
SYSTEM MONITORING 293

how many messages are sent by a process. For operating sys-
tems, one may need to know whether the CPU is busy at cer-
tain times, how often paging occurs, or how long an I/O opera-
tion takes. For hardware circuits, one may need to know how
often a cache element is replaced, or whether a network wire
is busy.

Monitoring can use either event-driven or sampling tech-
niques (3). Event-driven monitoring is based on observing
changes of system state, either in software programs or hard-
ware circuits, that are caused by events of interest, such asSYSTEM MONITORING
the transition of the CPU from busy to idle. It is often imple-
mented as special instructions for interrupt–intercept thatThe term system refers to a computer system that is composed
are inserted into the system to be monitored. Sampling moni-of hardware and software for data processing. System moni-
toring is based on probing at selected time intervals, into ei-toring collects information about the behavior of a computer
ther software programs or hardware circuits, to obtain datasystem while the system is running. What is of interest here
of interest, such as what kinds of processes occupy the CPU.is run-time information that cannot be obtained by static
It is often implemented as timer interrupts during which theanalysis of programs. All collected information is essentially
state is recorded. Note that the behavior of the system underabout system correctness or performance. Such information is
a given workload can be simulated by a simulation tool. Thusvital for understanding how a system works. It can be used
monitoring that should be performed on the real system mayfor dynamic safety checking and failure detection, program
be carried out on the simulation tool. Monitoring simulationtesting and debugging, dynamic task scheduling and resource
tools is useful, or necessary, for understanding the behaviorallocation, performance evaluation and tuning, system selec-
of models of systems still under design.tion and design, and so on.

Monitoring can be implemented using software, hardware,
or both (1,3–5). Software monitors are programs that are in-
serted into the system to be monitored. They are triggeredCOMPONENTS AND TECHNIQUES

FOR SYSTEM MONITORING upon appropriate interrupts or by executing the inserted code.
Data are recorded in buffers in the working memory of the

System monitoring has three components. First, the jobs to monitored system and, when necessary, written to secondary
storage. Hardware monitors are electronic devices that arebe run and the items to be measured are determined. Then,

the system to be monitored is modified to run the jobs and connected to specific system points. They are triggered upon
detecting signals of interest. Data are recorded in separatetake the measurements. This is the major component. Moni-

toring is accomplished in two operations: triggering and re- memory independent of the monitored system. Hybrid moni-
tors combine techniques from software and hardware. Often,cording (1). Triggering, also called activation, is the observa-

tion and detection of specified events during system the triggering is carried out using software, and the data re-
cording is carried out using hardware.execution. Recording is the collection and storage of data per-

tinent to those events. Finally, the recorded data are analyzed The data collected by a monitor must be analyzed and dis-
played. Based on the way in which results are analyzed andand displayed.

The selection and characterization of the jobs to be run for displayed, a monitor is classified as an on-line monitor or a
batch monitor. On-line monitors analyze and display the col-monitoring is important, because it is the basis for interpre-

ting the monitoring results and guaranteeing that the experi- lected data in real-time, either continuously or at frequent
intervals, while the system is still being monitored. This isments are repeatable. A collection of jobs to be run is called a

test workload (2–4); for performance monitoring, this refers also called continuous monitoring (6). Batch monitors collect
data first and analyze and display them later using a batchmainly to the load rather than the work, or job. A workload

can be real or synthetic. A real workload consists of jobs that program. In either case, the analyzed data can be presented
using many kinds of graphic charts, as well as text and tables.are actually performed by the users of the system to be moni-

tored. A synthetic workload, usually called a benchmark, con-
sists of batch programs or interactive scripts that are de-
signed to represent the actual jobs of interest. Whether a ISSUES IN SYSTEM MONITORING
workload is real or synthetic does not affect the monitoring
techniques. Major issues of concern in monitoring are at what levels we

can obtain information of interest, what modifications to theItems to be measured are determined by the applications.
They can be about the entire system or about different levels system are needed to perform the monitoring, the disturbance

of such modifications to the system behavior, and the cost ofof the system, from user-level application programs to op-
erating systems to low-level hardware circuits. For the entire implementing such modifications. There are also special con-

cerns for monitoring real-time systems, parallel architectures,system, one may need to know whether jobs are completed
normally and performance indices such as job completion and distributed systems.

Activities and data structures visible to the user processtime, called turnaround time in batch systems and response
time in interactive systems, or the number of jobs completed can be monitored at the application-program level. These in-

clude function and procedure calls and returns, assignmentsper unit of time, called throughput (3). For application pro-
grams, one may be interested in how often a piece of code is to variables, loopings and branchings, inputs and outputs, as

well as synchronizations. Activities and data structures visi-executed, whether a variable is read between two updates, or

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



294 SYSTEM MONITORING

ble to the kernel can be monitored at the operating-system itoring techniques needed based on the applications and the
level; these include system state transitions, external inter- trade-offs. Methods and tools that facilitate monitoring are
rupts, system calls, as well as data structures such as process also needed.
control blocks. At the hardware level, various patterns of sig- Consider the major task. Given the desired information,
nals on the buses can be monitored. Obviously, certain high- one first needs to determine all levels that can be monitored
level information cannot be obtained by monitoring at a lower to obtain the information. For each possibility, one deter-
level, and vice versa. It is worth noting that more often high- mines all modifications of the system that are needed to per-
level information can be used to infer low-level information if form the monitoring. Then one needs to assess the perturba-
one knows enough about all the involved components, such as tion that the monitoring could cause. Finally, one must
the compilers, but the converse is not true, simply because estimate the cost of the implementations. Clearly, unaccept-
more often multiple high-level activities are mapped to the able perturbation or cost helps reduce the possibilities. Then,
same low-level activity. one needs to evaluate all possibilities based on the following

In general, the software and hardware of a system are not trade-offs.
purposely designed to be monitored. This often restricts what First, monitoring at a higher level generally requires less
can be monitored in a system. To overcome these restrictions, modification to the system and has smaller implementation
modifications to the system, called instrumentation, are often cost, but it may have larger interference with the system be-
required, for example, inserting interrupt instructions or at- havior. Thus one principle is to monitor at the highest level
taching hardware devices. The information obtainable with a whose interference is acceptable. This implies that, if a soft-
monitor and the cost of measurements determine the measur- ware monitor has acceptable interference, one should avoid
ability of a computer system (3,7). At one extreme, every sys- using a hardware monitor. Furthermore, to reduce implemen-
tem component can be monitored at the desired level of detail, tation cost, for a system being designed or that is difficult to
while at the other extreme, only the external behavior of the measure, one can use simulation tools instead of the real sys-
system as a whole can be monitored. When a low degree of tem if credibility can be established.
detail is required, a macroscopic analysis, which requires Second, macroscopic analysis generally causes less pertur-
measurement of global indices such as turnaround time and bation to the system behavior than microscopic analysis, and
response time, is sufficient. When a high degree of detail is it often requires less modification to the system and has
needed, a microscopic analysis, which requires, say, the time smaller cost. Therefore, a second principle is to use macro-
of executing each instruction or loading each individual page, scopic analysis instead of microscopic analysis if possible.must be performed.

While sampling is a statistical technique that records dataMonitoring often interferes with the system behavior, since
only at sampled times, event detection is usually used to re-it may consume system resources, due to the time of per-
cord all potentially interesting events and construct the exe-forming monitoring activities and the space of storing col-
cution trace. Thus one should avoid using tracing if the de-lected data, which are collectively called the overhead of mon-
sired information can be obtained by sampling.itoring. A major issue in monitoring is to reduce the

Additionally, one should consider workload selection andperturbation. It is easy to see that a macroscopic analysis in-
data analysis. Using benchmarks instead of real workloadcurs less interference than a microscopic analysis. Usually,
makes the experiments repeatable and facilitates comparisonsampling monitoring causes less interference than event-
of monitoring results. It can also reduce the cost, since run-driven monitoring. In terms of implementation, software
ning real jobs could be expensive or impossible. Thus usingmonitors always interfere and sometimes interfere greatly
benchmarks is preferred, but a number of common mistakeswith the system to be monitored, but hardware monitors
need to be carefully avoided (4). Data analysis involves a sep-cause little or no interference.
arate trade-off: the on-line method adds time overhead butImplementing monitoring usually has a cost, since it re-
can reduce the space overhead. Thus even when monitoringquires modification to the system to be monitored. Therefore,
results do not need to be presented in an on-line fashion, on-an important concern is to reduce the cost. Software monitors
line analysis can be used to reduce the space overhead and,are simply programs, so they are usually less costly to develop
when needed, separate processors can be used to reduce alsoand easier to change. In contrast, hardware monitors require
the time overhead.separate hardware devices and thus are usually more difficult

Finally, special applications determine special monitoringto build and modify.
principles. For example, for monitoring real-time systems,Finally, special methods and techniques are necessary for
perturbation is usually not tolerable, but a full trace is oftenmonitoring real-time systems, parallel architectures, and dis-
needed to understand system behavior. To address this prob-tributed systems. Real-time systems have real-time con-
lem, one may perform microscopic monitoring based on eventstraints, so interference becomes much more critical. For par-
detection and implement monitoring in hardware so as toallel architectures, monitoring needs to handle issues arising
sense signals on buses at high speed and with low overhead.from interprocessor communication and scheduling, cache be-

havior, and shared memory behavior. For distributed sys- If monitoring results are needed in an on-line fashion, sepa-
tems, monitoring must take into account ordering of distrib- rate resources for data analysis must be used. Of course, all
uted events, message passing, synchronization, as well as these come at a cost.
various kinds of failures. To facilitate monitoring, one needs methods and tools for

instrumenting the system, efficient data structures and algo-
rithms for storing and manipulating data, and techniques forMONITORING PRINCIPLES
relating monitoring results to the source program to identify
problematic code sections. Instrumentation of programs canA set of principles is necessary to address all the issues in-

volved in monitoring. The major task is to determine the mon- be done via program transformation, by augmenting the



SYSTEM MONITORING 295

source code, the target code, the run-time environment, the benchmarks include the sieve kernel, the LINPACK bench-
marks, the debit–credit benchmark, and the SPEC bench-operating system, or the hardware. Often, combinations of
mark suite (4).these techniques are used. Efficient data structures and algo-

Consider monitoring the functional behavior of a system.rithms are needed to handle records of various execution in-
For general testing, the test suite should have complete cover-formation, by organizing them in certain forms of tables and
age, that is, all components of the system should be exercised.linked structures. They are critical for reducing monitoring
For debugging, one needs to select jobs that isolate the prob-overhead. Additional information from the compiler and other
lematic parts. This normally involves repeatedly selectinginvolved components can be used to relate monitoring results
more specialized jobs and more focused monitoring pointswith points in source programs. Monitoring results can also
based on monitoring results. For correctness checking athelp select candidate jobs for further monitoring.
given points, one needs to select jobs that lead to differentIn summary, a number of trade-offs are involved in de-
possible results at those points and monitor at those points.termining the monitoring techniques adopted for a particular
Special methods are used for special classes of applications;application. Tools should be developed and used to help in-
for example, for testing fault-tolerance in distributed systems,strument the system, reduce the overhead, and interpret the
message losses or process failures can be included in the testmonitoring results.
suite.

For system performance monitoring, selection should con-
sider the services exercised as well as the level of detail andWORKLOAD SELECTION
representativeness (4). The starting point is to consider the
system as a service provider and select the workload and met-To understand how a complex system works, one first needs
rics that reflect the performance of services provided at theto determine what to observe. Thus before determining how
system level and not at the component level. The amount ofto monitor a system, one must determine what to monitor and
detail in recording user requests should be determined. Possi-why it is important to monitor them. This enables one to de-
ble choices include the most frequent request, the frequencytermine the feasibility of the monitoring, based on the pertur-
of request types, the sequence of requests with time stamps,bation and the cost, and then allows repeating and justifying and the average resource demand. The test workload should

the experiments. also be representative of the real application. Representative-
Selecting candidate jobs to be run and measurements to be ness is reflected at different levels (3) at the physical level,

taken depends on the objectives of monitoring. For monitoring the consumptions of hardware and software resources should
that is aimed at performance behavior, such as system tuning be representative; at the virtual level, the logical resources
or task scheduling, one needs to select the representative load that are closer to the user’s point of view, such as virtual
of work. For monitoring that is aimed at functional correct- memory space, should be representative; at the functional
ness, such as for debugging and fault-tolerance analysis, one level, the test workload should include the applications that
needs to isolate the ‘‘buggy’’ or faulty parts. perform the same functions as the real workload.

A real workload best reflects system behavior under actual Workload characterization is the quantitative description
usage, but it is usually unnecessarily expensive, complicated, of a workload (3,4). It is usually done in terms of workload
or even impossible to use as a test workload. Furthermore, parameters that can affect system behavior. These parame-
the test results are not easily repeated and are not good for ters are about service requests, such as arrival rate and dura-
comparison. Therefore, a synthetic workload is normally used. tion of request, or about measured quantities, such as CPU
For monitoring the functional correctness of a system, a test time, memory space, amount of read and write, or amount of
suite normally consists of data that exercise various parts of communication, for which system independent parameters
the system, and monitoring at those parts is set up accord- are preferred. In addition, various techniques have been used
ingly. For performance monitoring, the load of work, rather to obtain statistical quantities, such as frequencies of instruc-

tion types, mean time for executing certain I/O operations,than the actual jobs, is the major concern, and the approaches
and probabilities of accessing certain devices. These tech-below have been used for obtaining test workloads (3,4,8).
niques include averaging, histograms, Markov models, andAddition instruction was used to measure early computers,
clustering. Markov models specify the dependency among re-which had mainly a few kinds of instructions. Instruction
quests using a transition diagram. Clustering groups similarmixes, each specifying various instructions together with
components in a workload in order to reduce the large num-their usage frequencies, were used when the varieties of in-
ber of parameters for these components.structions grew. Then, when pipelining, instruction caching,

and address translation mechanisms made computer instruc-
tion times highly variable, kernels, which are higher-level TRIGGERING MECHANISM
functions, such as matrix inversion and Ackermann’s func-

Monitoring can use either event-driven or sampling tech-tion, which represent services provided by the processor,
niques for triggering and data recording (3). Event-drivencame into use. Later on, as input and output became an im-
techniques can lead to more detailed and accurate informa-portant part of real workload, synthetic programs, which are
tion, while sampling techniques are easier to implement andcomposed of exerciser loops that make a specified number of
have smaller overhead. These two techniques are not mutu-service calls or I/O requests, came into use. For domain-
ally exclusive; they can coexist in a single tool.specific kinds of applications, such as banking or airline reser-

vation, application benchmarks, representative subsets of
Event-Driven Monitoringthe functions in the application that make use of all resources

in the system, are used. Kernels, synthetic programs, and ap- An event in a computer system is any change of the system’s
state, such as the transition of a CPU from busy to idle, theplication benchmarks are all called benchmarks. Popular



296 SYSTEM MONITORING

change of content in a memory location, or the occurrence of In general, sampling monitoring can be used for measuring
the fractions of a given time interval each system componenta pattern of signals on the memory bus. Therefore, a way of

collecting data about system activities is to capture all associ- spends in its various states. It is easy to implement using
periodic interrupts generated by a timer. During an interrupt,ated events and record them in the order they occur. A soft-

ware event is an event associated with a program’s function, control is transferred to a data-collection routine, where rele-
vant data in the state are recorded. The data collected duringsuch as the change of content in a memory location or the

start of an I/O operation. A hardware event is a combination the monitored interval are later analyzed to determine what
happened during the interval, in what ratios the variousof signals in the circuit of a system, such as a pattern of sig-

nals on the memory bus or signals sent to the disk drive. events occurred, and how different types of activities were re-
lated to each other. Besides timer interrupts, most modernEvent-driven monitoring using software is done by in-

serting a special trap code or hook in specific places of the architectures also include hardware performance counters,
which can be used for generating periodic interrupts (9). Thisapplication program or the operating system. When an event

to be captured occurs, the inserted code causes control to be helps reduce the need for additional hardware monitoring.
The accuracy of the results is determined by how represen-transferred to an appropriate routine. The routine records the

occurrence of the event and stores relevant data in a buffer tative a sample is. When one has no knowledge of the moni-
tored system, random sampling can ensure representative-area, which is to be written to secondary storage and/or ana-

lyzed, possibly at a later time. Then the control is transferred ness if the sample is sufficiently large. It should be noted
that, since the sampled quantities are functions of time, theback. The recorded events and data form an event trace. It can

provide more information than any other method on certain workload must be stationary to guarantee validity of the re-
sults. In practice, operating-system workload is rarely sta-aspects of a system’s behavior.

Producing full event traces using software has high over- tionary during long periods of time, but relatively stationary
situations can usually be obtained by dividing the monitoringhead, since it can consume a great deal of CPU time by col-

lecting and analyzing a large amount of data. Therefore, interval into short periods of, say, a minute and grouping ho-
mogeneous blocks of data together.event tracing in software should be selective, since inter-

cepting too many events may slow down the normal execution Sampling monitoring has two major advantages. First, the
monitored program need not be modified. Therefore, knowl-of the system to an unacceptable degree. Also, to keep buffer

space limited, buffer content must be written to secondary edge of the structure and function of the monitored program,
and often the source code, is not needed for sampling monitor-storage with some frequency, which also consumes time; the

system may decide to either wait for the completion of the ing. Second, sampling allows the system to spend much less
time in collecting and analyzing a much smaller amount ofbuffer transfer or continue normally with some data loss.

In most cases, event-driven monitoring using software is data, and the overhead can be kept less than 5% (3,9,10). Fur-
thermore, the frequency of the interrupts can easily be ad-difficult to implement, since it requires that the application

program or the operating system be modified. It may also in- justed to obtain appropriate sample size and appropriate
overhead. In particular, the overhead can also be estimatedtroduce errors. To modify the system, one must understand

its structure and function and identify safe places for the easily. All these make sampling monitoring particularly good
for performance monitoring and dynamic system resource al-modifications. In some cases, instrumentation is not possible

when the source code of the system is not available. location.
Event-driven monitoring in hardware uses the same tech-

niques as in software, conceptually and in practice, for han-
IMPLEMENTATION

dling events. However, since hardware uses separate devices
for trigger and recording, the monitoring overhead is small or

System monitoring can be implemented using software or
zero. Some systems are even equipped with hardware that

hardware. Software monitors are easier to build and modify
makes event tracing easier. Such hardware can help evaluate

and are capable of capturing high-level events and relating
the performance of a system as well as test and debug the

them to the source code, while hardware monitors can capture
hardware or software. Many hardware events can also be de-

rapid events at circuit level and have lower overhead.
tected via software.

Software Monitoring
Sampling Monitoring

Software monitors are used to monitor application programs
Sampling is a statistical technique that can be used when and operating systems. They consist solely of instrumentation
monitoring all the data about a set of events is unnecessary, code inserted into the system to be monitored. Therefore, they
impossible, or too expensive. Instead of monitoring the entire are easier to build and modify. At each activation, the in-
set, one can monitor a part of it, called a sample. From this serted code is executed and relevant data are recorded, using
sample, it is then possible to estimate, often with a high de- the CPU and memory of the monitored system. Thus software
gree of accuracy, some parameters that characterize the en- monitors affect the performance and possibly the correctness
tire set. For example, one can estimate the proportion of time of the monitored system and are not appropriate for monitor-
spent in different code segments by sampling program count- ing rapid events. For example, if the monitor executes 100
ers instead of recording the event sequence and the exact instructions at each activation, and each instruction takes 1
event count; samples can also be taken to estimate how much �s, then each activation takes 0.1 ms; to limit the time over-
time different kinds of processes occupy CPU, how much head to 1%, the monitor must be activated at intervals of 10
memory is used, or how often a printer is busy during cer- ms or more, that is, less than 100 monitored events should

occur per second.tain runs.



SYSTEM MONITORING 297

Software monitors can use both event-driven and sampling bottlenecks of application programs. It typically produces an
execution profile, based on event detection or statistical sam-techniques. Obviously, a major issue is how to reduce the

monitoring overhead while obtaining sufficient information. pling. For event-driven precise profiling, efficient algorithms
have been developed to keep the overhead to a minimum (12).When designing monitors, there may first be a tendency to

collect as much data as possible by tracing or sampling many For sampling profiling, optimizations have been implemented
to yield an overhead of 1% to 3%, so the profiling can be em-activities. It may even be necessary to add a considerable

amount of load to the system or to slow down the program ployed continuously (9).
execution. After analyzing the initial results, it will be possi-
ble to focus the experiments on specific activities in more de- Hardware Monitoring
tail. In this way, the overhead can usually be kept within

With hardware monitoring, the monitor uses hardware to in-reasonable limits. Additionally, the amount of the data col-
terface to the system to be monitored (5,13–16). The hard-lected may be kept to a minimum by using efficient data
ware passively detects events of interest by snooping on elec-structures and algorithms for storage and analysis. For exam-
tric signals in the monitored system. The monitored systemple, instead of recording the state at each activation, one may
is not instrumented, and the monitor does not share any ofonly need to maintain a counter for the number of times each
the resources of the monitored system. The main advantageparticular state has occurred, and these counters may be
of hardware monitoring is that the monitor does not interferemaintained in a hash table (9).
with the normal functioning of the monitored system andInserting code into the monitored system can be done in
rapid events can be captured. The disadvantage of hardwarethree ways: (1) adding a program, (2) modifying the applica-
monitoring is its cost and that it is usually machine depen-tion program, or (3) modifying the operating system (3). Add-
dent or at least processor dependent. The snooping device anding a program is simplest and is generally preferred to the
the signal interpretation are bus and processor dependent.other two, since the added program can easily be removed or

In general, hardware monitoring is used to monitor theadded again. Also, it maintains the integrity of the monitored
run-time behavior of either hardware devices or softwareprogram and the operating system. It is adequate for de-
modules. Hardware devices are generally monitored to exam-tecting the activity of a system or a program as a whole. For
ine issues such as cache accesses, cache misses, memory ac-example, adding a program that reads the system clock before
cess times, total CPU times, total execution times, I/O re-and after execution of a program can be used to measure the
quests, I/O grants, and I/O busy times. Software modules areexecution time.
generally monitored to debug the modules or to examine is-Modifying the application program is usually used for
sues such as the bottlenecks of a program, the deadlocks, orevent-driven monitoring, which can produce an execution
the degree of parallelism.trace or an exact profile for the application. It is based on the

A hardware monitor generally consists of a probe, an eventuse of software probes, which are groups of instructions in-
filter, a recorder, and a real-time clock. The probe is high-serted at critical points in the program to be monitored. Each
impedance detectors that interface with the buses of the sys-probe detects the arrival of the flow of control at the point it
tem to be monitored to latch the signals on the buses. Theis placed, allowing the execution path and the number of
signals collected by the probe are manipulated by the eventtimes these paths are executed to be known. Also, relevant
filter to detect events of interest. The data relevant to thedata in registers and in memory may be examined when these
detected event along with the value of the real-time clock arepaths are executed. It is possible to perform sampling moni-
saved by the recorder. Based on the implementation of thetoring by using the kernel interrupt service from within an
event filter, hardware tools can be classified as fixed hard-application program, but it can be performed more efficiently
ware tools, wired program hardware tools, and stored pro-by modifying the kernel.
gram hardware tools (5,13).Modifying the kernel is usually used for monitoring the

With fixed hardware tools, the event filtering mechanismsystem as a service provider. For example, instructions can
is completely hard-wired. The user can select neither thebe inserted to read the system clock before and after a service
events to be detected nor the actions to be performed uponis provided in order to calculate the turnaround time or re-
detection of an event. Such tools are generally designed tosponse time; this interval cannot be obtained from within the
measure specific parameters and are often incorporated intoapplication program. Sampling monitoring can be performed
a system at design time. Examples of fixed hardware tools areefficiently by letting an interrupt handler directly record rele-
timing meters and counting meters. Timing meters or timersvant data. The recorded data can be analyzed to obtain infor-
measure the duration of an activity or execution time, andmation about the kernel as well as the application programs.
counting meters or counters count occurrences of events, forSoftware monitoring, especially event-driven monitoring in
example, references to a memory location. When a certainthe application programs, makes it easy to obtain descriptive
value is reached in a timer (or a counter), an electronic pulsedata, such as the name of the procedure that is called last in
is generated as an output of the timer (or the counter), whichthe application program or the name of the file that is ac-
may be used to activate certain operations, for instance, tocessed most frequently. This makes it easy to correlate the
generate an interrupt to the monitored system.monitoring results with the source program, to interpret

Wired-program hardware tools allow the user to detect dif-them, and to use them.
ferent events by setting the event filtering logic. The eventThere are two special software monitors. One keeps system
filter of a wired-program hardware tool consists of a set ofaccounting logs (4,6) and is usually built into the operating
logic elements of combinational and sequential circuits. Thesystem to keep track of resource usage; thus additional moni-
interconnection between these elements can be selected andtoring might not be needed. The other one is program execu-

tion monitor (4,11), used often for finding the performance manually manipulated by the user so as to match different



298 SYSTEM MONITORING

signal patterns and sequences for different events. Thus timer provide the time reference for events. The resolution of
the clock guarantees that no two successive events have thewired-program tools are more flexible than fixed hardware

tools. same time stamp. The comparator is responsible for checking
the monitored system’s address bus for designated events.With stored-program hardware tools, filtering functions can

be configured and set up by software. Generally, a stored-pro- Once such an address is detected, the matched address, the
time, and the data on the monitored system’s data bus aregram hardware tool has its own processor, that is, its own

computer. The computer executes programs to set up filtering stored in the event buffer. The overflow control is used to de-
tect events lost due to buffer overflow.functions, to define actions in response to detected events,

and to process and display collected data. Their ability to con- With coprocessor monitoring, the recording part is
attached to the monitored processor through a coprocessor in-trol filtering makes stored-program tools more flexible and

easier to use. Logical state analyzers are typical examples of terface, like a floating-point coprocessor (18). The recorder
contains a set of data registers, which can be accessed directlystored-program hardware tools. With a logical state analyzer,

one can specify states to be traced, define triggering se- by the monitored processor through coprocessor instructions.
The system to be monitored is instrumented using two typesquences, and specify actions to be taken when certain events

are detected. In newer logical state analyzers, all of this can of coprocessor instructions: data instructions and event in-
structions. Data instructions are used to send event-relatedbe accomplished through a graphical user interface, making

them very user-friendly. information to the data registers of the recorder. Event in-
structions are used to inform the recorder of the occurrence
of an event. When an event instruction is received by the re-Hybrid Monitoring
corder, the recorder saves its data registers, the event type,

One of the drawbacks of the hardware monitoring approach and a time stamp.
is that as integrated circuit techniques advance, more func-
tions are built on-chip. Thus desired signals might not be ac- DATA ANALYSIS AND PRESENTATION
cessible, and the accessible information might not be suffi-
cient to determine the behavior inside the chip. For example, The collected data are voluminous and are usually not in a
with increasingly sophisticated caching algorithms imple- form readable or directly usable, especially low-level data col-
mented for on-chip caches, the information collected from ex- lected in hardware. Presenting these data requires automated
ternal buses may be insufficient to determine what data need analyses, which may be simple or complicated, depending on
to be stored. Prefetched instructions and data might not be the applications. When monitoring results are not needed in
used by the processor, and some events can only be identified an on-line fashion, one can store all collected data, at the ex-
by a sequence of signal patterns rather than by a single ad- pense of the storage space, and analyze them off-line; this
dress or instruction. Therefore passively snooping on the bus reduces the time overhead of monitoring caused by the analy-
might not be effective. Hybrid monitoring is an attractive sis. For monitoring that requires on-line data analysis, effi-
compromise between intrusive software monitoring and ex- cient on-line algorithms are needed to incrementally process
pensive nonintrusive hardware monitoring. the collected data, but such algorithms are sometimes diffi-

Hybrid monitoring uses both software and hardware to cult to design.
perform monitoring activities (5,16–18). In hybrid monitor- The collected data can be of various forms (4). First, they
ing, triggering is accomplished by instrumented software and can be either qualitative or quantitative. Qualitative data
recording is performed by hardware. The instrumented pro- form a finite category, classification, or set, such as the set
gram writes the selected data to a hardware interface. The �busy, idle� or the set of weekdays. The elements can be or-
hardware device records the data at the hardware interface dered or unordered. Quantitative data are expressed numeri-
along with other data such as the current time. Perturbation cally, for example, using integers or floating-point numbers.
to the monitored system is reduced by using hardware to They can be discrete or continuous. It is easy to see that each
store the collected data into a separate storage device. kind of data can be represented in a high-level programming

Current hybrid monitoring techniques use two different language and can be directly displayed as text or numbers.
triggering approaches. One has a set of selected memory ad- These data can be organized into various data structures
dresses to trigger data recording. When a selected address is during data analysis, as well as during data collection, and
detected on the system address bus, the monitoring device presented as tables or diagrams. Tables and diagrams such
records the address and the data on the system data bus. This as line charts, bar charts, pie charts, and histograms are com-
approach is called memory-mapped monitoring. The other ap- monly used for all kinds of data presentation, not just for
proach uses the coprocessor instructions to trigger event re- monitoring. The goal is to make the most important informa-
cording. The recording unit acts as a coprocessor that exe- tion the most obvious, and concentrate on one theme in each
cutes the coprocessor instructions. This is called coprocessor table or graph; for example, concentrate on CPU utilization
monitoring. over time, or on the proportion of time various resources are

With memory-mapped monitoring, the recording part of used. With the advancement of multimedia technology, moni-
the monitor acts like a memory-mapped output device with a tored data are now frequently animated. Visualization helps
range of the computer’s address space allocated to it (5,16,17). greatly in interpreting the measured data. Monitored data
The processor can write to the locations in that range in the may also be presented using hypertext or hypermedia,
same way as to the rest of the memory. The system or pro- allowing details of the data to be revealed in a step-by-step
gram to be monitored is instrumented to write to the memory fashion.
locations representing different events. The recording section A number of graphic charts have been developed specially
of the monitor generally contains a comparator, a clock and for computer system performance analysis. These include

Gantt charts and Kiviat graphs (4).timer, an overflow control, and an event buffer. The clock and



SYSTEM MONITORING 299

Testing and Debugging

Testing and debugging are aimed primarily at system correct-
ness. Testing checks whether a system conforms to its re-
quirements, while debugging looks for sources of bugs. They
are two major activities of all software development. Systems
are becoming increasingly complex, and static methods, such
as program verification, have not caught up. As a result, it is
essential to look for potential problems by monitoring dy-

Network

I/O

CPU

100%80%60%40%20%

20 20

30 20

60

10 15

0%

namic executions.
Figure 1. A sample Gantt chart for utilization profile.

Testing involves monitoring system behavior closely while
it runs a test suite and comparing the monitoring results with
the expected results. The most general strategy for testing isGantt charts are used for showing system resource utiliza-

tion, in particular, the relative duration of a number of Bool- bottom-up: unit test, integration test, and system test. Start-
ean conditions, each denoting whether a resource is busy or ing by running and monitoring the functionality of each com-
idle. Figure 1 is a sample Gantt chart. It shows the utilization ponent separately helps reduce the total amount of monitor-
of three resources: CPU, I/O channel, and network. The rela- ing needed. If any difference between the monitoring results
tive sizes and positions of the segments are arranged to show and the expected results is found, then debugging is needed.
the relative overlap. For example, the CPU utilization is 60%, Debugging is the process of locating, analyzing, and cor-
I/O 50%, and network 65%. The overlap between CPU and recting suspected errors. Two main monitoring techniques are
I/O is 30%, all three are used during 20% of the time, and the used: single stepping and tracing. In single-step mode, an in-
network is used alone 15% of the time. terrupt is generated after each instruction is executed, and

A Kiviat graph is a circle with unit radius and in which dif- any data in the state can be selected and displayed. The user
ferent radial axes represent different performance metrics. then issues a command to let the system take another step.
Each axis represents a fraction of the total time during which In trace mode, the user selects the data to be displayed after
the condition associated with the axis is true. The points corre- each instruction is executed and starts the execution at a
sponding to the values on the axis can be connected by straight- specified location. Execution continues until a specified condi-
line segments, thereby defining a polygon. Figure 2 is a sample tion on the data holds. Tracing slows down the execution of
Kiviat graph. It shows the utilization of CPU and I/O channel. the program, so special hardware devices are needed to moni-
For example, the CPU unitization is 60%, I/O 50%, and overlap tor real-time operations.
30%. Various typical shapes of Kiviat graphs indicate how
loaded and balanced a system is. Most often, an even number of

Performance Evaluation and Tuningmetrics are used, and metrics for which high is good and for
which low is good alternate in the graph. A most important application of monitoring is performance

evaluation and tuning (3,4,8,13). All engineered systems are
subject to performance evaluation. Monitoring is the first andAPPLICATIONS
key step in this process. It is used to measure performance
indices, such as turnaround time, response time, throughput,From the perspective of application versus system, monitoring
and so forth.can be classified into two categories: that required by the user

Monitoring results can be used for performance evaluationof a system and that required by the system itself. For example,
and tuning in as least the following six ways (4,6). First, mon-for performance monitoring, the former concerns the utiliza-
itoring results help identify heavily used segments of codetion of resources, including evaluating performance, control-
and optimize their performance. They can also lead to the dis-ling usage, and planning additional resources, and the latter
covery of inefficient data structures that cause excessiveconcerns the management of the system itself, so as to allow the
amount of memory access. Second, monitoring can be usedsystem to adapt itself dynamically to various factors (3).
to measure system resource utilization and find performanceFrom a user point of view, applications of monitoring can
bottleneck. This is the most popular use of computer systembe divided into two classes: (1) testing and debugging, and (2)
monitoring (6). Third, monitoring results can be used to tuneperformance analysis and tuning. Dynamic system manage-
system performance by balancing resource utilization and fa-ment is an additional class that can use techniques from
voring interactive jobs. One can repeatedly adjust system pa-both classes.
rameters and measure the results. Fourth, monitoring results
can be used for workload characterization and capacity plan-
ning; the latter requires ensuring that sufficient computer re-
sources will be available to run future workloads with satis-
factory performance. Fifth, monitoring can be used to
compare machine performance for selection evaluation. Moni-
toring on simulation tools can also be used in evaluating the
design of a new system. Finally, monitoring results can be
used to obtain parameters of models of systems and to vali-
date models. They can also be used to validate models, that
is, to verify the representativeness of a model. This is done by

CPU and
I/O busy

30%

CPU busy
60%

I/O busy
50%

comparing measurements taken on the real system and on
the model.Figure 2. A sample Kiviat graph for utilization profile.



300 SYSTEM MONITORING

Dynamic System Management To monitor a parallel or distributed system, all the three
approaches—software, hardware, and hybrid—may be em-

For a system to manage itself dynamically, typically monitor-
ployed. All the techniques described above are applicable.

ing is performed continuously, and data are analyzed in an
However, there are some issues special to parallel, distrib-

on-line fashion to provide dynamic feedback. Such feedback
uted, and real-time systems. These are discussed below.

can be used for managing both the correctness and the perfor-
To monitor single-processor systems, only one event-detec-

mance of the system.
tion mechanism is needed because only one event of interest

An important class of applications is dynamic safety check-
may occur at a time. In a multiprocessor system, several

ing and failure detection. It is becoming increasingly impor-
events may occur at the same time. With hardware and hy-

tant as computers take over more complicated and safety-crit-
brid monitoring, detection devices may be used for each local

ical tasks, and it has wide applications in distributed systems,
memory bus and the bus for the shared memory and I/O. The

in particular. Monitoring system state, checking whether it is
data collected can be stored in a common storage device. To

in an acceptable range, and notifying appropriate agents of
monitor distributed systems, each node of the system needs

any anomalies are essential for the correctness of the system.
to be monitored. Such a node is a single processor or multipro-

Techniques for testing and debugging can be used for such
cessor computer in its own right. Thus each node should be

monitoring and checking.
monitored accordingly as if it were an independent computer.

Another important class of applications is dynamic task Events generally need to be recorded with the times at
scheduling and resource allocation. It is particularly impor- which they occurred, so that the order of events can be deter-
tant for real-time systems and service providers, both of mined and the elapsed time between events can be measured.
which are becoming increasingly widely used. For example, The time can be obtained from the system being monitored.
monitoring enables periodic review of program priorities on In single-processor or tightly coupled multiprocessor systems,
the basis of their CPU utilization and analysis of page usage there is only one system clock, so it is guaranteed that an
so that more frequently used pages can replace less fre- event with an earlier time stamp occurred before an event
quently used pages. Methods and techniques for performance with a later time stamp. In other words, events are totally
monitoring and tuning can be used for these purposes. They ordered by their time stamps. However, in distributed sys-
have low overhead and therefore allow the system to main- tems, each node has its own clock, which may have a different
tain a satisfactory level of performance. reading from the clocks on other nodes. There is no guarantee

that an event with an earlier time stamp occurred before an
event with a later time stamp in distributed systems (1).

MONITORING REAL-TIME, PARALLEL, In distributed systems, monitoring is distributed to each
AND DISTRIBUTED SYSTEMS node of the monitored system by attaching a monitor to each

node. The monitor detects events and records the data on that
In a sequential system, the execution of a process is determin- node. In order to understand the behavior of the system as a
istic, that is, the process generates the same output in every whole, the global state of the monitored system at certain
execution in which the process is given the same input. This times needs to be constructed. To do this, the data collected at
is not true in parallel systems. In a parallel system, the exe- each individual node must be transferred to a central location
cution behavior of a parallel program in response to a fixed where the global state can be built. Also, the recorded times
input is indeterminate, that is, the results may be different in for the events on different nodes must have a common refer-
different executions, depending on the race conditions present ence to order them. There are two options for transferring
among processes and synchronization sequences exercised by data to the central location. One option is to let the monitor
processes (1). Monitoring interference may cause the program use the network of the monitored system. This approach can
to face different sets of race conditions and exercise different cause interference to the communication of the monitored sys-
synchronization sequences. Thus instrumentation may tem. To avoid such interference, an independent network for
change the behavior of the system. The converse is also true: the monitor can be used, allowing it to have a different topol-
removing instrumentation code from a monitored system may ogy and different transmission speed than the network of the
cause the system to behave differently. monitored system. For the common time reference, each node

Testing and debugging parallel programs are very difficult has a local clock and a synchronizer. The clock is synchro-
because an execution of a parallel program cannot easily be nized with the clocks on other nodes by the synchronizer.
repeated, unlike sequential programs. One challenge in moni- The recorded event data on each node can be transmitted
toring parallel programs for testing and debugging is to col- immediately to a central collector or temporarily stored lo-
lect enough information with minimum interference so the ex- cally and transferred later to the central location. Which
ecution of the program can be repeated or replayed. The method is appropriate depends on how the collected data will
execution behavior of a parallel program is bound by the in- be used. If the data are used in an on-line fashion for dynamic
put, the race conditions, and synchronization sequences exer- display or for monitoring system safety constraints, the data
cised in that execution. Thus data related to the input, race should be transferred immediately. This may require a high-
conditions, and synchronization sequences need to be col- speed network to reduce the latency between the system state
lected. Those events are identified as process-level events (1). and the display of that state. If the data are transferred im-
To eliminate the behavior change caused by removing instru- mediately with a high-speed network, little local storage is
mentation code, instrumentation code for process-level events needed. If the data are used in an off-line fashion, they can
may be kept in the monitored system permanently. The per- be transferred at any time. The data can be transferred after
formance penalty can be compensated for by using faster the monitoring is done. In this case, each node should have

mass storage to store its local data. There is a disadvantagehardware.



SYSTEM REQUIREMENTS AND SPECIFICATIONS 301

4. R. Jain, The Art of Computer Systems Performance Analysis, Newwith this approach. If the amount of recorded data on nodes
York: Wiley, 1991.is not evenly distributed, too much data could be stored at

5. P. McKerrow, Performance Measurement of Computer Systems,one node. Building a sufficiently large data storage for every
Reading, MA: Addison-Wesley, 1987.node can be very expensive.

6. G. J. Nutt, Tutorial: Computer system monitors, IEEE Comput.,In monitoring real-time systems, a major challenge is how
8 (11): 51–61, 1975.to reduce the interference caused by the monitoring. Real-

7. L. Svobodova, Computer Performance Measurement and Evalua-time systems are those whose correctness depends not only
tion Methods: Analysis and Applications, New York: Elsevier,on the logical computation but also on the times at which the
1976.results are generated. Real-time systems must meet their

8. H. C. Lucas, Performance evaluation and monitoring, ACM Com-timing constraints to avoid disastrous consequences. Monitor-
put. Surv., 3 (3): 79–91, 1971.ing interference is unacceptable in most real-time systems

9. J. M. Anderson et al., Continuous profiling: Where have all the(1,14), since it may change not only the logical behavior but
cycles gone, Proc. 16th ACM Symp. Operating Syst. Principles,also the timing behavior of the monitored system. Software
New York: ACM, 1997.monitoring generally is unacceptable for real-time monitoring

10. C. H. Sauer and K. M. Chandy, Computer Systems Performanceunless monitoring is designed as part of the system (19).
Modelling, Englewood Cliffs, NJ: Prentice-Hall, 1981.Hardware monitoring has minimal interference to the moni-

11. B. Plattner and J. Nievergelt, Monitoring program execution: Atored system, so it is the best approach for monitoring real-
survey, IEEE Comput., 14 (11): 76–93, 1981.time systems. However, it is very expensive to build, and

12. T. Ball and J. R. Larus, Optimally profiling and tracing pro-sometimes it might not provide the needed information. Thus
grams, ACM Trans. Program. Lang. Syst., 16: 1319–1360, 1994.hybrid monitoring may be employed as a compromise.

13. D. Ferrari, Computer Systems Performance Evaluation, Engle-
wood Cliffs, NJ: Prentice-Hall, 1978.

CONCLUSION 14. B. Plattner, Real-time execution monitoring, IEEE Trans. Softw.
Eng., SE-10: 756–764, 1984.

Monitoring is an important technique for studying the dy- 15. B. Lazzerini, C. A. Prete, and L. Lopriore, A programmable de-
namic behavior of computer systems. Using collected run- bugging aid for real-time software development, IEEE Micro, 6

(3): 34–42, 1986.time information, users or engineers can analyze, understand,
and improve the reliability and performance of complex sys- 16. K. Kant and M. Srinivasan, Introduction to Computer System Per-

formance Evaluation, New York: McGraw-Hill, 1992.tems. This article discussed basic concepts and major issues
in monitoring, techniques for event-driven monitoring and 17. D. Haban and D. Wybranietz, Real-time execution monitoring,
sampling monitoring, and their implementation in software IEEE Trans. Softw. Eng., SE-16: 197–211, 1990.
monitors, hardware monitors, and hybrid monitors. With the 18. M. M. Gorlick, The flight recorder: An architectural aid for sys-
rapid growth of computing power, the use of larger and more tem monitoring, Proc. ACM/ONR Workshop Parallel Distributed

Debugging, New York: ACM, May 1991, pp. 175–183.complex computer systems has increased dramatically, which
poses larger challenges to system monitoring (20,21,22). Pos- 19. S. E. Chodrow, F. Jahanian, and M. Donner, Run-time monitor-

ing of real-time systems, in R. Werner (ed.), Proc. 12th IEEE Real-sible topics for future study include:
Time Syst. Symp., Los Alamitos, CA: IEEE Computer Society
Press, 1991, pp. 74–83.• New hardware and software architectures are being de-

20. R. A. Uhlig and T. N. Mudge, Trace-driven memory simulation:veloped for emerging applications. New techniques for
A survey, ACM Comput. Surg., 29(2): 128–170, 1997.both hardware and software systems are needed to moni-

21. M. Rosenblum et al., Using the SimOS machine simulator totor the emerging applications.
study complex computer systems, ACM Trans. Modeling Comput.

• The amount of data collected during monitoring will be Simulation, 7: 78–103, 1997.
enormous. It is important to determine an appropriate

22. D. R. Kaeli et al., Performance analysis on a CC-PUMA proto-level for monitoring and to represent this information type, IBM J. Res. Develop., 41: 205–214, 1997.
with abstractions and hierarchical structures.

• Important applications of monitoring include using moni- YANHONG A. LIU
toring techniques and results to improve the adaptability Indiana University
and reliability of complex software systems and using JEFFREY J. P. TSAI
them to support the evolution of these systems. University of Illinois

• Advanced languages and tools for providing more user-
friendly interfaces for system monitoring need to be stud-
ied and developed.

BIBLIOGRAPHY

1. J. J. P. Tsai et al., Distributed Real-Time Systems: Monitoring,
Visualization, Debugging and Analysis, New York: Wiley, 1996.

2. D. Ferrari, Workload characterization and selection in computer
performance measurement, IEEE Comput., 5 (7): 18–24, 1972.

3. D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and Tuning
of Computer Systems, Englewood Cliffs, NJ: Prentice-Hall, 1983.


