
SOFTWARE PROCESS MANAGEMENT

As pointed out by many experts in the software industry,
measurement and management of the measures have been
“the basis of all science and engineering progress except
for software” (1). While this has been the case historically,
we believe that software engineering has evolved into a
well-disciplined process. There are many indicators or evi-
dence that suggest this evolution. Many companies in the
software industry, for example, have focused internal ef-
forts on identifying best practices that lead to the produc-
tion of higher quality software products with predictive
results. Best practices may include specific project man-
agement techniques, inspection and reviews, root cause
analysis techniques, and continuous process improvement.
These practices are defined, documented and transitioned
across organizations developing software products to im-
prove software quality, decrease interval and reduce cost.
Examples of companies that have focused efforts on best
practices include Boeing, Citicorp, IBM, Hewlett-Packard
LucentTechnologies,and Motorola to name a few. Microsoft
has also been using many best practices (2). Another in-
dicator of this evolution is the adoption of the Deming
Plan/Do/Check/Act cycle by many software companies to
help drive their process improvement efforts. Other indica-
tors include the increased use of benchmarking, the focus
on process definition, and the application of ISO 9000 to
software organizations.

This movement has been driven largely by ever increas-
ing customer expectations and demands for higher quality,
shorter delivery cycles (interval) and lower costs. A major
breakthrough in recent years has been the fact that soft-
ware projects and organizations are beginning to evaluate
their own performance in order to determine how to meet
these increasingly challenging customer expectations. As
a result, companies in the software industry now routinely
evaluate their capabilities to develop software products.
Questions like the following are often asked to understand
this capability (or lack thereof). Do we have the ability
to define and control product requirements? Can we ade-
quately plan and manage a software project? Is there a way
to know quantitatively if our product is ready for deploy-
ment? Software companies now often attempt to answer
these types of questions through the use of various assess-
ment techniques, which are used internally or provided by
external consultants.

Watts Humphrey developed the concept of process ma-
turity levels which is at the heart of the SEI Software Ca-
pability Maturity Model (CMM). The Software CMM has
become largely an industry standard in terms of evalu-
ating organizational capability. CMM-based assessments
are used by many companies in the software industry to
understand their current processes, and to determine how
to make improvements to reduce software intervals, im-
prove customer satisfaction and reduce costs. Quantitative
data is now being shared across companies in the software
industry that show a direct relationship between the or-
ganization capability or maturity and the ability to pro-
duce high quality software that achieves strong levels of
customer satisfaction in an acceptable schedule. What is

unique about the CMM is that it identifies the hierarchy of
processes essential to effective management of software de-
velopment. Organizations that are striving to reach higher
levels of quality and productivity in software build their ca-
pabilities incrementally following the CMM road map.

In the rest of this paper, we will examine software de-
velopment as a process following the Deming Cycle.

PROCESS MANAGEMENT

A process is a set of defined steps organized to achieve some
purpose. It usually has some inputs and associated out-
puts. For example, a design process may have customer
requirements as input, and the output may be a design
document that has been approved by the software project
team. The high level steps in the process might look like
the following:

� Review requirements
� Identify the set of requirements that will be satisfied

by this design
� Identify the necessary software modules that will sat-

isfy the design
� Document the proposed design with a structure chart

and interfaces
� Review the proposed design document with team

members and revise as needed
� Obtain design document approval from the software

team

Process management means incorporating a specific
and systematic program into an organization or project to:

� Establish product or service requirements, based on
customer needs, that can be measured and verified.

� Define and structure a process for producing a product
or service that aims to meet these requirements for a
given cost (budget) and in a defined time.

� Measure, analyze, control and improve a product or
service and the process by which it is realized, using
the most effective tools and techniques available.

Figure 1 depicts the general model for a customer sup-
plier relationship in process management. The structure of
interrelated elements that combine to achieve these objec-
tives is the quality system. The quality system helps cre-
ate an environment in which capable people do their best
work by providing measurements and controls that define
what is expected and monitor what is received. Correctly
used, these measurements and controls provide the basis
for driving improvement. Managers assure their correct
use by focusing the feedback from measurements and con-
trols on the system, not the individuals. The tools and tech-
niques of quality management are meant to fix the system,
not fix the blame. The goal is improvement.

The quality system offers a systematic approach of plan-
ning and problem solving, of analyzing the deficiencies of
existing systems and of acting to attain improvement. W.
Edwards Deming approached this as a cycle of planning,

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Software Process Management

Figure 1. The Customer Supplier Model

doing, checking, and acting (3). This is very often referred
to as the Plan-Do-Check-Act (PDCA) Model.

The application of the PDCA Model to a software pro-
cess is conceptually straightforward: a plan defines how to
produce the desired software product; the project team ex-
ecutes the plan to build the desired software product (do);
as activities occur during the execution of the plan, they are
monitored to ensure they are occurring as desired (check);
and as the team finds problems during the execution of the
plan, it takes action (act) to resolve the problems, and put
in place preventive measures. The following subsections
describe software process management in terms of the ap-
plication of the PDCA Model to a software project.

Plan

A key driver of the planning phase is to ensure there is an
agreed upon understanding of the customer needs: what
is driving the software organization to create a new or en-
hanced product, what problem(s) will the product solve for
the customer, when is the product needed, and how will the
product be used. This includes defining the requirements
for the product, including cost, schedule and other factors.

Once there is a common understanding of the customer
needs, a plan is necessary to answer all the important ques-
tions about how the product will be defined, developed and
delivered to the customer. These questions usually revolve
around addressing who, when, what, where and how. The
plan will define the specific objectives for the project, as
well as how the project will be launched, monitored and
controlled through to completion.

In a typical software project, plans are generally defined
with the following types of information:

� Scope: establishing the project goals and objectives.
� Product description: defining the major product func-

tions and characteristics.
� Resources: identifying the team members who will

work on the project, what customer resources the
project is dependent upon, and what physical re-
sources (e.g., computing hardware) or special re-
sources (e.g., training) are necessary.

� Cost:what will the project cost?This includes the costs
associated with the people working on the project, re-
lated hardware, training and physical environment,
etc.

� Schedule: the project interval and milestones, includ-
ing work item dependencies, as well as the critical
path.

� Organization: who specifically will be working on the
project, and what the individual roles and responsibil-
ities are. What deliverables will be provided by whom?
What external dependencies (if any) exist, both in
terms of off-the-shelf as well as custom software that
may be incorporated as part of the product? Are there
hardware (or other) dependencies beyond the scope of
the software team?

� Methods, processes and procedures: the process by
which the product will be developed. How will re-
quirements, design, coding and testing activities be
performed? Are there certain methods that will be
used for key life cycle phase activities, and/or tools
that should support the product development?

� Risk identification and management: what risk fac-
tors exist for the project? These may include risks re-
lated to the software team (e.g., the risk that a new
Java technology is being used for the first time, and
team members have no experience with this) or be-
yond the team. External dependencies may include
things like relying on a new hardware platform or
component, subcontracting with a vendor for a cus-
tom software component or a critical portion of the
software, or undertaking a product development ef-
fort significantly different from the team’s previous
experience base (taking compiler developers, for ex-
ample, and having them work on the next generation
of network switches; or assigning a team that has done
development locally to a globally distributed develop-
ment project.) For each risk, the software team needs
to estimate the probability that the undesired event
will occur, as well as identify the contingency plan(s)
to mitigate the risk. This should include defining the
specific actions that will be taken if the risk should
materialize.

� Supporting functions: how will the software project
be managed from concept to delivery? How will con-
figuration management be performed? What is the ap-
proach that will be taken in terms of education and
training of team members, both in terms of training
needed across the team as well as among individual
members.

Do

The “do” portion of the PDCA Model applied to the software
process primarily involves the execution or implementa-
tion of the project plan. That is, gather the resources nec-
essary to do the work that was planned, and have the team
members begin to do the work according to the schedule
that was defined in the plan.

The project management function is a very key one dur-
ing this portion of PDCA Model. This function is usually
directing and managing project resources to undertake
specific activities according to the plan, and will be deal-
ing with problems that invariably occur when executing
a project plan (e.g., computing resources are not available
that were anticipated, or critical project team members will
be starting work on the project two months later than an-
ticipated). The project management function will control
changes to the plan as the need arises, and this often occurs



Software Process Management 3

as the progress is tracked and measured against the sched-
ule. This control is typically characterized as elements of
the check and act portions of the PDCA cycle.

Check

As a project implementation proceeds, there is a need to
“check” or validate the correctness and effectiveness of
the implementation. There are basically three layers of
“checks” in a software development process as depicted in
Figure 2:

� Checks applied to the product (work-product or end-
product), or Product Assurance. These include reviews
and inspections, and test and verification.

� Checks applied to the project, or Project Review. These
include project status reviews, project audit or project
management audit, and retrospectives.

� Checks applied to the development process or pro-
cesses in a software organization, or Process Assess-
ment.

Each of these is briefly discussed.

Product Assurance. During the development process, the
work-products or the output from various stages of the pro-
cess is evaluated for compliance to applicable standards
and requirements. Inspection is one of the key mechanisms
used by software projects to validate and improve the work-
in-progress as the project moves from concept to deploy-
ment. Formal inspection is a structured process, conducted
by a team of subject matter experts. The work product is
carefully examined by the inspection team to identify any
problems, deficiencies and non-conformities and to recom-
mend corrective action. Effective software development or-
ganizations conduct rigorous inspections of all project doc-
umentation, particularly requirements, architecture, de-
sign, and test plans, as well as the code (4–8). In software
development, inspections are normally done by peers (also
known as peer reviews) and are overseen or approved by
the quality assurance organization. Although the primary
reason for inspection is to ensure the quality of the prod-
uct at hand, the data generated from inspections are a rich
source of information for improving the processes to pre-
vent such errors in the future. Leading edge software com-
panies apply statistical techniques using inspection data
to predict latent faults in the product and to predict prod-
uct performance (9, 10). Product assurance for the end-
product, the software, is done through test and verification.
Some of the testing is done by the developers themselves,
validating the individual modules, functions and subsys-
tems. The integrated product goes through system verifi-
cation and validation, often done by a separate and ded-
icated group. The product may also be further validated
by the customer through customer acceptance testing. The
quality assurance organization often has the primary re-
sponsibility to support and oversee the product assurance
activities.

Project Review. In addition to product assurance, a num-
ber of checks are applied to the project to assure the project

as a whole.
Project Status Review is a regular project activity con-

ducted throughout the project life cycle to evaluate project’s
progress and identify issues that need to be resolved
quickly to keep the project on track with respect to the
project plan.

Project Audit or project management audit is a broader
check on the project, often conducted by an independent
team. A project audit is an evaluation of the project’s plans,
activities and resources for:

� Adequacy and effectiveness to achieve the project ob-
jectives.

� Adherence to the established guidelines, policies and
practices.

� Identification of problem areas and recommended ac-
tions.

Project audits are conducted during the life cycle of the
project to minimize project risks by addressing problems
as early as possible.

Retrospective is also a project-level review. It is done at
the completion of the project for lessons learned. In many
companies project audits and retrospectives are routinely
conducted on every project (11), and in some organizations
these are conducted at the conclusion of major product life
cycle phases.

Process Assessment. At yet a higher level, a software de-
velopment process is evaluated for its effectiveness and
ability to develop and deliver software products faster,
cheaper and better. ISO/IEC 90003: 20041 (its earlier ver-
sion ISO 9000-3) and TickIT2 certification is a form of pro-
cess assurance for software. Under ISO 9001: 2000 the pro-
cesses are periodically assessed to ensure they are well-
defined and documented and that projects do follow the
defined processes. ISO 9000 provides for the basic process
management to meet contractual requirements for ade-
quacy of a quality system. To meet the challenges of a very
competitive industry, software companies are striving to
go beyond ISO 9000 to improve their software competency
and process effectiveness. Among industry approaches, two
quantitative models have emerged as effective process as-
sessment tools to help software development organizations
systematically evaluate their process capabilities against
the benchmarks. These models are: Software Engineering
Institute (SEI) Capability Maturity Model (CMM)® (12, 13)
and Software Productivity Research (SPR) Model (1, 14).

SEI-Capability Maturity Model. The SEI CMM is a frame-
work for application of process management and quality
improvement to software development and maintenance.
The CMM considers a natural progression for a software
organization towards organizational excellence. The model
was developed by the Software Engineering Institute; a De-
partment of Defense funded organization associated with
the Carnegie Mellon University. The model has five distinct
levels as shown in Figure 3:



4 Software Process Management

Figure 2. Hierarchy of Checks in Software Develop-
ment

� Level 1 is characterized as Initial. The processes are
ad hoc; there is very little formalism, and projects are
completed by heroics.

� Level 2 is characterized as Repeatable. There exists
a set of project management capabilities that allow
consistent planning and tracking of projects.

� Level 3 is characterized as Defined. The organization
has achieved a process focus; processes are well de-
fined and documented.

� Level 4 is characterized as Managed. The organiza-
tion is focusing on quality improvement; processes are
consistently measured and managed.

� Level 5 is characterized as Optimizing. The organi-
zation is focusing on problem prevention, innovation,
and management of process change.

An organization capability can be assessed against the
CMM requirements to establish the current level and de-
velop improvement plans for moving up on the maturity
level. The assessment tool uses a questionnaire along with
document review and interviews for the evaluation. The
questionnaire samples the existence and effectiveness of
the elements of the model. SEI has evolved the CMM as-
sessment process. The Capability Maturity Model Integra-
tion (CMMI®) is a process improvement approach using
CMM framework (15). It can be used to guide process im-
provement across a project, a division, or an entire organi-
zation. SEI provides a Standard CMMI Appraisal Method
for Process Improvement (SCAMPISM) through licensed
appraisers to support broad application of its best prac-
tices (16).

Software Productivity Research (SPR). The SPR model
was developed by Capers Jones, a software industry ex-
pert. It is based on an extensive questionnaire covering
various dimensions of software development process. The
model scores process effectiveness in a number of func-
tional areas so that the organization assessed will know
if the effectiveness of their process is comparable to in-
dustry benchmarks. The scoring is built into the questions

with five possible answers for most questions, where the
choices reflect excellent (score of 1) to very poor practices
(score of 5). The SPR assessment results can be summa-
rized in a number of ways. One view is a Kiviat chart, which
is a graphical depiction of the overall assessment results
across eight functional categories:

� Customer Focus–Measures the level of customer in-
volvement in the various stages of product develop-
ment, such as requirements, customer documenta-
tion, and testing.

� Project Management–Measures the effectiveness of
estimation and scheduling, alignment of managers
and engineers on goals, methods, and other project
management issues.

� Project Team Variables–Measures the experience and
training of the project staff.

� Tools–Measures the effectiveness of the coding and
non-coding tools used by the project.

� Quality Focus–Measures the extent and effectiveness
of various quality assurance activities used by the
project throughout the entire product development
life cycle.

� Methodologies–Measures the effectiveness of meth-
ods used in development activities, such as require-
ments methods, coding standards and system test
methods.

� Physical Environment–Measures the effectiveness of
the development and target hardware, the office en-
vironment, and the adequacy of clerical support.

� Metrics–Measures the extent and effectiveness of
product performance, defects, and project productiv-
ity data collected and used within the project.

The score for each category is the average of the score for
the questions included in that category. An average score
from 1.0 to 2.5 is considered leading edge with respect to
the software industry, a score from 2.6 to 3.4 is considered
at industry norm, and a score from 3.5 to 5.0 is consid-



Software Process Management 5

Figure 3. SEI Capability Maturity Model

Figure 4. A Typical Kiviat Chart

ered high risk. Figure 4 shows a typical Kiviat chart for a
hypothetical organization (or a project). In Figure 4, the or-
ganization can track its improvements over time as it goes
through PDCA; the points on the Kiviat chart should move
toward the center circle (bullseye). Another way to use the
assessment is to synthesize the results by category into a
pie chart as shown in Figure 5. The benchmark profile is
a hypothetical example of creating a composite profile for
the leading organizations in the industry as a benchmark.

Act

An outcome of the check stage is identification of non-
conformities and areas for improvement. The organization
usually takes two kinds of actions.

Corrective Action (Rework). This is aimed at fixing the
observed problem(s), generally through rework. For exam-
ple, after an inspection of a requirements document, the
systems engineer owning the document is responsible for
correcting the faults or problems identified. Similarly, at
validation and verification, the test group identifies fail-
ures in the system. The developer, or the maintenance
group (if the project has a dedicated maintenance staff),
will have to create fixes for the problems and input them
through the system until the product achieves an accept-
able quality level.

Action Plan. To prevent problems from recurring, one
has to identify the root causes of the problems which often



6 Software Process Management

Figure 5. Comparison of SPR Results to Indus-
try Benchmark

point to a process or capability deficiency and eliminate
those root causes.A systematic approach to action planning
and implementation includes the following:

� Prioritization of the improvement opportunities
� Identification of the root causes of the priority items
� Development of counter measures
� Evaluation of the counter measures for cost effective-

ness
� Assignment of resources to implement selected

counter measures
� Implement the counter measures
� Assess the impact
� Integrate the improvements into the current process

to hold the gains.

Many organizations use the Six Sigma Methodology that
incorporates the above steps into 5 stages:Define,Measure,
Analyze, Improve, and Control (DMAIC) (17). This method-
ology was developed by GE® in applying Six Sigma quality
improvement. Lockheed Martin is among the growing list
of companies that regularly use Six Sigma to improve its
software development process (18). Through rigorous and
systematic improvement, a software organization can im-
prove its ability to develop and deliver high quality soft-
ware products within schedule and budget constraints. An
SEI analysis of 35 organizations that have been following
CMMI guidance shows a median improvement of 34% in
cost, 50% in schedule and 61% in productivity (19).

CONCLUSION

The software industry has been driven by ever increas-
ing customer expectations and demands for higher quality,
shorter delivery cycle, and lower cost. Software projects
and organizations can systematically evaluate their own
performance in order to determine how to meet these in-
creasingly difficult customer expectations. The SEI Capa-
bility Maturity Model (CMM) has become largely an indus-
try standard in terms of evaluating organizational capabil-
ity. CMM-based assessments are used by many companies
in the software industry to understand their current pro-
cesses, and to determine how to make improvements to re-
duce software intervals, improve customer satisfaction and
reduce costs. What is unique about the CMM is that it iden-

tifies the hierarchy of processes essential to effective man-
agement of software development. Organizations that are
striving to reach higher levels of quality and productivity
in software build their capabilities incrementally following
the CMM road map. The application of PDCA provides a
powerful mechanism to drive process improvement in an
organization. Factors that affect its effectiveness include:

� Management Commitment – The organization should
be committed to process improvement.

� Well-defined Process – Standardized assessment
methodology and tool coupled with benchmarks for
comparison, e.g. SEI CMM.

� Continuity – Repeating the assessment periodically
to reinforce improvements and focus on current prior-
ities.

BIBLIOGRAPHY

1. C. Jones,“ Applied Software Measurement,” McGraw-Hill,
1991.

2. M. Cusumano and R. Selby,“ Microsoft Secrets,”The Free Press,
1995.

3. AT&T,“ Quality By Design,”Issue 1, 1986.
4. M. E. Fagan,“ Advances in Software Inspections,” IEEE Trans-

actions of Software Engineering, Vol.SE-12, No. 7,July 1986.

5. G.W. Russel,“ Experiences with Inspection in Ultralarge-Scale
Development,” IEEE Software, January 1991.

6. T. Gilb and D. Graham,“ Software Inspection,”Addison-Wesley,
1993.

7. R. G. Ebenau and S. H. Strauss,“ Software Inspection Process,”
Mcgraw Hill, 1993.

8. R. A. Radic, “ High Quality Low Cost Software Inspections,”
Paradoxicon Publishing, 2004.

1 ISO/IEC 90003:2004 provides guidance for organizations in the
application of ISO 9001:2000 to the acquisition, supply, develop-
ment, operation and maintenance of computer software and re-
lated support services.
2 TickIT procedures relate directly to the requirements set out in
ISO 9001:2000. TickIT is supported by UK and Swedish software
industries.
® CMM is a registered Trademark of Carnegie Mellon University.
® CMMI is a registered Trademark of Carnegie Mellon University.
® Registered Trade Mark of General Electric Company.



Software Process Management 7

9. D. A. Christenson, S. T. Hung, A. J. Lamperez,“ Statistical
Quality Control Applied to Code Inspections,” IEEE Journal
on Selected Areas in Communications, Vol.8, No. 2,February
1990.

10. R. Radice,“ Statistical Process Control in Level 4 and 5 Organi-
zations Worldwide,” Proceedings of the 12th Annual Software
Technology Conference, 2000.

11. M. H. Fallah, J. P. Holtman, J. F. Maranzano, D. P. Smith, G.
T. Tucker,“ Development Process Audits and Reviews,” AT&T
Technical Journal, Vol.70, No. 2,March/April 1991.

12. W. Humphrey,“ Managing the Software Process,”Addison Wes-
ley, 1989.

13. M. C. Paulk,W. Curtis, M. Chrissis and C. V. Weber,“Capability
Maturity Model for Software, Version 1.1”, Technical Report,
CMU/SEI-93-TR-024, ESC-TR-93-177, February 1993.

14. C. Jones,“ Assessment and Control of Software Risks,”
Prentice-Hall, 1994.

15. Software Engineering Institute,“Capability Maturity
Model Integration (CMMI) Version 1.2 Overview,”
http://www.sei.cmu.edu/cmmi/general/general.html, 2006.

16. Software Engineering Institute,“ Standard CMMI Appraisal
Method for Process Improvement (SCAMPISM) A,Version 1.2:
Method Definition Document”, CMU/SEI-2006-HB-002.

17. C. B. Tayntor,“ Six Sigma Software Develop-
ment,”AUERBACH; 1st edition, 2002.

18. L Heinz, “Using Six Sigma in Software Develop-
ment,” News @ SEI, http://www.sei.cmu.edu/news-at-
sei/features/2004/1/feature-3.htm.

19. D. L. Gibson, D. R. Goldenson, and K. Kost,“ Performance Re-
sults of CMMI®-Based Process Improvement,” Technical Re-
port, CMU/SEI-2006-TR-004 and ESC-TR-2006-004, August
2006.

M. H. FALLAH

G. T. TUCKER

Stevens Institute of Technology,
Hoboken, NJ

Formerly of Lucent Technologies
Bell Laboratories, Holmdel,
NJ


