
SUBROUTINES 615

SUBROUTINES

Logically, a subroutine is a computational abstraction. Physi-
cally, it is a way of gathering together the individual decisions
and calculations necessary to perform a particular algorithm
(e.g., bubble sort, or trigonometric sine) and packaging the
code in a manner that it can be invoked as part of the execu-
tion of a larger program. Each subroutine has a name, or han-
dle, by which it can be referenced and, optionally, a set of
parameters, through which input data can be passed to the
subroutine and computed results can be returned. Together,
the subroutine name and the parameter list are known as the
‘‘signature’’ or interface of the subroutine (see APPLICATION

PROGRAM INTERFACES).
Conceptually a subroutine (or subprogram) can be viewed

as part of a larger program, where the ‘‘main’’ routine ‘‘calls’’
a series of subroutines, which themselves may call other sub-
routines. This hierarchy of subroutine invocations is known
as a ‘‘call tree’’ and defines a computer program’s control flow
graph. As programming languages and software development
methodologies evolved the concept of a subroutine has re-
mained the same, although terminology used to describe it
has varied. Other terms for a subroutine include: subpro-
gram, function, procedure, operation, or method.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

616 SUBROUTINES

Historically, Maurice Wilkes invented the subroutine in of applicability. In addition, the use of subroutines results
in a1949 as part of the EDSAC Project (the first stored-program

computer). EDSAC used punched-paper tapes to represent
the instructions and data that were to be loaded into the com- • Reduction in coding effort and duplication of mainte-
puter for execution. Developers realized that these paper nance
tapes could be ‘‘reused’’ by loading different combinations of • Reduction in load module size (if used more than once)
the same codes into the computer, with different data. The • Fewer coding bugs (i.e., bugs are eliminated early if soft-
first subroutine library was a rack of paper tapes. ware is used more frequently)

The early motivation for subroutine creation was to avoid
• Less detailed thinking required in the design effortwasteful usage of resources. It was not only wasteful to have
• Better program documentationtwo programmers write the same code twice, but it was also

extremely wasteful to have duplicate copies of the same code
Because parameterized subroutines provide a higher level ofoccupying the limited amount of memory that was available
abstraction with increased flexibility, adaptability and gener-on computers at the time. Parameters were added to subrou-
ality, they may betines to make them more ‘‘reusable,’’ in that the parameters

were used not only to pass data into the subroutine to be oper-
• Harder to maintainated upon and subsequently to have calculated results re-
• Harder to understand the interaction and dependenciesturned back, but also to control the execution through run-

of parameters, especially if the subroutine is heavily pa-time ‘‘options’’ (see SOFTWARE REUSABILITY). As will be dis-
rameterizedcussed later, programming languages added different types

of parameters and different forms of parameter passing, for
Finally, depending on the degree of linguistic support andreasons of efficiency, flexibility, and later, for reasons of relia-
compilation maturity, the use of parameterized subroutinesbility. Finally, further early motivation for subroutines came
may result infrom the fact that their source code could be separately com-

piled (or assembled). The resulting object code could be stored
in a subroutine library, then other programmers would not • Less run time efficiency of code due to extra branching

and context switching overheadonly not have to write the same code, but they also wouldn’t
have to waste their limited batch-job mainframe execution • Larger load module size if dead code has not been elimi-
time by having to compile (and debug) it. They could just link nated
the subroutine’s object code into their own program for subse- • Potential abuse if no type checking is done on actual/
quent execution. formal parameter pairs

While the savings in development time and code size from
using subroutines is fairly obvious, there is also a widely rec-

SUBROUTINE INVOCATIONognized penalty. The invocation of a subroutine requires a
‘‘context switch’’ inside the computer. This takes valuable

As high-level programming languages emerged, new termi-time and consumes additional resources because, when invok-
nology was introduced to distinguish special forms of subrou-ing a subroutine, the internal state of the machine must be
tines. The two major types of subroutines are procedures andpreserved (e.g., register values), the locations and values of
functions. Procedures and functions both have names (or la-the actual parameters must be specified, and the address of
bels) and can accept input arguments as parameters, but dif-the subroutine must be branched to, with the return address
fer in the way they return values. Functions return, at most,somehow saved. Depending on the architecture of the com-
a single value. They were originally intended to be used inputer, these operations were supported in different manners.
mathematical expressions [e.g., A �: SQRT(B) � SQRT(C) ;].Some computers simply provide two (or more) sets of registers
In contrast to these ‘‘in-line’’ invocations of functions, proce-and left their management up to the programmers. The GPR
dures were intended to be ‘‘called,’’ or, in the case of object-(general purpose register) based IBM mainframe, supported
oriented languages, methods were intended to have ‘‘mes-the ‘‘branch and link register (BALR) instruction to jump to a
sages sent to.’’subroutine with the address of the start of the parameter list

in one register and the address of the return address in an-
other register. Similarly, the ‘‘load multiple’’ (LM) and ‘‘store SUBROUTINE PARAMETERS
multiple’’ (STM) instructions were used to save the current
contents of the working registers and restore them. Stack- Subroutines use parameters to pass and return information.
based machines, such as the Burroughs 5500, had a different, The actual parameter values passed to a subroutine are re-
much simpler approach, as the parameter values and return ferred to as ‘‘arguments.’’ Subroutine parameters fall into
address were placed on the stack. Finally, complex instruc- three categories: (1) data, to be used as input (operand) or
tion set computers, such as the VAX PDP-11 from Digital that are generated as output (e.g., math function); (2) control
Equipment Corporation had very elegant context switching values (options) that affect the processing of a subroutine; and
instructions that took several milliseconds, requiring several (3) operations that are used in the processing of a subroutine.
dozen microinstructions to execute (see MICROPROGRAMMING). Not all programming languages support all of these parame-

To summarize, a parameterized routine has an increased ter types. The following example illustrates their use. Here, a
sort subprogram, written in Ada, takes as input a list of datachance of being reused because it addresses a wider domain

SUBROUTINES 617

(TheList) to be sorted. The subprogram outputs the sorted list the user with the ability to select from alternative options
when invoking the subroutine, with the convenience of not(this is referred to as a ‘‘sort-in-place’’ approach). It also is

passed a control variable (Ascending), to indicate if the list cluttering the interface, when the default value is desired. A
popular use is to include a debug flag in the interface to theshould be sorted in ascending or descending order. Finally,

the implementation of the subprogram is parameterized so subroutine, with a default value of ‘‘false.’’ For example:
that it can process data of any type (Element), kept in a list
of any length, using a partial order function ‘‘	’’. procedure DOIT (ToThis : in Thing; Debug : in Boolean :�

false);
generic

type Element is limited private; This procedure could be invoked as follows:
type List is array (Integer range 	�) of Element;
with function ‘‘	’’ (Left, Right : in Element) return Bool- DOIT (ToThis �� MyThing, Debug �� false);

ean is 	�;
procedure Sort_In_Place (TheList : in out List; Ascending : or

Boolean :� true:);
DOIT (ToThis �� MyThing);

Example 1: Generic Ada Sort Subprogram
In languages without default parameters, sometimes operatorIn Ada, one needs to ‘‘instantiate’’ this subprogram before in-
overloading is supported. In this case, two or more subrou-voking it. That is, since the subprogram is ‘‘generic,’’ one
tines can share the same name, if the compiler can distin-needs to supply actual parameter values for the generic pa-
guish them by their parameter types. For example, in therameters. For example:
case above, without default parameters, one could define the
following two procedures (the first one overloading thetype Vector is array (Integer range 	�) of Element;
second):procedure Sort is new Sort_In_Place (

Element �� BattingAverages,
procedure DOIT (ToThis : in Thing; Debug : in boolean);List �� Vector,
procedure DOIT (ToThis : in Thing);‘‘	’’ �� ‘‘	’’);

Finally, generic parameters provide a different, more power-Then, to invoke the subroutine, one could say:
ful kind of adaptability and flexibility for a subroutine. Ge-
neric parameters signal the compiler to parameterize the gen-Sort (TheList �� Yankees, Ascending �� true);
erated code so that the resulting code template can be
instantiated dynamically, at run time. This should be con-One should note that since Ada supports positional and de-
trasted to a macro, or preprocessor that generates code atfault parameter values, the following invocation is equivalent
compile time. Generic subroutines can be used to create pa-to the previous example:
rameterized types.

Sort (Yankees);
SUBROUTINE MODIFIERS

This example illustrates several aspects of features certain
programming languages provide in support of parameterizing As mentioned earlier, not all programming languages support
subroutines. These include: all forms of parameters. For example, in the programming

language PL/I, subroutine arguments may be an expression,
statement label, constant, variable, or subroutine name. In1. Typed parameters
the programming language Java, subroutine arguments may2. Positional parameters
be an object of any type. Early forms of the programming lan-3. Named parameters
guage COBOL did not support any form of parameter pass-

4. Default parameters ing. In COBOL all communication between the calling routine
5. Overloading and the subroutine was achieved through ‘‘side-effects.’’ That
6. Generic parameters is, by convention, the calling routine placed the subroutine

input arguments into certain ‘‘global’’ variables, and the sub-
routine placed the generated results in other predefined loca-Early programming languages did not provide for any type

checking at compile or run time; therefore one could pass a tions that were in the scope of both routines. The ‘‘scope’’ of a
subroutine is a key issue, visibility to data and other subrou-character string to a subroutine when it was expecting an in-

teger. This often occurred when the order of actual parame- tines was either implicit (in the case of ‘‘built-in’’ subroutines
in FORTRAN or PL/I) or explicit (Java class libraries). Withters indicated the correspondence between actual and formal

parameters. To reduce errors, type checking was added along operator overloading and overriding through inheritance, it
oftentimes became difficult for software developers, as well aswith named parameters. This meant that software develop-

ers, by using by-name parameter passing, wouldn’t have to the compiler to determine which implementation of a subrou-
tine was being invoked at any point in time. To simplify thisremember the order of parameters, in addition to increasing

the readability of the invocation. Default parameters provide problem, subprogram modifiers were introduced. For exam-

618 SUBSTATION INSULATION

ple, in Java, a method can be marked ‘‘final, public, private, 4. Call By Copy. This parameter-passing mode is similar
to call by value, only the results are copied back (out-protected, abstract, static, native, and/or synchronized,’’ with

certain allowable combinations (e.g., public final static syn- put) upon completion of the subroutine.
chronized). Finally, certain programming languages required
the use of subprogram modifiers to help the compiler optimize In conclusion, subroutines remain an essential feature of
code. For example, the programming language PL/I required all programming languages. Compiler optimization tech-
that all recursive functions be identified as ‘‘RECURSIVE.’’ niques have reduced many of the processing inefficiencies in

the past while preserving their labor saving and conceptual
usefulness.

PARAMETER-PASSING CONVENTIONS
WILL TRACZ

Lockheed Martin Federal SystemsThe following approaches to parameter passing have ap-
peared in various programming languages:

1. Call By Value. This is the most intuitive parameter- SUBROUTINES. See MACROS.
passing mode, from a functional programming perspec-
tive. All parameters are ‘‘input only’’ and may not be
modified by the subroutine. In effect, a temporary copy
of the value of the actual parameter is made, and the
address of this copy is passed to the subroutine. This is
the only practical method of passing parameters, when
the actual parameter is an expression (e.g., X � Y). On
the negative side from a performance perspective, the
call by value parameter-passing mode can be very re-
source intensive for passing arrays, large data struc-
tures, or complex objects because the contents of the en-
tire array must be copied into a temporary area in
memory. This is the default parameter-passing method
in Pascal and the only parameter passing mechanism
in C.

2. Call By Reference. This is the simplest and most direct
method of passing parameters to a subroutine. It sup-
ports both input and output parameters. In this ap-
proach, the address of the actual parameter, or address
of a temporary storage location where the result of an
expression, is passed to the subroutine, which then uses
the address to indirectly access the value or write the
results. This parameter-passing method is the (only) pa-
rameter-passing mechanism in the programming lan-
guage FORTRAN. In the programming language PAS-
CAL, the programmer must explicitly use the modifier
‘‘VAR’’ to force this parameter-passing mode. This
method of parameter passing is particularly efficient
when the parameters being passed are large structures,
because only a single address needs to be passed in or-
der to provide access to the entire contents of the large
structure.

3. Call By Name. This parameter-passing technique was
originally developed as part of early assembler lan-
guage macroprocessor pages and later supported by the
programming language Algol. It allows for symbolic ma-
nipulation through late binding of the expression that
forms the parameter (called ‘‘thunks’’). To support ‘‘call
by name’’ parameter passing, the compiler must create
a special subroutine that gets executed each time the
parameter is referenced inside the subroutine. Because
the value of each variable in an expression used as an
actual in the parameter may change between each ref-
erence in subroutine, the results of the parameter refer-
ence can possibly change, making for an interesting side
effect.

