
42 USER INTERFACE MANAGEMENT SYSTEMS

took one-half the time compared to applications written using
less advanced tools, and some applications were completed in
one-tenth the time (4).

This article surveys user interface software tools, and it
explains the different types and classifications. However, it is
now impossible to discuss all user interface tools, since there
are so many. A comprehensive list which is frequently up-
dated is available through the World-Wide Web as http://
www.cs.cmu.edu/~bam/toolnames.html. For example, there
are over 100 commercial graphical user interface builders,
and many new research tools are reported every year at con-
ferences such as the annual ACM User-Interface Software
and Technology Symposium (UIST) (see http://www.acm.org/
uist/) and the ACM SIGCHI conference (see, for example,
http://www.acm.org/sigchi/chi99). There are also about three
PhD theses on user interface tools every year. Therefore, this
article provides an overview of the most popular approaches,
rather than an exhaustive survey.

DEFINITIONS

USER INTERFACE MANAGEMENT SYSTEMS The user interface (UI) of a computer program is the part that
handles the output to the display and the input from the per-

Almost as long as there have been user interfaces, there have son using the program. The rest of the program is called the
been special software systems and tools to help design and application or the application semantics.
implement the user interface software. Many of these tools User interface tools have been called various names over
have demonstrated significant productivity gains for pro- the years, with the most popular being user-interface man-
grammers, and they have become important commercial prod- agement systems (UIMS) (5). However, many people feel that
ucts. Others have proven less successful at supporting the the term UIMS should be used only for tools that handle the
kinds of user interfaces people want to build. sequencing of operations (what happens after each event from

User-interface software is often large, complex and difficult the user), so other terms like Toolkits, user-interface develop-
to implement, debug, and modify. A 1992 study found that an ment environments, interface builders, interface development
average of 48% of the code of applications is devoted to the tools, and application frameworks have been used. This arti-
user interface and that about 50% of the implementation time cle will try to define these terms more specifically and will use
is devoted to implementing the user interface portion (1), and the general term ‘‘user interface tool’’ for all software aimed to
the numbers are probably much higher today. As interfaces help create user interfaces. Note that the word ‘‘tool’’ is being
become easier to use, they become harder to create (2). Today, used to include what are called ‘‘toolkits,’’ as well as higher-
direct manipulation interfaces, also called graphical user in- level tools, such as interface builders, that are not toolkits.

Four different classes of people are involved with user-in-terfaces (GUIs), are almost universal. These interfaces re-
terface software, and it is important to have different namesquire that the programmer deal with elaborate graphics, mul-
for them to avoid confusion. The first is the person using thetiple ways for giving the same command, multiple
resulting program, who is called the end-user or just user. Theasynchronous input devices (usually a keyboard and a point-
next person creates the user interface of the program and ising device such as a mouse), a ‘‘mode free’’ interface where
called the user-interface designer or just designer. Workingthe user can give any command at virtually any time, and
with the user interface designer will be the person who writesrapid ‘‘semantic feedback’’ where determining the appropriate
the software for the rest of the application. This person isresponse to user actions requires specialized information
called the application programmer. The designer may use spe-about the objects in the program. Tomorrow’s user interfaces
cial user interface tools which are provided to help create userwill provide speech and gesture recognition, three-dimensions
interfaces. These tools are created by the tool creator. Note(3-D), intelligent agents, and integrated multimedia, and will
that the designer will be a user of the software created by theprobably be even more difficult to create. Furthermore, be-
tool creator, but we still do not use the term ‘‘user’’ here tocause user interface design is so difficult, the only reliable
avoid confusion with the end user. Although this classificationway to get good interfaces is to iteratively redesign (and
discusses each role as a different person, in fact, there maytherefore reimplement) the interfaces after user-testing,
be many people in each role or one person may perform multi-which makes the implementation task even harder.
ple roles. The general term programmer is used for anyoneFortunately, there has been significant progress in soft-
who writes code, and it may be a designer, application pro-ware tools to help with creating user interfaces; and today,
grammer, or tool creator.virtually all user interface software is created using tools that

make the implementation easier. For example, the MacApp
system from Apple was reported to reduce development time IMPORTANCE OF USER-INTERFACE TOOLS
by a factor of four or five (3). A study commissioned by NeXT
claimed that the average application programmed using the There are many advantages to using user interface software

tools. These can be classified into two main groups:NeXTStep environment wrote 83% fewer lines of code and

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

USER INTERFACE MANAGEMENT SYSTEMS 43

1. The Quality of the Interfaces Might Be Higher. This is be- • create easy-to-use interfaces
cause: • allow the designer to rapidly investigate different de-
• Designs can be rapidly prototyped and implemented, signs

possibly even before the application code is written. • allow nonprogrammers to design and implement user in-
• It is easier to incorporate changes discovered through terfaces

user testing. • allow the end-user to customize the interface
• More effort can be expended on the tool than may be

• provide portability
practical on any single user interface since the tool

• be easy to use themselveswill be used with many different applications.
• Different applications are more likely to have consis- This might be achieved by having the tools:

tent user interfaces if they are created using the same
user interface tool. • automatically choose which user-interface styles, input

• It will be easier for a variety of specialists to be in- devices, widgets, and so on, should be used
volved in designing the user interface, rather than hav- • help with screen layout and graphic design
ing the user interface created entirely by programmers. • validate user inputs
Graphic artists, cognitive psychologists, and human

• handle user errorsfactors specialists may all be involved. In particular,
• handle aborting and undoing of operationsprofessional user-interface designers, who may not be
• provide appropriate feedback to show that inputs haveprogrammers, can be in charge of the overall design.

been received• Undo, Help, and other features are more likely to be
• provide help and promptsavailable in the interfaces since they might be sup-

ported by the tools. • update the screen display when application data changes
• notify the application when the user modifies graphical2. The User-Interface Code Might be Easier and More Eco-

objectsnomical to Create and Maintain. This is because:
• Interface specifications can be represented, validated, • handle field scrolling and editing

and evaluated more easily. • help with the sequencing of operations
• There will be less code to write, because much is sup- • insulate the application from all device dependencies and

plied by the tools. the underlying software and hardware systems
• There will be better modularization due to the separa-

• provide customization facilities to end-users
tion of the user-interface component from the applica-

• evaluate the graphic design and layout, usability, andtion. This should allow the user interface to change
learnability of the interfacewithout affecting the application, and a large class of

changes to the application (such as changing the in-
OVERVIEW OF USER-INTERFACE SOFTWARE TOOLSternal algorithms) should be possible without affect-

ing the user interface.
Since user-interface software is so difficult to create, it is not• The level of programming expertise of the interface
surprising that people have been working for a long time todesigners and implementers can be lower, because the
create tools to help with it. Today, many of these tools andtools hide much of the complexities of the underlying
ideas have progressed from research into commercial sys-system.
tems, and their effectiveness has been amply demonstrated.

• The reliability of the user interface will be higher,
Research systems also continue to evolve quickly, and thesince the code for the user interface is created auto-
models that were popular five years ago have been made obso-matically from a higher-level specification.
lete by more effective tools, changes in the computer market

• It will be easier to port an application to different (e.g., the demise of OpenLook has taken with it a number of
hardware and software environments since the device tools), and the emergence of new styles of user interfaces such
dependencies can be isolated in the user-interface tool. as pen-based computing and multimedia.

Based on these goals for user-interface software tools, we can Components of User-Interface Software
list a number of important functions that should be provided. As shown in Fig. 1, user interface software may be divided
This list can be used to evaluate the various tools to see how into various layers: the windowing system, the toolkit, and
much they cover. Naturally, no tool will help with everything,
and different user interface designers may put different em-
phasis on the different features.

In general, the tools might:

• help design the interface given a specification of the end-
users’ tasks

• help implement the interface given a specification of the
design

• help evaluate the interface after it is designed and pro-

Application

Higher-level tools

Toolkit

Windowing system

Operating system

pose improvements, or at least provide information to
allow the designer to evaluate the interface Figure 1. The components of user-interface software.

44 USER INTERFACE MANAGEMENT SYSTEMS

higher-level tools. Of course, many practical systems span
multiple layers.

The windowing system supports the separation of the
screen into different (usually rectangular) regions, called win-
dows. The X system (6) divides the window functionality into
two layers: the window system, which is the functional or pro-

Output model Input modelBase layer Window system

User-Interface layer Window managerPresentations Commands

gramming interface; and the window manager, which is the
user interface. Thus the ‘‘window system’’ provides procedures Figure 2. The windowing system can be divided into two layers,
that allow the application to draw pictures on the screen and called the base or window system layer and the user-interface or win-
get input from the user, and the ‘‘window manager’’ allows dow manager layer. Each of these can be divided into parts that han-
the end user to move windows around and is responsible for dle output and input.
displaying the title lines, borders, and icons around the win-
dows. However, many people and systems use the name ‘‘win-
dow manager’’ to refer to both layers, since systems such as the windowing system’s application programmer interface
the Macintosh and Microsoft Windows do not separate them. (API).
This article will use the X terminology, and it will use the The other layer of windowing system is the window man-
term ‘‘windowing system’’ when referring to both layers. ager or user interface. This includes all aspects that are visi-

On top of the windowing system is the toolkit, which con- ble to the user. The two parts of the user-interface layer are
tains many commonly used widgets such as menus, buttons, the presentation, which is comprised of the pictures that the
scroll bars, and text input fields. On top of the toolkit might window manager displays, and the commands, which are how
be higher-level tools, which help the designer use the toolkit the user manipulates the windows and their contents.
widgets. The following sections discuss each of these compo-
nents in more detail. Base Layer

The base layer is the procedural interface to the windowing
WINDOWING SYSTEMS system. In the 1970s and early 1980s, there were a large

number of different windowing systems, each with a different
A windowing system is a software package that helps the user procedural interface (at least one for each hardware plat-
monitor and control different contexts by separating them form). People writing software found this to be unacceptable
physically onto different parts of one or more display screens. because they wanted to be able to run their software on differ-
A survey of various windowing systems was published earlier ent platforms, but they would have to rewrite significant
(7). Although most of today’s systems provide toolkits on top amounts of code to convert from one window system to an-
of the windowing systems, as will be explained below, toolkits other. The X windowing system (6) was created to solve this
generally only address the drawing of widgets such as but- problem by providing a hardware-independent interface to
tons, menus, and scroll bars. Thus, when the programmer windows. X has been quite successful at this, and it drove
wants to draw application-specific parts of the interface and all other windowing systems out of the workstation hardware
allow the user to manipulate these, the window system inter- market. In the small computer market, the Macintosh runs
face must be used directly. Therefore, the windowing system’s its own window system, and IBM PC-class machines primar-
programming interface has significant impact on most user- ily run some version of Microsoft Windows.
interface programmers.

The first windowing systems were implemented as part of
Output Model. The output model is the set of procedures

a single program or system. For example, the EMACs text
that an application can use to draw pictures on the screen. It

editor (8), and the Smalltalk (9) and DLISP (10) programming
is important that all output be directed through the window

environments had their own windowing systems. Later sys-
system so that the graphics primitives can be clipped to the

tems implemented the windowing system as an integral part
window’s borders. For example, if a program draws a line that

of the operating system, such as Sapphire for PERQs (11),
would extend out of a window’s borders, it must be clipped

SunView for Suns, and the Macintosh and Microsoft Windows
so that the contents of other, independent windows are not

systems. In order to allow different windowing systems to
overwritten. These operations can be much quicker, but are

operate on the same operating system, some windowing sys-
very dangerous and therefore should seldom be used. Most

tems, such as X and Sun’s NeWS, operate as a separate pro-
modern computers provide graphics hardware that is opti-

cess and use the operating system’s interprocess communica-
mized to work efficiently with the window system.

tion mechanism to connect to applications.
In early windowing systems, such as Smalltalk (9) and

Sapphire (12), the primary output operation was BitBlt (also
Structure of Windowing Systems

called ‘‘RasterOp’’). These systems primarily supported mono-
chrome screens (each pixel is either black or white). BitBltA windowing system can be logically divided into two layers,

each of which has two parts (see Fig. 2). The window system, takes a rectangle of pixels from one part of the screen and
copies it to another part. Various boolean operations can beor base layer, implements the basic functionality of the win-

dowing system. The two parts of this layer handle the display specified for combining the pixel values of the source and des-
tination rectangles. For example, the source rectangle canof graphics in windows (the output model) and the access to

the various input devices (the input model), which usually in- simply replace the destination, or it might be XORed with the
destination. BitBlt can be used to draw solid rectangles include a keyboard and a pointing device such as a mouse. The

primary interface of the base layer is procedural, and is called either black or white, display text, scroll windows, and per-

USER INTERFACE MANAGEMENT SYSTEMS 45

form many other effects (9). The only additional drawing op-
eration typically supported by these early systems was draw-
ing straight lines.

Later windowing systems, such as the Macintosh and X,
added a full set of drawing operations, such as filled and un-
filled polygons, text, lines, arcs, and so on. These cannot be
implemented using the BitBlt operator. With the growing
popularity of color screens and nonrectangular primitives
(such as rounded rectangles), the use of BitBlt has signifi-
cantly decreased. It is primarily used now for scrolling and
copying off-screen pictures onto the screen (e.g., to implement
double-buffering).

A few windowing systems allow the full Postscript imaging
model (13) to be used to create images on the screen. Post-
script provides device-independent coordinate systems and
arbitrary rotations and scaling for all objects, including text.
Another advantage of using Postscript for the screen is that
the same language can be used to print the windows on paper
(since many printers accept Postscript). Sun created a version
used in the NeWS windowing system, and then Adobe (the
creator of Postscript) came out with an official version called
‘‘Display Postscript’’ which is used in the NeXT windowing
system and is supplied as an extension to the X windowing
system by a number of vendors, including DEC and IBM.

All of the standard output models only contain drawing
operations for two-dimensional (2-D) objects. Two extensions
to support 3-D objects are PEX and OpenGL. PEX (14) is an
extension to the X windowing system that incorporates much
of the PHIGS graphics standard. OpenGL (15) is based on the
GL programming interface that has been used for many years
on Silicon Graphics machines. OpenGL provides machine in-
dependence for 3-D since it is available for various X plat-
forms (SGI, Sun, etc.) and is included as a standard part of
Microsoft Windows NT.

As shown in Fig. 3, the earlier windowing systems as-
sumed that a graphics package would be implemented using
the windowing system. For example, the CORE graphics
package was implemented on top of the SunView windowing
system. All newer systems, including the Macintosh, X,
NeWS, NeXT, and Microsoft Windows, have implemented a
sophisticated graphics system as part of the windowing
system.

Input Model. The early graphics standards, such as CORE
and PHIGS, provided an input model that does not support
the modern, direct manipulation style of interfaces. In those
standards, the programmer calls a routine to request the

Application
programs

Graphics
package

Window
system and

User interface
of W.M Graphics

package

Application
programs

Window
system and

User interface
of W.M

Toolkit

Toolkit

Toolkit

Graphics
package

Sapphire, SunWindows Cedar, Macintosh, Next:

News, X:

(a)
(b)

(c)

Application
programs

User interface
of W.M

Window
system

value of a ‘‘virtual device’’ such as a ‘‘locator’’ (pointing device
position), ‘‘string’’ (edited text string), ‘‘choice’’ (selection from Figure 3. Various organizations that have been used by windowing
a menu), or ‘‘pick’’ (selection of a graphical object). The pro- systems. (a) Early systems tightly coupled the window manager and

the window system, and they assumed that sophisticated graphicsgram would then pause, waiting for the user to take action.
and toolkits would be built on top. (b) The next step in designs wasThis is clearly at odds with the direct manipulation ‘‘mode-
to incorporate into the windowing system the graphics and toolkits,free’’ style, where the user can decide whether to make a
so that the window manager itself could have a more sophisticatedmenu choice, select an object, or type something.
look and feel, and so applications would be more consistent. (c) OtherWith the advent of modern windowing systems, a new
systems allow different window managers and different toolkits,

model was provided: A stream of event records is sent to the while still embedding sophisticated graphics packages.
window which is currently accepting input. The user can se-
lect which window is getting events using various commands,
described below. Each event record typically contains the type
and value of the event (e.g., which key was pressed), the win-
dow to which the event was directed, a timestamp, and the x
and y coordinates of the mouse. The windowing system

46 USER INTERFACE MANAGEMENT SYSTEMS

queues keyboard events, mouse button events, and mouse will typically be encoded, passed to the transport layer, and
then decoded, even when the computation and windows aremovement events together (along with other special events),

and programs must dequeue the events and process them. It on the same machine.
is somewhat surprising that although there has been sub-
stantial progress in the output model for windowing systems User Interface Layer
(from BitBlt to complex 2-D primitives to 3-D), input is still

The user interface of the windowing system allows the userhandled in essentially this same way today as in the original
to control the windows. In X, the user can easily switch userwindowing systems, even though there are some well-known
interfaces, by killing one window manager and starting an-unsolved problems with this model:
other. Popular window managers under X include uwm
(which has no title lines and borders), twm, mwm (the Motif• There is no provision for special stop-output (control-S)
window manager), and olwm (the OpenLook window man-or abort (control-C, command-dot) events, so these will
ager). There is a standard protocol through which programsbe queued with the other input events.
and the base layer communicate to the window manager, so

• The same event mechanism is used to pass special mes- that all programs continue to run without change when the
sages from the windowing system to the application. window manager is switched. It is possible, for example, to
When a window gets larger or becomes uncovered, the run applications that use Motif widgets inside the windows
application must usually be notified so it can adjust or controlled by the OpenLook window manager.
redraw the picture in the window. Most window systems A discussion of the options for the user interfaces of win-
communicate this by enqueuing special events into the dow managers was previously published (7). Also, the video
event stream, which the program must then handle. All the Widgets (17) has a 30 min segment showing many dif-

• The application must always be willing to accept events ferent forms of window manager user interfaces.
in order to process aborts and redrawing requests. If not, Some parts of the user interface of a windowing system,
then long operations cannot be aborted, and the screen which is sometimes called its ‘‘look and feel,’’ can apparently
may have blank areas while they are being processed. be copyrighted and patented. Which parts is a highly complex

• The model is device-dependent, since the event record issue, and the status changes with decisions in various court
has fixed fields for the expected incoming events. If a 3- cases (18).
D pointing device or one with more than the standard
number of buttons is used instead of a mouse, then the Presentation. The presentation of the windows defines how
standard event mechanism cannot handle it. the screen looks. One very important aspect of the presenta-

• Because the events are handled asynchronously, there tion of windows is whether they can overlap or not. Overlap-
are many race conditions that can cause programs to get ping windows, sometimes called covered windows, allow one
out of synchronization with the window system. For ex- window to be partially or totally on top of another window.
ample, in the X windowing system, if you press inside a This is also sometimes called the desktop metaphor, since win-
window and release outside, under certain conditions the dows can cover each other like pieces of paper can cover each
program will think that the mouse button is still de- other on a desk. There are usually other aspects to the desk-
pressed. Another example is that refresh requests from top metaphor, however, such as presenting file operations in
the windowing system specify a rectangle of the window a way that mimics office operations, as in the Star office work-
that needs to be redrawn, but if the program is changing station (19). The other alternative is called tiled windows,
the contents of the window, the wrong area may be re- which means that windows are not allowed to cover each
drawn by the time the event is processed. This problem other. Obviously, a window manager that supports covered
can occur when the window is scrolled. windows can also allow them to be side-by-side, but not vice

versa. Therefore, a window manager is classified as ‘‘covered’’
Although these problems have been known for a long time, if it allows windows to overlap. The tiled style was popular
there has been little research on new input models [an excep- for a while and was used by Cedar (20), and early versions of
tion is the Garnet interactors model (16)]. the Star (19), Andrew (21), and Microsoft Windows. A study

even suggested that using tiled windows was more efficient
for users (22). However, today tiled windows are rarely seenCommunication. In the X windowing system and NeWS, all

communication between applications and the window system on conventional window systems, because users generally
prefer overlapping.uses interprocess communication through a network protocol.

This means that the application program can be on a different Modern ‘‘browsers’’ for the World-Wide Web, such as Mo-
saic, Netscape, and Microsoft’s Internet Explorer provide acomputer from its windows. In all other windowing systems,

operations are implemented by directly calling the window windowing environment inside the computer’s main win-
dowing system. Newer versions of browsers support framesmanager procedures or through special traps into the op-

erating system. The primary advantage of the X mechanism containing multiple scrollable panes, which are a form of tiled
window. In addition, if an application written in Java isis that it makes it easier for a person to utilize multiple ma-

chines with all their windows appearing on a single machine. downloaded (see the section entitled ‘‘Virtual Toolkits’’ below),
it can create multiple, overlapping windows like conventionalAnother advantage is that it is easier to provide interfaces for

different programming languages: For example, the C inter- GUI applications.
Another important aspect of the presentation of windowsface (called xlib) and the Lisp interface (called CLX) send the

appropriate messages through the network protocol. The pri- is the use of icons. These are small pictures that represent
windows (or sometimes files). They are used because theremary disadvantage is efficiency, since each window request

USER INTERFACE MANAGEMENT SYSTEMS 47

would otherwise be too many windows to conveniently fit on
the screen and manage. Other aspects of the presentation in-
clude whether the window has a title line or not, what the
background (where there are no windows) looks like, and
whether the title and borders have control areas for per-
forming window operations such as resize, iconify, etc.

Commands. Since computers typically have multiple win-
dows and only one mouse and keyboard, there must be a way
for the user to control which window is getting keyboard in-
put. This window is called the input (or keyboard) focus. An-
other term is the listener since it is listening to the user’s
typing. Some systems called the focus the ‘‘active window’’ or
‘‘current window,’’ but these are poor terms since in a multi-
processing system, many windows can be actively outputting
information at the same time. Window managers provide var-
ious ways to specify and show which window is the listener.
The most important options are:

• Click-to-type, which means that the user must click the
mouse button in a window before typing to it. This is
used by the Macintosh.

• Move-to-type, which means that the mouse only has to
move over a window to allow typing to it. This is usually
faster for the user, but may cause input to go to the
wrong window if the user accidentally knocks the mouse.

Gray

Orange

Green

Green

Blue

Blue

Red

Navy Blue

Gold

Violet

Turquoise

Plum

Sienna

Motif-Gray

Motif-Green

Motif-Blue

F2

F3

F4

F5

F6

F7

F8

F9

F10

Highlight Foreground

Title: Motif gauge

 Motif gauge
60.000

Background Shadow

180

160

140

120
100 80

60

40

20

0

55

Most X window managers (including the Motif and OpenLook
window managers) allow the user to choose which method is Figure 4. Some of the widgets with a Motif look-and-feel provided
desired. However, the choice can have significant impact on by the Garnet toolkit.
the user interface of applications. For example, because the
Macintosh requires click-to-type, it can provide a single men-
ubar at the top, and the commands can always operate on the selves are often expensive to create: ‘‘The primitives never
focused window. With move-to-type, the user might have to seem complex in principle, but the programs that implement
pass through various windows (thus giving them the focus) them are surprisingly intricate’’ (23, p. 199). Another problem
on the way to the top of the screen. Therefore, Motif applica- with toolkits is that they are often difficult to use since they
tions must have a menubar in each window so the commands may contain hundreds of procedures, and it is often not clear
will know which window to operate on. how to use the procedures to create a desired interface. For

All covered window systems allow the user to change example, the documentation for the Macintosh Toolbox now
which window is on top (not covered by other windows) and is well over six books, of which about one-third is related to
usually allow the user to send a window to the bottom (cov- user interface programming.
ered by all other windows). Other commands allow windows As with the graphics package, the toolkit can be imple-
to be changed in size, moved, created, and destroyed. mented either using or being used by the windowing system

(see Fig. 3). Early systems provided only minimal widgets
(e.g., just a menu) and expected applications to provide oth-TOOLKITS
ers. In the Macintosh, the toolkit is at a low level, and the
window manager user interface is built using it. The advan-A toolkit is a library of ‘‘widgets’’ that can be called by applica-

tion programs. A widget is a graphical object that can be ma- tage of this is that the window manager can then use the
same sophisticated toolkit routines for its user interface.nipulated using a physical input device to input a certain type

of value. Typically, widgets in toolkits include menus, but- When the X system was being developed, the developers could
not agree on a single toolkit, so they left the toolkit to be ontons, scroll bars, text type-in fields, and so on. Figure 4 shows

some examples of widgets. Creating an interface using a tool- top of the windowing system. In X, programmers can use a
variety of toolkits [for example, the Motif, OpenLook, Inter-kit can only be done by programmers, because toolkits only

have a procedural interface. Views (24), Amulet (25), or tcl/tk (26) toolkits can be used on
top of X], but the window manager must usually implementUsing a toolkit has the advantage that the final UI will

look and act similarly to other UIs created using the same its user interface from scratch.
Because the designers of X could not agree on a single look-toolkit, and each application does not have to rewrite the

standard functions, such as menus. A problem with toolkits and-feel, they created an intrinsics layer on which to build
different widget sets, which they called Xt (27). This layeris that the styles of interaction are limited to those provided.

For example, it is difficult to create a single slider that con- provides the common services, such as techniques for object-
oriented programming and layout control. The widget settains two indicators, which might be useful to input the upper

and lower bounds of a range. In addition, the toolkits them- layer is the collection of widgets that is implemented using

48 USER INTERFACE MANAGEMENT SYSTEMS

the intrinsics. Multiple widget sets with different looks and tem. For example, the designer can specify that the color of a
rectangle is constrained to be the value of a slider, and thenfeels can be implemented on top of the same intrinsics layer

[Fig. 5(a)], or else the same look-and-feel can be implemented the system will automatically update the color if the user
moves the slider.on top of different intrinsics [Fig. 5(b)]. When Sun announced

that it was phasing out OpenLook, the Motif widget set be- Many toolkits include a related capability for handling
graphical layouts in a declarative manner. Widgets can became the standard for X and Xt.
specified to stay at the sides or center of a container. This is
particularly important when the size of objects mightToolkit Intrinsics
change—for example, in systems that can run on multiple

Toolkits come in two basic varieties. The most conventional is
architectures. An early example of this was in InterViews

simply a collection of procedures that can be called by applica-
(24), and layout managers are important parts of Motif and

tion programs. Examples of this style include the SunTools
Java AWT.

toolkit for the SunView windowing system and the Macintosh
Other important features include support for animation,

Toolbox (28). The other variety uses an object-oriented pro-
video, and sound. For example, Amulet provides animation

gramming style which makes it easier for the designer to cus-
constraints (34) where any property of an object can be ani-

tomize the interaction techniques. Examples include
mated. Supporting video and sound in user interfaces has

Smalltalk (9), Andrew (21), Garnet (29), InterViews (24), Xt
been studied, but the available tools are still very difficult

(27), Amulet (25), and the Java toolkit AWT (30).
to use.

The advantages of using object-oriented intrinsics are that
it is a natural way to think about widgets (the menus and

Widget Setbuttons on the screen seem like objects), the widget objects
can handle some of the chores that otherwise would be left to Typically, the intrinsics layer is look-and-feel-independent,
the programmer (such as refresh), and it is easier to create which means that the widgets built on top of it can have any
custom widgets (by subclassing an existing widget). The ad- desired appearance and behavior. However, a particular wid-
vantage of the older, procedural style is that it is easier to get set must pick a look-and-feel. The video All the Widgets
implement, no special object-oriented system is needed, and shows many examples of widgets that have been designed
it is easier to interface to multiple programming languages. over the years (17). For example, it shows 35 different kinds
To implement the objects, the toolkit might invent its own of menus. Like window manager user interfaces, the widgets’
object system, as was done with Xt, Andrew, Garnet, and Am- look-and-feel can be copyrighted and patented (18).
ulet, or it might use an existing object system, as was done in As was mentioned above, different widget sets (with differ-
InterViews (24), which uses C��, NeXTStep from NeXT, ent looks and feels) can be implemented on top of the same
which uses Objective-C, and AWT, which uses Java (30). intrinsics. In addition, the same look-and-feel can be imple-

The usual way that object-oriented toolkits interface with mented on top of different intrinsics. For example, there are
application programs is through the use of call-back proce- Motif look-and-feel widgets on top of the Xt, InterViews, and
dures. These are procedures defined by the application pro- Amulet intrinsics [Fig. 5(b)]. Although they all look and oper-
grammer that are called when a widget is operated by the ate the same (so would be indistinguishable to the end-user),
end user. For example, the programmer might supply a proce- they are implemented quite differently and have completely
dure to be called when the user selects a menu item. Experi- different procedural interfaces for the programmer.
ence has shown that real interfaces often contain hundreds of
call-backs, which makes the code harder to modify and main-

Specialized Toolkitstain (1). In addition, different toolkits, even when imple-
mented on the same intrinsics like Motif and OpenLook, have A number of toolkits have been developed to support specific
different call-back protocols. This means that the code for one kinds of applications or specific classes of programmers. For
toolkit is difficult to port to a different toolkit. Therefore, re- example, the SUIT system (35) (which contains a toolkit and
search is being directed at reducing the number of call-backs an interface builder) is specifically designed to be easy to
in user interface software (31). learn and is aimed at classroom instruction. Amulet (25) pro-

Some research toolkits have added novel features to the vides high-level support for graphical, direct manipulation in-
toolkit intrinsics. For example, Garnet (29), Rendezvous (32), terfaces, and it handles input as hierarchical command ob-
Amulet (25), and SubArctic (33) allow the objects to be con- jects, making Undo easier to implement (36). Rendezvous
nected using constraints, which are relationships that are de- (32), Visual Obliq (37), and GroupKit (38) are designed to
clared once and then maintained automatically by the sys- make it easier to create applications that support multiple

users on multiple machines operating synchronously.
Whereas most toolkits provide only 2-D interaction tech-
niques, the Brown 3-D toolkits (39) and Silicon Graphics’ In-
ventor toolkit (40) provide preprogrammed 3-D widgets and a
framework for creating others. Special support for animations
has been added to Artkit (41) and Amulet (34). Tk (26) is a

Athena Motif Motif Motif MotifOpenLook

Xtk Intrinsics Xtk InterViews Amulet

(a) (b) popular toolkit for the X window system (and also Windows)
because it uses an interpretive language called tcl whichFigure 5. (a) At least three different widget sets that have different
makes it possible to dynamically change the user interface.looks-and-feels have been implemented on top of the Xt intrinsics. (b)
Tcl also supports the Unix style of programming where manyThe Motif look-and-feel has been implemented on many different in-

trinsics. small programs are glued together.

USER INTERFACE MANAGEMENT SYSTEMS 49

VIRTUAL TOOLKITS the user-interface software production process easier. These
are discussed next.

Although there are many small differences among the various
toolkits, much remains the same. For example, all have some Phases
type of menu, button, scroll bar, text input field, and so on.

Many higher-level tools have components that operate at dif-
Although there are fewer windowing systems and toolkits

ferent times. The design-time component helps the user-inter-
than there were 10 years ago, people are still finding it to be

face designer design the user interface. For example, this
a lot of work to convert software from Motif to the Macintosh

might be a graphical editor which can lay out the interface,
and to Microsoft Windows.

or a compiler to process a user interface specification lan-
Therefore, a number of systems have been developed that

guage. The next phase is when the end-user is using the pro-
try to hide the differences among the various toolkits, by pro-

gram. Here, the run-time component of the tool is used. This
viding virtual widgets which can be mapped into the widgets

usually includes a toolkit, but may also include additional
of each toolkit. Another name for these tools is cross-platform

software specifically for the tool. Since the run-time compo-
development systems. The programmer writes the code once

nent is ‘‘managing’’ the user interface, the term User-Interface
using the virtual toolkit, and the code will run without change

Management System (UIMS) seems appropriate for tools with
on different platforms and still look like it was designed with

a significant run-time component.
that platform’s widgets. For example, the virtual toolkit

There may also be an after-run-time component that helps
might provide a single menu routine, which always has the

with the evaluation and debugging of the user interface. Un-
same programmer interface but connects to a Motif menu,

fortunately, very few user interface tools have an after-run-
Macintosh menu, or a Windows menu depending on which

time component. This is partially because tools [such as
machine the application is run on.

MIKE (45)] that have tried to use an after-run-time compo-
There are two styles of virtual toolkits. In one, the virtual

nent have discovered that there are very few metrics that can
toolkit links to the different actual toolkits on the host ma-

be applied by computers. A new generation of tools are trying
chine. For example, XVT (42) provides a C or C�� interface

to evaluate how people will interact with interfaces by auto-
that links to the actual Motif, OpenLook, Macintosh, MS-Win-

matically creating cognitive models from high-level descrip-
dows, and OS/2-PM toolkits (and also character terminals)

tions of the user interface. For example, the GLEAN system
and hides their differences. The second style of virtual toolkit

generates quantitative predictions of performance of a system
reimplements the widgets in each style. For example, Galaxy

from a GOMS model (46).
(43), and Open Interface from NeuronData (44), and Amulet
(25) provide libraries of widgets that look like those on the

Specification Styles
various platforms. Different versions of Java have used both
forms. The advantage of the first style is that the user inter- High-level user interface tools come in a large variety of

forms. One important way that they can be classified is byface is more likely to be look-and-feel conformant (since it
uses the real widgets). The disadvantages are that the virtual how the designer specifies what the interface should be. Some

tools require the programmer to program in a special-purposetoolkit must still provide an interface to the graphical draw-
ing primitives on the platforms. Furthermore, they tend to language, some provide an application framework to guide

the programming, some automatically generate the interfaceonly provide functions that appear in all toolkits. Many of the
virtual toolkits that take the second approach (e.g., Galaxy) from a high-level model or specification, and others allow the

interface to be designed interactively. Each of these types isprovide a sophisticated graphics package and complete sets of
widgets on all platforms. However, with the second approach, discussed below. Of course, some tools use different tech-
there must always be a large run-time library, since in addi- niques for specifying different parts of the user interface.
tion to the built-in widgets that are native to the machine, These are classified by their predominant or most interest-
there is the reimplementation of these same widgets in the ing feature.
virtual toolkit’s library.

You might think that toolkits that work on multiple plat- Language-Based Tools. With most of the older user interface
forms should be considered virtual toolkits of the second type. tools, the designer specifies the user interface in a special-
For example, SUIT (35) and Garnet (29) work on X, Macin- purpose language. This language can take many forms, in-
tosh, and Windows. However, these use the same look-and- cluding context-free grammars, state transition diagrams,
feel on all platforms (and therefore do not look the same as declarative languages, event languages, and so on. The lan-
the other applications on that platform), so they are not clas- guage is usually used to specify the syntax of the user inter-
sified as virtual toolkits. face—that is, the legal sequences of input and output actions.

The AWT toolkit that comes with the Java programming This is sometimes called the ‘‘dialogue.’’ Green (47) provides
language (30) also can be classified as a virtual toolkit, since an extensive comparison of grammars, state transition dia-
the programmer can write code once and it will operate on all grams, and event languages, and Olsen (5) surveys various
platforms. Java programs can be run locally in a conventional UIMS techniques.
fashion, or can be downloaded dynamically over the World- State Transition Networks. Since many parts of user inter-
Wide Web into a browser such as Netscape. faces involve handling a sequence of input events, it is natu-

ral to think of using a state transition network to code the
interface. A transition network consists of a set of states, withHIGHER-LEVEL TOOLS
arcs out of each state labeled with the input tokens that will
cause a transition to the state at the other end of the arc. InSince programming at the toolkit level is quite difficult, there

is a tremendous interest in higher-level tools that will make addition to input tokens, calls to application procedures and

50 USER INTERFACE MANAGEMENT SYSTEMS

the output to display can also be put on the arcs in some orate control over when the various event handlers are fired
(53). In these earlier systems, the event handers were global.systems. Newman implemented a simple tool using finite-

state machines in 1968 (48) which handled textual input. This With more modern systems, the event handlers are specific to
particular objects. For example, the HyperTalk language thatwas apparently the first user interface tool. Many of the as-

sumptions and techniques used in modern systems were pres- is part of HyperCard for the Apple Macintosh can be consid-
ered an event language. Microsoft’s Visual Basic also containsent in Newman’s tool: different languages for defining the

user interface and the semantics (the semantic routines were event-language features, since code is generally written as re-
sponses to events on objects.coded in a normal programming language), a table-driven

syntax analyzer, and device independence. The advantages of event languages are that they can han-
dle multiple input devices active at the same time, and it isState diagram tools are most useful for creating user inter-

faces where the user interface has a large number of modes straightforward to support nonmodal interfaces, where the
user can operate on any widget or object. The main disadvan-(each state is really a mode). For example, state diagrams are

useful for describing the operation of low-level widgets (e.g., tage is that it can be very difficult to create correct code, espe-
cially as the system gets larger, since the flow of control ishow a menu or scroll bar works) or the overall global flow of

an application (e.g., this command will pop-up a dialogue box, not localized and small changes in one part can affect many
different pieces of the program. It is also typically difficult forfrom which you can get to these two dialog boxes, and then

to this other window, etc.). However, most highly interactive the designer to understand the code once it reaches a nontriv-
ial size. However, the success of HyperTalk, Visual Basic andsystems attempt to be mostly ‘‘mode-free,’’ which means that

at each point the user has a wide variety of choices of what similar tools shows that this approach is appropriate for
small- to medium-size programs.to do. This requires a large number of arcs out of each state,

so state diagram tools have not been successful for these in- Declarative Languages. Another approach is to try to define
a language that is declarative (stating what should happen)terfaces. In addition, state diagrams cannot handle interfaces

where the user can operate on multiple objects at the same rather than procedural (how to make it happen). Cousin (54)
and HP/Apollo’s Open-Dialogue (55) both allow the designertime. Another problem is that they can be very confusing for

large interfaces, since they get to be a ‘‘maze of wires’’ and to specify user interfaces in this manner. The user interfaces
supported are basically forms where fields can be text whichoff-page (or off-screen) arcs can be hard to follow.

Recognizing these problems, but still trying to retain the is typed by the user, or options selected using menus or but-
tons. There are also graphic output areas that the applicationperspicuousness of state transition diagrams, Jacob (49) in-

vented a new formalism, which is a combination of state dia- can use in whatever manner desired. The application pro-
gram is connected to the user interface through ‘‘variables’’grams with a form of event languages. There can be multiple

diagrams active at the same time, along with flow of control which can be set and accessed by both. As researchers have
extended this idea to support more sophisticated interactions,transfers from one to another in a co-routine fashion. The sys-

tem can create various forms of direct manipulation inter- the specification has grown into full application ‘‘models,’’ and
newer systems are described below.faces. Visual applications builder (VAPS) is a commercial sys-

tem that uses the state transition model, and it eliminates The layout description languages that come with many
toolkits are also a type of declarative language. For example,the maze-of-wires problem by providing a spreadsheet-like ta-

ble in which the states, events, and actions are specified (50). Motif ’s User Interface Language (UIL) allows the layout of
widgets to be defined. Since the UIL is interpreted when anTransition networks have been thoroughly researched, but

have not proven particularly successful or useful as either a application starts, users can (in theory) edit the UIL code to
customize the interface. UIL is not a complete language, how-research or commercial approach.

Context-Free Grammars. Many grammar-based systems are ever, in the sense that the designer must still write C code for
many parts of the interface, including any areas containingbased on parser generators used in compiler development. For

example, the designer might specify the user interface syntax dynamic graphics and any widgets that change.
The advantage of using declarative languages is that theusing some form of Backus–Naur form (BNF). Examples of

grammar-based systems are Syngraph (51) and parsers built user interface designer does not have to worry about the time
sequence of events and can concentrate on the information thatwith YACC and LEX in Unix.

Grammar-based tools, like state diagram tools, are not ap- needs to be passed back and forth. The disadvantage is that
only certain types of interfaces can be provided this way, andpropriate for specifying highly interactive interfaces, since

they are oriented to batch processing of strings with a com- the rest must be programmed by hand in the ‘‘graphic areas’’
provided to application programs. The kinds of interactionsplex syntactic structure. These systems are best for textual

command languages, and they have been mostly abandoned available are preprogrammed and fixed. In particular, these
systems provide no support for such things as dragging graphi-for user interfaces by researchers and commercial developers.

Event Languages. With event languages, the input tokens cal objects, rubber-band lines, drawing new graphical objects,
or even dynamically changing the items in a menu based on theare considered to be ‘‘events’’ that are sent to individual event

handlers. Each handler will have a condition clause that de- application mode or context. However, these languages have
been used as intermediate languages describing the layout oftermines what types of events it will handle, and when it is

active. The body of the handler can cause output events, widgets (such as UIL) that are generated by interactive tools.
Constraint Languages. A number of user interface toolschange the internal state of the system (which might enable

other event handlers), or call application routines. allow the programmer to use constraints to define the user
interface (56). Early constraint systems include SketchpadSassafras (52) is an event language where the user inter-

face is programmed as a set of small event handlers. The Ele- (57), which pioneered the use of graphical constraints in a
drawing editor, and Thinglab (58), which used constraints forments-Events and Transitions (EET) language provides elab-

USER INTERFACE MANAGEMENT SYSTEMS 51

graphical simulation. Subsequently, Thinglab was extended Another popular language is Visual Basic from Microsoft.
However, this is more of a structure editor for Basic combinedto aid in the generation of user interfaces (56).

The discussion of toolkits above mentioned the use of con- with an interface builder, and therefore it does not really
count as a visual language.straints as part of the intrinsics of a toolkit. A number of re-

search toolkits now supply constraints as an integral part of Summary of Language Approaches. In summary, many dif-
ferent types of languages have been designed for specifyingthe object system [e.g., Garnet, Amulet, and SubArctic (33)].

In addition, some systems have provided higher-level inter- user interfaces. One problem with all of these is that they can
only be used by professional programmers. Some program-faces to constraints. Graphical Thinglab (59) allows the de-

signer to create constraints by wiring icons together, and No- mers have objected to the requirement for learning a new lan-
guage for programming just the user interface portion (67).Pump (60) and C32 (61) allow constraints to be defined using

a spreadsheet-like interface. This has been confirmed by market research (68, p. 29). Fur-
thermore, it seems more natural to define the graphical partThe advantage of constraints is that they are a natural

way to express many kinds of relationships that arise fre- of a user interface using a graphical editor. However, it is
clear that for the foreseeable future, much of the user inter-quently in user interfaces—for example, that lines should

stay attached to boxes, that labels should stay centered face will still need to be created by writing programs, so it is
appropriate to continue investigations into the best languagewithin boxes, and so on. A disadvantage with constraints is

that they require a sophisticated run-time system to solve to use for this. Indeed, an entire book is devoted to investigat-
ing the languages for programming user interfaces (69).them efficiently. However, a growing number of research sys-

tems are using constraints, and it appears that modern con-
straint solvers and debugging techniques may solve these Application Frameworks. After the Macintosh Toolbox had

been available for a little while, Apple discovered that pro-problems, so constraints have a great potential to simplify the
programming task. As yet, there are no commercial user-in- grammers had a difficult time figuring out how to call the

various toolkit functions, and how to ensure that the resultingterface tools using general-purpose constraint solvers.
Screen Scrapers. Some commercial tools are specialized to interface met the Apple guidelines. They therefore created a

software system that provides an overall application frame-be ‘‘front-enders’’ or ‘‘screen scrapers’’ which provide a graphi-
cal user interface to old programs without changing the ex- work to guide programmers. This was called MacApp (3) and

used the object-oriented language Object Pascal. Classes areisting application code. They do this by providing an in-mem-
ory buffer that pretends to be the screen of an old character provided for the important parts of an application, such as

the main windows, the commands, and so on, and the pro-terminal such as might be attached to an IBM mainframe.
When the mainframe application outputs to the buffer, a pro- grammer specializes these classes to provide the application-

specific details, such as what is actually drawn in the win-gram the designer writes in a special programming language
converts this into an update of a graphical widget. Similarly, dows and which commands are provided. MacApp was very

successful at simplifying the writing of Macintosh applica-when the user operates a widget, the script converts this into
the appropriate edits of the character buffer. A leading pro- tions. Today, there are multiple frameworks to help build

applications for most major platforms, including the Micro-gram of this type has been Easel (62), which also contains an
interface builder for laying out the widgets. soft Foundation Classes for Windows and the CodeWarrior

PowerPlant (70) for the Macintosh.Database Interfaces. A very important class of commercial
tools support form-based or GUI-based access to databases. Unidraw (71) is a research framework, but it is more spe-

cialized for graphical editors. This means that it can provideMajor database vendors such as Oracle (63) provide tools
which allow designers to define the user interface for ac- even more support. Unidraw uses the C�� object-oriented

language and is part of the InterViews system (24). Unidrawcessing and setting data. Often these tools include interactive
form editors (which are essentially interface builders) and has been used to create various drawing and computer-aided

design (CAD) programs and also to create a user interfacespecial database languages. Fourth-generation languages
(4GLs), which support defining the interactive forms for ac- editor (72). The Amulet framework (25) is also aimed at

graphical applications, but due to its graphical data model,cessing and entering data, also fall into this category.
Visual Programming. ‘‘Visual programs’’ use graphics and many of the built-in routines can be used without change (the

programmer does not usually need to write methods for sub-two (or more)-dimensional layout as part of the program spec-
ification (64). Many different approaches to using visual pro- classes). Even more specialized are various graph programs,

such as Edge (73) and TGE (74). These provide a frameworkgramming to specify user interfaces have been investigated.
Most systems that support state transition networks use a in which the designer can create programs that display their

data as trees or graphs. The programmer typically specializesvisual representation. Another popular technique is to use da-
taflow languages. In these, icons represent processing steps, the node and arc classes, and specifies some of the commands,

but the framework handles layout and the overall control.and the data flow along the connecting wires. The user inter-
face is usually constructed directly by laying out prebuilt wid- An emerging popular approach aims to replace today’s

large, monolithic applications with smaller components thatgets, in the style of interface builders. Examples of visual pro-
gramming systems for creating user interfaces include attach together. For example, you might buy a separate text

editor, ruler, paragraph formatter, spell checker, and drawingLabview (65), which is specialized for controlling laboratory
instruments, and Prograph (66). Using a visual language program and have them all work together seamlessly. This

approach was invented by the Andrew environment (21),seems to make it easier for novice programmers, but large
programs still suffer from the familiar maze-of-wires problem. which provides an object-oriented document model that sup-

ports the embedding of different kinds of data inside otherOther articles (64) have analyzed the strengths and weak-
nesses of visual programming in detail. documents. These ‘‘insets’’ are unlike data that are cut and

52 USER INTERFACE MANAGEMENT SYSTEMS

pasted in systems like the Macintosh because they bring help the designer specify the model. The developers of HU-
MANOID and UIDE are collaborating on a new combinedalong the programs that edit them, and therefore can always

be edited in place. Furthermore, the container document does model called MASTERMIND, which integrates their ap-
proaches (82).not need to know how to display or print the inset data since

the original program that created it is always available. The The ITS (83) system also uses rules to generate an inter-
face. ITS was used to create the visitor information systemdesigner creating a new inset writes subclasses that adhere

to a standard protocol so the system knows how to pass input for the EXPO 1992 worlds fair in Seville, Spain. Unlike the
other rule-based systems, the designer using ITS is expectedevents to the appropriate editor. The approach is used by Mi-

crosoft OLE, Active Apple’s OpenDoc, and JavaBeans. to write many of the rules, rather than just writing a specifi-
cation that the rules work on. In particular, the design philos-All of these frameworks require the designer to write code,

typically by creating application-specific subclasses of the ophy of ITS is that all design decisions should be codified as
rules so that they can be used by subsequent designers, whichstandard classes provided as part of the framework.
will hopefully mean that interface designs will become easier
and better as more rules are entered. As a result, the designerModel-Based Automatic Generation. A problem with all of

the language-based tools is that the designer must specify a should never use graphical editing to improve the design,
since then the system cannot capture the reason that the gen-great deal about the placement, format, and design of the

user interfaces. To solve this problem, some tools use auto- erated design was not sufficient.
Although the idea of having the user interface generatedmatic generation so that the tool makes many of these choices

from a much higher-level specification. Many of these tools, automatically is appealing, this approach is still at the re-
search level, because the user interfaces that are generatedsuch as Mickey (75), Jade (76), and DON (77), have concen-

trated on creating menus and dialogue boxes. Jade allows the are generally not good enough. A further problem is that the
specification languages can be quite hard to learn and use.designer to use a graphical editor to edit the generated inter-

face if it is not good enough. DON has the most sophisticated Current research is addressing the problems of expanding the
range of what can be created automatically (to go beyond dia-layout mechanisms and takes into account the desired win-

dow size, balance, columnness, symmetry, grouping, and so logue boxes) and to make the model-based approach easier
to use.on. Creating dialogue boxes automatically has been very thor-

oughly researched, but there still are no commercial tools that
do this. Direct Graphical Specification. The tools described next all

allow the user interface to be defined, at least partially, byAnother approach is to try to create a user interface based
on a list of the application procedures. MIKE (78) creates an placing objects on the screen using a pointing device. This is

motivated by the observation that the visual presentation ofinitial interface that is menu-oriented and rather verbose, but
the designer can change the menu structure, use icons for the user interface is of primary importance in graphical user

interfaces, and a graphical tool seems to be the most appro-some commands, and even make some commands operate by
direct manipulation. The designer uses a graphical editor to priate way to specify the graphical appearance. Another ad-

vantage of this technique is that it is usually much easier forspecify these changes.
The user-interface design environment (UIDE) (79) re- the designer to use. Many of these systems can be used by

nonprogrammers. Therefore, psychologists, graphic designers,quires that the semantics of the application be defined in a
special-purpose language, and therefore might be included and user interface specialists can more easily be involved in

the user interface design process when these tools are used.with the language-based tools. It is placed here instead be-
cause the language is used to describe the functions that the These tools can be distinguished from those that use ‘‘vi-

sual programming’’ since with direct graphical specification,application supports and not the desired interface. UIDE is
classified as a ‘‘model-based’’ approach because the specifica- the actual user interface (or a part of it) is drawn, rather than

being generated indirectly from a visual program. Thus, di-tion serves as a high-level, sophisticated model of the applica-
tion semantics. In UIDE, the description includes pre- and rect graphical specification tools have been called direct ma-

nipulation programming since the user is directly manipulat-post-conditions of the operations, and the system uses these
to reason about the operations and to automatically generate ing the user interface widgets and other elements.

The tools that support graphical specification can be classi-an interface. One interesting part of this system is that the
user-interface designer can apply ‘‘transformations’’ to the in- fied into four categories: prototyping tools, those that support

a sequence of cards, interface builders, and editors for appli-terface. These change the interface in various ways. For ex-
ample, one transformation changes the interface to have a cation-specific graphics.
currently selected object instead of requiring an object to be
selected for each operation. UIDE applies the transformations Prototyping Tools. The goal of prototyping tools is to allow

the designer to quickly mock up some examples of what theand ensures that the resulting interface remains consistent.
Another feature of UIDE is that the pre- and post-conditions screens in the program will look like. Often, these tools can-

not be used to create the real user interface of the program;are used to automatically generate help (80).
Another model-based system is HUMANOID (81), which they just show how some aspects will look. This is the chief

factor that distinguishes them from other high-level tools.supports the modeling of the presentation, behavior, and dia-
logue of an interface. The HUMANOID modeling language Many parts of the interface may not be operable, and some of

the things that look like widgets may just be static pictures.includes abstraction, composition, recursion, iteration, and
conditional constructs to support sophisticated interfaces. The In most prototypers, no real toolkit widgets are used, which

means that the designer has to draw simulations that lookHUMANOID system, which is built on top of the Garnet tool-
kit (29), provides a number of interactive modeling tools to like the widgets that will appear in the interface. The normal

USER INTERFACE MANAGEMENT SYSTEMS 53

use is that the designer would spend a few days or weeks Interface Builders. An interface builder allows the designer
to create dialogue boxes, menus and windows that are to betrying out different designs with the tool, and then completely

reimplement the final design in a separate system. Most pro- part of a larger user interface. These are also called Interface
Development Tools (IDTs). Interface builders allow the de-totyping tools can be used without programming, so they can,

for example, be used by graphic designers. signer to select from a predefined library of widgets and then
place them on the screen using a mouse. Other properties ofNote that this use of the term ‘‘prototyping’’ is different

from the general phrase ‘‘rapid prototyping,’’ which has be- the widgets can be set using property sheets. Usually, there
is also some support for sequencing, such as bringing upcome a marketing buzzword. Advertisements for just about

all user interface tools claim that they support ‘‘rapid proto- subdialogues when a particular button is hit. The Steamer
project at BBN demonstrated many of the ideas later incorpo-typing,’’ by which they mean that the tool helps create the

user interface software more quickly. The term ‘‘prototyping’’ rated into interface builders and was probably the first object-
oriented graphics system (89). Other examples of researchis being used in this article in a much more specific manner.

Probably the first prototyping tool was Dan Bricklin’s interface builders are DialogEditor (90) and Gilt (31). There
are literally hundreds of commercial interface builders. JustDemo program. This is a program for an IBM PC that allows

the designer to create sample screens composed of characters two examples are the NeXT interface builder and UIM/X for
X (91). Visual Basic is essentially an interface builder coupledand ‘‘character graphics’’ (where the fixed-size character cells

can contain a graphic such as a horizontal, vertical or diago- with an editor for an interpreted language. Many of the tools
discussed above, such as the virtual toolkits, visual lan-nal line). The designer can easily create the various screens

for the application. It is also relatively easy to specify the ac- guages, and application frameworks, also contain interface
builders.tions (mouse or keyboard) that cause transitions from one

screen to another. However, it is difficult to define other be- Interface builders use the actual widgets from a toolkit, so
they can be used to build parts of real applications. Most willhaviors. In general, there may be some support for type-in

fields and menus in prototyping tools, but there is little abil- generate C code templates that can be compiled along with
the application code. Others generate a description of the in-ity to process or test the results.

For graphical user interfaces, designers often use tools like terface in a language that can be read at run time. For exam-
ple, UIM/X generates a UIL description. In Windows and theMacromedia’s Director (84), which is actually an animation

tool. The designer can draw example screens, and then specify Macintosh, the Specifications are stored in resource files. It is
usually important that the programmer not edit the output ofthat when the mouse is pressed in a particular place, an ani-

mation should start or a different screen should be displayed. the tools (such as the generated C code) or else the tool can
no longer be used for later modifications.Components of the picture can be reused in different screens,

but again the ability to show behavior is limited. HyperCard Although interface builders make laying out the dialogue
boxes and menus easier, this is only part of the user interfaceand Visual Basic are also often used as prototyping tools. A

research tool called SILK tries to provide a quick sketching design problem. These tools provide little guidance toward
creating good user interfaces, since they give designers sig-interface and then convert the sketches into actual widgets

(85). nificant freedom. Another problem is that for any kind of pro-
gram that has a graphics area (such as drawing programs,The primary disadvantage of these prototyping tools is

that sometimes the application must be re-coded in a ‘‘real’’ CAD, visual language editors, etc.), interface builders do not
help with the contents of the graphics pane. Also, they cannotlanguage before the application is delivered. There is also the

risk that the programmers who implement the real user in- handle widgets that change dynamically. For example, if the
contents of a menu or the layout of a dialogue box changesterface will ignore the prototype.

Cards. Many graphical programs are limited to user inter- based on program state, this must be programmed by writing
code. To help with this part of the problem, some interfacefaces that can be presented as a sequence of mostly static

pages, sometimes called ‘‘frames,’’ ‘‘cards,’’ or ‘‘forms.’’ Each builders, like UIM/X (91), provide a C code interpreter, and
Visual Basic has its own interpreted language.page contains a set of widgets, some of which cause transfer

to other pages. There is usually a fixed set of widgets to Data Visualization Tools. An important commercial category
of tools is that of dynamic data visualization systems. Thesechoose from, which have been coded by hand.

An early example of this is Menulay (86), which allows the tools, which tend to be quite expensive, emphasize the display
of dynamically changing data on a computer and are used asdesigner to place text, graphical potentiometers, iconic pic-

tures, and light buttons on the screen and see exactly what front ends for simulations, process control, system monitoring,
network management, and data analysis. The interface to thethe end-user will see when the application is run. The de-

signer does not need to be a programmer to use Menulay. designer is usually quite similar to an interface builder, with
a palette of gauges, graphers, knobs, and switches that can beProbably the most famous example of a card-based system

is HyperCard from Apple. There are many similar programs, placed interactively. However, these controls usually are not
from a toolkit and are supplied by the tool. Example tools insuch as GUIDE (87), and Tool Book (88). In all of these, the

designer can easily create cards containing text fields, but- this category include DataViews (92) and SL-GMS (93).
Editors for Application-Specific Graphics. When an applica-tons, etc., along with various graphic decorations. The buttons

cause transfers to other cards. These programs provide a tion has custom graphics, it would be useful if the designer
could draw pictures of what the graphics should look likescripting language to provide more flexibility for buttons.

HyperCard’s scripting language is called HyperTalk and, as rather than having to write code for this. The problem is that
the graphic objects usually need to change at run time, basedmentioned above, is really an event language, since the pro-

grammer writes short pieces of code that are executed when on the actual data and the end-user’s actions. Therefore, the
designer can only draw an example of the desired display,input events occur.

54 USER INTERFACE MANAGEMENT SYSTEMS

which will be modified at run time, and so these tools are each of the techniques. When faced with a particular pro-
called ‘‘demonstrational programming’’ (94). This distin- gramming task, the designer might ask which tool is the most
guishes these programs from the graphical tools of the previ- appropriate. Different approaches are appropriate for differ-
ous three sections, where the full picture can be specified at ent kinds of tasks, and orthogonally, there are some dimen-
design time. As a result of the generalization task of con- sions that are useful for evaluating all tools. An important
verting the example objects into parameterized prototypes point is that in today’s market, there is probably a commer-
that can change at run time, most of these systems are still cial higher-level tool appropriate for most tasks, so if you are
in the research phase. programming directly at the window manager or even toolkit

Peridot (95) allows new, custom widgets to be created. The layer, there may be a tool that will save you much work.
primitives that the designer manipulates with the mouse are
rectangles, circles, text, and lines. The system generalizes Approaches
from the designer’s actions to create parameterized, object-

Using the commercial tools, if you are designing a command-oriented procedures such as those that might be found in tool-
line style interface, then a parser-generator like YACC andkits. Experiments showed that Peridot can be used by nonpro-
Lex is appropriate. If you are creating a graphical application,grammers. Lapidary (96) extends the ideas of Peridot to allow
then you should definitely be using a toolkit appropriate togeneral application-specific objects to be drawn. For example,
your platform. If there is an application framework available,the designer can draw the nodes and arcs for a graph pro-
it will probably be very helpful. For creating the dialoguegram. The DEMO system (97) allows some dynamic, run-time

properties of the objects to be demonstrated, such as how ob- boxes and menus, an interface builder is very useful and is
jects are created. The Marquise tool (98) allows the designer generally easier to use than declarative languages like UIL.
to demonstrate when various behaviors should happen, and it If your application is entirely (or mostly) pages of information
supports palettes which control the behaviors. With Pavlov with some fields for the user to fill in, then the card tools
(99), the user can demonstrate how widgets should control a might be appropriate.
car’s movement in a driving game. Research continues on Among the approaches that are still in the research phase,
making these ideas practical. Gamut (100) has the user give constraints seem quite appropriate for specifying graphical
hints to help the system infer sophisticated behaviors for relationships, automatic generation may be useful for dia-
games-style applications. logue boxes and menus, and graphical editors will allow the

graphical elements of the user interface to be drawn.
Specialized Tools

For some application domains, there are customized tools that Dimensions
provide significant high-level support. These tend to be quite

There are many dimensions along which you might evaluateexpensive, however (i.e., US$20,000 to US$50,000). For exam-
user interface tools. The importance given to these differentple, in the aeronautics and real-time control areas, there are
factors will depend on the type of application to be createda number of high-level tools, such as AutoCode (101) and In-
and the needs of the designers.terMAPhics (102).

• Depth. How much of the user interface does the toolTECHNOLOGY TRANSFER
cover? For example, interface builders help with dialogue
boxes, but do not help with creating interactive graphics.User interface tools are an area where research has had a
Does the tool help with the evaluation of the interfaces?tremendous impact on the current practice of software devel-

opment (103). Of course, window managers and the resulting • Breadth. How many different user interface styles are
‘‘GUI style’’ comes from the seminal research at the Stanford supported, or is the resulting user interface limited to
Research Institute, Xerox Palo Alto Research Center (PARC), just one style, such as a sequence of cards? If this is a
and MIT in the 1970s. Interface builders and ‘‘card’’ programs higher-level tool, does it cover all the widgets in the un-
like HyperCard were invented in research laboratories at derlying toolkit? Can new interaction techniques and
BBN, the University of Toronto, Xerox PARC, and others. widgets be added if necessary?
Now, interface builders are at least a US$100 million per year

• Portability. Will the resulting user interface run on mul-
business and are widely used for commercial software devel- tiple platforms, such as X, Macintosh, and Windows?
opment. Event languages, as widely used in HyperTalk and Will it run on devices with different size displays, fromVisual Basic, were first investigated in research laboratories.

wall-size to hand-held personal digital assistants?The current generation of environments, such as OLE and
• Ease of Use of Tools. How difficult are the tools to use?Java Beans, are based on the component architecture which

For toolkits and most language-based higher-level tools,was developed in the Andrew environment from Carnegie
highly trained professional programmers are needed. ForMellon University. Thus, whereas some early UIMS ap-
some graphical tools, even inexperienced end-users canproaches such as transition networks and grammars may not
generate user interfaces. Also, since the designers arehave been successful, overall, the user interface tool research
themselves users of the tools, the conventional user-in-has changed the way that software is developed.
terface principles can be used to evaluate the quality of
the tools’ own user interface.EVALUATING USER-INTERFACE TOOLS

• Efficiency for Designers. How fast can designers create
user interfaces with the tool? This is often related to theThere are clearly a large number of approaches to how tools

work, and there are research and commercial tools that use quality of the user interface of the tool.

USER INTERFACE MANAGEMENT SYSTEMS 55

• Quality of Resulting Interfaces. Does the tool generate proved to better support user-interface software is the topic
of a book (69).high-quality user interfaces? Does the tool help the de-

signer evaluate and improve the quality? Many tools
allow the designer to produce any interface desired, so Increased Depth
they provide no specific help in improving the quality of

Many researchers are trying to create tools that will cover
the user interfaces.

more of the user interface, such as application-specific graph-
• Performance of Resulting Interface. How fast does the re- ics and behaviors. The challenge here is to allow flexibility

sulting user interface operate? Some tools interpret the to application developers while still providing a high level of
specifications at run time or provide many layers of soft- support. Tools should also be able to support Help, Undo, and
ware, which may make the resulting user interface too Aborting of operations.
slow on some target machines. Another consideration is Today’s user interface tools mostly help with the genera-
the space overhead since some tools require large librar- tion of the code of the interface, and they assume that the
ies to be in memory at run time. fundamental user interface design is complete. What are also

• Price. Some tools are provided free by research organiza- needed are tools to help with the generation, specification,
tions, such as the SubArctic (33) from Georgia Tech and and analysis of the design of the interface (85). For example,
Amulet (25) from CMU. Most personal computers and an important first step in user-interface design is task analy-
workstations today come with a free toolkit. Commercial sis, where the designer identifies the particular tasks that the
higher-level tools can range from $50 to $50,000, de- end-user will need to perform. Research should be directed at
pending on their capabilities. creating tools to support these methods and techniques.

These might eventually be integrated with the code genera-• Robustness and Support. In one study, users of many of
tion tools, so that the information generated during early de-the commercial tools complained about bugs even in the
sign can be fed into automatic generation tools, possibly toofficially released version (1), so checking for robustness
produce an interface directly from the early analyses. The in-is important. Since many of the tools are quite hard to
formation might also be used to automatically generate docu-use, the level of training and support provided by the
mentation and run-time help.vendor might be important.

Another approach is to allow the designer to specify the
design in an appropriate notation, and then provide tools toNaturally, there are tradeoffs among these criteria. Gener-
convert that notation into interfaces. For example, the UANally, tools that have the most power (depth and breadth) are
(106) is a notation for expressing the end-user’s actions andmore difficult to use. The tools that are easiest to use might
the system’s responses.be most efficient for the designer, but not if they cannot create

Finally, much work is needed in ways for tools to help eval-the desired interfaces.
uate interface designs. Initial attempts, such as in MIKE (45),As tools become more widespread, reviews and evaluations
have highlighted the need for better models and metricsof them are beginning to appear in magazines such as PC
against which to evaluate the user interfaces. Research inMagazine. Market research firms are writing reports evaluat-
this area by cognitive psychologists and other user-interfaceing various tools, and there are a few formal studies of tools
researchers (46) is continuing.(104).

Increased Breadth
RESEARCH ISSUES

We can expect the user interfaces of tomorrow to be different
from the conventional window-and-mouse interfaces of today,Although there are many user interface tools, there are plenty
and tools will have to change to support the new styles. Forof areas in which further research is needed. A report pre-
example, most tools today only deal with 2-D objects, butpared for a National Science Foundation study discusses fu-
there is already a demand to provide 3-D visualizations andture research ideas for user interface tools at length (105).
animations. Sound, video, and animations will increasinglyHere, a few of the important ones are summarized.
be incorporated into user interfaces. New input devices and
techniques will probably replace the conventional mouse and

New Programming Languages
menu styles. For example, gesture and handwriting recogni-
tion are appearing in mass-market commercial products, suchThe built-in input/output primitives in today’s programming

languages, such as printf/scanf or cout/cin, support a textual as notepad computers and ‘‘personal digital assistants’’ such
as Apple’s Newton (gesture recognition has actually beenquestion-and-answer style of user interface which is modal

and well known to be poor. Most of today’s tools use libraries used since the 1970s in commercial CAD tools). ‘‘Virtual real-
ity’’ systems, where the computer creates an artificial worldand interactive programs which are separate from program-

ming languages. However, many of the techniques, such as and allows the user to explore it, cannot be handled by any of
today’s tools. In these ‘‘non-WIMP’’ (107) applications (WIMPobject-oriented programming, multiple-processing, and con-

straints, are best provided as part of the programming lan- stands for windows, icons, menus, and pointing devices), de-
signers will also need better control over the timing of theguage. Even new languages, such as Java, make much of the

user interface harder to program by leaving it in separate li- interface, to support animations and various new media such
as video. Although a few tools are directed at multiple-userbraries. Furthermore, an integrated environment, where the

graphical parts of an application can be specified graphically applications, there are no direct graphical specification tools,
and the current tools are limited in the styles of applicationsand the rest textually, would make the generation of applica-

tions much easier. How programming languages can be im- they support.

56 USER INTERFACE MANAGEMENT SYSTEMS

Another concern is supporting interfaces that can be ACKNOWLEDGMENT
moved from one natural language to another (like English to
French). Internationalizing an interface is much more diffi- This article is revised from an earlier version which appeared

as: Brad A. Myers, User interface software tools, ACM Trans.cult than simply translating the text strings, and it includes
different number, date, and time formats, new input methods, Comput.–Hum. Interaction, 2 (1): 64–103, 1995.  1995 Asso-

ciation for Computing Machinery. Reprinted by permission.redesigned layouts, different color schemes, and new icons
(108). How can future tools help with this process?

BIBLIOGRAPHYEnd-User Programming and Customization

One of the most successful computer programs of all time is 1. B. A. Myers and M. B. Rosson, Survey on user interface pro-
the spreadsheet. The primary reason for its success is that gramming, Proc. Hum. Factors Comput. Syst. (SIGCHI’92), Mon-
end-users can program (by writing formulas and macros). terey, CA, 1992, pp. 195–202.
However, end-user programming is rare in other applications 2. B. A. Myers, Challenges of HCI design and implementation,
and, where it exists, usually requires learning conventional ACM Interact., 1 (1): 73–83, 1994.
programming. For example, AutoCAD provides Lisp for cus- 3. D. Wilson, Programming with MacApp, Reading, MA: Addison-
tomization, and many Microsoft applications use Visual Ba- Wesley, 1990.
sic. More effective mechanisms for users to customize existing 4. Booz Allen & Hamilton, Inc., NeXTStep vs. Other Development
applications and create new ones are needed (69). However, Environments; Comparative Study, Report available from NeXT
these should not be built into individual applications as is Computer, Inc., 1992.
done today, since this means that the user must learn a dif- 5. D. R. Olsen, Jr., User Interface Management Systems: Models
ferent programming technique for each application. Instead, and Algorithms, San Mateo, CA: Morgan Kaufmann, 1992.
the facilities should be provided at the system level, and 6. R. W. Scheifler and J. Gettys, The X window system, ACM
therefore they should be part of the underlying toolkit. Natu- Trans. Graphics, 5 (2): 79–109, 1986.
rally, since this is aimed at end-users, it will not be like pro- 7. B. A. Myers, A taxonomy of user interfaces for window manag-
gramming in C, but rather at some higher level. ers, IEEE Comput. Graphics Appl., 8 (5): 65–84, 1988.

8. R. M. Stallman, Emacs: The Extensible, Customizable, Self-Docu-
Application and User-Interface Separation menting Display Editor, Cambridge, MA: MIT Artificial Intelli-

gence Lab, 1979, Technical Report Number 519.One of the fundamental goals of user interface tools is to
9. L. Tesler, The Smalltalk environment, Byte Mag., 6 (8): 90–allow better modularization and separation of user-interface

147, 1981.code from application code. However, a survey reported that
10. W. Teitelman, A display oriented programmer’s assistant, Int.conventional toolkits actually make this separation more dif-

J. Man-Mach. Stud., 11 (2): 157–187, 1979; also Xerox PARCficult, due to the large number of call-back procedures re-
Tech. Rep., Palo Alto, CA, 1977, CSL-77-3.quired (1). Therefore, further research is needed into ways to

11. B. A. Myers, The user interface for sapphire, IEEE Comput.better modularize the code, and how tools can support this.
Graphics Appl., 4 (12): 13–23, 1984.

12. B. A. Myers, A complete and efficient implementation of coveredTools for the Tools
windows, IEEE Comput., 19 (9): 57–67, 1986.

It is very difficult to create the kinds of tools described in this 13. Adobe Systems Inc., Postscript Language Reference Manual,
article. Each one takes an enormous effort. Therefore, work is Reading, MA: Addison-Wesley, 1985.
needed in ways to make the tools themselves easier to create. 14. T. Gaskins, PEXlib Programming Manual, Sebastopol, CA:
For example, the Garnet toolkit explored mechanisms spe- O’Reilly and Associates, 1992.
cifically designed to make high-level graphical tools easier to

15. Silicon Graphics Inc., Open-GL, Mountain View, CA: Silicon
create (109). The Unidraw framework has also proven useful Graphics Inc., 1993.
for creating interface builders (72). However, more work is

16. B. A. Myers, A new model for handling input, ACM Trans. Inf.
needed. Syst., 8 (3): 289–320, 1990.

17. B. A. Myers, All the widgets, SIGGRAPH Video Rev., 57: 1990.
CONCLUSION 18. P. Samuelson, Legally speaking: The ups and downs of look and

feel, Comm. ACM, 36 (4): 29–35, 1993.
The area of user interface tools is expanding rapidly. Ten 19. D. C. Smith et al., Designing the Star user interface, Byte, 7 (4):
years ago, you would have been hard-pressed to find any suc- 242–282, 1982.
cessful commercial higher-level tools, but now there are hun- 20. D. Swinehart et al., A structural view of the Cedar program-
dreds of different tools, and tools are turning into a billion- ming environment, ACM Trans. Programm. Lang. Syst., 8 (4):
dollar-a-year business. Chances are that today, whatever 419–490, 1986.
your project is, there is a tool that will help. Tools that are 21. A. J. Palay et al., The Andrew toolkit—An overview, Proc. Win-
coming out of research labs are covering increasingly more of ter Usenix Tech. Conf., Dallas, TX, 1988, pp. 9–21.
the user interface task, are more effective at helping the de- 22. S. A. Bly and J. K. Rosenberg, A comparison of tiled and over-
signer, and are creating better user interfaces. As more com- lapping windows, Proc. Hum. Factors Comput. Syst., (SIGCHI
panies and researchers are attracted to this area, we can ex- ’86), Boston, 1986, pp. 101–106.
pect the pace of innovation to continue to accelerate. There 23. L. Cardelli and R. Pike, Squeak, A language for communicating
will be many exciting and useful new tools available in the with mice, Proc. Comput.Graphics (SIGGRAPH ’85), Vol. 19, San

Francisco, 1985, pp. 199–204.future.

USER INTERFACE MANAGEMENT SYSTEMS 57

24. M. A. Linton, J. M. Vlissides, and P. R. Calder, Composing user GRAPH Symp. User Interface Softw. Technol. (UIST ’88), Banff,
Alberta, Can., 1988, pp. 102–108.interfaces with InterViews, IEEE Comput., 22 (2): 8–22, 1989.

25. B. A. Myers et al., The Amulet environment: New models for 46. D. E. Kieras et al., GLEAN: A computer-based tool for rapid
effective user interface software development, IEEE Trans. GOMS model usability evaluation of user interface designs,
Softw. Eng., 23: 347–365, 1997. Proc. 8th Annu. Symp. User Interface Softw. Technol. (UIST ’95),

1995, pp. 91–100.26. J. K. Ousterhout, An X11 toolkit based on the Tcl language,
Proc. Winter Usenix Tech. Conf., 1991, pp. 105–115. 47. M. Green, A survey of three dialog models, ACM Trans. Graph-

ics, 5 (3): 244–275, 1986.27. J. McCormack and P. Asente, An overview of the X toolkit, Proc.
ACM SIGGRAPH Symp. User Interface Softw. Technol. (UIST 48. W. M. Newman, A system for interactive graphical program-
’88), Banff, Alberta, Can., 1988, pp. 46–55. ming, AFIPS Spring Jt. Comput. Conf., 28: 47–54, 1968.

28. Apple Computer Inc., Inside Macintosh, Reading, MA: Addison- 49. R. J. K. Jacob, A specification language for direct manipulation
Wesley, 1985. interfaces, ACM Trans. Graphics, 5 (4): 283–317, 1986.

29. B. A. Myers et al., Garnet: Comprehensive support for graphical, 50. Virtual Prototypes Inc., VAPS, Montreal, Quebec, Can: Virtual
highly-interactive user interfaces, IEEE, Computer, 23 (11): 71– Prototypes Inc., 1995.
85, 1990. 51. D. R. Olsen, Jr. and E. P. Dempsey, Syngraph: A graphical user

30. Sun Microsystems, Java: Programming for the Internet, 1998. interface generator, Proc. Comput. Graphics (SIGGRAPH ’83),
http://java.sun.com/ Vol. 17, Detroit, MI, 1983, pp. 43–50.

31. B. A. Myers, Separating application code from toolkits: Elimi- 52. R. D. Hill, Supporting concurrency, communication and syn-
nating the spaghetti of call-backs, Proc. ACM SIGGRAPH Symp. chronization in human-computer interaction—The Sassafras
User Interface Softw. Technol. (UIST ’91), Hilton Head, SC, 1991, UIMS, ACM Trans. Graphics, 5 (3): 179–210, 1986.
pp. 211–220. 53. M. R. Frank, Model-based user interface by demonstration and

32. R. D. Hill et al., The rendezvous architecture and language for interview, Ph.D. thesis, Georgia Inst. of Technol., Comput. Sci.
constructing multiuser applications, ACM Trans. Comput.-Hum. Dept., Atlanta, 1995.
Interact., 1 (2): 81–125, 1994. 54. P. J. Hayes, P. A. Szekely, and R. A. Lerner, Design alternatives

33. S. E. Hudson and I. Smith, Ultra-lightweight constraints, Proc. for user interface management systems based on experience
ACM SIGGRAPH Symp. on User Interface Softw. Technol. (UIST with COUSIN, Proc. Hum. Factors Comput. Syst. (SIGCHI ’85),
’96), Seattle, WA, 1996, pp. 147–155. [Online] Available http:// San Francisco, CA, 1985, pp. 169–175.
www.cc.gatech.edu/gvu/ui/sub_arctic/ 55. A. J. Schulert, G. T. Rogers, and J. A. Hamilton, ADM—A dia-

34. B. A. Myers et al., Easily adding animations to interfaces using logue manager, Proc. Hum. Factors Comut. Syst. (SIGCHI ’85),
constraints, Proc. ACM SIGGRAPH Symp. User Interface Softw. San Francisco, CA, 1985, pp. 177–183.
Technol. (UIST ’96), Seattle, WA, 1996, pp. 119–128. [Online] 56. A. Borning and R. Duisberg, Constraint-based tools for build-
Available http://www.cs.cmu.edu/~amulet ing user interfaces, ACM Trans. Graphics, 5 (4): 345–374,

35. R. Pausch, M. Conway, and R. DeLine, Lesson learned from 1986.
SUIT, the Simple User Interface Toolkit. ACM Trans. Inf. Syst., 57. I. E. Sutherland, SketchPad: A man-machine graphical commu-
10 (4): 320–344, 1992. nication system, AFIPS Spring Jt. Comput. Conf., 23: 329–

36. B. A. Myers and D. Kosbie, Reusable hierarchical command ob- 346, 1963.
jects, Proc. Hum. Factors Comput. Syst. (CHI ’96), Vancouver, 58. A. Borning, The programming language aspects of Thinglab; a
BC, Can., 1996, pp. 260–267. constraint-oriented simulation laboratory, ACM Trans. Pro-

37. K. Bharat and M. H. Brown, Building distributed, multi-user gram. Lang. Syst., 3 (4): 353–387, 1981.
applications by direct manipulation, Proc. ACM SIGGRAPH 59. A. Borning, Defining constraints graphically, Proc. Hum. Factors
Symp. User Interface Softw. Technol. (UIST ’94), Marina del Rey, Comput. Syst. (SIGCHI ’86), Boston, 1986, pp. 137–143.
CA, 1994, pp. 71–81.

60. N. Wilde and C. Lewis, Spreadsheet-based interactive graphics:
38. M. Roseman and S. Greenberg, Building real time groupware From prototype to tool, Proc. Hum. Factors Comput. Syst. (SIG-

with GroupKit, A groupware toolkit. ACM Trans. Comput. Hum. CHI ’90), Seattle, WA, 1990, pp. 153–159.
Interact., 3 (1): 66–106, 1996.

61. B. A. Myers, Graphical techniques in a spreadsheet for speci-
39. M. P. Stevens, R. C. Zeleznik, and J. F. Hughes, An architecture fying user interfaces, Proc. Hum. Factors Comput. Syst. (SIGCHI

for an extensible 3D interface toolkit, Proc. ACM SIGGRAPH ’91), New Orleans, LA, 1991, pp. 243–249.
Symp. User Interface Softw.Technol. (UIST ’94), Marina del Rey,

62. Easel, Workbench, Burlington, MA: Easel, 1993.CA, 1994, pp. 59–67.
63. Oracle Corporation, Oracle Tools, Redwood Shores, CA: Oracle40. J. Wernecke, The Inventor Mentor, Reading, MA: Addison-Wes-

Corp., 1995.ley, 1994.
64. B. A. Myers, Taxonomies of visual programming and program41. S. E. Hudson and J. T. Stasko, Animation support in a user

visualization, J. Visual Lang. Comput., 1 (1): 97–123, 1990.interface toolkit: Flexible, robust, and reusable abstractions,
65. National Instruments, LabVIEW, Austin, TX: National Instru-Proc. ACM SIGGRAPH Symp. User Interface Softw. Technol.

ments, 1989.(UIST ’93), Atlanta, GA, 1993, pp. 57–67.

66. Pictorius Inc., Pictorius, Halifax, Nova Scotia, Can.: Pictorius42. XVT Software, Inc., XVT, Boulder, CO: XVT Software, Inc.,
Inc., 1998, B3L 4G7. info@prograph.com1997.

67. D. R. Olsen, Jr., Larger issues in user interface management,43. Visix Software Inc., Galaxy Application Environment, Reston,
Comput. Graphics, 21 (2): 134–137, 1987.VA: Visix Sotware Inc., 1997 (company dissolved in 1998).

68. I. X Business Group, Interface Development Technology, Fre-44. NeuronData, Open Interface, Mountain View, CA: NeuronData,
mont, CA: I. X Business Group, 1994.1995.

45. D. R. Olsen, Jr. and B. W. Halversen, Interface usage measure- 69. B. A. Myers (ed.), Languages for Developing User Interfaces, Bos-
ton: Jones and Bartlett, 1992.ments in a user interface management system, Proc. ACM SIG-

58 USER INTERFACE MANAGEMENT SYSTEMS

70. Metrowerks Inc. PowerPlant for CodeWarrior, Austin, TX: Met- 90. L. Cardelli, Building user interfaces by direct manipulation,
Proc. ACM SIGGRAPH Symp. User Interface Softw. Technol.rowerks Inc., 1998. http://www.metrowerks.com/
(UIST ’88), Banff, Alberta, Can., 1988, pp. 152–166.71. J. M. Vlissides and M. A. Linton, Unidraw: A framework for

91. Visual Edge Software Ltd., UIM/X, Montreal, Quebec, Can.: Vi-building domain-specific graphical editors, ACM Trans. Inf.
sual Edge Software Ltd., 1990, H4R 1V4.Syst., 8 (3): 204–236, 1990.

92. DataViews Corporation, DataViews, Northampton, MA: Data-72. J. M. Vlissides and S. Tang, A Unidraw-based user interface
Views Corp., 1995.builder, Proc. ACM SIGGRAPH Symp. User Interface Softw.Tech-

93. SL Corp., SL-GMS, Corte Madera, CA: 1993.nol. (UIST ’91), Hilton Head, SC, 1991, pp. 201–210.
94. B. A. Myers, Demonstrational interfaces: A step beyond direct73. F. J. Newbery, An interface description language for graph edi-

manipulation, IEEE Comput., 25 (8): 61–73, 1992.tors, IEEE Comput. Soc. IEEE Workshop Visual Lang., Pitts-
95. B. A. Myers, Creating User Interfaces by Demonstration, Boston:burgh, PA, 1988, Order No. 876, pp. 144–149.

Academic Press, 1988.74. A. Karrer and W. Scacchi, Requirements for an extensible ob-
96. B. Vander Zanden and B. A. Myers, Demonstrational and con-ject-oriented tree/graph editor, Proc. ACM SIGGRAPH Symp.

straint-based techniques for pictorially specifying applicationUser Interface Softw. Technol. (UIST ’90), Snowbird, UT, 1990,
objects and behaviors, ACM Trans. Comput.-Hum. Interact., 2pp. 84–91.
(4): 308–356, 1995.

75. D. R. Olsen, Jr., A programming language basis for user inter-
97. G. L. Fisher, D. E. Busse, and D. A. Wolber, Adding Rule-Basedface management, Proc. Hum. Factors Comput. Syst. (SIGCHI

Reasoning to a Demonstrational Interface Builder, Proc. ACM’89), Austin, TX, 1989, pp. 171–176.
SIGGRAPH Symp. User Interface Softw. Technol. (UIST ’92),

76. B. Vander Zanden and B. A. Myers, Automatic, look-and-feel Monterey, CA, 1992, pp. 89–97.
independent dialog creation for graphical user interfaces, Proc. 98. B. A. Myers, R. G. McDaniel, and D. S. Kosbie, Marquise: Creat-
Hum. Factors Comput. Syst. (SIGCHI ’90), Seattle, WA, 1990, ing complete user interfaces by demonstration, Proc. Hum. Fac-
pp. 27–34. tors Comput. Syst., (INTERCHI ’93), Amsterdam, The Nether-

77. W. C. Kim and J. D. Foley, Providing high-level control and ex- lands, 1993, pp. 293–300.
pert assistance in the user interface presentation design, Proc. 99. D. Wolber, Pavlov: Programming by stimulus-response demon-
Hum. Factors Comput. Syst. (INTERCHI ’93), Amsterdam, The stration, Proc. Hum. Factors Comput. Syst. (CHI ’96), Vancouver,
Netherlands, 1993, pp. 430–437. BC, Can., 1996, pp. 252–259.

78. D. R. Olsen, Jr., Mike: The menu interaction kontrol environ- 100. R. G. McDaniel and B. A. Myers, Building applications using
ment, ACM Trans. Graphics, 5 (4): 318–344, 1986. only demonstration, Int. Conf. Intell. User Interfaces, San Fran-

cisco, CA, 1998, pp. 109–116.79. P. Sukaviriya, J. D. Foley, and T. Griffith, A second generation
101. Integrated Systems, AutoCode, Santa Clara, CA: Integrateduser interface design environment: The model and the runtime

Systems, 1991.architecture, Proc. Hum. Factors Comput. Syst. (INTERCHI ’93),
102. InterMAPhics, Prior Data Sciences, Kanata, Ontario, Can., In-Amsterdam, The Netherlands, 1993, pp. 375–382.

terMAPhics, 1991, K2M 1P6.80. P. Sukaviriya and J. D. Foley, Coupling A UI framework with
103. B. A. Myers, A brief history of human computer interaction tech-automatic generation of context-sensitive animated help, Proc.

nology, ACM Interact., 5 (2): March, 1998, pp. 44–54.ACM SIGGRAPH Symp. User Interface Softw. Technol. (UIST
104. D. Hix, A procedure for evaluating human-computer interface’90), Snowbird, UT, 1990, pp. 152–166.

development tools, Proc. ACM SIGGRAPH Symp. User Interface81. P. Szekely, P. Luo, and R. Neches, Beyond interface builders:
Softw. Technol. (UIST ’89), Williamsburg, VA, 1989, pp. 53–61.Model-based interface tools, Proc. Hum. Factors Comput. Syst.

105. D. R. Olsen, Jr., et al., Research directions for user interface(INTERCHI ’93), Amsterdam, The Netherlands, 1993, pp.
software tools, Behav. Inf. Technol., 12 (2): 80–97, 1993.383–390.

106. H. R. Hartson, A. C. Siochi, and D. Hix, The UAN: A user-ori-82. R. Neches et al., Knowledgable development environments us-
ented representation for direct manipulation interface designs,ing shared design models, Proc. ACM SIGCHI, Int. Workshop
ACM Trans. Inf. Syst., 8 (3): 181–203, 1990.Intell. User Interfaces, Orlando, FL, 1993, pp. 63–70.

107. J. Nielsen, Noncommand user interfaces, Comm. ACM, 36 (4):
83. C. Wiecha et al., ITS: A tool for rapidly developing interactive 83–99, 1993.

applications, ACM Trans. Inf. Syst., 8 (3): 204–236, 1990.
108. P. Russo and S. Boor, How fluent is your interface? Designing

84. MacroMedia, Director, San Francisco, CA: MacroMedia, 1995. for international users, Proc. Hum. Factors Comput. Syst. (IN-
TERCHI ’93), Amsterdam, The Netherlands, 1993, pp. 342–347.85. J. Landay and B. A. Myers, Interactive sketching for the early

stages of user interface design, Proc. Hum. Factors Comput. Syst. 109. B. A. Myers and B. Vander Zanden, Environment for rapid cre-
(SIGCHI ’95), Denver, CO, 1995, pp. 43–50. ation of interactive design tools, Visual Comput., Int. J. Comput.

Graphics, 8 (2): 94–116, 1992.86. W. Buxton et al., Towards a comprehensive user interface man-
agement system, Proc. Comput. Graphics (SIGGRAPH ’83), Vol.

BRAD A. MYERS17, Detroit, MI, 1983, pp. 35–42.
Carnegie Mellon University87. Owl International Inc., Guide 2, Bellevue, WA: Owl Interna-

tional Inc., 1991.

88. ToolBook, Bellevue, WA: Asymetrix Corp., Asymetrix Corpora-
USER INTERFACES. See GRAPHICAL USER INTERFACES.tion, 1995.
UTILITY PROGRAMS. See INPUT-OUTPUT PROGRAMS.89. A. Stevens, B. Roberts, and L. Stead, The use of a sophisticated
UV LASERS. See EXCIMER LASERS.graphics interface in computer-assisted instruction, IEEE Com-

put. Graphics Appl., 3 (2): 25–31, 1983. UWB RADAR. See RADAR EQUIPMENT.

