized
Design: A Motivating Example’’; (b) a set of rules that governcan specify who can make which rules. For example, it is pos-

sible to write a law under which only the owner of a class d the authority of the various builders, say, by allowing only
certain programmers to write and manipulate kernel classes;would be authorized to write can_call(_,C,f,d) permis-

sion rules allowing other classes calling feature f of his class and, finally, (c) a set of rules that regulates changes in the
law itself, which in this case would disallow the removal fromd, and the project managers would be authorized to write

cannot_call(_,C1,_,C2) prohibition rules preventing call the law any of the rules of L 0. The former set of rules is given
in Fig. 5; the other two are not given here, but an interestedinteraction in general between any two classes. This way the

project managers are able to impose various broad and gen- reader will find analogous rules in Ref. 6.
eral constraints such as the one expressed by rule R 6 above,
and the individual builders are able to state which call inter-

INTERACTIONS REGULATED UNDER DARWIN-E
actions they approve on their classes. As a result, a call inter-
action either is rejected by the manager’s prohibition or has

This section discusses some of the interactions regulated un-
to be approved by the owner of the class being called in order

der Darwin-E. Besides defining each of these interactions, we
to be a legal interaction, a situation which is also reasonable

motivate the need for regulating it, and illustrate such regu-
for many projects with the notion of ownership of classes by

lation by means of few examples. More sophisticated exam-
builders.

ples that require the concurrent regulation of several differ-
However, our combination of prohibitions and permissions,

ent interactions will be given in the section entitled ‘‘Putting
with prohibitions taking precedence over permissions, may

It All Together.’’
not be the preferred style for some applications. Here we show

Two comments are in order before we start. First, the in-
how our scheme can accommodate a very different style for

teractions to be introduced below are not entirely disjoint, in
constructing a law, demonstrating it with rules about the

a sense that a given linguistic construct may be viewed as
call interaction.

involving two separate interactions. For example, the Eiffel
Suppose that we would like every call interaction to be au-

statement !!x is viewed as a generate interaction (see sec-
thorized either by the manager or by a consensus of the own-

tion entitled ‘‘Generation of Objects’’ because it creates a new
ers of the calling and the called classes. This can be done by

object; as well as an assign interaction (see section entitled
the following can_call rule, under our permission-based

‘‘Assignment’’) because it assigns to x a pointer to the new
regime.

object. Second, we point out that the various subsections be-
low are independent of each other and can be read in anyR 8. can_call(F1,C1,F2,C2) :-
order. In fact, the reader is advised to read carefully justmanager_permission(F1,C1,F2,C2) � true�
about one or two interactions on first pass through this article(caller_permission(F1,C1,F2,C2),
and then skip directly to the section entitled ‘‘Putting It Allcallee_permission(F1,C1,F2,C2)).
Together.’’

We assume here that the manager is the one authorized to
write mgr_permission rules and that the owner of a class The Use of Naked C-Code by Eiffel Classes
c can write caller_permission(_,c,F2,C2) and

The ability to use C-code for the body of a routine of a classcallee_permission(_,C1,F2,c) rules about his class c.
is a necessary but very unsafe aspect of Eiffel. Besides provid-In general, the ability to introduce new predicates to our
ing the ability to make system calls, as has been pointed outrules, as well as to regulate the formation of the rules that
in the section entitled ‘‘A Kernelized Design: A Motivatingcan resolve these predicates, provides us with significant
Example,’’ it can be used to provide various services not pro-flexibility concerning the structure of the law. For example, it
vided by Eiffel itself. But C-coded routines can also cause theis possible to replace the callee_permission above with
violation of all the basic structures of the Eiffel language, in-some kind of prohibition, if such is desired.
cluding encapsulation, and thus needs to be regulated. ForIn the rest of this article we limit ourselves, for simplicity,
this reason, we define the use of C-code as a regulated inter-to the prohibition-based regulation, for all interactions—
action in the following manner:assuming that the law contains blanket permissions for all

regulated interactions, which we do not list explicitly.
Definition 1 (useC interaction). Given a class d and a rou-
tine r defined in it, we say that the interaction useC(d,r)

The Initialization of a Project
occurs if the body of d is written in the language C.

A software development project starts under Darwin-E with
the formation of its initial state and with the definition of its According to the convention introduced above, this interac-

tion is regulated by rules of type cannot_useC. For example,initial law. The initial state may consist of one or more
builder objects that can ‘‘start the ball rolling.’’ The initial law Principle 1 of the section entitled ‘‘A Kernelized Design: A

Motivating Example,’’ can be established by including the fol-defines the general framework within which this project is to
operate and evolve; and, in some analogy with the constitu- lowing rule in the initial law L 0:
tion of a country, it establishes the manner in which the law

R 9. cannot_useC(D,_) :-
itself can be refined and changed throughout the evolutionary

not cluster(kernel)@D.
lifetime of this project.

For example, the initial law L 0 of a project designed to The effect of this rule is that a class cannot use C-code unless
it belongs to the kernel cluster; or, in other words, that onlysupport the development of a kernelized system would have

the following sets of rules: (a) a set of rules that establish kernel classes can use C-code.
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Another example of control over this interaction is pro- interactions that is not covered in this article. In later sec-
tions we show how to regulate the accessibility of the variousvided by the following rule:
features of a class to the code in its descendants. Finally, in

R 10. cannot_useC(D,_) :- the section entitled ‘‘Inclusion of a Class in a Configuration,’’
owner(P)@D, we show how it is possible to force certain classes to inherit
status(trainee)@P. from certain other classes (see rule R 33 in particular).

which has the effect that modules owned by trainee program-
Restricting the Ability to Inherit. To regulate the inheritancemers cannot use C-code—quite a reasonable managerial re-

graph itself we introduce the following interaction:striction.

Definition 2 (inherit interaction). Given two classes c1Inheritance
and c2, we say that the interaction inherit(c1,c2) occurs

With all its benefits, inheritance may have some undesirable if c1 directly inherits from c2. The class ANY is excluded in
consequences, and its use needs to be regulated. In particular, the definition, because on one hand ANY cannot inherit from
as is explained below, inheritance tends to undermine encap- any user-defined class, and on the other all Eiffel classes by
sulation, it conflicts with the Eiffel’s selective export facility, default inherit from ANY.
and it may undermine uniformity in a system.

The conflict between inheritance and encapsulation is due The cannot_inherit prohibitions over this interaction
to the fact that the descendant of a class has free access to its can be imposed in a variety of useful ways as illustrated
features and that it can redefine the body of its routines. The below.
potentially negative implications of these aspects of inheri- If the law L contains the following rule, then no class
tance to encapsulation have been pointed out by Snyder (7). would be able to inherit from class account, making it a ter-

The conflict between inheritance and selective export in minal class.
Eiffel is due to the fact that anything exported to a class is

R 11. cannot_inherit(_,account).automatically accessible to all its descendants. To explain
why this may be undesirable, consider a class account with If a project is to have many such terminal classes, one may
features deposit and withdraw. Suppose that in order to mark each of them by the term terminal and include the
ensure that these two routines are used correctly—in confor- following rule in L , which would prevent inheritance from all
mance with the principle of double entry accounting, for ex- such classes.
ample—they are exported exclusively to a class transac-

R 12. cannot_inherit(_,T) :-tion which is programmed very carefully to observe this
terminal@T.principle. Unfortunately, the correctness of the transfer of

money in the system may be undermined by any class that The prohibition of inheritance from a given class may be
inherits from transaction, which may be written any time only partial. For example, the following rule (used alterna-
during the process of system development, because any such tively to Rule R 11) allows only classes in cluster account-
class would have complete access to the routines deposit ing to inherit from class account.
and withdraw.

R 13. cannot_inherit(C,account) :-Finally, the manner in which inheritance undermines uni-
not cluster(accounting)@C.formity can be illustrated as follows: Suppose that we would

like all accounts in a given system to have precisely the same A prohibition over inheritance may be only a temporary
structure and behavior. This cannot be ensured in the pres- measure, taken at some stage of the process of system devel-
ence of inheritance because, due to polymorphism, instances opment. For example, suppose that during this process a pro-
of any subclass of class account can ‘‘masquerade’’ as in- grammer named John creates a class c1 which is not yet fully
stances of account. Besides having additional features, these debugged and documented, and therefore cannot be released
‘‘fake’’ accounts may have different behavior created by re- for general use in the project. Nevertheless, John wants his
definition and renaming of features defined in the original close collaborator Mary to be able to use this class, in particu-
class account. lar by having her own classes inherit from it. This can be

For all these reasons one may want to impose constraints done by having John add the following rule to the law of the
on the very ability of a class to inherit from another class, as project:
well as on the precise relationship between a class and its

R 14. cannot_inherit(C,c1) :-descendants. In the section entitled ‘‘Restricting the Ability
not (owner(P)@C,to Inherit’’ we present the means provided by Darwin-E for
name(mary)@P).imposing constraints over the inheritance graph itself (which

in Eiffel can be an arbitrary DAG). In the sections entitled Finally, the following rule establishes the policy that ker-
‘‘Redefinition,’’ ‘‘Renaming,’’ and ‘‘Changing the Export Status nel classes cannot inherit from nonkernel classes, which is
of Inherited Features,’’ we present the means for restricting necessary (but not sufficient) for the satisfaction of Principle
the ability of an heir to adapt some of the inherited features 2 of kernelized design introduced in the section entitled ‘‘A
by redefinition, renaming, and reexport. Eiffel provides two Kernelized Design: A Motivating Example.’’
additional means of feature adaptation, namely effecting and
undefine. However, as we shall see, our treatment of redefini- R 15. cannot_inherit(C1,C2) :-

cluster(kernel)@C1,tion subsumes effecting; and although Darwin-E recognizes
undefinition interaction and can control it, this is one of the not cluster(kernel)@C2.
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Redefinition. In order to regulate redefinition—a well- In order to regulate renaming, Darwin-E defines it as an in-
teraction, as follows:known necessary evil of object-oriented programming—we

view it as an interaction. Before defining this interaction, let
us introduce the following auxiliary definition: Definition 5 (rename interaction). We say that the inter-

action rename(c1,f,c2) occurs if c1 renames a feature f
Definition 3 (originally defined). Given a class c1 that in- which has been ‘‘effectively defined in class c2’’ (see Definition
herits a feature as f, we say that f is ‘‘effectively defined in 3 for the meaning of the phrase ‘‘effectively defined’’).
c2’’ (not to be confused with ‘‘effecting’’ in Eiffel) if either (1)
c2 is the closest ancestor of c1 where As an example of control over renaming, consider the pol-

icy that exported features of kernel classes cannot be re-
• f has been redefined (either effecting or proper redefini- named by nonkernel descendants. This policy is established

tion) or by the following rule:
• some other feature was renamed as f

R 20. cannot_rename(C1,F,C2) :-
derived(C2,F,C3),

or (2) c2 is the class of origin of f and f has not been rede- cluster(kernel)@C3,
fined or renamed in the inheritance path from c1 to c2. not cluster(kernel)@C1,

exports(C3,F).
Now, we can define the concept of redefine interaction in

The predicate exports(C3,F) is a built-in predicate whichterms of the above auxiliary definition as follows:
succeeds if the feature F is exported, directly or indirectly,
from class C3. The predicate derived(C2,F,C3), defined byDefinition 4 (redefine interaction). We say that the inter-
the auxiliary rule R 21 below, succeeds if F is the final nameaction redefine(c1,f,c2) occurs if c1 redefines a feature
in class C2 of a feature defined in the ancestor C3:f which has been effectively defined in class c2.

R 21. derived(C1,F,C2) :-
Note that the latest version of Eiffel provides some means heirOf(C1,C2),

for regulating this interaction, as follows: One can declare a (rename(F1,of(X),to(F))@C1 � X��C2�
feature f of class c to be frozen, thus preventing it from defines(routine(F),_)@C2).
being redefined anywhere. This is equivalent to the following

The predicates rename(_,_,_) and defines(_,_) checkrule:
the existance of built in properties associated with classes,

R 16. cannot_redefine(_,f,c). that are obtained by static analysis of the associated code. If
a class c inherits a feature f from a parent c1 and renamesBut the frozen specification is, of course, much less expres-
it f1, then c will have the property rename(f,of(c1),sive than our cannot_redefine rules, as is demonstrated by
to(f1)). Similarly, if class c defines a routine f of returnthe following examples.
type t, then c would have the property defines(rou-Consider the policy that the various features of class ac-
tine(f),type(t)).count cannot be redefined anywhere but by classes that be-

long to the accounting cluster. This policy can be established
Changing the Export Status of Inherited Features. In Eiffel,by writing the following rule into L .

the export status of a feature f1 defined in class c1 can be
R 17. cannot_redefine(C,_,account) :- redefined in any of its descendants. Such a reexport may be

not cluster(accounting)@C. undesirable for two reasons. First, any increase in the visibil-
ity of f1 may violate the legitimate wishes of the designerAs another example, one may want the features defined in
of class c1. For example, there are good reason to keep thekernel classes to have universal semantics, and thus never to
encryption key of a class encryption completely hidden. Sec-be redefined, except, perhaps, by other kernel classes. This
ond, a decrease in the visibility of f1 would make compile-policy is established by the following rule:
time type checking impossible, giving rise to a phenomenon in

R 18. cannot_redefine(C1,_,C2) :- Eiffel called system-level validity failure (4). To provide some
not cluster(kernel)@C1, control over this capability of Eiffel we introduce the follow-
cluster(kernel)@C2. ing interaction:

Finally, a purist designer may want to prohibit all redefini-
Definition 6 (changeExp interaction). Let c1 be a class,tion in his system. This policy can be established by means of
let f1 be one of the features effectively defined in c1, and letthe following rule.
c2 be a descendant of c1. We say that the interaction

R 19. cannot_redefine(_,_,_). changeExp(c2,f1,c1) occurs if c2 redefines the export sta-
tus of f1.

Renaming. In Eiffel an inherited feature can be renamed
by the heir class. Such renaming may serve two useful pur- As an example of regulation over this interaction, the
poses: (1) It may help avoiding name clashes, particularly builder of the encryption class may decide to prohibit any
those arising from multiple inheritance, and (2) it may help changes in the export status of the feature key of this class
providing customized interface to the clients of the heir. But by means of the following rule:
in spite of its usefulness, renaming may sometimes be unde-
sirable, mostly because it reduces uniformity in the system. R 22. cannot_changeExp(_,key,encryption).



SOFTWARE MANAGEMENT VIA LAW-GOVERNED REGULARITIES 515

As another example, a purist system designer may prohibit say that the interaction call(f1,c1,f2,c2) occurs if the
feature f2 is called from routine f1 of class c1.any change of export status in the system by means of the

following rule:
Note that calls of creation-procedures as part of the instan-

R 23. cannot_changeExp(_,_,_).
tiation process (using the !! operators) are outside the scope
of rules controlling the call interaction. These calls are han-

Being a Client
dled later in the article.

A class c1 is said to be a client of class c2 (the ‘‘supplier’’) if
c1 declares either an attribute, a local variable or a formal On the Differences Between Exports and cannot_call
parameter of class c2. In other words, any use (except for Rules. To illustrate the use of cannot_call rules, let us re-
inheritance) of c2 by c1 requires c1 to be a client of c2. The turn to an example discussed in the section entitled ‘‘Inheri-
client–supplier relation is unconstrained by the Eiffel lan- tance.’’ Consider again the class account, and suppose that
guage, but it sometimes needs to be constrained. For instance, it defines routines deposit, withdraw, and balance. Con-
Principle 2 of kernelized design clearly implies kernel classes sider the following rules.
should not be clients of nonkernel classes. We therefore define

R 25. cannot_call(_,C,F,account) :-the being-a-client relation as a controllable interaction called
(F�deposit�F�withdraw),‘‘use,’’ as follows:
not C�transaction.

Definition 7 (use interaction). Let c1 and c2 be two (possi- R 26. cannot_call(_,C,F,account) :-
bly identical) classes. We say that the interaction F�balance,
use(c1,c2) occurs if c1 is a client of c2. not cluster(accounting)@C.

The first of these rules states that the features deposit andFor example, the following rule prohibits kernel classes
withdraw cannot be called from anywhere but class trans-from being clients of nonkernel classes.
action. This is almost equivalent to having these feature ex-

R 24. cannot_use(C1,C2) :- ported selectively to transaction—almost, but not quite.
cluster(kernel)@C1, Features exported selectively to class transaction would be
not cluster(kernel)@C2. usable also by any class that inherits from transaction; but

under rule R 25, class transaction would have the exclusive
Feature Calls power to call these features.

Unlike rule R 25, rule R 26 cannot be even approximatedA feature f of an object x can be called either remotely, by
by means of Eiffel export clauses. This rule makes the featuresome other object y (using the dot notation x.f, with the ap-
balance of class account unusable anywhere but in thepropriate arguments, if any), or locally, by object x itself.
classes that belong to the accounting cluster, whatever theySuch calls are constrained in Eiffel by means of the following
may be. Such a specification, which provides semantics to avisibility rules:
cluster of classes, obviously cannot be matched with any con-
struct in Eiffel.

1. A feature f of class c is visible for local calls to code It is important to realize that cannot_call rules are a
written in every descendant of c (including, of course, c prohibition, not a permission. Thus, for example, for the rou-
itself). tine withdraw to be actually callable from class transac-

2. A feature f of class c is visible for remote calls by an tion it must be exported, the Eiffel way, either explicitly to
object of a class d if f is exported either universally or this class or universally. In general, the may-call graph of an
selectively to d. Eiffel system can be obtained by analyzing the export state-

3. Features exported to a class are automatically exported ments of the constituent classes. Under Darwin-E, this graph
to all its descendants. is restricted by our cannot_call rules.

This gives rise to two approaches to the specification of the
call graph in a given project. The first is to let the variousDarwin-E subjects both types of feature calls, the remote
classes contain their possibly selective export clauses, as in aand the local, to further regulation. The need for such regula-
standard Eiffel program, and use our cannot_call rules totion will become clear in due course.
specify additional constraints, which would be difficult or im-Since we are committed here to compile-time enforcement
possible to specify by means of export clauses. The second ap-of the law, we view a feature call essentially as an interaction
proach is to (1) have all features of a class that are to bebetween classes (parameterized by the features involved)
exported at all be exported universally and (2) rely on therather than between the objects that are dynamically in-
cannot_call rules for the specification of more sophisticatedvolved in this interaction. (This fact causes misidentification
call graphs. Both approaches seem reasonable.of the target of the interaction in some rare circumstances, as

explained in the section entitled ‘‘Limitations of Static Analy-
sis of Call Interactions.’’ A call interaction is defined as Providing for an Interface of a Cluster. For an important ap-
follows: plication of cannot_call rules, recall our Principle 3 of the

kernelized design of the section entitled ‘‘A Kernelized De-
sign: A Motivating Example,’’ which requires that the kernelDefinition 8 (call interaction). Consider a feature f1 de-

fined in class c1 and a feature f2 effectively defined in class clusters be usable only by means of well-defined interface.
This policy is established by rule R 49 of Fig. 5 in the sectionc2 (see Definition 3 of the phrase ‘‘effectively defined’’) We
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entitled ‘‘Putting It All Together.’’ Here we show how a gener- classes in the accounting cluster. One interpretation of this
policy is established by the following rule:alization of this policy to all clusters of a system can be estab-

lished.
R 28. cannot_generate(_,C1,account) :-

Specifically, consider the following policy: Features of any
not cluster(accounting)@C1.

cluster can be called from another cluster only if they are marked
This rule prevents class account from being instantiatedas interface_features in the object-base B . This policy is estab-
anywhere but in the accounting cluster. Note, however, thatlished by the following rule:
this rule says nothing about the instantiation of descendant

R 27. cannot_call(_,C1,F2,C2) :- of class account, which in a strong sense constitutes the cre-
cluster(K1)@C1, ation of accounts. To include these in our policy we replace
cluster(K2)@C2, rule R 28 with the following rule:
K1�/�K2,

R 29. cannot_generate(_,C1,C2) :-not interface_feature(F2)@C2.
not cluster(accounting)@C1,
heirOf(C2,account).Limitations of Static Analysis of Call Interactions. The static

analysis used here to characterize call interactions may, in where heirOf(C,D) invokes a built-in rule of Darwin-E
some rare circumstances, misidentify the target of the inter- which succeeds when class C is a descendant of D, or is equal
action as follows: Let routine f1 contain the expression x.f2, to it. Some confusion may arise because of the fact that in
where x is declared to be of class c2. This expression would Eiffel literature the term heir is sometimes used, informally,
be interpreted as the interaction call(f1,c1,f2,c2). But to mean direct child, whereas our heirOf relation means de-
suppose that dynamically x points to an instance of a de- scendants.
scended c3 of class c2 which redefines f2. In this case, the Note that unlike most other languages, the latest version
call interaction that actually takes place at runtime is of Eiffel does provide some means for regulating the ability to
call(f1,c1,f2,c3). This misidentification, which matters generate instances of a given class, by selective export of its
only if the law makes different rulings about these two inter- creation routines. But the target of selective export is speci-
actions, can be removed by means of run-time analysis. But fied by extension, with all the limitation of such specification
in practice we expect a constraint involving a feature f of a described in the section entitled ‘‘Feature Calls.’’ Indeed, none
class c to be generally applied to all redifinitions of f in the of the example policies above can be established in Eiffel
descendants of c as well. Therefore, although calling a rede- itself.
fined feature via an instance of a subclass is very common in Note also that the examples used in this section do not use
object-oriented systems, the potential for error in our case is the first parameter of the generate interaction. The use of
rare and run-time analysis is hardly worthwhile. this parameter will be illustrated in the section entitled ‘‘Fea-

ture Calls.’’
Generation of Objects

A Limitation of the Static Analysis of Generate Interaction. Us-New objects are generated in an Eiffel program mostly by
ing a combination of polymorphic assignment, cloning, andmeans of the instantiation operator !!, but also by cloning.
reverse assignment it is possible to thwart ourBoth of these are recognized in Darwin-E as instances of the
cannot_generate prohibitions. The offending combinationgenerate interactions defined below:
can sometimes, but not always, be prevented by other means.
The following discussion elaborates on this.Definition 9 (generate interaction). Let c1 be a class, and

The problem at hand can be demonstrated as follows: Sup-let r1 be a routine defined in it. We say that the interaction
pose that law L contains Rule R 29, which permits only

generate(r1,c1,c2) occurs if routine r1 contains an ex-
classes in accounting cluster to generate accounts. We willpression that, if carried out, would generate a new object of
show how a class c not in the accounting cluster can never-class c2. A generate interaction is identified as such if routine
theless generate accounts.

r1 has an expression that has one of the following constructs:
Suppose that class c has an entity x1 of class account

and that it has the entities a1 and a2 of class any; and let x1
1. !!v2.p, when v2 is of class c2 with p as a creation point to an actual account generated elsewhere. The following

routine. sequence of instructions in class c would generate a new ac-
2. !c2!v2.p, where v2 is declared to be of a superclass of count pointed to by a2.

c2 and p is a valid creation routine for c2.
1. a1 := x1;3. clone(v), where v is of class c2.
2. a2 := clone(a1);

Note that if the class c2 does not have any creators part,
then the creation construct may not have the creation-call Statement 1 stores a pointer to the original account object in

variable a1 of class any. Since there is no prohibition in Lpart. We describe only the most general form of creation con-
structs. Note also that if the variable v2 is declared expanded against generating objects of class any, a1 can be cloned

(statement 2) into a2. Now a2 contains a pointer to a new ac-or the class c2 is an expanded class, Darwin-E does not pro-
duce a generate interaction. count.

In this particular example, the newly cloned account isTo illustrate the use of control over the generation of ob-
jects, consider the policy which requires that accounts (i.e., only usable as an instance of ANY and cannot be used as an

account unless it is reverse assigned to an account entity. Weinstances of class account) be created only by means of
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can use cannot_revAssign rules discussed in the section Note also that if one wants to restrict the ability to change
the value of an attribute of an object x, one should worryentitled ‘‘Reverse Assignment’’ to prevent this from happen-

ing, and therefore, although it bypasses our constraint it about a copy operation x.copy(. . .), which in effect as-
signs to all the attribute of x. Therefore, we view this opera-would not cause any real harm.

But such a remedy is not always satisfactory, in particular tion as a kind of assign interaction, as defined below:
because: (1) the instance creation effected by the clone in-

Definition 11 ((another) assign interaction). Let r1 be astruction may leave a side effect and be undesirable by itself;
routine defined in class c1, and let x be a variable of (or anand (2) one might want to prohibit instance creation, but
expression of static type) class c2. We say that the interactionallow reverse assignment. In some cases, one needs run-time
assign(r1,c1,_,c2) occurs if the code of routine r1 has acontrol, which is available under Darwin-E but is not covered
statement x.copy(. . .) or x.deep_copy(. . .). Ofin this article.
course the operation x.deep_copy(. . .) may do moreEiffel provides yet another means for the violation of
than assign into its explicit target x, and its precise rangecannot_generate rules, namely the deep_clone routine,
cannot be determined at compile time. This, however, is awhich may generate a great variety of objects in a single call.
rarely used operation whose use can be tightly regulated sep-We view this routine as one of the unsafe features of the Eiffel
arately by means of cannot_call rule. (Note that the thirdlanguage, which should be tightly regulated by means of
argument of this interaction is the variable (in the sense ofcannot_call rules, thus reducing its danger to any prohibi-
Prolog), which means, in effect, that it affects all attributes oftions over generation of objects that the law may contain.
class c2.)

Assignment
Note that the copy case of a call interaction is indepen-

Assignments are already very restricted in Eiffel, which does dently subject to the static analysis error of call interactions,
not allow us to change (make assignment to) the attributes of as discussed in the section entitled ‘‘Limitations of Static
an object from outside. But additional constraints on assign- Analysis of Call Interactions.’’
ment may be useful for several reasons—in particular, for en- The control provided by Darwin-E over the assign interac-
suring that some types of objects are immutable and that cer- tion has several important applications. One application is
tain functions do not produce side effects, as well as for discussed below; additional applications are presented in the
eliminating cross-class assignment in certain circumstances, section entitled ‘‘Putting It All Together.’’
as we shall see below. For these and some other reasons, we

Fortifying Encapsulation in Eiffel. One of the controversialtreat assignment as a controllable interaction, as defined
design decisions of Eiffel is to provide an heir class with com-below:
plete access to all the features it inherits. While this may sim-
plify the code in the heir class, it compromises the encapsula-Definition 10 (assign interaction). Let r1 be a routine de-
tion provided by the parent classes, in the general mannerfined in class c1, and let a2 be an attribute defined in an
discussed in Ref. 7. We can fortify encapsulation in Eiffel,ancestor c2 of c1 (c2 may, in particular, be equal to c1). We
without giving up much of the ease of access provided by it,say that the interaction assign(r1,c1,a2,c2) occurs if the
by allowing an heir-only read access to the attributes it inher-code of routine r1 has a statement that assigns (or reverse-
its. Rule R 30 below accomplishes this by allowing an assign-assigns) into a2.
ment to be carried out only by a class on the attributes de-
fined in it.Here are some elaborations on this definition:
R 30. cannot_assign(_,C1,_,C2) :- C1�/�C2.

1. Three kinds of statements are covered by this interac- This rule would prevent any assignment to a variable defined
tion: the assignment statement a2 := . . ., the reverse in a class C2 by code written in any proper descendant of it,
assignment a2? = . . ., and the creation statemen while not disturbing the read and call access provided by
!!a2. The latter case is considered an assignment be- Eiffel.
cause it stores in a2 a pointer to the newly created ob-
ject. (Note that creation is also controlled independently Reverse Assignment
by means of the generate interaction discussed above.)

Reverse assignment is a type-safe means provided by Eiffel to
2. Only assignment to attributes is covered by this interac- ‘‘resurrect’’ a pointer stored in variable of more general type

tion, not assignment to local variables of a routine. than the object being pointed to, making this object usable for
3. This interaction does not cover assignment made by rou- what it really is (4).

tines declared as creation routines. The reason for this This somewhat unusual device, which is very useful for
exemption, which removes creation routines from any polymorphic and strongly typed languages, is used in the fol-
potential prohibition over assignment, is that assign- lowing manner: Let the static type of a variable x1 be c1, and
ment is the raison d’être of these routines. let the static type of the variable x2 be c2, where c2 is a

subclass (descendant) of c1. The reverse assignment state-4. The parameter c2 of the interaction as-
sign(r1,c1,a2,c2) refers to the class in which attri- ment x2 ?= x1 would make x2 point to the object pointed to

by x1, if this object happens to be an instance of class c2;bute a2 is defined, not the class of this attribute. This
is because of the nature of control we envision over as- otherwise, the value void is stored in x2.

Although reverse assignment can be regulated in Darwin-signment, which will be illustrated later on in this
section. E as a special case of assignment, by means of
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cannot_assign rules, there are reasons to provide a regula- R 33. cannot_include(C,_) :-
cluster(accounting)@C,tion mechanism specific to it. One such reason is that, if used

carelessly, reverse assignment can make variables void and not inherits(inspection)@C.
thus cause run-time exceptions. Furthermore, reverse assign-
ment can be used to foil some of the controls provided by Dar-

PUTTING IT ALL TOGETHERwin-E, as has been discussed in the section entitled ‘‘A Limi-
tation of the Static Analysis of Generate Interaction.’’ We

In this section we present some examples of useful regulari-therefore define the following interaction:
ties that can be established by concurrent control over several
of the interactions introduced in the previous section. We willDefinition 12 (revAssign interaction). Let r1 be a routine
be presenting several ‘‘law fragments,’’ each of which is de-defined in class c1, and let a2 be an entity of class c2. We
signed to establish a specific regularity. (A law fragment is asay that the interaction revAssign(r1,c1,c2,c3) occurs if
collection of rules that are meant to be used together. It isthe code of routine r1 in class c1 has a statement of the form
presented as a figure, in which the role of individual rules isa2 ?= x; where x denotes a variable of class c3 or, more
explained by italicized comments.) Note that these law frag-generally, an expression of static type c3.
ments are independent of each other, but, as a testimony to
the modularity of our rules, it so happens that these frag-As an example, recall Rule R 28 in the section entitled
ments can be combined with each other without losing any of‘‘Generation of Objects,’’ intended to establish the policy that
their effects.accounts cannot be created anywhere but in classes of the ac-

counting cluster. As discussed in the section entitled ‘‘A Limi-
Immutabilitytation of the Static Analysis of Generate Interaction,’’ this pol-

icy can be foiled with a use of reverse assignment. The Consider the following notion of immutable class:
offending use of reverse assignment can be blocked, however,
by means of the following rule: Definition 14 (immutability). A class c is said to be immu-

table if (a) all its instances are immutable and (b) attributesR 31. cannot_revAssign(_,C1,account,_) :-
defined in class c are immutable even as components of annot cluster(accounting)@C1.
instance of descendant of c.

which prevents reverse assignment into variable of class ac-
count by any class outside of the accounting cluster. Note that this concept of immutability is a regularity in

our sense of this term, since it cannot be localized in any
Inclusion of a Class in a Configuration given class or in any fixed set of classes. Indeed, while it is

possible to satisfy property (1) of this definition by appro-Darwin-E regulates the very inclusion of classes in configu-
priate construction of class c itself, the satisfaction of prop-rations via what we call the include interaction, defined
erty (2) depends on all descendants of c. However, such abelow.
property can be ensured only by a law, as we shall see below.

The law fragment of Fig. 2 converts any class called immu-Definition 13 (include interaction). Recall that a configu-
table into an immutable class in the sense of Definition 13.ration object in Darwin-E represents a collection of classes to
This is done as follows: Rule R 34 prohibits classes markedbe assembled together to form a runnable system. Now, given
as immutable from inheriting from classes not so marked, fora class c and a configuration g, we say that the interaction
obvious reasons. Rule R 35 prohibits assignment to the attri-include(c,g) occurs if c is included in g.
butes defined in such a class. These two rules should have

We provide here two examples of control over this interac- been sufficient for immutability, except for the following prob-
tion. First, suppose that configurations marked by the term lem: According to Definition 9 the prohibition on assignments
release are intended for actual release to the customer and
that classes marked by term tested have been officially
tested (recall that under Darwin-E it is possible to control
who can mark a given class as tested). The following rule es-
tablishes the policy that release configurations can include
only tested classes:

R 32. cannot_include(C,G) :-
release@G,
not tested@C.

For our second example, consider a class called inspec-
tion built in such a way that it allows the inspection of all
component parts of instances of all its descendants. (This
should be possible if we allow class inspection to use C-code.)
Now, suppose that we want everything defined in cluster ac-
counting to be inspectable in this way, providing for a degree
of on-line auditing of accounting. This can be accomplished by

RRR34. cannot inherit(C1,C2) :�

immutable@C1,
not immutable@C2.

An immutable class cannot inherit from a nonimmuta-
ble class.

RRR35. cannot assign( , , ,C) :� immutable@C.
Prohibition of assignment to attributes of a class
marked as immutable.

RRR36. cannot call( , ,F,C) :�

creation(F)@C,
heirOf(C,C1)
immutable@C1.

Prohibition of regular calls of creation routines of
classes marked as immutable and their descendants.

means of the following rule, which forces all accounting
classes to inherit from class inspection. Figure 2. Establishing a concept of immutable class.
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Side-Effect-Free Routines

It is sometimes useful to have the assurance that a certain
kind of routines are side-effect-free (SEF); that is, that they
have no effect on the state of the system beyond the result
being returned. (It is, of course, useful only for functions to be
SEF.) A case in point is a financial system that contains a
cluster of classes whose function is to audit the rest of the
system. These audit classes should be allowed to observe the
status of the rest of the system, but not to affect its status in
any way. In other words, an audit class should be allowed to
call only SEF routines defined in the rest of the system (see

RRR37. cannot assign( ,C1,F,C) :�

private(F)@C,
C1�/�C.

Prohibition of assignments to private attributes of class
C by any other class.

RRR38. cannot call( ,C1,F,C) :�

private(F)@C,
C1�/C.

Prohibition of calls to private attributes of class C from
any other class.

Ref. 6 for a detailed discussion of such a system).
Figure 3. Establishing a concept of private feature. But how do we know which routines are SEF? Of course,

one can program any given routine carefully to be SEF and
then allow it to be used by the audit classes. But how do we
know that the given routine would retain its SEF natureexempts the creation routines of a class. This does not contra-
throughout the evolutionary lifetime of the system? One solu-dict immutability as long as the creation routines are not
tion to this problem is given by the law fragment in Fig. 4.called normal routines on an already initialized object, which
This set of rules makes sure that if a class c has the propertyis permitted in Eiffel. Such use of creation routines is prohib-
sef(r), then the Eiffel routine r defined in c is a SEF rou-ited by Rule R 36. Note that Eiffel allows the creation routine
tine. We assume here that C-coded routines cannot be markedof a descendant class of an immutable class to assign to attri-
in this way, which can easily be ensured by the law underbutes inherited from the immutable ancestors. For this rea-
Darwin-E.son, regular calls of creation routines are prohibited for the

Rule R 39 of this law-fragment prohibits SEF routinesdescendants of immutable classes as well.
from making any assignments into attributes of an object,
which includes prohibition of instantiations into attributes.Private Features
Rule R 40 prohibits all instantiations by SEF routines, even

Let us define the concept of a private feature of a class as instantiations into local variables of a routine (note that as-
follows: signment to local variable is not prohibited by this law). This

restriction may look unnecessarily severe; for instance, it will
Definition 15 (private feature). A feature f defined in not allow us to return a list of names read from an input list.
class c is called a private feature of c if it is accessible only However we argue that creation of such a list is a side effect.
in routines defined in c itself. Finally, Rule R 41 does not let a SEF routine f1 to call an-

other routine f2 unless (a) f2 is also a SEF routine, or (b) f2
is an attribute (and thus inherently SEF), or (c) f2 is certi-This useful notion is supported by both Simula 67 (8) and
fied as SEF routine. If a class c1 has an attribute t ofC�� (9), but unfortunately not by Eiffel, in which features of
type (class) c2, then Darwin-E sets the propertya class are automatically visible in all the descendants of this
defines(attribute(t),of_type(c2)) in c1. The thirdclass. This limitation of Eiffel can be easily rectified under
possibility refers to a property certified_as_sef(f2) of aDarwin-E. In particular, the pair of rules in Fig. 3, would
class c2 where f2 is defined as a C-coded routine. The pointmake any attributes f of class c private if c has the property
here is that our law does not analyze C-coded routines, whichprivate(f) in the object-base B of project P governed by

this law fragment. thus require their SEF status to be certified by one of the

RRR39. cannot assign(F,C, , ) :�

assef(F)@C.
A SEF routine should not perform any assignments (except assignments to local variables,
which are not controlled by this rule).

RRR40. cannot generate(F,C, , ) :�

gesef(F)@C.
A SEF routine is not allowed to create new objects.

RRR41. cannot call(F1,C1,F2,C2) :�

sef(F1)@C1,
not sef(F2)@C2,
not defines(attribute(F2), )@C2,
not certified as sef(F2)@C2.

A SEF routine F1 cannot call F2 unless it is also a SEF routine, or it is an attribute (and thus
inherently SEF), or it is certified as SEF routine.

Figure 4. Establishing the concept of side effect free (SEF) routine.
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builders of the system. Such certification can, of course, be allows nonkernel classes to call the kernel only by means of
features marked explicitly as interface_feature. (This isregulated by the law of the project.
meaningful if, for example, only the supervisor of the kernel
is allowed to make such a marking, and thus define what be-Kernelized Design
longs to the interface of the kernel.) But this rule is not quite

Finally, the law-fragment given in Fig. 5 establishes the prin-
sufficient because of the ability of a nonkernel classes to in-

ciples of kernelized design formulated in the section entitled
herit from a kernel class and then to assign to its attributes.

‘‘A Kernelized Design: A Motivating Example,’’ as follows.
This capability is prohibited by rule R 48.

First, the principle of exclusive access to external devices
is established by rule R 42, which allows only kernel classes
to have C-coded routines, without which system calls cannot

RELATED WORKbe carried out.
Second, the principle of independence of the kernel is es-

This work can be viewed as a solution to a serious difficultytablished mostly by rule R 43 (which prohibits kernel classes
with the emerging body of research on software architecturefrom being clients of nonkernel classes) and by rule R 44
(SA) (10–12), although our concept of LGA predates the(which prohibits kernel classes from inheriting from nonker-
above-mentioned SA research by several years. The difficultynel classes). Rules R 46 and R 47 can also be viewed as con-
with current approaches to software architecture has beentributing to this principle. These rules ensure that features
aptly described in a recent article by Murphy et al. (13) in thedefined in the kernel have a kind of universal semantics, by
following manner:prohibiting their redefined and renaming anywhere except in

the kernel itself.
Finally, the principle of limited interface to the kernel is Although these [architectural] models are commonly used, reason-

ing about the system in terms of such models can be dangerousestablished by rules R 48 and R 49. Rule R 49, in particular,

RRR42. cannot useC(D, ) :� not cluster(kernel)@D.
C-code cannot be used outside of the kernel

RRR43. cannot use(C1,C2) :�

cluster(kernel)@C1,
not cluster(kernel)@C2.

kernel classes cannot use (be client of) nonkernel classes.
RRR44. cannot inherit(C1,C2) :�

cluster(kernel)@C1,
not cluster(kernel)@C2.

kernel classes cannot inherit from non-kernel classes
RRR45. derived(C1,F,C2) :�

heirOf(C1,C2),
(rename(F1,of(X),to(F))@C1 � X��C2�
defines (routine(F), )@C2).

F is the final name in class C1 of a feature defined in an ancestor C2 (this rule is used as an
auxiliary to the rules RRR46 and RRR47). Although introduced earlier as rule RRR21, we reproduce it
here to make the law of kernelized design complete.

RRR46. cannot redefine(C1,F,C2) :�

not cluster(kernel)@C1,
derived(C2,F,C3)
cluster(kernel)@C3.

Features of kernel classes cannot be redefined by nonkernel descendants.
RRR47. cannot rename(C1,F,C2) :�

not cluster(kernel)@C1,
derived(C2,F,C3)
cluster(kernel)@C3.

Features of kernel classes cannot be renamed by nonkernel descendants.
RRR48. cannot assign( ,C1, ,C2) :�

not cluster(kernel)@C1,
cluster(kernel)@C2.

Attributes of kernel classes cannot be assigned to by nonkernel classes.
RRR49. cannot call( ,C1,F2,C2) :�

not cluster(kernel)@C1,
cluster(kernel)@C2.
not interface feature(F2)@C2.

Features of kernel classes cannot be called from nonkernel classes unless they are marked as in-
terface features.

Figure 5. Kernelized design.
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because the models are almost always inaccurate with respect to for the ‘‘law of Demeter’’ (20) is presented in Ref. 21; the cre-
the system’s source. ation of multiple views for a single object, which can evolve

independently of each other, is discussed in Ref. 22; the con-
In other words, there is a gap between the architectural cept of auditable system has been introduced in Ref. 6.
model and the system it purports to describe, which makes it Finally, it should be pointed out that although Darwin-E
an unreliable basis for reasoning about the system. In order deals with systems written in Eiffel, the general idea of law-
to solve this problem, several researchers (13–15) have pro- governed regularities and most of the specifics in this article
posed various tools whose purpose is to verify that a given are applicable to many other object-oriented languages, such
system satisfies a given architectural model. Unfortunately, as C��, Ada, and Modula-3. All one needs to realize such an
although such tools are undoubtedly useful, their mere exis- application is to construct an environment like Darwin-E for
tence is not sufficient for bridging the gap between an actual such languages. Moreover, the concept of LGA can be ex-
system and its model, particularly not for rapidly evolving tended to distributed systems as shown in Refs. 3 and 23.
systems. This is due to the lack of assurance that the appro-
priate tools would actually be employed, after every update of
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