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eral, they are ill-structured and their documentation is poor,
out-of-date, or totally absent. In part, this lack of documenta-
tion stems from the fact that software documentation is usu-
ally the last priority in the development effort. In addition,
with the modification of code, the original documentation may
or may not have been modified to keep it current with the
code. Consequently, the original documentation, if it exists,
may be inaccurate, incomplete, and inconsistent with regard
to the code under maintenance.

Due to the lack of reliability of software documentation,
the only documentation that software maintainers assume is
reliable is the source code of the system they are supposed to
maintain. However, the code may have been subjected to a
large number of changes over the years (even decades) and,
thus it presents a high level of entropy (i.e., ill-structured,
highly redundant, poorly self-documented, and weakly modu-
lar). High levels of entropy combined with imprecise docu-
mentation make software maintenance difficult, time-con-
suming, and costly.

In order to improve maintenance, it is important to develop
tools, techniques, and methods for assisting in the process of
understanding existing software systems. Trying to under-
standing the program is the process that consumes most of
the maintenance efforts. It consists of acquiring knowledge
about a software system. Broadly speaking, the process of
learning about a software system involves reverse engi-
neering of the source code to identify the system’s components
and their interrelationships. Chikofsky and Cross (5) define
reverse engineering as backward engineering of a system to
the specification stage. It is then the opposite process of con-
ventional engineering, where the system is synthesized from
high-level specifications and conceptual, implementation-in-
dependent designs and then physically implemented. Figure
1 illustrates this concept. Generally, we consider reverse engi-
neering to be the process of analyzing an existing system in
order to identify the system’s components and their relation-
ships, and to create representation of the system in a more
intelligible form or at a higher level of abstraction. The key
idea here is to move from a concrete representation of the
system to an abstract and intelligible one without changing
the existing system. The aim is to discover high-level concepts
(e.g., design strategies and business rules) from software arti-
facts and then to use those concepts to improve software

SOFTWARE MAINTENANCE, REVERSE maintenance. To do so, we can take advantage of other infor-
mation in addition to the source code (e.g., domain knowledge,ENGINEERING AND REENGINEERING
programming knowledge, and documentation).

Reverse engineering does not require changing the systemMany sources agree that programmer efforts are mostly de-
voted to maintaining systems (1). Pressman (2) estimates that at all; this is the goal of reengineering. Reengineering is the

examination and the modification of an existing system to re-a typical software development organization spends anywhere
from 40% to 70% of all dollars conducting maintenance. (This constitute it in a new form, followed by the implementation

of the new form. The first phase of reengineering is some formis not surprising when one considers the quantity of code that
must be maintained in these legacy systems; it was estimated of reverse engineering so as to abstract and understand the
in 1990 (3) that there were 120 billion lines of source code in
existence.) A large portion of the maintenance effort is spent
understanding the code under maintenance. Previous studies
have shown that more than 50% of perfective and corrective
maintenance effort is spent trying to understand existing pro-
grams. This involves reading the documentation, scanning
the source code, understanding the changes to be made, and
so on (4).

Conventional

Reverse engineering

Implementation
level

Domain
level

However, most of the legacy systems were developed before
software engineering techniques were widely used. In gen- Figure 1. Reverse engineering versus conventional engineering.
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cess by detecting patterns indicating the intent of some por-
tion of code. In order to comprehend the understanding
process, it is important to look at human factors involved in

Abstracting,
understanding,
and changing

Reengineered
system

Existing
system

this process. This area of research is called software psychol-
ogy, and a variety of models of the human program under-Figure 2. The reengineering process, which consists in extracting
standing process have been developed: Shneiderman’s model,the relevant information from the source code, understanding it, and
Brooks’ model, Soloway’s model, and so on. References 7 to 10changing it to achieve the goals of the reengineering.
include pertinent surveys on the topic.

Computers are much more rigorous and formal than hu-
existing system. The second phase is traditional engineering mans. Thus, when we try to understand how a computer pro-
or full restructuring using new specification and knowledge of gram could understand other programs, we talk about auto-
the old system obtained from reverse engineering. This pro- mated program understanding. By the use of automatic
cess, as illustrated in Fig. 2, is generally set into motion by program analysis, we try to capture high-level concepts, such
the need to move old programs and systems to new platforms, as software design diagrams, directly from the code. This
as in source code translation, or restructuring programs that analysis could be static or dynamic. Static analysis does not
were corrupted by repeated maintaining activities. However, require the program to be executed. It involves examining the
the most promising axis of reengineering is certainly moving source code of programs or designs. Dynamic analysis evokes
legacy systems to emerging technologies and paradigms. In- the process of systematically executing the programs in order
deed, many organizations have been migrating their legacy to capture their performance and correctness properties. The
systems to emerging technologies (e.g., object-oriented tech- most common forms of dynamic analysis are: profiling, test-
nology). Lehman and Belady (6) present this migration as an ing, and partial evaluation. Profiling determines, for example,
economical choice through their three laws on the evolution the number of times each statement or each procedure is exe-
of large systems. The object-oriented (OO) paradigm is the cuted. It works by adding an extra code to do so, or by periodi-
target architecture of choice for the reorganization of systems, cally interrupting the executing program to determine what
since OO representations are supposed to be much easier to it is currently doing and then using a statistical model. Test-
understand than their classical structured counterparts. Fur- ing is the most common form of dynamic analysis. Of course,
thermore, the encapsulation limits the complexity of mainte- we need techniques for making sure that tests are realistic
nance. Any modification in the implementation of an object (11). For example, statement coverage ensures that every
(class) is not supposed to generate side effects since only its statement is executed, and branch or condition coverage mea-
interface is visible by the others objects. sures the extent to which all branches or conditions are exe-

OO approaches and languages have have become quite cuted. Finally, partial evaluation is a technique that takes as
popular, partially because of their potential benefits in terms input a program and values for certain of the program’s input
of maintenance (reusability, separation of concerns, and infor- parameters. It produces as output a smaller program equiva-
mation hiding). However, the vast majority of software avail- lent to the original on those parameters. It is of great interest
able today is not OO. The effort required to simply rewrite to understand complicated real-time systems (12).
software from scratch using an OO approach would be prohib- Another dimension through which pertinent works are dis-
itive, and significant expertise recorded in the procedural tinguished is the level of involvement of domain experts in
software would be lost. The cost of manual conversion would the maintenance process. Some techniques are called super-
also be prohibitive. A tool or a tool set that would support the vised, in the sense that, in addition to the source code, they
conversion of procedural code to OO, even in a semiautomatic need some knowledge about source languages, general pro-
fashion, would ease the introduction of OO technology in gramming techniques, and application domains to infer prop-
many organizations. This kind of reengineering tool could be erties of software systems at several levels of abstraction.
especially helpful to integrate existing systems and new ones Studies discussed in Refs. 13 to 15 are examples of it. On
developed with OO approaches. the other hand, unsupervised methods have as input only the

Both reverse engineering and reengineering are related to source code, although they need some domain knowledge to
the improvement of software development by producing solu- make some decisions.
tions and resources to the maintenance of legacy systems. For Taking into account the cost and the availability of a do-
both, the keyword remains ‘‘abstraction’’: defining a set of ab- main expertise, it is often more efficient to choose an unsuper-
stractions that allows us to represent the system under main- vised approach. Often we do not have any choice: Expertise,
tenance in different forms, depending on the targeted analy- documentation, and developers of the application under main-
sis subject. These abstractions will be exploited for generating tenance are not available at all! Figure 3 illustrates an unsu-
documents of various types, for generating diagrams, and for pervised and static approach of reverse engineering and reen-
giving information about data and control flow, which is the gineering. It assumes that program abstraction is the key
topic of reverse engineering. They also give us the chance to step for all reverse-engineering and reengineering efforts, in-
discover candidate objects in procedural code, reengineering cluding redocumentation, data and control flow analysis, and
it in an OO resulting system. object identification in procedural code.

To extract abstractions from a source code, we need a lan-
guage tool that processes the source code and produces somePROGRAM ABSTRACTION: THE KEYWORD FOR

REVERSE ENGINEERING AND REENGINEERING kind of output. The internal design of language tools, in most
cases, is very similar: A parser obtains a string of tokens from

When a software maintainer maintains a program—in gen- the lexical analyzer and verifies that the string can be gener-
ated by the grammar. The results of a syntactic analysis areeral, poorly documented—he or she follows a bottom-up pro-
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Figure 3. Overview of an unsupervised
and static reverse-engineering and reen-
gineering approach with three different
goals: program redocumentation, program
data and control flow analysis, and object
identification.
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represented by a tree structure. The more primitive version • s_dj (p, s, t): This states that within the subprogram ‘‘p’’
there is a statement group ‘‘s.’’ All the statements of sis called parse tree. It contains details not really related to

program understanding, such as punctuation. An abstract are of type ‘‘t’’—for example, compute, call, input, output,
condition, and so on.representation of a parse tree leads to a structure called an

abstract syntax tree (AST). The AST is the basis of more so- • stmt_nd (p, s): This states that statement ‘‘s’’ is in sub-
phisticated program analysis approaches. Because an AST is program ‘‘p.’’
a tree, its nodes can be visited in a certain sequence. This • pred_nd (p, s): This states that predicate (a condition in
approach serves as the basis of many tools. They exploit the a conditional statement) ‘‘s’’ is in subprogram ‘‘p.’’
AST by performing operations on its elements. A common op-

• du (s1, s2, x): This states that datum ‘‘x’’ is defined in
eration is pattern recognition that aims at finding in the AST statement ‘‘s1’’ and used in statement ‘‘s2.’’ A variable is
all the occurrences of the patterns. Typical actions are then defined when it is given a value in the statement. A
taken to generate the wanted abstractions. Figure 4 illus- statement uses it when its value is used in this state-
trates the common approach of such tools. ment.

• def (p, s, x): This states that datum ‘‘x’’ is defined inAbstractions for Reverse Engineering
statement ‘‘s’’ of subprogram ‘‘p.’’

In the following, we present the specifications of some ab- • use (p, s, x): This states that datum ‘‘x’’ is used in state-
stractions of very low level. They are expressed in terms of ment ‘‘s’’ of subprogram ‘‘p.’’
predicates. By combining some of them, we can obtain ab-

• recdepth (x, d): This states that data structure ‘‘x’’ has
stractions of a higher level. Both program redocumentation depth ‘‘d.’’
techniques and program data and control analysis techniques

• cpdepth (d): This states that the call graph of the targetcan exploit them.
program has depth ‘‘d.’’

• nbrp (n): This gives the number ‘‘n’’ of subprograms in a• lmdm (l, x, other_attributes): This states that the datum
program.x is of level l. This datum has attributes specified by

• nbrbranch (p, n): This gives the number ‘‘n’’ of branching‘‘other_attributes’’ (e.g., in COBOL, REDEFINES, OC-
statements for each subprogram of the program.CURS, etc.).

• nbrcompute (p, n): This gives the number ‘‘n’’ of comput-• lpdm (ln, pn, t, content): This states that the physical file
ing statements for each subprogram of the program.‘‘pn’’ is assigned to the logical name ‘‘ln’’ and that the file

type is ‘‘t’’ and it contains ‘‘content.’’ • nbrctrl (p, n): This gives the number ‘‘n’’ of control points
for each subprogram of the program.• struct (x, content): This states that the datum ‘‘x’’ is a

structure and its fields are given by ‘‘content.’’ • nbrio (p, n): This gives the number ‘‘n’’ of input/output
statements for each subprogram of the program.• call (p, p_c_statement): This states that within the sub-

program ‘‘p’’ there is CALL to another part of the pro- • varparg (x, ps): This gives for each variable ‘‘x’’ the list of
subprograms ‘‘ps’’ where it appears.gram given by ‘‘p_c_statement.’’

Source code

Abstractions

Lexical analyzer
Pattern recognizer

Output generator

Abstract
syntax tree

Syntactic analyzer

Figure 4. Generation of abstractions from the code through the abstract syntax tree.
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• varmanip (x, p, m): This gives for each occurrence of a
variable ‘‘x’’ in a subprogram ‘‘p’’ the mode ‘‘m’’ of its ma-
nipulation. This mode can take the values C, P, I, M, or
T (16,17).
C: The data value is used in the right-hand side of an

assignment or in an output statement.

S1 S1

S1
X

S2

x = y + 2; /* s1 */
z = x – 3; /* s2 */

Def (s1) = x
Use (s1) = y

Def (s2) = z
Use (s2) = x

. . .

. . .

P: The data value is used in the predicate part of a condi-
tional statement. Figure 5. Higher-level abstractions: a program dependence graph

and a def–use graph.I: The data value is first used to define an other data (C
mode). This new datum is used in a P mode.

M: The data value is modified.
T: The data value is not modified, it is just passed through On the other hand, by combining some of them, we obtain

a CALL statement to another routine of the program. abstractions of a higher level. The graphs presented in Fig. 5
are an example of such high-level abstractions.

Some of the abstractions presented above are assigned to be
Abstractions for Reengineering to Object Technologyused in a metric computation process. Such a process is used,

for example, to obtain the profile of the application under The source code contains part of the knowledge about the ap-
maintenance, to predict the amount of effort needed in main- plication. To identify object-like features in it, we have to de-
taining the applications, or to guide the generation of docu- cide which information must be used. Depending on the ex-
mentation diagrams. Table 1 illustrates this idea. isting techniques, there are different program abstractions

that can be used for this purpose. For this section we limit
ourselves to the following examples. The first two enable us
to identify objects, while the third one enables us to identify
classes.

1. Routines Interdependence Graphs. As proposed by Liu
and Wilde (18), these graphs show the dependence be-
tween routines consequent to their common coupling to
the same global data. A node P(x) in the graph denotes
the set of routines which reference a global variable x.
An edge between P(x1) and P(x2) means that the two
corresponding sets are not disjoint (P(x1) � P(x2) � �).

Figure 6(a) shows the reference relationship between
the routines fis and the global data dis of a program.
The tis represent the global data types. Figure 6(b)
gives the corresponding routines interdependence
graph.

2. Reference Graphs. In such graphs, nodes are routines
or global variables, and an edge between a routine and
a variable means that the function uses the variable
(19). Figure 7 shows the reference graph of the relation-
ship of Fig. 6(a).

3. Type Visibility Graphs. As introduced in Ref. 20, such
graphs represent the visibility relationship between the
routines and the data structures (or types) of a pro-
gram. A type t is said to be visible by a routine f if f
uses a global variable of type t, if f has formal parame-
ter of type t, or, finally, if f has a local variable of type
t. Figure 8 gives a partial-type visibility graph based on
the relationship in Fig. 6(a).

The next sections will show how the abstractions presented
above are useful for reverse and reengineering legacy
systems.

PROGRAM REDOCUMENTATION

When determining the true cost of a new software system,
one important consideration is the estimation of the software
system lifetime. Of great importance in this estimation is the

Table 1. Usefulness of Each Generated Abstraction

What Is Their Help for
Program Redocumentation

and Program Data and
Abstractions Control Flow Analysis?

lmdm (l, x, other attributes) Gives information about mem-
ory data and their relation-
ships and helps generate a
data model like diagram

lpdm (ln, pn, t, content) Gives relevant files informa-
tion of the software system
and is exploitable for gener-
ating a file model like
diagram

struct (x, content) Describes data structure com-
position and helps generate
a Warnier–Orr diagram

call (p, p c statement) Helps generate a call graph
s dj (p, s, t) Gives a task-oriented sum-

mary of the software system
and is exploitable to gener-
ate a Jackson diagram

stmt nd (p, s) Gives information about con-
trol and data flow in a def–
use like graph

pred nd (p, s) Is exploitable by slicing algo-
def (p, s, x), use (p, s, x) rithms in program data and

control flow analysis
stmt nd (p, s) Gives a conceptually different

information about control
and data flow

pred nd (p, s) Is exploitable by slicing algo-
du (a1, s2, x) rithms in program data and

control flow analysis
varparg (x, ps) Is exploitable by a metrics-
varmanip (x, p, m) based slice validation

process
recdepth (x, d), cpdepth (d), Is exploitable by a metrics-

nbrparag (n), nbrcompute (p, n), guided redocumentation
nbrbranch (p, n), nbrio (p, n), process
nbrctrl (p, n)
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Figure 8. Type visibility graph of the relationship in Fig. 6(a). Each
routine is related to the data types it can use.

Changing the related program documents including specification
and design to reflect the program change.

Several approaches have been proposed in order to automati-
cally generate software documentation that assists the under-
standing process and the recording of the results of this
process. Some of these approaches generate informal docu-
mentation (15,22,23), and others generate formal and seman-
tically sound documentation (24,25). In the following, we give
a nonexhaustive list of documentation formalisms that are
automatically feasible starting from the abstractions defined
in the previous section. One approach is to translate the cho-
sen abstractions to a graph description like language (e.g.,
Ref. 26) and then use a visualization tool to produce the dia-
grams.
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Live Memory Data Diagram. This is a graph where nodes
Figure 6. (a) Reference relationship between routines and global represent data and edges represent relationships between
data. (b) Routines interdependence graph of the relationship in part them. In COBOL programs, these relations are contains,
(a). Each node contains the set of routines that reference a given array-of, alias, and redefines, and we say that an entity A is
global data, and each edge indicates that the related sets overlap. coupled with entity B through the relation RRR, noted A RRR, B.

Each relationship has the following meaning:

maintainability of the software system; it includes the ade- • A Contains B: This indicates that A contains B. In CO-
quacy of the programmer documentation. Software documen- BOL, for example, A would have a lower level number
tation is usually the last priority in the development effort. than B and it would be defined within A.
One reason for this is that developers try to get a product out

• A Array-of B: This indicates that entity A contains a ta-the door before it is obsolete or before the market competition
ble of entities of the type of entity B. This corresponds tobeats them. In order to extend the lifetime of a software sys-
the OCCURS keyword of COBOL.tem, some mechanisms must be found to make old systems

• A Alias B: This indicates that the name A refers to theeasier to maintain or modify. One approach is to automati-
same entity as B. This corresponds to LEVEL 88 in CO-cally generate documentation from the source code of the ex-
BOL.isting software system. Chen et al. (21) define redocumenta-

• A Redefines B: This indicates that entity A is an alias oftion as follows:
B, but it redefines its structure. This corresponds to the
keyword REDEFINES in COBOL.

Live Physical Data Diagram. This model is represented by a
graph where nodes represent file data elements and proper-
ties, and edges represent relationships between them. The re-
lationships between nodes of this graph are given by the ab-
straction lpdm (lf , pf , t, r). It states that physical file pf is
assigned to logical name lf , and that the file type is t and it
contains r. Figure 9 shows an example of such a diagram.
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Warnier–Orr Diagram. This is a simple and straightfor-
ward technique for representing a software system structureFigure 7. Reference graph of the relationship in Fig. 6(a). The rou-

tines are represented by ellipses and the data by rectangles. and can be used either as a data-modeling tool or as a soft-
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Figure 9. From the source code to a live
physical data diagram, an example of auto-
matic redocumentation.

ware module-structuring tool. It is most often used to describe called also PERFORM-CALL graph for programs written in
COBOL.data structure composition. The sequence of refinement is

presumed to be left to right and top to bottom. This kind of
diagram shows the composition of structures, calling hierar- Jackson Diagram. This shows program operations, such as
chies, data-structure definitions, or file format specifications. sequences and iteration among program modules. The entire
Figure 10 gives an illustration of this type of diagram. program is represented as a hierarchical tree of boxes. The

lower-level boxes show fine-grained sequences and iteration
detail, and the higher-level boxes delineate program moduleCall Graph. In most understanding activities of programs

and in particular in control analysis, it is helpful to know organization. Another interesting topic concerns summariza-
tion of software systems. We call system summarization thewhat the called subprograms are. In this topic, it is important

to identify such information. It takes the form of CALL graph techniques that factor out the portions of a system performing

Figure 10. A Warnier–Orr diagram of a CO-
BOL program. It identifies the data structures
in a program.
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certain tasks (e.g., database, interface, and communication) PROGRAM DATA AND CONTROL FLOW ANALYSIS
and present the relationships between them. For example,

Backgroundone could build a graph where a node represents an interface
action, and the link between two nodes indicates that the ac- Software maintainers are often constrained to study control
tion associated with one node can be executed before the ac- and data flow in the software they are maintaining. Such a
tion associated with the other node. This type of technique study is done thanks to techniques and algorithms developed
can be useful for understanding an aspect of a system, be- for the data and control flow analysis area. There are two
cause it presents a summary of the system from that point forms of control flow analysis: intraprocedural and interproce-
of view. dural. The former determines the order in which statements

can be executed within a subprogram. The latter determines
the calling relationships among program units. Intraproced-Data Definition–Use-Oriented Graphs. The two last gener-
ural analysis aims at constructing a control flow graph (CFG).ated diagrams we are going to talk about are def–use graphs
A CFG contains various symbols to represent different typesand program-dependence graphs. They are particular types of
of statements: assignments, procedure calls, conditions, andflow charts; both are very useful in data and control flow anal-
so on. The notion of basic block intervenes to construct a CFG;ysis, and they are inputs to most of slicing techniques. Thus
it is a maximal collection of consecutive statements such thatthe interest of these graphs is twofold: (1) They help the soft-
the control can flow in only at the top and leave only at theware maintainer in comprehending the software system and
bottom. Thus it corresponds to a node of the CFG. The utilitymainly the flow of variables, and (2) they give us the opportu-
of a CFG is that it gives an abstract picture of the ways innity to carry out some slicing for extracting environment-de-
which a subprogram could run without entering the detailspendent functions (such as operations on database or files,
of the statements of each basic block. The goal pursued byand report production) or domain-dependent functions (such
interprocedural control flow analysis is reporting invocations

as computational formulas and business rules). between subprograms belonging to a same software system.
A def–use graph is a quadruple DUG � �G,V, D,U�, where It often generates a call-graph, where the main routine is at

G � �N, E� is the control flow graph representing the pro- the top. A node N is connected to a node M if routine repre-
gram, V is the set of variables in the program, and D and U sented by N calls routine represented by M. Arcs in the call
are functions mapping N (the nodes of G) in the set of vari- graph are oriented.
ables which are defined or used in the statements correspond- There are many questions that control flow analysis cannot
ing to nodes. Abstractions stmt_nd (p, s), pred_nd (p, s), def answer, such as those statements that may be affected by the
(p, s, x), and use (p, s, x) of the section entitled ‘‘Abstractions execution of a given assignment statement. Data flow analysis
for Reverse Engineering’’ help produce this type of graph. A is concerned with answering such questions. It is a more com-
program-dependence graph is a pair PDG � �N,E�, where N plex task than control flow analysis because it aims at an-
is the set of nodes and E is the set of edges. The nodes are of swering questions related to how definitions flow to uses in a
three kinds: statement nodes, predicate nodes, and region program and collecting information about potential execu-
nodes. There are two types of edges: control dependence and tions of a program without actually executing the program. A
data flow edges. Abstractions stmt_nd (p, s), pred_nd (p, s), usual way in which a variable is defined is when it occurs on
and du(s1, s2, x) are the basis for generating this type of the left-hand side of an assignment statement or when it oc-
graph. curs in a read statement. A use of a variable occurs when it

Table 2 summarizes the help that the diagrams presented is referenced, for example, in an arithmetic expression. For
above can give to a software maintainer. example, data flow analysis can discover if a variable remains

a constant after an instruction of a program, determine which
are the last statements in the program to assign a value to a
particular variable before an instruction, or determine which
values a variable can assume.

Most data-flow analysis comes from the area of compiler
optimization. However, there is growing interest in using
them in program understanding and maintenance. Data-flow
information can be collected by setting up and solving sys-
tems of equations that relate information at different points
in a program. A typical equation has the following form:

Out(S) = Gen(S) ∪ (In(S) − Kill(S))

which signifies that information generated at the end of a
statement S is generated within the statement or, alterna-
tively, enters at the beginning and is not killed as control
flows through the statement. If the control paths are evident
from the syntax, then data flow equations can be set up and
solved in a syntax-directed manner. An iterative method for
computing reaching definitions works for arbitrary flow
graphs, and its description is given in Ref. 27. Reaching defi-

Table 2. Generated Diagrams and Their Help
for Maintenance

Diagrams What Is Their Help for Maintenance?

Life memory data diagram Displays memory data and their rela-
tionships

Live physical data diagram Displays relevant files information of
the software system

Warnier–Orr diagram Describes data structure composition
Call graph Gives information about routines and

their organization in a program
Jackson diagram Gives a task-oriented summary of the

software system
Def–use graph Gives information about control and

data flow
Is exploitable by slicing algorithms

Program-dependence graph Gives a conceptually different infor-
mation about control and data flow

Is exploitable by slicing algorithms
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nitions of a variable are often stored as use–definition chains • Step 0. The set of variables relevant to C, when program
execution is at statement n, denoted R0

c(n), is defined asor ud-chains, which are lists, for each use of the variable, of
all the definitions that reach that use. Another kind of chain follows:
is the one called definition–use chain or du-chain; it contains
the set of uses of a given variable, from a certain point in the
program to another, so that there is no redefinition of the

R0
c (n) = {v ∈ V/n = s} ∪ {U (n)/D(n) ∩ R0

c (SUCC(n)) �= �}
∪ {R0

c (SUCC(n)) − D(n)}
variable through this path.

The set of statements relevant to C, denoted S0
c, is de-

fined as follows:Slicing: A Derivative Approach

Slicing is a derivative of data and control flow analysis. It S0
c = {n ∈ G/D(n) ∩ R0

c (SUCC(n)) �= �}
is a family of techniques that indicate that a set of program
statements are relevant. A statement S1 is relevant to a sec- The set of conditional statements which control the exe-
ond statement S2 if it affects it directly or indirectly. A direct cution of the statements in S0

c, denoted B0
c, is defined as

effect of S1 on S2 occurs when S1 defines a variable (i.e., as- follows: B0
c � �b � G/INFL(b) � S0

c � 0��
signs it a value) which is used in S2 or if S1 is a condition on

• Step i � 1the execution of S2. An indirect effect occurs when S1 affects
directly or indirectly another statement S3 that affects di-
rectly S2.

The concept of basic slice has been introduced by Weiser
(28). A slicing criterion is a tuple C � �s, V�, where s is a
statement and V is a set of variables. A slice with respect to

Ri+1
c (n) = Ri

c(n)
⋃

b∈Bi
c

R0
〈b,U (b)〉(n)

Si+1
c = {n ∈ G/D(n) ∩ Ri+1

c (SUCC(n)) �= �} ∪ Bi
c

Bi+1
c = {b ∈ G/INFL(b) ∩ Si+1

c �= �}
C is a set of statements which may affect directly or indirectly
the value of variables in V just before statement s. Another The iteration continues until no new variables are rele-
type of slice is defined by Ref. 29. It is called direct slice and vant and so no new statements may be included. In other
it represents a subset of a basic slice. It considers only the words, Sc � Sf�1

c , where f is an iteration step such that �
statements that affect directly the value of variables in V be- n � N, Rf�1

c (n) � Rf
c(n) � Rc(n). Figure 11 gives an exam-

fore the execution of statement s. This kind of slice is used in ple of a basic slice.
identifying and extracting environment-dependent functions
such as operations on database or files, report production, and Around a basic slicing algorithm, it is very helpful to define
so on (30), defined another type of slice called decomposition and implement other techniques related to data and control
slice. It corresponds to the set of all the statements that con- flow analysis in order to be able to perform different variants
tribute to the value of a variable at all the points in a program of slicing and of data and control flow analysis. Thus, consid-
where the variable becomes visible outside the program. An ering the COBOL language, we are often confronted with pro-
example of such a point is a statement where the variable is grams written as a succession of paragraphs that represents
displayed on screen or written in a file. It is built as the union a functional decomposition, and it is important to isolate all
of all the basic slices on the variable v with output statements statements that are reached starting from a PERFORM state-
of v and the last program statement, as statements in the ment. In this case, the criterion is only the PERFORM state-
slicing criterion. This kind of slice is used to extract domain- ment �s�. Figure 12 gives an example of such a slice. To local-
dependent functions, such as computational formulas or busi- ize some functions implemented by the program and
ness rules. Lanubile and Visaggio (29) defined a transfor- ultimately to transform the extracted functions to reusable
mation slice as the set of all statements that contribute to ones, we can consider the transformation slicing: Starting
transform the values of input variables into the values of a with a slicing criterion �s, Vin, Vout�, the goal is to isolate a
set of output variables. Starting with the slicing criterion �s, transformation slice as the set of all the statements that con-
Vin, Vout�, it produces the set of statements that may affect tribute to transform the values of input variables Vin into the
directly or indirectly the value of variables in Vout before the values of a set of output variables Vout.
execution of statement s starting with the value in Vin. Fi- When we isolate slices such as those presented in Figs. 11
nally, Canfora et al. (31) defined the concept of conditioned and 12, a subsequent step is to extract and transform them
slice corresponding to the set of all the statements that con- to reusable components. Such components could be evaluated
tribute to the value of a variable for a certain statement s, thanks to a metric computation process based on some ab-
when a certain condition C holds. Its slicing criterion is given stractions produced in the section entitled ‘‘Abstractions for
by �s, V, C�. Reverse Engineering.’’ This process would measure, for in-

The computation of a basic slice is based on a recursive stance, a software quality attribute: cohesiveness.
definition. Let C � �s, V� be a slicing criterion and let G be
the DUG associated to the program to analyze. SUCC(n) is

REENGINEERING TO OBJECT TECHNOLOGYthe set of successors of node n, INFL(n) is the set of state-
ments depending on a conditional statement n, U(n) is the set

As stated by Jacobson and Lindstrom (32), the process of re-of variables used in node (i.e., statement) n, and D(n) is the
engineering can be defined by the simple formulaset of variables defined in node n. The approach is recursive

on the set of variables and statements which have either di-
rect or indirect influence on V. Starting from zero, the super-
scripts represent the level of recursion.

Reengineering = Reverse engineering + Changes

+ Forward engineering
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Figure 11. Obtaining a basic slice starting from the code. The highlighted statements are those
that are affected by the slicing criterion.

‘‘Reverse engineering’’ is the activity of defining a more ab- engineering process (analysis, design, and implementation)
with a reverse-engineering process. The two last families relystract and easier to understand representation of the system.

‘‘Changes’’ have two major dimensions, namely, change of uniquely on the code.
functionality and change of implementation technique. ‘‘For-
ward engineering’’ is the activity of creating a representation Domain Knowledge Approaches
that is executable.

Based on the hypothesis that source code does not containIn the particular case of migration to object paradigm, the
enough information to identify objects, this family of methodsthree elements of reengineering are more specific, and the for-
uses additional domain knowledge. To illustrate this trend,mula above can be written as follows:
we present the COREM project (33). In this project, the mi-
gration to object technology is seen as a four-step process (see
Fig. 13).

Reengineering = Program abstraction + Object identification

+ Code generation The first step is design recovery. In this step, different low-
level design documents (i.e., structure charts, data-flow dia-

In this section, we present some work on the migration of grams) are extracted from the source code. These documents
legacy systems to object paradigm. Globally, there are three lead to the generation of an entity-relationship diagram
families of approaches. The first family combines the normal (ERD). The ERD is transformed into an object-oriented appli-

cation model [called ‘‘reversely generated object-oriented ap-
plication model’’ (ROOAM)], based on the structural similari-
ties of these two design representations: Each entity is
mapped to a ROOAM-object, and the corresponding is-a or
part-of relationships are taken as gen/spec and whole/part
structures, respectively. Objects and their attributes are di-
rectly derived from the entities of the ERD. The tentative
ROOAM consists of static aspects only: No services or service
relationships (message connections) are include yet.

Application modeling is the second step of the migration
process. Based on the requirements analysis of the procedural
input program, an object-oriented application model [called
forward generated object-oriented application model
(FOOAM)]is generated. The object-oriented application mod-
eling process is done by a human expert who is experienced
in the application domain or who participated in the develop-
ment of the program under consideration. This modeling can
be done by applying different object-oriented analysis
methods.Figure 12. A PERFORM slice of a COBOL program.
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Figure 13. The COREM migration process.
As we can notice, the domain knowledge is

2.
OO

application
modeling

3.
Object

mapping

4.
System

transformation

Target
COAM

Requirements,
domain

knowledge
Domain

knowledge

1.
Design

recovery

Domain
knowledge

FOOAM

SCs   DFDs

ROOAM
ERD

DFDs
SCs

Procedural
system

OO system

the key factor in the success of the process.

In the third step of the migration process (called ‘‘object The algorithm in its original version works on a reference
graph. Let F be the set of routines, let D be the set of datamapping’’), the elements of the ROOAM are mapped to the

elements of the FOOAM, resulting in a target application (depending on the used abstraction), and let E be the set of
edges directed from routines to data. The PreSet of a datamodel (target OOAM). The target OOAM represents the de-

sired object-oriented architecture and is defined as the syn- node is the subset of routine nodes that have an edge with
this node. In the same way, The PostSet of a routine node isthesis of the FOOAM and the ROOAM. It incorporates all ele-

ments that can be mapped between the two application the subset of data nodes that have an edge with this node.
Each f � F defines a subgraph that contains all the datamodels.

The final step (called source-code adaptation) completes nodes referenced by f and all the routines that only access
these nodes. The subgraph of a routine is characterized by athe program transformation process on the source-code level

and is based upon the results of the previous steps, especially measure of the internal connectivity called IC( f). The index
IC( f) of a routine f is the ratio between the number of incidentthe target OOAM.

A similar method was proposed by Shin (34). The main and internal edges of the subgraph of f . Formally,
difference with COREM is that it uses the reference graph
(see the section entitled ‘‘Abstractions for Reengineering to
Object Technology’’) to construct the ROOAM.

IC( f ) =

∑
d∈PostSet( f ) #{ fi| fi ∈ PreSet(d)

∧ PostSet( fi) ⊂ PostSet( f )}∑
d∈PostSet( f ) #PreSet(d)

Graph-Based Approaches
The IC( f) of a routine f allows us to compute the 	IC( f). ThisLiu and Wilde (18) have proposed two algorithms: one to
value denotes the variation of the internal connectivity conse-group the data structures with routines that use them as pa-
quent to the clustering of the subgraph of f . Formally, 	IC( f)rameters or return values, and the other to group the global
is defined as follows:variables with routines. The latter uses the routines interde-

pendence graph (see the section entitled ‘‘Abstractions for Re-
engineering to Object Technology’’). Each strongly connected
subgraph is identified as an object. Later works (35–37) pro-

�IC( f ) = IC( f ) −
∑

d∈PostSet( f )

#{ fi|PostSet( fi) = {d}}
#PreSet(d)

posed some heuristics to enhance Liu and Wilde’s work. Yeh
et al. (20) combined data structures with global variables in The decomposition of a graph into a set of isolated subgraphs
order to form groups of routines, data structures, and global is done through a series of steps. For each step, a step value
variables. Other algorithms use reference graphs as intro- SV is computed. SV is the threshold value for a 	IC of a rou-
duced in Ref. 19 (see section entitled ‘‘Abstractions for Reen- tine f that determines how to act upon the subgraph of f . Two
gineering). actions are possible. The first one, Merge, means that all the

One algorithm that illustrates this family is proposed by data of the subgraph is clustered in a single data node. This
Canfora et al. (38). It decomposes a reference graph into a set action is done when 	IC( f) � SV (case of a routine that imple-
of strongly connected subgraphs. In an object-oriented pro- ment a method of an object). The second action, Slice, consists
gram, each object can be represented in the reference graph of slicing the routine f to dissociate two subgraphs. This oc-
by an isolated subgraph. In a procedural program, this is not curs when 	IC( f) � SV (case of a routine that links together
generally true because routines access data of more than one two objects). After each step a new set of routines (and a set
object. The goal of this algorithm is to decompose a reference of 	ICs) is obtained and a new step value is computed.
graph into a set of isolated subgraphs by detecting undesired To illustrate this algorithm we use an example introduced

in Ref. 38 (call it collections). This example presents a pro-edges.



502 SOFTWARE MAINTENANCE, REVERSE ENGINEERING AND REENGINEERING
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list

list_is_in

queue_full

Figure 14. Reference graph for collections program. This program manipulates a stack, a queue,
and a list. This graph is used as input in the processes of identifying objects.

gram that manipulates a stack, a queue and a list. Figure 14 Principle of Galois Lattice. We start by presenting the basic
definitions for Galois lattices, proposed by Godin et al. (42). Ashows the reference graph extracted from this program.

Using a statistical approach to compute the step value, the better coverage of this subject can be found in Ref. 43. Algo-
rithms based on this method are described in Ref. 44.obtained value is SV � 0.14731. The set Merge is �stack_push,

stack_pop, stack_top� and the set Slice is �queue_insert, Let us take two finite sets E and E� and a binary relation-
ship R between the two sets. The Galois lattice (see examplequeue_extract, stack_to_list, stack_to_queue, queue_to_stack,

queue_to_list, list_to_stack, list_to_queue, global_init�. Vari- in Fig. 17) is the set of elements (X, X�), where X � P(E) and
X� � P(E�). P(S) is the powerset of S. Each element (X, X�)ables to merge are stack_struct and stack_point. Routines re-

ally sliced are �stack_to_list, stack_to_queue, queue_to_stack, must be complete.
A couple (X, X�) from P(E) � P(E�) is complete if it satisfiesqueue_to_list, list_to_stack, list_to_queue, global_init�.

The obtained graph is given in Fig. 15. the two properties:
The second iteration gives the following results: SV is

equal to 0.082992. The set Merge is �queue_insert, 1. X� � f (X), where f (X) � �x� � E�	� x � X, xRx��
queue_extract, stack_to_queue_B, queue_to_stack_B�. The set

2. X � f �(X�), where f �(X�) � �x � E	� x� � X�, xRx��Slice is �queue_to_list, list_to_queue, global_init_B�. Variables
to merge are queue_struct, queue_head, queue_tail, and
queue_num_elem. Routines really sliced are �queue_to_list, Given two elements N1 � (X1, X �1) and N2 � (X2, X �2) of a Galois
list_to_queue, global_init_B�. lattice G, N1 � N2 implies that X2 � X1 and X �1 � X �2.

The obtained graph is given in Fig. 16. It represents the This property defines a partial order between elements of
final state of the reference graph. There are three isolated G. A graph is constructed using this partial order [see Fig.
subgraphs corresponding each to an object (i.e., stack, queue, 17(b)]. There is an edge between N1 and N2 if (1) N1 � N2 and
and list). (2) there does not exist N3	N1 � N3 � N2. N1 is said more

general than N2. Edges are directed from up to down.
Concept Formation Approaches

Applicability to Object Identification. In an object-orientedConcept formation methods have been applied in software en-
design, an application is modeled by a set of objects wheregineering for remodularization (see Refs. 39 and 40). In these
objects are composed of a set of data and a set of operationstwo works, Galois (concept) lattices are used to identify mod-
that manipulate these data. Most graph-based approaches toules in legacy code. The modules can be seen as objects in the
object identification group data with the routines that usesense that a set routines forms a module if they share the
them. Using this grouping approach, Galois lattices can pro-same data. The same technique is used to identify object (41).
vide all significant groups. Let E (see section entitled ‘‘Princi-In the remainder of this section, we present this approach.
ple of Galois Lattice’’) be the set of global variables, let E� beThis approach relies heavily on the automatic concept forma-
the set of routines, and let R be the relation defined as � v �tion (42). It is based exclusively on information extracted di-

rectly from code. E and � f � E�; if vRf means that the function f uses (refers



SOFTWARE MAINTENANCE, REVERSE ENGINEERING AND REENGINEERING 503

stack_to_list_A

stack_push
stack_popstack_top

stack_empty

stack_to_queue_A

global_init_A

global_init_B

list_to_queue

queue_to_list

stack_point queue_num_elem

queue_struct

queue_head
queue_tail

list_to_stack_A

queue_to_stack_A

queue_extract

queue_to_stack_B
queue_full

queue_empty

queue_insert

stack_to_queue_B

stack_full

list_elim list_is_in

list_add

list

list_empty

list_to_stack_A

stack_to_list_B

Figure 15. The reference graph after one iteration. An isolated subgraph appears. It represents
the object stack.
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Figure 16. The reference graph after two iterations—final state. Each isolated subgraph repre-
sents an object.
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placed by codes (number for a function and letter for vari-
ables) when building the Galois lattice.

The Galois lattice constructed from R presents all the sig-
nificant groups of data (see Fig. 19 for the collections pro-
gram). The goal of this step is to identify candidate objects. To
this end, we define some criteria to select a subset of groups.

In order to identify candidate objects from the Galois lat-
tice, we first define the set NS that contains the not-yet-se-
lected variables. In the initial state, NS � E. The identifica-
tion process stops when NS � 0�. In the identification process,
groups are checked starting from the bottom up. This order is
motivated by the fact that the deeper a group is in the lattice,
the higher the cardinality of its function set (X�). In other
words, our hypothesis is that a group of variables can be con-
sidered as a candidate object if these variables are simultane-
ously accessed by a large number of functions. In case of a tie
(same cardinality of functions sets), groups are ordered by the
cardinality of their variables sets (X) in a descendant mode.
This is done to avoid large objects. These two criteria define
a static order. If two groups have the same rank in this order,
a priority is given to the one that has the higher cardinality
of the set ns � X � NS. This defines a dynamic order. Each
time a group is selected, the variables it contains are removed
from NS. A group with ns � 0� is ignored. The last criterion
for selection is if a group has only one variable, the type of
this variable must be nonbasic type (e.g., int and char).

The application of these criteria to the example of Fig. 19
gives the following four candidate objects:
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0
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0
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1

h
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0
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0
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(a)

(b)

({1, 2, 3, 4, 5}, ∅)

(∅, {a, b, c, d, e, f, g, h, i})

({1, 2, 3}, {a}) ({1, 2, 4}, {c}) ({4, 5}, {b}) ({2, 3, 5}, {g})

({2, 3}, {a, g, i}) ({1, 4}, {c, f, h}) ({5}, {b, e, g})

({2}, {a, c, g, i}) ({3}, {a, d, g, i}) ({4}, {b, c, f, h})({1}, {a, c, f, h})

({1, 2}, {a, c})

co1 = {b, c} = {stack struct, stack point}
co2 = {d} = {list}
co3 = { f, g, h} = {queue head,queue struct, queue num elem}
co4 = {e, g, h} = {queue tail,queue struct, queue num elem}

Figure 17. (a) Representation of binary relation R. (b) Galois lattice
for relation R. Object Identification. If we consider candidate objects co3

and co4, we notice that they share two variables out of three.
Such situations motivate the introduction of a new step that

to) the variable v, then the resulting Galois lattice has the automatically merges these two objects. To detect these situa-
following properties: tions, we apply the same technique (Galois lattice) with a new

relation. In this step, E is the set of candidate objects found
in step 2. E� is the set of global variables. We define the1. Each node (X, X�) denotes a group of data (X) relative
relation R as � g � E and � v � E�, gRv means that g con-to a set of functions (X�) which can be taken as a candi-
tains v.date object (the criteria are defined in the section enti-

Figure 20 shows that co3 and co4 can be grouped in thetled ‘‘Algorithm Steps’’).
same object. This decision is made relative to the cardinality2. There does not exist (Y, Y�) � (X, X�)	Y � X and Y� �
of the set of variables in (�co3, co4�, �g, h�) which is fixed to 2X�. Only significant groups are in the lattice.
by default in our prototype. However, in our prototype an ex-3. An edge between two nodes N1 � (X1, X �1) and N2 �
pert can be involved to make decisions based on his/her(X2, X �2) can be interpreted as either (a) a
knowledge about the application domain, like merging candi-generalization/specialization link [from a behavioral
date objects, or breaking a candidate object in two or more ob-point of view, the set of functions in N1 is a subset of
jects.the set of functions in N2(X �1 � X �2)] or (b) an aggrega-

In the collections program example, we obtain the follow-tion link [from a data point of view, the set of data in
ing objects:N2 is a subset of the set of data in N1(X2 � X1)].

Algorithm Steps
Candidate Object Identification. As presented above, E is

the set of global variables, E� is the set of functions, and R is
the relation which indicates that v � E is used by f � E�.

o1 = co1 = {b, c} = {stack struct, stack point}
o2 = co2 = {d} = {list}
o3 = co3 ∪ co4 = {e, f, g, h} = {queue tail, queue head,

queue struct, queue num elem}
Figure 18 shows the matrix representation of R� instead of R
(for the collections program) for readability reasons. For the Method Identification. So far, we have identified the struc-

ture of the objects (variables). To be complete, an object mustsame reasons, names of functions and global variables are re-
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R� b. stack struct c. stack point d. list e. queue tail f. queue head g. queue struct h. queue num elem

2. stack push 1 1

3. stack top 1 1

4. stack pop 1 1

5. stack empty 1

6. stack full 1

7. stack to queue 1 1 1 1 1

8. global init 1 1 1 1 1

9. list is in 1

10. list empty 1

11. stack to list 1 1 1

12. list to stack 1 1 1

13. list add 1

14. list elim 1

15. queue to stack 1 1 1 1 1

16. queue extract 1 1 1

17. queue full 1

18. queue empty 1

19. queue insert 1 1 1

20. list to queue 1 1 1 1

21. queue to list 1 1 1 1

Figure 18. Matrix representation of reference graph for collections program. The matrix is used
as input to build the Galois lattice.

({b, c, d, e, f, g, h}), ∅)

(∅, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21})

({b, c, f, g, h}, {7})

({ f, g, h}, {7, 19, 20})

({b, c}, {2, 3, 4, 7, 11, 12, 15})

({b}, {8, 9, 10, 11, 12, 13, 14, 20, 21})

({c}, {2, 3, 4, 5, 6, 7, 8, 11, 12, 15})

({h}, {7, 8, 15, 16, 17, 18, 19, 20, 21})

({c, d, e, f, h}, {8})({d, f, g, h}, {20})

({b, c, d}, {11, 12})

({d, e, g, h}, {21})({b, c, e, g, h}, {15})

({e, g, h}, {15, 16, 21})

Figure 19. Galois lattice for reference relation (collections program). The nodes selected as can-
didate objects are represented in bold.
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converts a circle into a polyline), and (2) create o2 from o1
(e.g., in smalltalk, method fromDays in Date class, which cre-
ates a date from an integer). With our approach the second
solution is automatically taken. When available, an expert
can make such a decision.

Rule 3. For a function f , if cardinality of ref(f) � 1 and cardi-
nality of modif(f) � 1, then f must be sliced when possible to
create a method for each object in modif(f).

For example, ref(global_init) � �o1, o2, o3� and
modif(global_init) � �o1, o2, o3�. global_init can be sliced to

({co1, co2, co3, co4}, ∅)

({co2}, {d} )
({co3, co4}, {g, h})

(∅, {b, c, d, e, f, g, h})

({co4}, {e, g, h})({co3}, {f, g, h})

({co1}, {b, c})

create three methods init_stack, init_list, init_queue. Actu-
Figure 20. Galois lattice for grouping relation (collections program). ally, it is not always possible to break a function into cohesive
The nodes co3 and co4 are grouped in a single object. methods. Other solutions can be used depending on the target

OO language. In C�� for example, it is possible to define a
function independently from any class. In other languages, a

have a behavior (i.e., methods). In our approach, we identify method can be associated to more than one class. Finally, it
methods from functions. In the remainder of this section, we is possible to define a new object that aggregates the objects
present an overview of the rules we use to form methods from involved in modif ( f), and put f as a method in that object.
procedures/functions. A detailed description of method identi-
fication process is beyond the scope of this article. Some ideas CONCLUSION
we exploit can be found in Ref. 45.

Let O be the set of identified objects, let F be the set of Software maintenance is a complex and expensive task due
functions in the legacy code, and let V be the set of global to program understanding difficulties. We have addressed the
variables. For each function f , we define two sets ref ( f) and issue of reverse engineering and reengineering through three
modif ( f) as follows: � f � F, important axes: program redocumentation, data and control

flow analysis, and reengineering to OO technology. The main
ref ( f) � �oi � O�� vj � V and vj in oi and viRf �, where R idea is centered on one strong hypothesis: Expertise, docu-

denotes the relation is used by. mentation, and developers of the application under mainte-
modif ( f) � �oi � O�� vj � V and vj in oi and viMf �, where nance are often not available and even when they are, their

M denotes the relation is modified by. cost may be very high. Taking into account this reality, it is
generally more efficient to choose an unsupervised approach.

The relation M is derived from R with the condition that the Such an approach is based on the source code, the only source
mode of usage is modification. of information judged reliable.

There are three possible cases: Unsupervised tools do not need domain expertise; they use,
at most, heuristics to make the necessary decisions when
identifying objects for example, and the results are not always1. cardinality of ref( f) � 1
reliable. Nevertheless, they are of a great help for main-2. cardinality of ref( f) � 1 and cardinality of modif( f) � 1
taining legacy systems, by producing relevant abstractions.3. cardinality of modif( f) � 1
These abstractions allow us to have a wide set of solutions for
both reverse and reengineering old systems.For each case we define a rule.
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1985. WALCÉLIO L. MELO
25. S. K. Abd-el-Hafiz, A tool for understanding programs using func- Oracle do Brasil and Universidade

tional specification abstraction, Master’s thesis, Univ. Maryland, Católica de Brası́lia
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