
OBJECT-ORIENTED PROGRAMMING TRANSITION 69

migration from a structured programming approach to an ob-
ject-oriented approach is not without its risks. This article
presents the risks and benefits of continuing with the tradi-
tional structured approach as well as the risks and benefits
of migrating to the object-oriented approach. This article does
not overglorify the technology but notes the challenges of
adoption and presents serious factors that information tech-
nology (IT) managers planning to adopt object-oriented tech-
nology must consider.

Cost-effective construction of software has been exten-
sively studied as a central issue in information system devel-
opment, and a considerable number of principles, techniques,
tools, and notations have been explored. Some have proven
effective in practical projects.

During the 1970s, structured programming was empha-
sized as the solution for solving software-development prob-
lems. This approach introduced criteria for the development
of modular programs through top-down decomposition tech-
niques.

During the 1990s, the object-oriented approach was intro-
duced and was increasingly emphasized as the most effective
approach to software-development problems. In this ap-
proach, a component of the real world is represented as an
object in the software solution. One main goal of the object-
oriented approach is to maintain a direct correspondence be-
tween the real-world entities and their representation in sys-
tem solution. The object-oriented approach provides advances
toward software-engineering concepts such as abstraction,
modularity, reusability, and so forth.

When choosing between the traditional structured pro-
gramming and the new object-oriented approach, industrial
software developers and information technology (IT) manag-
ers often rely more on what Fenton (1) calls ‘‘unsubstantiated
advertising claims and biases of producers, both academic
and industrial,’’ than on actual benefits and/or risks of these
two approaches. The developers and managers must, how-
ever, ensure that the adoption of a (new) technology contrib-
utes to, rather than detracts from, their established methods
of development.

The main point is that object-oriented technology is not a
panacea and thus bold claims that object-oriented techniques
will solve software-development problems without consider-
ing the challenges of adoption could lead to unrealistic expec-
tations and potential disasters.

According to Everett Rogers, there are five generic innova-
tive attributes that affect the rate of adoption of a new tech-
nology (2):

1. Relative advantage
2. Compatibility
3. Availability
4. Complexity
5. Observability

OBJECT-ORIENTED PROGRAMMING TRANSITION
The adoption of object-oriented technology has certainly

been affected by the above attributes. The objective of thisMany software-development organizations are currently go-
ing through a paradigm shift in the way they develop soft- article is to explore the risks as well as benefits associated

with the adoption of object-oriented technology. The organiza-ware. Twenty to thirty years ago, structured programming
was heralded as the method for solving complex programming tion of the article is as follows: First the benefits as well as

the risks in continuing with the traditional structured tech-problems. Now object-oriented programming is emphasized
and has been adopted by many organizations worldwide. The niques will be reviewed. The next section analyzes costs be-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



70 OBJECT-ORIENTED PROGRAMMING TRANSITION

fore migration to object-oriented technology. In particular, risk in remaining with a programming methodology, as well
as with migrating to a new programming methodology. Themaintenance issues, training, perceptions, resources needed,

complexity, and costs will be discussed. The following section overall solution is to minimize the risk, regardless of the solu-
tion, now and for the future. Therein lies the dilemma: theexplores the benefits of the object-oriented approach and is

followed by discussion and conclusions, where primary and direction a business is taking today may be divergent from
where it must be in the future. According to Crouch (4), thesecondary considerations in the adoption of object-oriented

technology are considered. perception of the magnitude of risk from some event depends
on some form of product of how often the event will occur and
how serious it is considered to be in its effects. Or, more sim-

TRADITIONAL STRUCTURED TECHNIQUES ply put, probability (how much or how often), cross-multiplied
by the severity (some risk per unit of action or per event).

Benefits of Structured Techniques When translated to the investment in structured techniques
for a software-development organization, the use of the struc-Structured programming techniques are not likely to disap-
tured methodology increases the business risk when solvingpear even when object-oriented techniques make significant
new and more difficult problems. When the benefits of chang-inroads into program design and implementation. Until the
ing or migrating to a new methodology outweigh the costs ofmajority of business software development organizations com-
the new methodology, that is the time the software develop-mit totally to another methodology, academia will continue
ment organization should plan their migration strategy.to teach structured techniques. The reason is that software-

According to Fichman and Kemerer (5) the risk of re-development organizations in business continue to see bene-
maining with structured techniques or migrating to objectfits in using structured techniques.
technique is typically unknown. The reason is that no twoIn many instances, a small stand-alone task fits better in
software organizations are the same with respect to the soft-a structured environment than in an object-oriented environ-
ware problems that they must solve and the techniques theyment. For example, it makes sense for a computer operation
use to accomplish their task. However, the characteristics oforganization to use structured techniques to design a program
structured techniques are clear, based on experience with theto clear a system buffer. Analysis, design, and implementa-
techniques and models used since the 1970s. The waterfalltion are straightforward for the structured method (i.e., a call
model requires that the previous phase in the model be com-to a system function). By comparison, the C�� code using a
pleted before the next starts. There is no direct mapping be-class to model the system buffer would be at least double that
tween analysis and design (6). The model’s phase approachfor a similarly structured design using the C language with a
leaves a software project open to the risk of incomplete analy-single system call. In other words, for small problems, struc-
sis (7). Additionally, process decomposition can lead to unsta-tured techniques fit better as a development method than do
ble designs. Structured methods suggest developing softwareobject-oriented techniques. Structured programming tech-
from scratch, as opposed to reuse of existing code, therebyniques learned prior to conversion to object-orientation will
saving time. Saving time is critical to a business in a project’snot go to waste when a new methodology becomes accepted
time-to-market (7). Part of the reason code is difficult to reuseby software-development organizations in business. Methods
in the structured environment is the difficulty of reusing awritten using object-oriented techniques require structured
generic application. A structured methodology application de-techniques. Any method must follow the basic properties
veloped from scratch typically did not have reuse in mindfound in good structured programs, like cohesion and cou-
when it was designed.pling.

Applications considered to be second and third generationAnother reason structured techniques will continue to sur-
(i.e., client/server applications) will require a new solution tovive is the simplicity in dividing systems into modules, using
develop software efficiently (8). The third-generation softwaretop-down decomposition and stepwise refinement. Structured
problems are more complex than the previous generation oftechniques can have high binding strength and low coupling.
software, which lent itself to the top-down centralized com-Henry and Humphrey observe (3) that the result of structured
puter environment. Structured programming does not effec-programming is the independence of programming modules.
tively address information hiding and encapsulation requiredTechniques employed in structured programming improve
by the third-generation applications (6). Thus the ripple effectsystem maintainability and avoid development fiascoes (2).
in software maintenance for structured techniques is muchThese benefits of structured programming techniques are
more prevalent. Software-development organizations have ex-not disputed.
perienced these problems consistently in the structured envi-
ronment. Even though software-development organizations

Risks in Continuing with Structured Techniques can minimize the ripple effect with quality control measures
(e.g., code reviews), they are aware that increased complexityThe benefits of structured programming techniques do not
in an application increases the chance for the ripple effecterase the shortcomings inherent in the methodology given the
to occur. These organizations are beginning to realize that asoftware problems prevalent now and what is expected in the
different strategy is needed to manage the risk of future soft-future. Software problems in all parts of the business commu-
ware development for their organization and the new set ofnity are more complex than they were when the structured
programming problems.methodology became accepted by businesses 20 years ago.

These shortcomings become risks for a business organization
when it comes to software development. ANALYZING COSTS BEFORE MIGRATION

All business organizations have to deal with risk, regard-
less of the programming techniques they are currently using Fichman and Kemerer (5) suggest formulating a transition

strategy when a software-development organization is at theor the types of software problems they must solve. There is



OBJECT-ORIENTED PROGRAMMING TRANSITION 71

stage where migration to object-oriented software develop- trained in C first, according to Nebesh and Rabi (11). The
reason is that C�� is a superset of C.ment is necessary to solve the new set of problems. Coleman

and Hayes (9), in their experience, mention that disappoint- Some leaders in the field of object orientation do not recom-
mend the use of a hybrid object-oriented language like C��ing results are attributed to the underestimation by manage-

ment of the introduction of new technology. Management for learning object-oriented techniques (12). The reason is
that it will be too easy for the programmer who is only trainedshould have a list of their current assets or resources as a

starting point. These include people and the tools that use the in structured techniques to fall back and use structured tech-
niques and not the object-oriented features present in the lan-structured methodology. Fichman and Kemerer (5) indicate

that object-orientation is a refinement of the best of software- guage. Bamigboye (13) indicates that the initial training
should be language independent. Nebesh and Rabi (11) some-engineering ideas from the past. To assume that an organiza-

tion can just merely adopt these good ideas only and move on what reflect the belief that a hybrid language is harder to
teach and apply object-oriented techniques immediately on ato developing software using object-oriented techniques is a

myth. The migration requires a major investment in time and project. In their experience, the first project used by the
trained professionals used C�� as a better C and not an ob-other resources for the software-development organization.

Planning should not be taken lightly. Once migration toward ject-oriented language. However, in the next project, use of
object-oriented inheritance was better. By the third project,object-orientation has taken place, there is living with the de-

cision, because falling back to the old structured methodology dynamic binding was being used. For teaching C�� in a
classroom setting, basic understanding and some effective-will not be an option.

The primary risk when considering adoption of a new tech- ness can be shown after 10 weeks of instruction according.
The technical professional should master the basic conceptsnology like the object-oriented methodology is the length of

time taken to achieve the migration completely. The time of object-orientation first (8). However, for a C language pro-
grammer to become proficient in C�� requires about a year,frame is a major concern for the software-development indus-

try. This risk is realized in the slow acceptance by a software according to Nebash and Rabi (11). Object-oriented productiv-
ity will likely begin to climb starting at three to eight months.development organization whose management has allowed

adoption to take place without setting specific goals during After 18 months, the real productivity curve begins. It is un-
likely, however, that a software organization’s real productiv-the adoption process. Lack of leadership could lead to imple-

mentation failure. ity will be achieved in less than three or four years (14). In
line with training will be the need for specialists in the vari-
ous areas of object-oriented programming and design (i.e., ap-Maintenance
plication programmers, class designers, class programmers,

The costliest part of a system in its software life cycle is main-
etc.). Gone will be the ‘‘Jack-of-all-trades,’’ as seen in many

tenance. Maintenance costs will not change when using ob-
large software organizations currently using structured tech-

ject-oriented techniques (10). It will continue to be the most
niques (7,15). The object environment simply requires the

costly part of the object-oriented methodology.
need for more specialists in a particular area of object technol-

Software written properly using an object-oriented pro-
ogy for development to progress optimally. If a software orga-

gramming language can be difficult to modify, the reason be-
nization chooses object-oriented training using on-the-job

ing class hierarchies that are multilevels deep. They can
training methods, the pace must be tolerable (16). The soft-

make understanding an application’s code more difficult. The
ware organization must realize that the first project may be

newly maintained object-oriented software could also incur
more expensive than if the older technology methods were

more errors as a result of this misunderstanding. The reason
used. Primarily, the software organization must realize that

is that maintainers spend much of their time reading code in
object-oriented methods, and the time taken to learn them,

an attempt to thoroughly understand it before modifying it
are an investment in the future. Those software organizations

safely (10). As time goes by, maintainers will become better
going through the migration process are likely to experience

at reading code written using an object-oriented language.
an initial productivity decline as a result of extra initial effort

Initially there will be more time needed to understand the
to design modules for reuse (2). A library of reusable modules

code at the beginning of the migration period and more errors
is difficult to achieve without proper training and tools for

attributed to maintenance during that same period. An expe-
such a purpose. The first-time code-reuse designer will have

rience by Coleman and Hayes (9) showed that debug times
a difficult task learning the new skill.

rose from 15% using a Pascal-structured programming envi-
Another way of approaching training in the area of on-the-

ronment to 45% using an object-oriented environment. How-
job training is the adoption of an apprenticeship or mentoring

ever, their test was not accomplished using a true object-ori-
program for teaching the object-oriented methodology

ented language. Therefore, their percentages may be
(7,8,12). The mentor is someone who can coach the student

consistent for the typical migration process.
and immediately give feedback on the decisions made with
respect to object-oriented analysis, design, and implementa-

Training
tion. Learning the technology is aided if the migration effort
has a champion of the object-oriented approach (9). The cham-The largest investment in preparing for object-oriented tech-

nology is training—both time and cost. Training can take pion ensures that there is an appropriate budget and handles
any problems that may develop with respect to the diffusionmonths. One-week-long courses are effective for introducing

managers and technical directors to object-oriented tech- of the adoption process. The main problem with the
apprenticeship/mentoring approach is finding masters orniques but not the trained computer professional who devel-

ops code as his or her primary responsibility (11). If C�� is journeymen with experience in object-oriented ways. There is
a shortage of trained object-oriented professionals in the busi-chosen as the object-oriented language for a software-develop-

ment organization, it is highly recommended that the staff be ness community. Training and consulting companies can sup-



72 OBJECT-ORIENTED PROGRAMMING TRANSITION

ply some of the experience but are not the same as having a sistent objects, an operating system capable of supporting all
aspects of object orientation, and other repositories that helptechnology master on-site going over work on a real-life proj-

ect during the learning process. support the development process (16).
For businesses, there are very few existing component li-For formal classroom training, training companies recom-

mend using lecture and lab facilities for teaching not only the braries. The component library is key to fast development us-
ing the object-oriented methodology. Even with component li-language but also the object-oriented concepts (11). Weekly

training sessions should be spread over a longer period of braries, it is uncertain that there is little more than a basic
building-block approach to be attained for base structures intime. Nebesh and Rabi (11) have had success with a 10-week

class meeting three times per week for a total of 100 h. There business applications (12). A resource, in another sense of the
word, can also be considered a developer or a group of devel-should be appropriate breaks during the training process for

the student to implement the ideas presented in the class- opers. For a manager to remove a person from accomplishing
productive work to learn object orientation, there becomes oneroom. The cost of the learning curve must be taken into con-

sideration in all schedules by management (9). Management less person accomplishing that productive work. For many
businesses today, additional personnel for the purpose ofshould realize that the time taken away from productive,

project-related work is required for a greater payback on fu- learning new techniques and methods are planned. Rarely
does new methodology training occur as a whim in a businessture projects using the new methodology.
climate that tends to reduce headcount when it sees a need
to do so.Perception

Introductory software engineering is taught using hierarchi-
Loss of Knowledgecal nesting of procedures and control-flow-based computing

paradigms. They make new languages and new methodolo- Once migration to the object-oriented methodology takes
gies difficult for all types of developers. The reason is that place, use of structured ways (tools and techniques) do not
unlearning a paradigm is difficult (8). Object-oriented tech- mix easily with objects (2,5,17). Developers are not going to
nology is viewed as a radical paradigm shift (5,7,8,16). The give the structured ways up to the object-oriented methodol-
reason the perception exists is due to the understanding and ogy without considering the costs and benefits to them per-
use of the concepts of object orientation such as objects, sonally. The new techniques must be of real value for a devel-
classes, instances, messages, methods, encapsulation, ab- oper to want to adopt them. As an example, real personal
straction, polymorphism, inheritance, persistence, binding, value may mean job security, better pay, or even satisfaction
and typing. Once developers understand these terms and con- in learning a new technology. As time goes by, knowledge of
cepts, they can apply them to design and development. Struc- structured or conventional methodologies may get lost. The
tured developers may also feel anxiety associated with learn- reason is that new personnel are beginning to be hired with
ing these concepts. Managers can either help the adoption of knowledge of object technology only. Old software using struc-
new technology or hinder it based on their level of anxiety. tured techniques and languages will either have to be rewrit-

Kozaczynski and Kuntzmann-Combelles (17) feel that ob- ten using object-oriented techniques or key personnel with
ject-oriented technology is experimental and will continue to structured knowledge will need to be retained. If rewriting
be for a long time to come. Coleman and Hayes (9) and Bordo- from a structured methodology to object-oriented methodology
loi and Hwa-Lee (6) agree that the object-oriented technology is chosen, costs should be carefully considered. The expense
is immature but evolving. The reason for nonacceptance on a could be large. Structured code projects needing to be rewrit-
widescale by businesses is the lack of business-like tools (e.g., ten using object-oriented technology have been shown to re-
class libraries). However, Jacobson (16) disagrees and feels use as much as 60% of the original code (8). There is a sig-
that the technology is mature today because there are at least nificant cost to the business for the maintenance of older
5000 programmers worldwide developing systems using ob- structured code. Should a decision be made to reengineer the
ject-oriented technology. Pei and Cutone (7) are not sure that structured code to object technology, the amount may look ex-
the benefits of object-oriented development are clear today. pensive at first glance. However, managers should realize
Considering the views by many of the industry experts, there that costs for an organization to maintain two development
is suspicion by management viewing object-oriented technol- methods are higher than if only one method is used.
ogy from the inside-out that there will be a new paradigm to Retraining of structured programmers can be expensive for
follow object orientation. According to Jacobson (16), there an organization. The mentality of retraining and ignoring
will probably not be a new paradigm in the next few years. what was learned in structured programming can be difficult
However, no one can say for sure. If another paradigm should to overcome (17). An additional problem to consider with re-
appear, there is a danger that the object paradigm will be training concerns traditional personnel who are allowed to
abandoned just when production increases are possible for a use structured languages using a subset of an object-oriented
software-development organization going through the migra- language; they will revert to the old functional style (14). The
tion process (14). In any case, object orientation suffers from retraining can be the way of integrating object orientation
low observability (2). into the current development environment. The difficulty is

in the effort to integrate slowly into object-oriented technol-
Resources ogy. The slow integration appears to be a disadvantage with

respect to the tools not being appropriate for developmentThe resources needed to implement the object-oriented tech-
during the early stages of a project (13). The object-orientednology include not only training and a computer language but
methodology then becomes an all-or-nothing proposition. Thealso the selection of a development method, automated tools

to do design and analysis, a database manager to handle per- methodology must become the natural way to doing software



OBJECT-ORIENTED PROGRAMMING TRANSITION 73

development, much like many software organizations today BENEFITS OF OBJECT-ORIENTED TECHNIQUES
consider structured software development.

The reason object orientation has a promising future is the
type of technology that is being deployed in the industry andComplexity
the kind of software being written by software-development

The object-oriented decomposition process merely helps con- organizations for that technology. Client–server processing
trol the inherent complexity of a software problem; it does not and parallel processing have high visibility in supporting to-

day’s business processes. If a business is not employing onereduce or eliminate complexity. Small programs presented in
of these new technologies on a current project, it will be inan object-oriented fashion can potentially have many complex
the future. Inherent in the object-oriented architecture is therelationships. Of the three essential principles of object orien-
ability to identify software in separate and distinct sendertation: (a) encapsulation, (b) class specification of objects, and
(client) and receiver (server) roles. These roles yield units of(c) inheritance; inheritance can make the trace of program
low coupling, stronger cohesion, and higher modularity, com-dependencies even harder to find (10). Even a simple architec-
pared with similar structured modules.ture can lead to complex run-time structures (9). Considering

The characteristic of inheritance in object orientation forthe complexity of these structures at run-time, flow of control
the client–server model yields the most capability for produc-can be almost impossible to discern when attempting to trou-
ing new software in a development organization. Inheritancebleshoot a program problem manually. Considering the situa-
takes reusability to a higher level than in the structuredtion described previously, object-oriented code can be difficult
methodology sense. Reusability, as a result of inheritance, re-to navigate when simulating program execution and subse-
duces risk. Reusability is accomplished with evolution fromquently complicate program maintenance. Another useful fea-
smaller, proven systems (7,8). Reusability leads to increasedture of object-oriented programming is the use of dynamic
understandability, simplicity, and is closer to human cogni-binding. Dynamic binding is a powerful feature but creates
tion (7). Reusability has the biggest payoff for businesses. Ob-an element of the unknown not present in the structured
ject orientation produces more maintainable code than doesmethodology. Debugging tools are essential to reduce com-
procedure-oriented code. The main reason program code isplexity in the object-oriented methodology. As a process tech-
more maintainable is because the code is localized in the de-nology, object orientation rates unfavorably in the area of
sign of a class. The localization makes the module (or class)complexity (2). Unfortunately, part of the hype associated
more resilient to change (7), reducing the ripple effect. Withwith object-oriented methodology when presented to manag-
maintenance being the most costly part of a software’s lifeers thinking of introducing the methodology, describe the sim-
cycle, the resilience affects the financial situation of a soft-plicity of the object-oriented methodology and not what could
ware-development company or organization. When the designcomplicate its use when adopted.
of a system is completed correctly, there will be fewer mod-
ules, fewer sections, and fewer lines of code to consider during

Other Costs maintenance (6,7). Less volume to maintain translates to less
time understanding the code in the maintenance phase andWhen considering migration from one technology to another,
less time for initial development. Fewer errors translate tothere is value in examining the process used at a similar orga-
more time for a development organization to do other develop-nization. However, simply using a migration method em-
ment and maintenance. The bottom line of a business is af-ployed at another company will not work when considering
fected by its costs. The claim to reduce costs forces a businessmigration in a different company. Every business environ-
to look seriously at object technology.ment is different, as are the problems that they must solve.

Abstract data types make implementation of distributedObject technology must be offered as an industrial process
processing practical (14). In order to model the real-world pro-

that can be tailored to various types of development organiza- cesses that a business must deal with every day, new struc-
tions (16). Regardless of the nonsimilarities between groups tures to represent real-world entities need to be created while
when adopting a new technology, it is helpful to have person- current models need to evolve completely. Abstract data types
nel available who have been through a similar conversion pro- are the key to defining classes when the implementation
cess. Software engineers have traditionally been biased to- phase is presented.
ward writing new code. There will be a need to remove the Ultimately, object orientation development will shorten
development mindset of ‘‘not invented here’’ when it comes to the development time and reduce a software product’s time-
reuse or the need for new functionality. The traditional mind- to-market (7). To many software companies, time-to-market
set must change to adopt a new culture and values, according is key to acquiring the customer at the most opportune time.
to Fichman and Kemerer (2) and Bamigboye (13). The reason Fichman and Kemerer (2) agree, by mentioning that object-
the traditional mindset does not work for the object-oriented oriented qualities support the reduced time-to-market princi-
methodology is that the focus of development is shifted to- ple by reducing development, reducing maintenance cost, im-
ward analysis and away from implementation (16). proving flexibility, and improving overall software quality.

Costs can also rise due to underestimation by management
of the problems associated with the introduction of new tech-
nology (9). Project managers need to act prudently. The focus DISCUSSION AND CONCLUSIONS
away from the main track of object technology and quality
production can be diverted by concentrating on errors instead The complexity of migrating to the object-oriented methodol-
of the process (2). Business and human practices must be re- ogy shows that research by business management is needed

before the technology can be adopted by any software-devel-engineered along with software (12).



74 OBJECT-ORIENTED PROGRAMMING TRANSITION

Table 1. Primary and Secondary Consideration in Adopting Object-Oriented Technology

Item Primary Considerations Secondary Considerations

Training • Classroom • Apprenticeship
• On-the-job • Journeyman
• Language-independent • Conferences and seminars

• Books, technical articles
Cost • Conversion money • Small team for first project

• Document the process • Start with a low-risk project
• Pilot projects; prototypes
• First project normally unsuccessful

Tools • Language • Should be complementary
• Libraries • Interface easily
• Database • Pure vesus hybrid language
• Operating system • Support multi-projects simultaneously
• Browser, debugger, repositories • Adaptable to changing environment

Current investment • Integration (minimize disruption) • Incremental
• Migration (strategic change)

Role definition • Shift toward analysis • Reengineer the business
• Emphasis on application
• Requirements analyst
• Application design, programmer
• Class designer, programmer
• Database designer
• GUI designer, programmer
• Library designer, strategist

Time • Increased learning time • Time to gain proficiency
Evaluation • Realistic conversion strategy • Modify the reward structure

• Conversing original investment • Overcome resistance to change
• Integrating into the current system

opment organization. The individuality that each software-de- methodology. It happens to be the first item on the list. Not
every developer will progress through the training at thevelopment organization possesses suggests that a formal pro-

cess be used. A current assessment of the organization needs same pace. For some, the training will be difficult. Minimum
time and knowledge levels should be required for the develop-to take place with respect to a series of technology issues. The

process needs to be tailored to the organization based on the ment staff to gain proficiency.
The first project to seriously use object-oriented technologyassessment. As of yet, there is no known formal process put

in place for assessment. and methodology should involve a small team (9) and a low-
risk project (7). The principal roles and responsibilities, andDue to the lack of a process, the software-development or-

ganization considering adoption of object-oriented techniques how they interact, need to be defined beforehand (12). Docu-
mentation by way of an activity log should be used to indicateshould put together a list of activities or issues that need to be

resolved. As a first step, the organization can act on the list. problems or methods in the processes that were tried, failed,
and remedied for future reference. A wait-and-see approachTable 1 highlights the issues discussed. It is more of a tem-

plate that will require fine-tuning and additional data by the on a pilot project is the wiser choice before investing more
heavily in the object-oriented technology. The trial projectmigrating software-development organization. The fine-tun-

ing would include additional details about the business and should be developed through a series of prototypes by empha-
sizing performance over functionality. The prototype ap-the types of issues the business is faced with as it migrates

to the object methodology. In addition to the list of items (col- proach can be risky, however. A prototype product should not
be delivered (9). Integration of the final product should beumn one), the table includes lists of major events (primary

consideration) that will be needed to accomplish each item. accomplished transitionally (8). The development group
should establish standards to control when and how dynamicThe events are stated in broad terms and can be accomplished

in various ways. Because of the number of ways to accomplish binding and polymorphism are used. Documentation is key
for future development (10), using the key features of the ob-the events, items may be difficult to complete. Therefore, col-
ject methodology.umn three (secondary consideration) suggests additional

Once the first product using the object-oriented methodol-sources or modifiers to the events in column two. The intro-
ogy is delivered, key questions need to be asked about theduction of object-oriented technology should be accomplished
current and proposed future software-development environ-using incremental steps and can be aided by a champion of
ment (8):the technology (9), but it is not required. Education is the only

item on the list that can be decided and accomplished by an
• Is the methodology replacement strategy realistic?individual in a software-development organization without
• Are there ways to conserve the current investment?management’s approval to start the migration process. Train-

ing for a new method also requires buy-in by the individual • What are the ways object systems can be integrated into
the current system?when management announces intentions to migrate to a new



OCEANIC REMOTE SENSING 75

16. I. Jacobson, Is object technology software’s industrial platform?• What are the needed skills and tool sets required for the
IEEE Softw., 10 (1): 24–30, 1993.new environment?

17. W. Kozaczynski and A. Kuntzmann-Combelles, What it takes to
make OO work, IEEE Softw., January: 21–23, 1993.If a software-development organization cannot easily an-

18. T. J. Heinz, An object-oriented approach to planning and manag-swer the above questions, their implementation strategy is
ing software development projects, Inf. Manage., 20: 281–293,not complete. The time is right for a manager to intervene
1991.and take control of the migration process. Hastily completing

a project using object technology and thereby jumping on the
HOSSEIN SAIEDIANobject-oriented bandwagon is not the best strategy for success
University of Nebraska at Omaha(9). Once the object-oriented methodology has become a natu-
JACK URBANral part of an organization’s environment, the object-oriented
U.S. West Telecommunicationsapproach could provide the basis for developing a completely

automated approach to system analysis, design, and imple-
mentation (18).

Trends in computing are leaning toward more complex OBSERVABILITY. See CONTROLLABILITY AND OBSERV-
data types and more complex systems. These seem to favor ABILITY.
the object technology approach. At face value, there appears
to be more risks than benefits. However, there can be ways of
managing the migration to object technology without a major
shock when it comes to allocating time and resources. Plan-
ning remains the key.

BIBLIOGRAPHY

1. N. Fenton, How effective are software engineering methods, J.
Syst. Softw., 22: 141–146, 1993.

2. R. G. Fichman and C. F. Kemerer, Adoption of software engi-
neering process innovations: The case of object orientation, Sloan
Manage. Rev., 34 (2): 7–22, 1993.

3. S. Henry and M. Humphrey, Object-oriented vs. procedural pro-
gramming languages: Effectiveness in program maintenance, J.
Object-Orient. Programm., 6 (3): 41–49, 1993.

4. E. A. C. Crouch, Risk/Benefit Analysis, Cambridge, MA: Bal-
linger, 1982, Chapters 2, 3, 4, and 5.

5. R. G. Fichman and C. F. Kemerer, Object-oriented and conven-
tional analysis and design methodologies, IEEE Comput., 25 (10):
22–39, 1992.

6. B. Bordoloi and M. Hwa-Lee, An object-oriented view, Productiv-
ity comparison with structured development, Inf. Syst. Manuf.,
11 (1): 22–30, 1994.

7. D. Pei and C. Cutone, Object-oriented analysis and design: Real-
ism or impressionism? Inf. Syst. Manage., 12 (1): 54–60, 1995.

8. S. Rabin, Host developers to object technicians: Transition strate-
gies for OO development, Inf. Syst. Manage., Summer: 30–39,
1995.

9. D. Coleman and F. Hayes, Lessons from Hewlett-Packard’s expe-
rience of using object-oriented technology, in International Con-
ference on Technology of Object-Oriented Languages and Systems,
Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. 327–333.

10. N. Wilde, P. Mathews, and R. Huitt, Maintaining object-oriented
software, IEEE Softw., 10 (1): 75–80, 1993.

11. B. Nebesh and M. Rabi, Teaching object-oriented technology
through C�� to professional programmers, 11th TOOLS Conf.,
1993, pp. 627–636.

12. C. M. Pancake, The promise and the cost of object technology: A
five year forecast, Commun. ACM, 38 (10): 33–49, 1995.

13. A. Bamigboye, Object technology: To migrate or to integrate . . .
that is the question, Object Mag., 5 (6): 41–44, 1995.

14. R. T. Due, Object-oriented technology: The economics of a new
paradigm, Inf. Syst. Manage., 10 (3): 69–73, 1993.

15. M. Page-Jones, Education and training for real object-oriented
shops, J. Object-Orient. Programm., 10 (1): 51–53, 1994.


