
578 SOFTWARE REUSABILITY

this crisis, Gibbs concludes, ‘‘If we are ever going to lick this
software crisis, we’re going to have to stop this hand-to-
mouth, every-program-from-the-ground-up preindustrial ap-
proach.’’

Software reusability is an essential mechanism for improv-
ing both software productivity and quality and must be an
inherent part of any successful software engineering process
(2–7). The objective of research in software reusability is to
build ‘‘high-quality’’ software-related artifacts that are more
widely applicable than they otherwise would be and can be
reused with less effort than otherwise needed. Examples of
reusable software artifacts include descriptions of communi-
cation protocols; operating system templates that are in-
stantiated differently using different parameters for different
installations; descriptions of patterns and styles used in ex-
plaining a class of software artifacts; concept definitions that
are generally applicable in solving a class of problems; de-
scriptions of algorithms; general-purpose software modules
and packages; and metalevel descriptions.

PRODUCTS AND PROCESSES

Although the nature and potential of reusable software arti-
facts vary significantly, some governing principles apply. The
first of these is the observation that reusing a software arti-
fact has potential for significant gains only if the effort in-
vested in conceptualizing and developing a high quality arti-
fact is leveraged. For example, a ‘‘cut and paste’’ reuse process
that merely saves keystrokes has little value. A corollary to
this observation is that reusing poorly designed artifacts
(products) has a negative impact on software productivity and
quality, regardless of the process. In other words, the central
problems in software reusability are in designing ‘‘high-qual-
ity’’ software products in the first place and then establishing
processes that maximize reuse of effort invested in designing
the products.

In general, reusable product developers and clients are dif-
ferent people or organizations. Therefore, in a reusability pro-
cess, it is useful to classify the client effort to reuse an artifact
into three core parts:

• Understanding. The effort involved in understanding
the existing artifact in sufficient detail to reuse;

• Adaptation. The effort involved in modifying the artifact
so it is suitable for the new situation; and

• Reasoning. The effort involved in ensuring that the
adapted artifact captures the intent or behaves as ex-
pected, and continues to be of high quality.

SOFTWARE REUSABILITY The illustration in Fig. 1 contains a ‘‘part-based’’ description
of some artifacts, and a cut-and-paste adaptation of one of its

The software industry is poised to become the biggest indus- parts. In the example in Fig. 1, the benefits of reuse are mini-
mal, though most of the original artifact is reused. Because oftry in the world. Demands for timely production of high-qual-

ity complex software systems have become more acute than the assumed coupling among the descriptions of the parts of
this artifact (which is inevitable in the absence of abstraction,ever. In discussing the heightened productivity and quality

crisis, Gibbs notes, ‘‘Studies have shown . . . the average as explained later), any change requires global understanding
of the existing artifacts and global reasoning of the modifiedsoftware development project overshoots its schedule by half;

large projects generally do worse. And some three-quarters of artifacts to ensure that the change produces exactly the de-
sired impact. In this scenario, whereas the potential cost ofall large systems are ‘operating failures’ that either do not

function as intended or are not used at all’’ (1). Explaining understanding dominates the effort in developing the artifact
in the first place, the need for new global reasoning makes itthe economic and possibly life-threatening consequences of

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

SOFTWARE REUSABILITY 579

Figure 1. The need for global understanding and

A.1

A.2.1

A.2.2

B.1 B.2

C

B

A.1

A.2.1

A.2.2

B.1 B.2

C

B

Understanding required

Adaptation required

Reasoning required

Reuse

Modified S′

Artifact S

reasoning in reuse without abstraction.

impossible to reuse the significant effort already invested in descriptions of its 3 parts, namely, A, B and C, combined in a
verifying (or validating) the existing effort. particular way. Similarly, descriptions A and B have been fur-

Although the example highlights the drawbacks of a cut- ther decomposed into parts. In a complete description of an
and-paste reuse process, the process itself is only as good as artifact, each part is decomposed hierarchically until the de-
the design and description(s) of the product allow it to be, as scriptions are atomic, that is, descriptions that are univer-
explained in the next subsection. The inherent nature of some sally understood by the intended audience.
artifacts forces their only descriptions to be detailed in terms The artifact described in Fig. 1 might be a general docu-
of these parts and thus makes it impossible to avoid global ment such as this article on software reusability which is di-
understanding and reasoning. However, for others, abstract vided into sections, subsections, paragraphs, sentences, and
descriptions that are independent of their parts can be devel- words. To understand this article, ultimately every word
oped to enable localized understanding and reasoning and, must be understood. Alternatively, the description might be a
hence, ease of reuse. Reuse of the latter kinds of artifacts is requirements definition for a software system or a program-
the focus of this article. ming language description (or ‘‘code’’) for a software system,

divided and subdivided into procedures or objects. In pro-
gramming language descriptions, the primitives are built-inDESIGN FOR REUSE
objects such as Integers, Records, or Arrays and permissible
operations on these objects.An artifact is designed for reuse along a given dimension if

the cumulative effort for understanding, adaptation, and rea- Decomposition into parts is essential for cognitive simpli-
soning needed for reuse is kept minimal and proportional to fication. It also provides an organization that is important in
the required adaptation. Dimension here includes functional understanding the artifact described. Different techniques for
and nonfunctional attributes and software, hardware, system, decomposition lead to different parts and organizations. A
and other environment-related aspects. In designing software code artifact, for example, might be decomposed by structured
or any other engineering artifact for ease of use and adapta- analysis and design techniques or object-oriented techniques.
tion, four basic ideas come into focus: compartmentalization, Through such modularization, sometimes, changes needed for
hierarchical composition, generalization, and abstraction. Of reuse are localized within a few parts. However, modulariza-
these, the first two are most widely applicable, but the last tion of a description into parts has only a limited impact on
two have the most impact on software reuse. reuse cost, because the effort in understanding the artifact to

adapt it and the effort required in reasoning about the adap-
Compartmentalization and Hierarchical Composition tation remain global efforts. Changing a sentence in this sub-

section of this article for its content, for example, can haveThe principles of compartmentalization and hierarchical com-
global ramifications as it might contradict statements in otherposition (together termed modularization) are and should be
parts of this article. Similarly, with modularization alone, un-applied in describing all nontrivial artifacts. Figure 1 shows

a part-based description of some artifact. It is the sum of the derstanding and reasoning of a program requires breaking it

580 SOFTWARE REUSABILITY

down to primitive objects and operations such as those on In-
tegers (8,9). In more general terms, to understand and adapt
a part-based description such as in Fig. 1, the part to be
adapted and the part-based descriptions of every artifact with
which it is coupled must be understood, that is, every atomic
part of the artifact. In summary, compartmentalization and
hierarchical decomposition by themselves do not reduce the
complexity of understanding or reasoning.

Generalization

The objective of generalization is to anticipate the circum-
stances in which an artifact might be reused and then to de-
sign the artifact so that reuse costs are minimal in those cir-
cumstances. Suitable generalization is a challenging design

Abstract
expl. of S

Part-based
expl. of S

Abstract
expl. of A

Abstract
expl. of B

Abstract
expl. of C

problem. Parameterization is one fundamental mechanism for
Figure 2. The role of abstraction in localizing understanding andgeneralization (10). Parameters allow tuning an artifact for
reasoning.the needs of a specific application without otherwise modi-

fying the artifact. Classical examples of parametric adapta-
tion include software system installations tailored for local
environments and generic software modules. Using the same

and reasoning would be required as illustrated in Fig. 2. The
approach, it is possible to parameterize requirements defini-

figure shows a window into a much larger structure. In Fig.
tion documents or other artifacts for easy adaptation. Param-

2, presented in a variant of the 3C model that is widely used
eterization, however, is only one factor in generalization. De-

in the reuse community (14), ovals denote abstract descrip-
sign techniques, such as those based on objects for code

tions (concepts), and rectangles denote more concrete, part-
artifacts (11,12), significantly influence the generality of an

based descriptions (contents). The contexts, within which the
artifact.

concepts and contents are described, are not explicitly shown.
To limit the complexity and cost of generalization in cur-

Thin arrows from a part-based description to abstract descrip-
rent practice, some artifacts are designed to be reused only

tions denote an ‘‘is composed of ’’ relationship and thick
within a vertical domain. For others, the scope is narrowed

arrows from abstract to concrete descriptions denote an ‘‘is a
even further by considering only product lines within specific

cover story of ’’ relationship. There may be multiple cover sto-
organizations. Reuse of an artifact during relatively routine

ries for the same concrete description and there may be multi-
maintenance of the same product in the updated versions of

ple concrete descriptions for the same cover story. If there are
the product is an example of the case of reuse where the scope

multiple interchangeable or plug-compatible concrete descrip-
is further narrowed.

tions for abstraction B, for example, they can be switched
Generalization reduces the cost of adaptation to new envi-

without affecting, and without a need to reverify artifacts
ronments significantly and simplifies understanding along

that are based on B.
the dimension of parameters. Generalization does not how-

The ovals in Fig. 2 are usually called specifications, and
ever eliminate the need for global understanding or reason-

the rectangles are called implementations when code artifacts
ing, in the absence of abstraction.

are described. Introduction of two (or more) descriptions of an
artifact, essential for abstraction, also makes it essential to

Abstraction
verify that the different descriptions are consistent. It must
be shown that the abstract description is indeed a suitableAbstraction is an essential cognitive tool in human under-

standing and reasoning. Good abstraction allows us to estab- cover story for the lower level description. When abstract de-
scriptions are available, cost-effective local verification is pos-lish suitable and simple mental models for software artifacts

(13). Abstraction is what makes it easier to understand and sible: To verify that the part-based description in Fig. 2 satis-
fies its abstract description, only abstract descriptions of A,use physical devices such as batteries, mowing machines, and

televisions, though their internal part-based descriptions B, and C need to be understood and used (8,15–17). There is
no need to understand any other descriptions or to break themight be extremely complex. Similarly, for some software-re-

lated artifacts, it is possible to have two (or more) indepen- reasoning down to the level of primitive descriptions or ob-
jects. In other words, abstract descriptions and techniques fordent descriptions, one of which is more abstract and is not

based on the parts of the artifact. Whereas the lower level localized understanding and reasoning based on those de-
scriptions offer the most significant reuse benefits as summa-description might require an understanding of its parts, the

high level description would not. Free of details and much rized in Table 1.
In a black box reuse process, only the (possibility, parame-simpler, the higher level description is a suitable ‘‘cover story’’

that reveals exactly and only what a user of the artifact needs terized) abstract description of an artifact needs to be under-
stood and adapted. Because no changes are made to the de-to know. Abstract descriptions are typically what make physi-

cal devices, such as batteries and televisions, easy to use. To scriptions, significant effort invested in verification activity is
reused. Even when a white box reuse process is employed tounderstand and use them, it is not essential to understand

their internal part-based description. alter the part-based description of the artifact in Fig. 2 di-
rectly, during evolution, maintenance, or reuse, only the ab-If each part in the description in Fig. 1 had a separate and

independent abstract explanation, only local understanding stract descriptions of its parts A, B, and C need to be under-

SOFTWARE REUSABILITY 581

The component must be properly generalized so that it can
be used in a variety of applications without modifica-
tions, thus permitting reuse of the effort invested in de-
signing, developing, and verifying the component and
all its associated artifacts.

The interface must have a proper conceptualization that
provides a suitable abstraction to understand and reuse
the component easily, without understanding details of
how it might be implemented.

One possible interface and implementation for the prioriti-
zation problem is a typical procedure that captures ‘‘batch
sorting.’’ Here, the entries to be sorted are assumed to be in
a collection, and the interface provides a single sort operation
that reorders the collection so that it is sorted. Although a
procedural interface for batch sorting is useful in a number of
applications, it can be generalized and its reusability is en-
hanced along at least two dimensions as explained in the fol-

Table 1. Role of Abstraction in Localizing Understanding
and Reasoning

Understanding and
Adaptation Reasoning

Compartmentalization Possibly localized Global understanding
and hierarchical and reasoning re-
composition quired. Provide cog-

nitive simplification.
�Generalization Significant savings Global understanding

for a class of ad- and reasoning re-
aptations quired. Provides

cognitive simplifi-
cation.

�Abstraction Significant savings Only local under-
standing and rea-
soning required.
Also, essential to
create suitable
mental models.

lowing subsection.

Generalization
stood if those descriptions are not altered. However, white box

Interface Generalization through Object-Based Design. To en-reuse, in general, is significantly more expensive than black
hance reusability, related classes of applications, where ‘‘prio-box reuse and should be used only where that is inevitable
ritization’’ is useful, must be identified. Such anticipation is(18).
critical in designing software for reuse. Even when unantici-Artifacts, such as algorithms, network communication pro-
pated uses of a concept arise, well-designed interfaces permittocols, and software components and systems, are typically
handling of such situations with maximal reuse of effort. Fordescribed in detail in multiple layers in formal (programming)
prioritization, the following alternative classes of applicationlanguages to enable effective communication with the com-
are useful to consider (19):puter. For such artifacts, multiple levels of abstract descrip-

tions are essential. For some artifacts, however, such as for a
1. All entries that must be ‘‘ordered’’ are known a priori‘‘well-written and minimal’’ document defining functional re-

and all of them must be ranked.quirements, there are no two, separate, possible descriptions.
2. All entries to be ordered are known a priori, but onlyIf every part in the document is important and is a require-

an arbitrary subset of the prioritized items is needed.ment, then there is no possible simplification. The document,
of course, should be compartmentalized and hierarchically (a) some best k of inserted entries are needed; and
composed to provide a suitable organization, but an under- (b) some best k1 and worst k2 of inserted entries are
standing of the artifact ultimately requires understanding needed; and
each part. 3. Entries to be ordered are not all known in advance.

Artifacts, such as requirements definition documents, that After some have been obtained from a collection in pri-
allow only a single part-based description typically arise in oritized order, additional entries may be added to the
the earlier stages of software life cycle and provide substan- collection for subsequent removal.
tial reuse gains, but within a very limited scope. Code arti-
facts, for example, permit independent abstract descriptions Although it is indeed possible to use a batch sorting proce-
that are more suitable for widespread reuse. If their different dure in all of the previous applications, it is efficient only for
descriptions are suitably designed, they lead to significant re- applications in class I. Performance penalties make a typical
use of efforts invested in their entire life cycle. When an op- procedural interface (and its implementations) unacceptable
erating system (which has abstract and part-based internal for solving problems in classes II and III. The need to over-
descriptions) is installed in different environments or applica- come the performance barrier and thus enhance reusability is
tion systems are ported, reuse benefits include the efforts in- a primary motivation for ‘‘recasting’’ large-effect operations,
vested in its design, implementation, verification, and vali- such as batch sorting, and developing an object-based concept
dation. for prioritization (12).

An object-based component for the present problem pro-
vides a Prioritizer object and operations to manipulate theseELEMENTS OF REUSABLE SOFTWARE DESIGN
objects. Operations include Insert, that permits new entries
to be added one at a time, and Remove_Next, that permitsTo illustrate the variety of technical issues that must be ad-

dressed in designing a software artifact for reuse, this section extraction of items in ‘‘order,’’ one at a time. With such a com-
ponent, a user of the object can remove some or all items inconsiders a detailed example: abstract description of a reus-

able software component suitable for ‘‘prioritizing’’ a collec- order, by making a suitable number of calls to Remove_Next.
The user can also interleave calls to Insert and Remove_Next.tion of items based on some priority ordering. The two funda-

mental reuse issues in designing a description, such as this, More importantly, using different plug-compatible implemen-
tations of the same interface, a client can reuse Prioritizersare generalization and abstraction:

582 SOFTWARE REUSABILITY

to solve problems in any of the previous three classes of appli- thus the users are freed from complex reference-based under-
standing that would be required if pointers are specified to becations with optimal performance.
copied explicitly.

Unlike the issues discussed previously which are generalGeneralization through Parameterization. Clearly, the idea
to the design of all reusable containers, aspects of parametricof prioritization is independent of the entries that need to be
generalization specific to the concept under consideration areprioritized. Therefore, another dimension of generalization is
usually much harder to identify and incorporate. In the casepossible by parameterizing the type of entries to be priori-
of Prioritizer objects, it is possible to generalize the ‘‘order’’ intized. One design of containers, such as the prioritizers, in-
which the entries are prioritized. This ordering clearly de-cludes a suitable upper bound on the number of items that
pends on what types of items are prioritized. Even for a givenare prioritized. These two parameters must be considered in
type Entry, there might be multiple ways to prioritize. Fordeveloping general concepts of any container.
example, in prioritizing planes waiting to take off from anWhen generalizing a container, such as a prioritizer, to
airport, the prioritization parameter may be the scheduledcontain arbitrary types of entries, a fundamental design ques-
take-off times for the planes, the destinations of the planes,tion arises: Should the Insert operation make a copy of the
the capacities of the planes, or a combination that depends onentry inserted into the prioritizer or should it not? If a copy
the actual circumstances. It is, therefore, necessary to designis inserted, then the caller retains the inserted entry. If no
the object interface to be flexible with regard to the ordering.copy is made, then the entry is consumed by the prioritizer,

and the entry is no longer available to the caller. Discussing
Parameterized Prioritizer Objects in C��this design issue (i.e., whether inserted and removed items

should be copied), that arises in the design of every container Figure 3 contains Prioritizer_Template, a C�� class template
object, Harms and Weide (20) conclude that ‘‘copying’’ objects for Prioritizer objects. It has been designed following a vari-
of arbitrarily complex types is expensive and leads to signifi- ant of the RESOLVE/C�� discipline for reusable software
cantly inferior performance. Hence, Insert operations should design (19,21). Following the principles of this discipline, a
‘‘consume’’ and not copy the inserted entries. In most common swap operator (‘‘&�’’) is included and ‘‘built-in’’ assignment
uses of containers, clients do not need to retain copies of en- operator is precluded. The client-supplied Entry class must
tries. In the few cases where they need to retain copies, they also have a swap operator. The class Entry_Compare_Capa-
can make an explicit copy of the entry before inserting it in bility must provide an operation to compare two entries.
the container. Though we have used C�� to illustrate implementation de-

Instead of assignment and copying, Harms and Weide sug- tails in this article, other object-based languages are also ap-
gest a Swap operation (20) as the basic data movement opera- propriate. RESOLVE/Ada discipline and the more general
tion on objects. By representing complex objects indirectly principles for following the RESOLVE discipline for popular
through references (pointers), the swap procedure is imple- programming languages are detailed in (21). Adherence to the
mented so that it exchanges these references in a constant discipline results in components that are adaptable, and
time regardless of the sizes of the referenced objects. Though hence easy to reuse and evolve.
references are used in implementation, swapping is ‘‘ab- Clearly, each operation in Fig. 3 needs a behavioral expla-

nation. But how should the explanations be phrased to astractly’’ understood as exchanging values of two objects, and

Figure 3. A parameterized prioritizer object in-
terface in C��.

template <class Entry, class Entry_Compare_Capability, int Max_Size>
// Entry_Compare_Capability should provide Entry Compare operation
class Prioritizer_Template {
public:

Prioritizer_Template () {};
virtual ~Prioritizer_Template () {};

/* swap operator &= to be added in each implementation */
/* virtual void operator &= (Prioritizer_Template& rhs) = 0; */
virtual void Insert (Entry& x) = 0;
virtual void Change_Phase () = 0;
virtual void Remove_Next (Entry& x) = 0;
virtual void Remove_Any (Entry& x) = 0;
virtual Integer Total_Entry_Count_Of () = 0;
virtual Boolean Is_In_Insertion_Phase () = 0;
virtual void Clear () = 0;

private:
/* Implicit assignment and copy constructor are prohibited */

Prioritizer_Template& operator = (const Prioritizer_Template& rhs);
Prioritizer_Template (const Prioritizer_Template& m);

};

SOFTWARE REUSABILITY 583

Figure 4. Implementation-based explana-

template <class Entry, class Entry_Compare_Capability, int Max_Size>
class Prioritizer_Template_1: public
Prioritizer_Template <Entry, Entry_Compare_Capability, Max_Size>
{
public:

/* A prioritizer object has three parts: an array ‘contents’, an Integer
‘size’, and a Boolen flag ‘filling’. The elements of the object are
stored in the contents from locations 0 to size - 1.

Between 0 and size - 1, the array always remains sorted based on the
ordering in class Entry_Compare_Capability. The next smallest Entry is
in location size - 1. */

Prioritizer_Template_1 ();
/* Initializes size to 0 and filling to true. */

virtual ~Prioritizer_Template_1 ();
virtual void operator &= (Prioritizer_Template_1& rhs);

virtual void Insert (Entry& x);
/* Inserts the new Entry in the right place into the array that is kept
sorted */

virtual void Change_Phase ();
/* Toggles filling. */

virtual void Remove_Next (Entry& x);
/* Returns the smallest element of array from location size - 1 */

virtual void Remove_Any (Entry& x);
/* Returns the (smallest) element of array from location size - 1 */

virtual Boolean Is_In_Insertion_Phase ();
/* Returns true iff the filling flag is true. */

virtual Integer Total_Entry_Count_Of ();
/* Returns size - the number of elements in the prioritizer */

virtual void Clear ();
/* Initializes size to 0 and filling to true. */

private:
/* Implicit assignment and copy constructor are prohibited */
Prioritizer_Template_1& operator = (const Prioritizer_Template_1&

rhs);
Prioritizer_Template_1 (const Prioritizer_Template_1& m);

/* Internal representation */
Boolean filling = false;
Integer size = 0;
Entry contents[Max_Size];

};
tion of Prioritizer_Template.

user? This subsection contains explanations based on the ob- The understanding, reasoning, and usage of the object cer-
jects (or parts) that are ‘‘internal’’ to the implementations and tainly is based on the explanations provided about the opera-
ramifications of using such explanations. tions. For example, there is no need for a client of this object

to call Change_Phase or Is_In_Insertion_Phase operations. In
addition, the client may use operations Remove_Next andExplanation of Operations. Figure 4 shows Prioritizer_Tem-
Remove_Any interchangeably because they have identical ex-plate_1, a part-based interface explanation for one (but not
planations. For example, to sort a queue q containing planesnecessarily the most desirable) implementation that inherits
waiting to land based on some priority ordering, the clientand provides the same interface as the Prioritizer_Template.
might create an instance of a Prioritizer object p with thatThe code for the methods (operations) are not shown, but it

can be deduced from the explanations. ordering and use it as illustrated in Fig. 5. In the figure, an

584 SOFTWARE REUSABILITY

Figure 5. An example code that uses
Prioritizer_Template_1.

/* V.contents holds the items to be sorted */
Clear (p);
while (q.Length_Of() > 0) {

q.Dequeue(x);
p.Insert(x);

};

/* p.contents is a sorted array, based on the ordering used in
instantiating p. It contains exactly the items of the
initial queue array q.contents. q.length = 0 */

while (p.Total_Entry_Count_Of() > 0) {
p.Remove_Any(x);
q.Enqueue(x);

};

/* q.contents is sorted.
p.size = 0 */

object of type Queue is assumed to have at least an array of • Call Remove_Next instead of Remove_Any in the second
loop so that the smallest element from the heap is re-Entries named ‘contents’ and an Integer named ‘length’ as its

parts. Dequeue, Enqueue, and Length_Of are assumed to be turned.
basic Queue object operations.

These modifications, in turn, require reverification of the
code for Queue_Sort_Capability. In other words, to reuse theMultiple Interchangeable Implementations and Reuse. A basic
code for Queue_Sort_Capability, significant effort is involvedform of adaptation is replacing a component with another
in understanding the existing artifact, reunderstanding andthat is plug-compatible. Figure 6 shows (explanation of) some
reasoning on the basis of the new explanation, though actualoperations of Prioritizer_Template_2, an alternative imple-
adaptation itself is minimal. This problem does not disappearmentation of Prioritizer_Template. The C�� parts of the ob-
even if an implementation of Prioritizer_Template is made ajects in Figs. 4 and 6 are identical. Only the explanations of
module-level parameter to the capability (23), thus requiringoperations that are different are shown. These are but two
no changes to the code for adaptation because the explana-implementations of Prioritizer_Templates. Several others are
tions of different Prioritizer implementations differ, and pa-discussed in (19). In general, for a given problem, such multi-
rameterization cannot solve that problem.ple implementations exist and have interesting performance

This example confirms that object-based design, even withtradeoffs (22).
the best use of mechanisms such as templates and inheri-Now suppose that we want to reuse Queue_Sort_Capa-
tance, only minimizes the cost for adaptation, because objectsbility and the same objects in Fig. 1 for a different applica-
without abstraction must be ultimately understood only intion, except that we want to replace Prioritizer_Template_1
terms of primitive programming objects as illustrated in Fig.with Prioritizer_Template_2. Given below are the steps in
7. The only reason why reasoning stops with built-in objects,this reuse process:
such as Integers and Records, is because they have well-un-
derstood mathematical integers and Cartesian products as

• Understand the explanations of objects that are used,
their models.i.e., Plane_Info, Queue_Template_1, and Prioritizer_

Template_1 (from Fig. 4).
Conceptualization

• Understand the code for Queue_Sort_Capability.
To minimize the cost to reuse objects, such as prioritizers, an• Adapt the code for Queue_Sort_Capability by changing
abstract explanation or conceptualization (well-designed in-the declaration of Prioritizer object from Prioritizer_
terface specification) is needed. In developing an abstract de-Template_1 to Prioritizer_Template_2.
scription, it is essential to use a mathematical model of the

• Reason that the modified code for Queue_Sort_Capability collection that differs from the way the collection is actually
works correctly, based on the explanation of Prioritizer represented in a programming language. Arrays and lists are
object from Prioritizer_Template_2. examples of representations for the way entries in a collection

are stored. Mathematical sequences, sets, and bags are exam-
The last step shows that the code in Fig. 5 with the previ- ples of possible mathematical models. Because there is no rea-

ous adaptation, though compiles without any errors, is not son to preclude the collection from having entries that have
correct, that is, will not sort the queue. Two changes are equal priority, sets are not suitable for modeling the collec-
needed to make the code work correctly in terms of the expla- tion. Strings or sequences and bags (multisets) that allow du-
nation of Prioritizer_Template_2: plicates fit the requirements better. Strings and sequences

are typically useful to keep track of the arrival order of en-
tries and allow ordering entries with the same priority on the• Call Change_Phase operation in between the loops to cre-

ate a heap. basis of their arrival. Bags are better suited for modeling ob-

SOFTWARE REUSABILITY 585

Figure 6. Alternative implementation-based

template <class Entry, class Entry_Compare_Capability, int Max_Size>
class Prioritizer_Template_2: public
Prioritizer_Template <Entry, Entry_Compare_Capability, Max_Size>
{
public:

/* A prioritizer object has three parts: an array ‘contents’, an Integer
‘size’, and a Boolean flag ‘filling’. The elements of the object are
stored in the contents from locations 0 to size - 1.

If the filling flag is false, then a heap exists between locations 0 and
size - 1, based on the ordering in class Item_Compare_Capability. The
smallest item is in location size - 1. */

Prioritizer_Template_2 ();
/* Initializes size to 0 and filling to true. */

virtual ~Prioritizer_Template_2 ();
virtual void operator &= (Prioritizer_Template_1& rhs);

virtual void Insert (Entry& x);
/* size is incremented and the new item is inserted into the array at
location size. */

virtual void Change_Phase ();
/* Creates a heap of the array contents between locations 0 and size -
1, if the filling flag is true. */

virtual void Remove_Next (Entry& x);
/* Returns the smallest element of array from location 0, and readjusts
the heap. */

virtual void Remove_Any (Entry& x);
/* Returns the element of array from location size - 1 */

/* Rest of the public part and all of the private part is the same as in
Figure 4, except that Prioritizer_Template_2 is used instead of
Prioritizer_Template_1. */
...
};

explanation of Prioritizer_Template.

Figure 7. Object-based design withoutArray Integer

Array Integer Record Integer

Software
system S

Object P Object Q

Object R

abstraction.

586 SOFTWARE REUSABILITY

jects that disregard the order of arrival in prioritization, and that are input to the operation; p and x denote their values
after the operation.these are the objects discussed in this paper.

Before clients remove items from a prioritizer, they mustFigure 8 contains a mathematical and implementation-in-
call the Change_Phase operation, which toggles the phase ofdependent specification of Prioritizer_Template in a variant
the object. Operation Remove_Next removes and producesof the RESOLVE notation (21). This concept includes the re-
the next ‘‘smallest’’ entry, based on the parametric orderingusability design considerations discussed in the previous sec-
R. It requires that the machine not be in the insertion phase.tions. Though this abstract description can be presented in-
In other words, though a client may interleave Insert andformally, the RESOLVE notation leads to a precise and
Remove_Next operations (as would be required in applica-understandable description also suitable for verifying correct-
tions in class III discussed in this section), the Change_Phaseness of its implementations.
operation must be called in between such interleaving. Other-The concept in Fig. 8 is parameterized by the type of en-
wise, the client code is incorrect because then it violates thetries to be placed in the prioritizer, the maximum size, and
required condition of the Remove_Next operation.the ordering to be used in prioritization. The restriction

Remove_Any operation is called when in either phase, andstates that the ordering must be a total preordering. For ex-
it returns an arbitrary item from the prioritizer. Based on theample, when Plane_Info is used as Entry type, � operator on
specification of Remove_Any, the code in Fig. 5 is incorrectavailable fuel quantity is a suitable ordering for prioritizing
(though it happens to produce correct results whenplanes for landing.
Prioritizer_Template_1 implementation is used).This concept uses typically ‘‘built-in’’ Boolean and Integer

Operation Total_Entry_Count_Of preserves, that is, doesobjects provided through concepts Standard_Boolean_Facility
not change the prioritizer for which the count is needed. Thisand Standard_Integer_Facility, respectively. Standard_In-
and Is_In_Insertion_Phase operations enable clients to checkteger_Facility is a concept that explicitly models Integer ob-
the required conditions on other operations. In the RESOLVEjects with mathematical integer and Integer operations with
object design discipline, such ‘‘observer’’ operations to helpmathematical integral operators. In the Standard_
check required conditions of other operations must be in-Boolean_Facility, Boolean values are used to model type Bool-
cluded in concepts for functional completeness. Operationean. In general, description of a new concept might use a vari-
Clear resets the prioritizer to its initial state. In addition toety of other available concepts.
the operations explicitly specified in the concept, a user canThe interface section of the concept describes the type of
also swap two Prioritizer objects. Notice that the Swap opera-objects and operations provided to users of the concept. In
tor has been included in the C�� object design.RESOLVE, the family of programming objects provided is de-

The set of basic primary operations is sufficiently powerfulscribed by one or a combination of mathematical models.
to manipulate Prioritizer objects effectively. Other secondaryHere, objects of type family Prioritizer are abstractly de-
operations are constructed layered by using the basic opera-scribed as a mathematical pair: entry_count, a bag and
tions. It is essential to keep the basic operations to a mini-insertion_phase, a boolean. Because notations for bags are
mum to enhance understandability and, hence, reusability.

not built into RESOLVE specification notation, a mathemati-
cal subtype BAG_MODEL is defined locally in this concept Understanding and Verification Using Abstract Descrip-
as a function from Entry to Integer. The definition tions. Assuming that implementations of Prioritizer and
TOTAL_ENTRY_COUNT_OF is a count of the number of en- Queue objects satisfy their corresponding abstract descrip-
tries in a bag. The local predicate IS_ONLY_DIFFERENCE tions, understanding and reasoning of code using these ob-
is true if and only if its two bag arguments b1 and b2 differ jects can be based on their abstract explanations as shown in
only in that the first one has one more Entry x than the sec- Fig. 9. In an abstract explanation of Queue_Template, a
ond one. BAG_MODEL and the two definitions are merely queue is viewed mathematically as a string of Entries (24).
shorthand notations in the interface and are not needed oth- In the figure, definitions IS_PERMUTATION and
erwise. IS_ORDERED for mathematical strings have straightforward

A user can declare any number of objects of the type Priori- meanings and have been omitted. They are defined in the
tizer. Now suppose that p is an example of a Prioritizer. The same way as TOTAL_ENTRY_COUNT_OF, defined in the
concept specifies that its size is always within Max_Size, Prioritizer_Template concept. The definition CONTENTS is a
through the constraints assertion. Initially, as stated in the bag of entries that contain the entries in its parametric string
initialization ensures clause, there are no entries in the and UNION is used to denote the union of two bags of entries.
object, and it is in the insertion phase. To ease understanding and verifying the Queue Sort proce-

The rest of the interface section describes basic, permissi- dure, loop invariants have been provided through main-
ble operations on Prioritizer objects. Operation Insert allows taining clauses. The decreasing clauses help show that the
a new entry x to be added to a prioritizer p. It alters p, and loops terminate. It is important to notice that understanding
consumes x: After a call to the operation, x has a legal value and verifying this code is independent of the actual imple-
of type Entry, but it is not guaranteed to be what it was be- mentation details. Regardless of which Prioritizer is used, the
fore the call or any other specific value. The operation re- same understanding and reasoning hold.
quires that the prioritizer be in the insertion phase and that The implementations of Prioritizer_Template_1 and
it not be full. The client of the object is responsible for calling Prioritizer_Template_2.2 are both correct with respect to the
the operation only when the requires clause is satisfied. It concept in Fig. 7. Though Prioritizer_Template_2 heapifies an
ensures that the only change to the prioritizer is that the array in the Change_Phase operation instead of just toggling
count for the added entry increases by one. In the ensures its Boolean flag, it is still correct because, from a client’s per-

spective, each operation produces intended effects (12).clause, #p and #x denote the values of parameters ‘p’ and ‘x’

concept Prioritizer_Template (
type Entry
constant Max_Size: Integer
definition R (x, y: Entry): boolean

)
restriction Max_Size > 0 and

for all x: Entry, R(x, x) and
for all x, y, z: Entry, if R(x, y) and R(y, z) then R(x, z) and
for all x, y: R(x, y) or R(y, x)

uses Standard_Boolean_Facility, Standard_Integer_Facility

math subtype BAG_MODEL is function from Entry to natural
definition TOTAL_ENTRY_COUNT_OF(b: BAG_MODEL): integer =

� b (x)
x: Entry

definition IS_ONLY_DIFFERENCE (x: Entry
b1, b2: BAG_MODEL): boolean =

b2(x) = b1(x) + 1 and
for all y: Entry, if y/= x then b1(y) = b2(y)

interface
type family Prioritizer is modeled by (

entry_count: BAG_MODEL
insertion_phase: boolean

)
exemplar p
constraints TOTAL_ENTRY_COUNT_OF(p.entry_count) <= Max_Size
initialization

ensures TOTAL_ENTRY_COUNT_OF(p.entry_count) = 0 and
p.insertion_phase = true

operation Insert (
alters p: Prioritizer
consumes x: Entry

)
requires TOTAL_ENTRY_COUNT_OF(p.entry_count) < Max_Size and

p.insertion_phase = true
ensures IS_ONLY_DIFFERENCE(x, p.entry_count, #p.entry_count)

and p.insertion_phase = true
operation Change_Phase (

alters p: Prioritizer
)

ensures p.entry_count = #p.entry_count and
p.insertion_phase = note #p.insertion_phase

operation Remove_Next (
alters p: Prioritizer
produces x: Entry

)
requires TOTAL_ENTRY_COUNT_OF(p.entry_count) > 0 and

p.insertion_phase = false
ensures for all y: Entry,

if p.entry_count(y) > 0 then R(x, y) and
IS_ONLY_DIFFERENCE (x, #p, p) and
p.insertion_phase = false

operation Remove_Any (
alters p: Prioritizer
produces x: Entry

)
requires TOTAL_ENTRY_COUNT_OF(p.entry_count) > 0
ensures IS_ONLY_DIFFERENCE (x, #p, p) and

p.insertion_phase = #p.insertion_phase

operation Is_In_Insertion_Phase (
preserves p: Prioritizer

): Boolean
ensures Is_In_Insertion_Phase = p.insertion_phase

operation Total_Entry_Count_Of (
preserves p: Prioritizer

): Integer
ensures Total_Entry_Count_Of = TOTAL_ENTRY_COUNT_OF(p.entry_count)

operation Allowed_Max_Size (
): Integer

ensures Allowed_Max_Size = Max_Size

operation Clear (
alters p: Prioritizer

)
ensures TOTAL_ENTRY_COUNT_OF(p.entry_count) = 0 and

p.insertion_phase = true

end Prioritizer_Template

Figure 8. A conceptualization of prioritizer template.

587

588 SOFTWARE REUSABILITY

Figure 9. The role of conceptualizations in under-
standing and reasoning.

procedure Queue_Sort (
alters q: Queue

)
ensures IS_PERMUTATION(#q, q) and IS_ORDERED(q)

p: Prioritizer
x: Entry

begin
maintaining union (p.entry_count, contents(q)) = contents (#q)

and p.insertion_phase
decreasing |q|
while Length_Of(q) > 0 loop

Dequeue(q, x)
Insert(p, x)

end loop
Change_Phase(p)
maintaining union(p.entry_count, contents(q)) = contents (#q)

and is_ordered (q) and not p.insertion_phase
decreasing |TOTAL_ENTRY_COUNT_OF(p.entry_count)|
while Total_Entry_Count_Of(p) > 0 loop

Remove_Next(p, x)
Enqueue(q, x)

end loop
end Queue_Sort

Remove_Next, for example, returns the smallest item from tion is a challenging activity and involves considerable re-
the collection of inserted items as demanded by the specifica- search. Earlier work on reuse focused on subroutine libraries
tion. Modular verification and testing of parameterized ob- for languages, such as FORTRAN, and development of object-
jects and objects arising from recasting optimization algo- based components that capture traditional data structures,
rithms are fundamental areas of reuse research (12,15,25). such as stacks, queues, and lists (28). More recently, by re-

casting classical algorithms (12), a variety of previously un-Discussion on Notations for Conceptualization. Modern pro-
recognized reusable concepts, such as the Prioritizer_gramming languages, such as Ada, C��, and Java, include
Template have been discovered. Other examples of recastingfeatures to facilitate construction of object-based software
include Minimum_Spanning_Forest_Template and Cheapest_components through separation of public interfaces and pri-
Path_Template, where graph optimization algorithms are re-vate implementations, inheritance, and parameterization
cast as reusable concepts.mechanisms. The interfaces must be explained abstractly to

In addition to specific reusable concepts, metalevel con-reap significant benefits of reuse. Detailed implementation-
cepts that capture common interface models and enable eas-oriented comments cannot replace the need for suitable ab-
ier understanding of a wide variety of other concepts are re-straction.
ceiving attention (13). Identification and description ofThough abstract descriptions can be written in formal no-
commonly used patterns, styles, and architectures in softwaretations or in natural languages, such as English, formal ex-
systems are among active areas of reuse research (29,30). Aplanations are most suitable for reusable software compo-
key objective of this research is to minimize the cost of under-nents because they are precise and they facilitate human

communication without requiring any common understand- standing during software evolution and reuse. To facilitate
ing, except standard mathematical symbols. Though we have ease of sharing and integration of preexisting components, in-
used the RESOLVE notation in this paper, other formal speci- dustry standards, such as CORBA and COM/DCOM (31),
fication languages, such as Larch, VDM, and Z, are also ap- have been proposed. Whereas the focus in such work is on
propriate (26). general-purpose descriptions and integration, the objectives

Use of a formula notation alone, however, does not guaran- of research in domain analysis and engineering are in identi-
tee a good conceptualization. For widespread reuse, the con- fying concepts commonly used within an application domain
cepts must be suitably generalized and must permit several (32). In current practice, domain-specific artifacts and archi-
plug-compatible implementations to provide performance tectures are typically described with informal domain termi-
tradeoffs. In addition, if unsuitable mathematical models are nology shared by the intended audience. Reusing components
used in conceptualizing a problem, understandability might within restricted domains, researchers have shown that it is
be compromised (24,27). Because reusable concepts are likely possible to generate software systems effectively (33). Ab-
to be read far more often than they are written, understand- straction and conceptualization have the potential for widen-ability is a fundamental requirement. The RESOLVE nota-

ing the scope of domains and enhancing the applicability oftion used in this article is arguably quite appropriate because
reusable artifacts.it has been regularly used for instruction in classrooms at the

Both general-purpose and domain-specific artifacts need tofreshman level.
be classified, stored, and retrieved through reusable software
repositories or libraries. Recent studies have shown that key-OTHER TECHNICAL AND NONTECHNICAL
word-based search is quite effective and adequate for artifactREUSE CONSIDERATIONS
retrieval (34). The difficult challenge is ensuring that the arti-
facts in the library are of high quality and are well-designedIdentification of new reusable concepts that provide higher

level building blocks and raise the level of software construc- to facilitate ease of reuse. Although reusing a legacy software

SOFTWARE REUSABILITY 589

system or component not designed to be reused may have lit- 0002 and DAAH04-96-1-D419, both monitored by the
U.S. Army Research Office.tle potential for significant benefits because of the overriding

costs in understanding and reasoning, legacy software can • The National Aeronautics and Space Administration un-
prove to be a valuable source for identifying new reusable con- der grant NCC 2-979, administered by Software Indepen-
cepts within and across domains. The general problem of re- dent Verification and Validation Facility through Ames
verse engineering a poorly designed software system to a Research Center.
well-designed one, however, is arguably intractable in the
usual computational complexity sense (35). BIBLIOGRAPHY

Although several technical obstacles for exploiting the full
potential of software reuse still remain to be tackled, signifi- 1. W. Gibbs, Software’s Chronic Crisis, Sci. Amer., 86–95, 1994.
cant progress has been made in introducing a software reuse 2. T. J. Biggerstaff and A. J. Perlis (eds.), Software Reusability, New
process into organizations (3,7,36). Successful software reuse York: ACM Press, 1989, Vols. 1 and 2.
requires considerable up-front investment in building suit- 3. W. Frakes and S. Isoda (eds.), Special issue on systematic reuse,
ably generalized and conceptualized reusable artifacts. IEEE Software, 11 (5): 1994.
Though the cost is amortized over the long run through many 4. M. Harandi (ed.), Proc. 1997 Symp. on Software Reusability, New
reuses, managerial reluctance to make the initial investment York: ACM Press, 1997.
for potential long-term gains remains to be overcome. To 5. L. Latour (ed.), Proc. Annual Workshops on Software Reuse, On-
highlight the long-term benefits of reuse, measurement tech- line proceedings at http://www.umcs.maine.edu.
niques and reuse cost-benefit analyses have been developed, 6. A. Mili, H. Mili, and F. Mili, Reusing software: Issues and re-
and empirical studies have been conducted (36,37). Other search directions, IEEE Trans. Soft. Eng., 21: 1995.
than questions of economics, legal questions must also be ad- 7. M. Sitaraman (ed.), Proc. 4th Int. Conf. on Software Reuse, Los

Alamitos: IEEE Computer Society Press, 1996.dressed because the success of software reuse hinges upon
developers marketing their products in a way that does not 8. B. W. Weide and J. E. Hollingsworth, Scalability of Reuse Tech-

nology to Large Systems Requires Local Certifiability, Proc. 5thcompromise their ownership rights.
Annual Workshop on Software Reuse, Palo Alto, CA, 1992.

9. J. E. Hopkins and M. Sitaraman, Software Quality Is Inversely
SUMMARY Proportional to Potential Local Verification Effort, Proc. Sixth An-

nual Workshop on Software Reuse, Owego, NY, 1993.
Any successful software engineering process must include 10. J. A. Goguen, Principles of Parameterized Programming, in T. J.
considerations of reusability. Although reuse is an essential Biggerstaff and A. J. Perlis, Software Reusability, Concepts and
mechanism for improving both software productivity and Models, Reading, MA: Addison–Wesley, 1989, Vol. 1.
quality, reuse does not imply automatically that significant 11. B. Meyer, Reusable Software: The Base Object-Oriented Compo-
improvements result. Benefits result from reusing a software nent Libraries, Prentice-Hall International, 1994.
artifact only in direct proportion to the effort invested in con- 12. B. W. Weide, W. F. Ogden, and M. Sitaraman, Recasting algo-

rithms to encourage reuse, IEEE Software, 11 (5): 80–88, 1994.ceptualizing and developing a high-quality artifact.
Software reuse raises both challenges and opportunities. It 13. S. Edwards and L. Latour, The need for good mental models of

software subsystems—Working group report, Proc. Seventh An-is easier to justify the investment in analysis, conceptualiza-
nual Workshop on Software Reuse, St. Charles, IL, 1995.tion, implementation, and verification of reusable software

14. W. Frakes, L. Latour, and T. Wheeler, Descriptive and prescrip-systems and components because the cost in these efforts are
tive aspects of the 3C model, Proc. Third Annual Workshop onamortized over the many uses and in their evolution. Reus-
Software Reuse, Syracuse, NY, 1990.able software design must include simultaneous considera-

15. G. W. Ernst et al., Modular verification of Ada generics, Com-tions of a number of factors including generalization and ab-
puter Languages, 16 (3/4), 259–280, 1991.straction and must take advantage of modern specification

16. G. Leavens, Modular specification and verification of object-ori-and programming language mechanisms such as objects, in-
ented programs, IEEE Software, 8 (4): 72–80, 1991.heritance, and parameterization. The potential economic ben-

17. W. F. Ogden et al., The RESOLVE framework and discipline,efits of well-designed artifacts need to be demonstrated by
ACM SIGSOFT Software Engineering Notes, 19 (4): 25–37, 1994.

convincing evidence to encourage managers to invest in reus-
18. S. H. Zweben et al., The effects of layering and encapsulation onable software construction. software development cost and quality, IEEE Trans. Soft. Eng.,

21: 1994.
19. D. Fleming, M. Sitaraman, and S. Sreerama, A practical perfor-ACKNOWLEDGMENTS

mance criterion for object interface design, Journal of Object-Ori-
ented Programming, New York: SIGS Publication, 1997.I would like to thank members of the Reusable Software Re-

20. D. E. Harms and B. W. Weide, Copying and swapping: Influencessearch Groups at The Ohio State University and at West Vir-
on the design of reusable software components, IEEE Trans. Soft.ginia University for discussions on various aspects of this
Eng., 17: 424–435, 1991.work. In particular, my thanks are due to Bruce Weide with

21. J. Hollingsworth et al., RESOLVE components in Ada and C��,whom I have had several conversations regarding the specific
ACM SIGSOFT Soft. Eng. Notes, 19 (4): 52–63, 1994.contents of this paper. I gratefully acknowledge the financial

22. M. Sitaraman, A class of programming language mechanisms tosupport for this research from:
facilitate multiple implementations of a specification, Proc. Inter-
national Conference on Computer Languages, Los Alamitos: IEEE

• The National Science Foundation under grant CCR- Computer Society Press, 1992, pp. 182–191.
9204461. 23. S. Sreerama, D. Fleming, and M. Sitaraman, Graceful object-

• The Advanced Research Projects Agency of the Department based performance evolution, Software—Practice & Experience,
1997.of Defense under ARPA contract number DAAH04-94-G-

590 SOFTWARE REVIEWS

24. M. Sitaraman, L. R. Welch, and D. E. Harms, On specification of
reusable software components, Int. J. Software Eng. Knowledge
Eng., 3 (2): 207–219, 1993.

25. S. H. Zweben, W. D. Heym, and J. Kimmich, Systematic testing
of data abstractions based on software specifications, J. Software
Testing, Verification, and Reliability, 1 (4): 39–55, 1992.

26. J. M. Wing, A specifier’s introduction to formal methods, IEEE
Computer, 23 (9): 8–24, 1990.

27. B. W. Weide et al., Characterizing observability and controllabil-
ity of software components, Proc. Fourth Int. Conf. on Software
Reuse, Los Alamitos: IEEE Computer Society Press, 1996, pp.
62–71.

28. G. Booch, Software Components with Ada: Structures, Tools, and
Subsystems, Menlo Park, CA: Benjamin–Cummings, 1997.

29. D. Garlan and D. E. Perry (eds.), Introduction to the special issue
on software architecture, IEEE Trans. Soft. Eng., 21: 269–274,
1995.

30. S. J. Mellor and R. Johnson (eds.), Object methods, special issue
on patterns, and architectures, IEEE Software, 14 (1): 1997.

31. V. Kozaczynski and J. Q. Ning, (Moderators), Panel on compo-
nent-based software engineering, Proc. Fourth Int. Conf. on Soft-
ware Reuse, Los Alamitos: IEEE Computer Society Press, 1996,
pp. 236–241.

32. R. Prieto-Diaz and G. Arango (eds.), Domain Analysis and Soft-
ware Systems Modeling, Los Alamitos: IEEE Computer Society
Press, 1991.

33. D. Batory and B. J. Geraci, Composition validation and subjectiv-
ity in GenVoca generators, IEEE Trans. Soft. Eng., 23: 67–82,
1997.

34. W. B. Frakes and T. Pole, An empirical study of representation
methods for reusable software components, IEEE Trans. Soft.
Eng., 20: 617–630, 1994.

35. B. W. Weide, J. Hollingsworth, and W. Heym, Reverse engi-
neering of legacy code exposed, Proc. 17th Int. Conf. on Soft. Eng.,
New York: ACM, 1995, pp. 327–331.

36. W. Tracz, Confessions of a Used-Program Salesman, Reading, MA:
Addison–Wesley, 1995.

37. J. Poulin, Measuring Software Reuse: Principles, Practices, and
Economic Models, Reading, MA: Addison–Wesley, 1997.

MURALI SITARAMAN

West Virginia University

