
VIENNA DEVELOPMENT METHOD 215

VIENNA DEVELOPMENT METHOD

A fundamental step in the planning and design of nontrivial
size software is the development and analysis of first a con-
ceptual model and then a design model of the target system.
The Vienna Development Method (VDM) is both a methodol-
ogy for developing and refining models of software systems
and a language for specifying such models. The distinctive
feature of VDM models and development is the strong founda-
tion on mathematics and logic and rigorous description of cer-
tain properties of the model. With such a mathematical foun-
dation, VDM is particularly suited for use in development of
safety-critical software systems.

Software engineers recognize why models of software are
important. Fundamental errors of concept or design can be
detected and easily corrected within a model. If such errors
propagate into developed code, they can be severely costly and
even catastrophic. In the early development of the software
engineering field, there was a distinction made between mod-
els for requirements analysis, specification of target software,
design, and even verification and/or testing. Now an under-
standing is emerging that a unified model of software can be
used for each of these purposes with only refinement of the
amount of abstraction and amount of detail within the model.
VDM provides for this kind of unified model. VDM models are
used to define requirements, specify processes and software
architecture, and serve as the framework for refinement of
target code.

The original VDM concept was developed at the IBM Vi-
enna Research Laboratories during the 1970s (1). In the
1980s VDM took on an independent existence with strong
support in England. During the same time period, the related
concept of Z (pronounced zed) (2,3) was also developed in En-
gland. Z is similar in structure and role to VDM, but by name
VDM seems to have a greater emphasis on the methodology
component. In the 1980s, a procedural view of software was
predominant; hence, both VDM and Z were developed without
the now common class/object structure. Both are continuing
in a process of refinement and standardization. In the 1990s,
methods of object-oriented analysis and design (OOAD)
evolved from the structured development methods of the
1980s (including VDM). OOAD is not a single methodology
and notation, but it encompasses several similar methodolo-
gies and notations. Both VDM and Z can be used within an
object-oriented framework. A comparison of VDM and OOAD
vocabulary is shown in Table 1. An object-oriented form of
VDM will be illustrated in this article. There are other object-
oriented extensions of both VDM and Z (4,5). In the 1990s, a
number of tools for development and processing of VDM mod-
els have been refined and are beginning to be used (6,7).

VDM and Z both have a core foundation of discrete mathe-
matics (8). The mathematical structures of sets, sequences,
and maps are used to model data, and mathematical logic is
used to model operations and properties of data. These math-
ematics and logic concepts are not well rooted in computer
science curricula in the United States; hence, neither VDM
nor Z is widely promoted in the United States. Yet, the po-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

216 VIENNA DEVELOPMENT METHOD

represented. Rather, the behavior of model operations are de-
fined implicitly by equations which constrain their interac-
tions. In object models, data components are represented by
aggregation of component objects and the behavior of opera-
tions is described by case scenarios that show the propagation
of messages.

Since object-oriented development is such a common foun-
dation for software, we will illustrate VDM within an object-
oriented framework. This form is modified in two ways. First,
it uses an object model (classes and objects) to represent the
architectural structure of a system, rather than using sepa-
rate procedures as in the original VDM. Other aspects such

Table 1. Relationship of VDM and OOAD Vocabulary

VDM OOAD

context model use-case model
process model object model
data flow model object model
abstract machine class/object
data stores data members of classes
data models aggregation
processes methods of classes
transactions messages
invariant assertion none (comments about data constraints)
pre-/postassertions none (implicit in use case scenarios)

as the models of data components and specification of opera-
tions and properties for verification follow the concepts of
VDM. Second, it uses a textual representation of mathemati-
cal symbols of VDM.tential benefit of use of models based on mathematics is great.

First, the models are suited for analysis and even verification Some further comparison of VDM and object models should
be noted. Object models do not define a specific implementa-of certain properties, and second, the models are suited for

systematic refinement to executable form. That is, VDM mod- tion structure for aggregates of data or specific semantics of
messages. It is an implicit expectation for such models thatels are suited for analysis of requirements and for specifica-

tion of software functions, and they are also suited for re- developers can map structures of aggregation to some con-
crete implementation structure and that case scenarios suffi-finement as a design model. Because the mathematical

modeling aspect of VDM is usually difficult for persons learn- ciently describe the behaviors of messages that developers
can determine the implied implementation. Similarly, theing the methodology, most books begin with a tutorial presen-

tation of the discrete mathematics and logic concepts, even abstract representation of data components in VDM do not
determine a specific implementation. However, there arethough that is not the beginning point of the whole method-

ology. common mappings of the abstract types to concrete imple-
mentation. Once a specific mapping is determined, the opera-Because VDM is so based on mathematical expressions,

VDM models are often incorrectly viewed as only formal spec- tion specifications strongly constrain the refinement of asser-
tions into executable code.ification models rather than as software development models.

On the World Wide Web, one reference link to a VDM
home page is in the area Computers, under sub-area Formal
Methods. Within Usenet, VDM and Z are discussed within COMPONENTS OF VDM
comp.specification. In the United States, neither formal meth-
ods nor formal specifications are widely accepted as necessary The framework of VDM is the development methodology. De-

velopment begins with a high-level context model which iden-components for general software development. Instead, for-
mal methods are viewed as appropriate for safety-critical soft- tifies external actors, processes, and major data stores. This

step is typically part of the analysis of requirements. In theware, for which there is some property, called a safety prop-
erty, that must be established with great certainty. The object-oriented form, the top-level model is the use-case

model. It is a top-level object model with identification of ex-process and arguments to convince reviewers that a safety
property holds is called verification. That is distinguished ternal operations. Visual tools can be used to construct the

model diagram.from validation, which is concerned that software meets its
general functional requirements. Verification can be done ei- Within the development framework, the next component is

data modeling, which consists of modeling of parameters andther informally, by careful reasoning about the interaction of
the safety property and the mathematical models of opera- data stores using the VDM data types and defining invariant

properties which constrain the data beyond the basic typetions, or formally by using tools to prove the safety property
based on the mathematical specifications of the model opera- definitions. Modeling data using the VDM types is similar in

concept to representing data structures using programmingtions. There are a number of tools that assist in verification
of VDM models. It is widely noted (perhaps as a criticism) languages, but data types are significantly different. The ab-

stract VDM types are suited for very concise expressions, butthat such formal verification can only be done effectively by
persons well experienced in mathematical logic. Even then, they do not prescribe specific implementations. The VDM

types are summarized in the Appendix. The concept of usingformal verification is tractable only for fairly simplified forms
of safety properties. predicates to define invariants about properties of data items

also extends common programming style. The closest aspectWithin the area of formal specifications, VDM is character-
ized as a model-based specification form, which is distin- in most programming languages is use of comments to ex-

plain properties of the data items. Some languages do supportguished from algebraic specification forms and object models.
The key aspects of the model-based part of VDM is that data assertions (for example, Eiffel), but those assertions constrain

the concrete data types of the language and are thus muchcomponents are modeled (represented) by using abstract
mathematical types and the behavior of operations is speci- less expressive than assertions about the abstract data types

of VDM.fied by using assertions which constrain the state of data com-
ponents before and after each operation. In contrast, in alge- One common style for the VDM types and assertions is

given within the specification language VDM-SL (9). VDM-braic specifications, data components are not explicitly

VIENNA DEVELOPMENT METHOD 217

SL is a version of the specification language for the VDM ple has been used in several papers about formal specifica-
tions. As explained earlier, the example is a modified form ofmethodology. There are also tools for checking the syntax of

VDM-SL, a library of LaTex style macros for preparing VDM- VDM in that the architecture is defined by an object model,
mathematical symbols are represented in textual form, andSL for output in Postscript form, and translators for mapping

VDM-SL to specific programming languages. VDM and VDM- some shortcuts are used in writing predicates. Andrews and
Ince (12) present a similar library example, using a pureSL use a number of mathematical symbols that are not di-

rectly available on most keyboards. The VDM-SL form in not VDM form. The case example is not complete, but it does il-
lustrate each of the steps. The steps are presented in se-used in the case example. Instead, a pure text form for VDM

type and assertion symbols is used. Some VDM symbolic quence, but in reality, software development more likely fol-
lows what is called a spiral or iterative process. That is, asforms are shown in the Appendix.

The next component of the framework is process specifica- issues are identified in each step of development, changes
may be made to results of earlier steps.tions. These are developed by specifying what is called the

signature for each operation (parameters and access to exter-
nal variables together with types and modes of parameters) Requirements
and by defining assertions to express pre- and postconditions.

The process of elicitation of requirements is essentially the
The method of writing assertions is sometimes difficult to

same for all software development methodologies. The pri-
grasp, because assertions are essentially nonprocedural,

mary requirement is the functions of the target system. Other
whereas most programming languages are procedural. That

requirements include major data storage, system and net-
is, assertions define the states of the data prerequisite to and

work architecture, performance, and security. For VDM,
resulting from each operation; they do not define the specific

statements of requirements should be closely coupled with the
steps to compute the resultant state of the data. There is

context model shown next. The nature of requirements and
nothing directly equivalent to pre/postassertions in most pro-

the structure of the context model will depend greatly on the
gramming languages. Again, Eiffel (and some other lan-

architectural pattern of the system, such as primarily a data
guages) supports a limited form of assertions, but those apply

base, a real-time controller, or a filter. The functional require-
only to evaluation of the state of variables after a computa-

ments should identify all agents that interact with the soft-
tion, whereas VDM process assertions define the computation

ware system, all transactions that can occur, information
to be done by the process. The specification language VDM-SL

about data items for all transactions, and all major data
includes specification of processes, but in a nonobject-oriented

stores that are known by users. The statements of require-
style. In the nonobject-oriented style, each process declares

ments for the simple library system are given in Table 2.
which external data items are accessed. In the object-oriented
form used in the case study shown later, each class method

Context Model
will access only the data components of the class, so it is not
necessary to declare which external data items are accessed. The context model is the external view of actors, their interac-

tion with the system, and major system architecture, includ-Another component is the mechanism for verification of in-
variant assertions. It must always be the case that claimed ing network structure and major data stores. The model con-

sists of two parts, a graphical representation, as shown in Fig.invariant assertions are consistent with the pre-/postasser-
tions for each operation. Verification requires some demon- 1, and representation of transactions, shown in the form of a

grammar in Table 3. The context diagram shows multiple sta-stration, ranging from informal arguments to formal, me-
chanically checked proofs, that invariant assertions can be tions for checking books and information inquiry. It shows
proved based on the process specifications. The verification that the library is a single processor system that maintains
component consists of the method of presenting such proofs data files for user information and books information. The
and any tools used to develop proofs. One noted tool for veri- specific kinds of book, information, and administrative trans-
fication of VDM-SL is the Mural system (10). actions are defined in the transactions grammar. The identi-

The final component of the development framework is the fication of each transaction includes data items and their
mechanism for refinement of the abstract model. The refine- mode (input or output). Finally, the description of the data
ment includes, first, mapping abstract data types to concrete stores identifies data components and types.
implementation structures and second, mapping process as- In conventional design methods, the context model is a
sertions to consistent procedural code. For rapid development data flow model. In OOAD, the context model is the use-case
of executable prototypes, some libraries of simple mappings of model. In the original VDM, the transaction grammar merely
the abstract types and operations to concrete structures and identifies the transactions cases. In the example transaction
operations have been defined. This type of development by grammar, we show not only the cases for different uses, but
refinement of specifications is one form of prototyping (11). also sequential ordering and concurrent processing of various

Even though various software tools are available to sup- transactions. This grammar presents the same kind of tempo-
port each component of the VDM framework, none of the com- ral ordering information as would be shown in state diagrams
ponents can be effectively automated. They compose a meth- that are used in other object-oriented design methodologies.
odology that can be used by software developers who have The transactions, such as UserId, identify parameters, such
gained insight about the components. as BkID, types of the parameters, such as ‘‘tBkID,’’ and the

mode of each parameter, as ‘‘out.’’ The default mode is ‘‘in.’’
The types identified in the transactions are defined later inA CASE STUDY
the conceptual model. For a real software development proj-
ect, there would also be accompanying narrative to explainThis section illustrates the steps of the VDM methodology by

using an example of a small library system. The library exam- each transaction, but that is omitted for this example.

218 VIENNA DEVELOPMENT METHOD

Conceptual Model

The context model is refined to define details of the primary
VDM conceptual model. This consists of an architecture dia-
gram and several text statements of component details. Typi-
cally, details of the structure would be expanded in a series
of refinements. In the original VDM, the overall architecture
is represented as an expanded process/data-flow model which
shows the designer’s understanding of internal data stores
and structure. In the extended form, this visual component is
shown as an object model in Fig. 2. The object model is simi-
lar to that in OOAD, but it differs in the modeling of data
components. The data components are represented in terms
of VDM abstract types, rather than as additional classes. This
data modeling rather than expansion of classes allows the ob-
ject model to be more concise than in OOAD. For the library,
the design shows there are separate objects that encapsulate
book information and user information.

Next, modeling of the data components of the two classes
is shown in Table 4. As is typical for VDM, all data compo-
nents of classes are modeled as sets, sequences, and maps.
Once the class structure is defined, there is no further issue
of efficiency of the data component models. The issue is to
define what information is stored and what updates of the
information are to be defined. Later, the abstract models can
be implemented in different ways to meet particular needs for
space and time efficiency. Thus, keeping information about
books checked out in both the Books and Users objects was
a design decision, likely based on encapsulation and access
efficiency. (And, such redundancy of information allows dis-
cussion of the invariant property later.) In contrast, consider
how to represent the maximum copy number for a particular
ISBN:

maxCopy(N: tISBN) = max(set(i | (exist B • Stock(B).ISBN

= N and Stock(B).Copy = i))

This defines information which needs to be used in adding a
new copy of book, but it is clearly not the appropriate struc-
ture or method to be implemented. More strictly, the set in
the previous expression should be written as:

set(i : Natural|(exist B in Stock.domain • . . .))

but we omit the set constraints for informal discussion.
A further step of data modeling is the development of in-

variant properties about data models and interrelationship of
data models. Typically, such invariant assertions define con-
straints beyond those of the VDM data types. A typical con-
strain is that there are restrictions on fields of records within

Table 2. Statement of Requirements for Library Example

1. General
The library software system is intended to serve a single library.
The system should keep record of books in the library inventory
and of users who are registered to borrow books.
The system should allow for one hundred thousand users and
one million books.

2. Configuration
The system should support multiple transaction stations (for
check-in and check-out of books), multiple information stations
(for queries about book information), and administration termi-
nals (for administrative transactions).

a. The transaction station will support a bar code reader, four
keys (Clear, Enter User code, Enter code for book check out, and
Enter code for book return), and a display status (null, OK, ReEn-
ter, or an Error code number).

b. The administration terminal should support text IO for in-
putting information about users and books. It should allow opera-
tions to add new books, remove books, add new users, and re-
move users.

c. The information terminal should allow text report for searches
by author, prefix of title, and it should report call number.

3. User information
User information should include name, address, telephone num-
ber, unique user ID, and list and due dates of books checked out,
and date of last check out.

4. Book information
General information about books is available in a purchased data-
base of books in print. It contains author and title and is indexed
by both call number and ISBN.
The library inventory, book information should include a unique
book ID, a copy number, who has the book checked out, and date
of last check out.

5. Transactions

a. Transaction stations record borrowing a book and the re-
turning of the book.

b. Administration stations record addition of new books and re-
moval of books from the library inventory and addition of new us-
ers and removal of users. Administration can query for books or
users with no transactions past any specified date. Administra-
tion stations can record requests to recall a book.

c. Information stations should support queries about books by au-
thor, by title, and by call number.

d. Additional transactions may be added to facilitate the function-
ing of the library and the information system.

6. Constraints

a. User cannot borrow any books if user has books overdue.
b. If a user is removed, any checked-out books are also removed.
c. Recalled books are held for the requesting user.

a collection of such records. An example safety property for
the library is shown in Table 5. Both Stock and UsersData
are restricted to not have 0 in their domain, because in the
Stock structure, the 0 user indicates ‘‘no user.’’ The fields Due
and User of structure Stock are redundant, but it is desirable
to use an explicit Boolean field. The predicate SameDue de-
fines the condition that user U has book B due. The predicate
AllSameDue defines the condition that for every book that is
checked out, there is exactly one user that has the book. Fi-
nally, the invariant makes the claim that AllSameDue holds
for the data models Stock and UsersData. This kind of con-

n

n

Library-system Management

Admin-transaction

User information

Books information

Information

Info-transaction

Bk-transaction

Books CD

BookCheck

straint is often clear to designers, but easily lost in details of
code implementation.Figure 1. Context model for library example.

VIENNA DEVELOPMENT METHOD 219

Table 3. Transaction Specifications

Library-transaction � BkTransaction* ; InfoRequest* ; AdminTransaction*

InfoRequest � pending

AdminRequest � pending

BkTransaction � CheckOutSeq � Return(BkId: tBkId; Status: out tStatus) � Clear()

CheckOutSeq � CheckId(UserId: tUId; Status: out tStatus), Book*, End()

Book � CheckOut(BkID: tBkID; Status: out tStatus)

InfoTransaction �

FindbyAuthor(Author: String; Bks: tBooks)
� FindbyTitle(Title: String; Bks: tBooks)
� Find(Isbn : tISBN ; Bk: tBookInfo)

AdminTransaction�

Find(UID: tUID; Uinfo: out tUserInfo)
� Add(Uinfo: tUserInfo; UID: out tUID)
� Delete(UID : tUID)
� Update(UID: tUID; Uinfo: inout tUserInfo)
� InfoTransaction
� Add(Book : tISBN ; BkID: out tBkID)
� Delete(Book: tBkID)
� Find(BkID: tBkID; Bk: tBookRec)

Legend:
; concurrent transactions
� alternative transactions
, sequential transactions
* 0 or more instances of transaction
[] optional transaction
() encloses parameters for transaction
pending not defined yet
out return parameter
inout parameter in and return

VDM specification of operations requires identification of (but not the legal form) of VDM can be used even if the pre-
and postexpressions are written in a style of proceduralparameters, types, modes, and specifications for each opera-

tion. Thus, the conceptual model contains all the information coding.
of a data flow model. Example operations specifications are
shown in Table 6. The preassertions, labeled ‘‘in,’’ define the Verification
state of parameters and object data components before invo-

The goal of verification is to show that claimed invariantcation of the operation. The postassertions, labeled ‘‘req’’ and
properties are indeed true. Of course, the invariants about‘‘out,’’ define the state of return parameters and object data
specific data stores may not hold during process of updatingcomponents after execution of the operation. The ‘‘req’’ asser-
those data stores. Thus, the invariant for the library will nottion defines a check of an input state and defines an exception
hold during execution of operations of Books and Users, butor return parameter in case the check fails. Within the post-
it should hold at any point of execution external to those twoassertions, final values of variables are denoted as ‘‘Var’out.’’
objects. The general structure of verification is to show, first,Thus, the CheckId operation returns an appropriate Sta-
that the invariant holds for initial states of all objects, andtus’out value if any of three checked conditions fail. Other-
then, show by induction that the invariant holds for each op-wise, the Status’out is OK. The CheckOut operation knows
eration of related objects. Each step of induction assumes firstthat the CheckId is valid. It returns BookError value if the
that the invariant holds before execution of the operation andbook is not indicated to be in stock. It invokes the Books.Take
then uses the assertions of the operation to show that theoperation and updates the UsersData information. The ‘‘��’’
invariant must hold after the operation. This must be donenotation is a short cut expression for the longer form:
for every operation that can change the state of the related
data objects. An informal outline of one step of verification ofVar’out = Var + NewItem
the library invariant is shown in Table 7.

A formal treatment of verification can involve a large num-where the ‘‘�’’ operation may be set union, map overwrite,
etc., depending on the structure of Var. ber of component proofs, each with numerous steps with

many details, which is a formidable task. Fortunately, severalOften, the style of writing output assertions is difficult for
programmers who are experienced using procedural lan- factors work to constrain the size of this work. First, invari-

ants will be associated with specific objects rather than theguages. The output assertions intentionally suppress details
of the sequential processing. However, the general concept whole system. Second, verification using abstract data models

220 VIENNA DEVELOPMENT METHOD

Users

UsersData: set

AdminReader

BookReader

Library

QueryReader

Class

Legend:

Message

data items

methods

Add
Remove
Checkld
Edit
CheckOut
Return

Books

Stock: set
Catalog: set

Add
Delete
Find
FindbyAuthor
FindbyTitle
Check
CheckOut
Return

Table 4. Type and Data Models

Library::

Types:
tStatus � set(OK, BadID , PastDueBooks, MaxBooksOut, BookError);
tUID � Natural;
tBookId � Natural;

Books::

Types:
tBooks � seq(tBookInfo);
tISBN � Positive;
tBookInfo � record(Authors : String;

Title: String;
ISBN: tISBN ;
Call : String
Out: Boolean);

tAuthors � seq(String) ;
tBookRec � record(ISBN: tISBN;

Copy: Positive;
Out: Boolean;
User: tUID;
Due: tDate);

Data:
Catalog: set(tBookInfo);
Stock: map(tBkID, tBookRec);

Users::

Types:
tUserInfo � record(Name: String;

Address1: String;
State: String;
ZIP: Positive;
Phone: Positive;
LastUsed: tDate;
Due: tDue);

tDue � set(tDueItem);
tDueItem � Record (Book: tBkID;

Date: tDate);

Data:
Udata: map(tUID, tUserInfo) ;

Figure 2. Object model component of the conceptual model.

requires much less detail than verification for concrete struc-
tures. Third, there has been continuing development of veri-
fication tools that assist in performing the mechanical details
of verification. Still, such formal verification is suited for very
special safety properties. Informal peer review of invariants
is effective for most commercial development.

Reification

Reification is the refining of the conceptual model to concrete
structures and code. The process consists first of selecting a
particular implementation for each abstract type used to
model the data stores. This decision is always a question of
space and time performance and persistence of the concrete
structures. For prototype development, there are libraries of
common mapping of abstract structures to common imple-
mentations. This mapping to concrete structures will intro-
duce additional classes and methods into the object model,
precisely those classes and methods that were ignored in the
conceptual model. Then, the ‘‘req’’ and ‘‘out’’ specifications for
each operation are translated to procedural code using the
appropriate operations for the implementation of each data
component. This translation of assertions is usually an easy

Table 5. Safety Property

/* consistency of Books::Stock.Due and Users.UsersInfo.Due information:

Books::

/* no 0 in domain
Inv: Stock.domain sub Positive;

/* consistency of Due and User fields
Inv: (all B in Stock.domain • Stock(B).Due eqv Stock(B).User � 0) ;

Users::

/* no 0 in domain
Inv: UsersData.domain sub Positive;

Library::

Define:
SameDue(B: tBkId; U: tUID) �

Books.Stock(B).User � U
eqv

tDueItem(B,) in Users.UsersData(U).Due ;

AllSameDue �

(all B in Books.Stock.domain •

(all U in Users.UsersData.domain • SameDue(B, U)));

Inv: AllSameDue ;

VIENNA DEVELOPMENT METHOD 221

Table 8. Refinement of a Stock Data Component

Books::

Type:

tBookRec2 � record(ISBN: tISBN;
Copy: integer;
NextCopy: tBookId; /* index of next copy with same ISBN
User: tUID; /* User � 0 imp Out
Due: tDate);

tCopyRec � record(Number: integer;
First: tBookId);

Data:

Stock : array(1 .. MaxStock) of tBookRec;
Copy: hashTable(ISBN) of tCopyRec;

coding task; it does not require new steps of design. The im-

Table 6. Example Method Specifications

Users::

CheckId(U: tUID ; Status: out tStatus);
req: (U in UsersData.domain) else Status’out � NotValid;
req: (all i in UsersData(U).Due.domain •

UsersData(U).Due(i).Date �Today) else Status’out � PastDue;
req: UsersData(U).Due.Size 	 MaxBooks else Status’out � MaxBooksOut;
out: Status’out � OK ;

CheckOut(U: tUID; BkID: tBkID; Status: tStatus);
in: CheckId(Uid, Valid);
req: Books.Check(BkID, In) else Status’out � BookError ;
out: Books.Take(U, BkId)

and
UsersData(U).Due’out �� tDueItem(BkID, Today � OneMonth)
and
UsersData(U).LastUsed � Today
and
Status’out � OK ;

Remove(U: tUid);
in: U in Users’domain ;
out: (all x in Users(U).Due • Books.Remove(x.Book));
out: UsersData’out � � U � 	
- UsersData ;

portant point is that if the data models are refined correctly
and the assertions are translated correctly, then the invariant
properties are guaranteed to hold for concrete model. No fur-
ther verification is required to determine that the invariant
property holds for the implementation code level.

To illustrate these steps, a beginning refinement of the
Stock structure is given in Table 8. The abstract map is re-
duced to just an array (which may be a very bad structure if
book numbers are sparse). The conceptual field Out has been
removed. Since it would be infeasible to search for copy num-
bers for duplicate books, we use a hash table to relate ISBN to
a record structure of the highest copy number and the Book-
Id for the first copy. This structure in turn would be refined
to allow more efficient storage and retrieval. Given the partic-
ular implementation of the data components, refinement of
the operation specifications should be straightforward.

FURTHER READING

To begin to study VDM, books on discrete mathematics (1) or
tutorial books about VDM (9–12) are good beginnings. Sev-
eral case studies using VDM have been collected in (13). To
keep up with latest work on VDM, the Web links are useful
(7,14–16). These contain links to general information, on-line
technical articles, tools, case studies, and related topics such
as Z, specifications, and verification, and extensions such as
Z��.

APPENDIX. VDM TYPES AND EXPRESSIONS

Scalar Types

Name Meaning

Boolean �false,true�
Natural � 0, 1, 2, ...�
Positive Natural � �0�
Integer Natural � ��x � x: Positive �
Rational � n/d � n: Natural and d: Positive �
Real Character � a, b, c, ...�
String seq(Character)
Atom any identifier

Table 7. Outline of Two Verification Steps

For initial state:

Infer AllSameDue
- -

1 ? AllSameDue
2 � (all B in Books.Stock.domain •

(all U in Users.UserdData.domain • SameDue(B, U)))
3 � (all B in set() • ...)
4 � true

Reasons:
1. statement of goal.
2. substitute definition of predicate.
3. substitute initial values for Stock and UserData (both empty
sets).
4. from property of the ‘‘all’’ predicate (true for empty sets).

For operation Users.CheckOut(U, B):

From
A1 AllSameDue
A2 CheckId(Uid, Valid),
A3 Books.Check(BkID, In),
A4 Books.Take(U, BkId),
A5 UsersData(UID).Due’out �� DueItem(B, Today � OneMonth)
Infer AllSameDue’out
- -

1 Stock’out � Stock (�) B
2 UserData’out � UserData (�) U
3 ? AllSameDue’
4 � AllSameDue and SameDue(B, U)
5 � true

Reasons:
1. indicates that only book ‘‘B’’ is updated.
2. indicates that only user ‘‘U’’ is updated.
3. statement of the goal.
4. split the range of the quantifiers !! a common step which omits

details.
5 the first term of 4 is true by assumption,

second term is true from A4 and A5.
5b true from A4 and A5.

222 VIENNA DEVELOPMENT METHOD

Notes. The scalar types are taken as primitives. With the 7. Records are available in many programming languages.
Now, they are entirely redundant with the class struc-exception of type Real, the scalar types are defined in terms

of sets and sequences. ture. All record structures could be replace with class
declarations.

Container Types Common Set Operations
Name Constructor Meaning Notes Name Textual Symbolic

Set set(e1,e2,e3) �e1,e2,e3� (1) Enumeration set(a,b,c) �a,b,c�
PowerSet set(T) �x: T� (2) Member x in S1 x � S1
Sequence seq(T) map([0 .. n], T) (3) Union S1 � S2 S1 � S2
Map map(D,R) � �x: D, y : R�� (4) Intersection S1 int S2 S1 � S2
Map1 map1(D,R) one-to-one map (5) Difference S1 � S2 S1 � S2
Tuple T1 � T2 (x : T1,y : T2) (6) Constructor set(x: T � p(x)) �x : T � p(x) �
Record record(f1 : T1; (7) Size S1.size �S�

f2 : T2;)

Common Sequence Operations
Notes. Tuples and records have a fixed size. The set, se- Append S1 � x

quence, and map container types are dynamic. They do not Index S(i)
have a fixed size. All the VDM dynamic containers are homo- Concatenate S1 � S2
geneous (they have one defined type for all items in the con- Domain S1.domain
tainer). Most interesting models consist of containers of other Range S2.range
structures such as records, tuples, or other containers. Size S1.size

1. An enumerated set is a collection of the enumerated
Common Map Operationsitems. Sets cannot contain duplicate items. A variable

of this type has a single value which is an item of the Declaration map(D,R) D � R
defined set. This type serves the same role as enumera- map1(D,R) D } R
tion types in other languages. For example: Enumeration map(d,r) �d � r�
type: tName � set(a, b, c); map((d1, r1), (d2, r2)) �d1 � r1, d2 � r2�
N: tName; Evaluation M(x) M(x)

Domain M.domain dom Mout N’out � a ;
Range M.range rng M2. The value of a variable of a power set type is a set of
Overwrite M1 � M2values. That set of values is a member of the power set.
Restrict range M /� S1 M � S1For example:
Restrict domain S1 	
 M S1 � Mtype: tNames � set(tName);
Subtract range M1-/� S1 M �� S1

Names: tNames; Subtract domain S1 	
- M S1 �� M
out Names’out � set(a, c) ;

3. Sequence is a list of items with index position from 0 to Common Predicate Expressions
Size-1. For example:

Boolean Operatorstype: tWaiting � seq(tName);
and, or, imp, �, notW1, W2: tWaiting;
p else q � if not p then q

req W2.size 	 10 ;
req W2(3) � c ; Quantifier Textual Symbolic
out W1’out � seq(a, c, a, b); Universal (all x in X � P(x)) (� x � X � P(x))

4. Map is merely a finite table relating unique domain val- Existential (exist x in X � P(x)) (x � X � P(x))
ues to corresponding range values. For example: Unique (exist! x in X � P(x)) (! x � X � P(x))
type: tAge � map(tName, Natural);
Last, Class: tAge; BIBLIOGRAPHY
req c in Last’domain and 10 in Last’range;

1. D. Bjorner and C. B. Jones, The Vienna development method:out Last’out � map(a, 10) � map(b, 11);
The MetaLanguage, in Lecture Notes Comp. Sci., 61: New York:out Class’out � Last � map(a, 11) ;
Springer-Verlag, 1974.

5. Map1 is a one-to-one map, which requires that both the 2. M. Spivey, The Z Notation: A Reference Manual, Englewood Cliffs,
domain and range values must all be distinct. For ex- NJ: Prentice-Hall, 1989.
ample, map((a, 10), (b, 5), (c, 12)) is one-to-one. 3. I. J. Hayes, C. B. Jones, and J. Nicholls, Understanding the dif-

6. Tuples are like records but with number fields rather ferences between VDM and Z [Online], 1993, Available ftp:
ftp.cs.man.ac.uk in file pub/TR/UMCS-93-8-1.ps.Zthan named fields.

VIEWDATA 223

4. E. H. Durr and J. van Kawtijk, VDM��: A formal specification
language for object-oriented designs, in Computer Systems and
Software Engineering, Proc. CompEuro’92, IEEE Comput. Soc.,
1992, pp. 214–219.

5. D. Carrington et al., Object-Z: An object-oriented extension to Z,
in S. Vuong (ed.), Formal Description Techniques II, Amsterdam,
The Netherlands: Elsevier, 1990, pp. 281–296.

6. VDM tools Available: ftp://chowell.ncl.ac.uk/pub/fu-tools-db.
7. VDM-ST Tools, Available: [online] http://www.ifad.dk/vdm/

vdm.html
8. D. Ince, Introduction to Discrete Mathematics and Formal System

Specifications, London: Oxford Univ. Press, 1988.
9. D. Bjorner and C. B. Jones, Formal Specifications and Software

Development, Englewood Cliffs, NJ: Prentice-Hall, 1982.
10. B. Cohen, W. Harwood, and M. Jackson, The Specification of Com-

plex Systems, Reading, MA: Addison-Wesley, 1986.
11. D. Andrews and D. Ince, Practical Formal Methods with VDM,

New York: McGraw-Hill, 1991.
12. F. D. Rolland, Programming with VDM, Macmillan, 1992, pp.

122.
13. C. B. Jones and R. Shaw (eds.), Case Studies in Systematic

Software Development, Englewood Cliffs, NJ: Prentice-Hall,
1990.

14. VDM Forum; Available: send mail to ‘‘mailbase@mailbase.ac.uk,’’
with the message body ‘‘join vdm-forum First Last-
Name’’

15. Formal Methods, Available: http://www.comlab.ox.ac.uk/archive/
formal-methods/pubs.html#intro (contains links to several VDM
and Z references and bibliographies)

16. Formal Methods Europe, Periodic conference on formal methods
including VDM and VDM�� and tools. Available: http://
www.csr.ncl.ac.uk:80/projects/FME/

WILLIAM HANKLEY

Kansas State University

