
SOFTWARE RELIABILITY 565

SOFTWARE RELIABILITY

SOFTWARE RELIABILITY CONCEPTS

Computers are being used in diverse areas for various appli-
cations, for example, air traffic control, nuclear reactors, air-
craft, real-time military, industrial process control, automo-
tive mechanical and safety control, and hospital patient
monitoring systems. As the functionality of computer opera-
tions becomes more essential and complicated in our modern
society and critical software applications increase in size and
complexity, the reliability of computer software becomes more
important, and faults in software design become more subtle.
A computer system comprises two major components, hard-
ware and software. Although extensive research has been
done in the area of hardware reliability, the growing impor-
tance of software dictates that the focus shift to software re-
liability. Software reliability is different from hardware relia-
bility in the sense that software does not wear out or burn
out. The software itself does not fail. Rather, flaws within the
software can possibly cause a failure in its dependent system.

In recent years, the costs of developing software and the
penalty costs of software failures are the major expenses in
a system (1). A research study has shown that professional
programmers average six software defects for every 1000
lines of code (LOC) written. At that rate, a typical commercial
software application of 350,000 LOC can easily contain over
2,000 programming errors including memory-related errors,
memory leaks, language-specific errors, errors calling third-
party libraries, extra compilation errors, standard library er-
rors, and so on. As software projects become larger, the rate
of software defects indeed increases geometrically. Finding
software faults is extremely difficult and also very expensive.
A Microsoft study shows that it takes an average of 12 pro-
gramming hours to find and fix a software defect. At this rate,
it can take over 24,000 h (or 11.4 work years) to debug a pro-
gram of 350,000 LOC at a cost of over one million dollars.

Software errors have caused spectacular failures and led
to serious consequences in our daily lives. Several examples
are as follows. On March 31, 1986 a Mexicana Airlines Boeing
727 airliner crashed into a mountain because the software
system did not correctly negotiate the mountain position.
From March through June of 1986, the massive Therac-25
radiation therapy machines in Marietta, Georgia; Boston,
Massachusetts; and Tyler, Texas overdosed cancer patients,
apparently because the computer program controlling the
highly automated devices was flawed. On September 17, 1991
a power outage at the AT&T switching facility in New York
City interrupted service to 10 million telephone customers for
nine hours. The problem was the deletion of three bits of code
in a software upgrade and failure to test the software before
its installation in the public network. On October 26, 1992
the computer-aided dispatch system of the Ambulance Service
in London, which handles more than 5000 requests each day
to transport patients in emergency situations, broke down
right after installation. This led to serious consequences for
many critical patients.

Recently, an inquiry revealed that a software design error
and insufficient software testing caused an explosion that
ended the maiden flight of the European Space Agency’s
(ESA) Ariane 5 rocket less than 40 s after liftoff on June 4,
1996. The problems occurred in the Ariane 5’s flight control
system and were caused by a few lines of Ada code containing

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

566 SOFTWARE RELIABILITY

three unprotected variables. One of these variables pertained apply them. A survey conducted by the American Society for
Quality Control (ASQC) reported in the late 1990s that onlyto the rocket launcher’s horizontal velocity. A problem oc-

curred when the ESA used the same software for the inertial- 4% of the survey participants responded positively when
asked if they use a software reliability model.reference flight-control system in the Ariane 5 that it used in

the Ariane 4. The Ariane 5 has a high initial acceleration and Many researchers are currently pursuing the development
of statistical models that can be used to evaluate the reliabil-a trajectory that leads to a horizontal velocity acceleration

rate five times that found in Ariane 4. Upon liftoff, the Ariane ity of real-world software systems. To develop a useful soft-
ware reliability model and to make sound judgments when5’s horizontal velocity exceeded a limit that was set by the old

software in the backup inertial-reference system’s computer. using the model, one needs an in-depth understanding of how
software is produced; how errors are introduced; how softwareThis stopped the primary and backup inertial-reference sys-

tem computers, which caused the rocket to veer off course and is tested; how errors occur; and types of errors. Environmen-
tal factors can help us in justifying the reasonableness of theultimately explode.

Generally, software faults are more insidious and much assumptions, the usefulness of the model, and the applicabil-
ity of the model under a given user environment. In othermore difficult to handle than are physical defects. In theory,

software can be made that is error free, and unlike hardware words, these models would be valuable to software develop-
ers, users, and practitioners if they can use information aboutcomponents, software does not degrade or wear out but it does

deteriorate. The deterioration here, however, is not a function the software development process, incorporating the environ-
mental factors, and can give greater confidence in estimatesof time. Rather, it is a function of the side effects of changes

made to the software in the maintenance phase by correcting based on small numbers of failure data.
latent defects, modifying the code to changing requirements

Why It Costs Too Much. Back in early 1970s when comput-and specifications, environments, and applications, or improv-
ers were first used in the business world, storage space wasing software performance. All design faults are present from
at a premium, and the use of a two-digit convention to repre-the time the software is installed in the computer. In princi-
sent the year seemed appropriate. For example, a date suchple, these faults could be removed completely. Yet the goal of
as April 20, 1998 is typically represented in software as YY/perfect software remains evasive. Computer programs, which
MM/DD, or 98/04/20. Thus January 1, 2000 will look like 00/vary for fairly critical applications between hundreds and mil-
01/01, which many computers will interpret as January 1,lions of lines of code, can make the wrong decision because
1900. The Year 2000 Problem is a major software problemthe particular inputs that triggered the problem had not been
of the twentieth century and is very widespread. It affectstested during the testing phase when faults could have been
hardware, embedded firmware, languages and compilers, op-corrected. Such inputs may even have been misunderstood or
erating systems, nuclear power plants, air traffic control, se-unanticipated by the designer who either correctly pro-
curity services, database-management systems, communica-grammed the wrong interpretation or failed to take the prob-
tions systems, trasaction processing systems, bankinglem into account altogether. These situations and other such
systems, and medical systems. Because the government willevents have made it apparent that we must estimate the re-
have to change an estimated 15 billion lines of code to copeliability of the software systems before putting them into op-
with the Year 2000 Problem, the work may cost up to $30eration.
billion and worldwide cost could approach $600 billion. ThisThis article is divided into three sections. The first section
estimate, however, reflects only conversion costs and may notprovides the basic concepts of software reliability and testing,
include the cost of replacing hardware and testing and up-the general characteristics of software reliability including
grading systems.software definitions, software life cycle, software vesus hard-

ware reliability, software verification and validation, and data
Basic Definitions and Terminologiescollection and analysis. The second section presents several

existing software reliability models based on a nonhomoge- Let us define the following definitions, terms, and other re-
neous Poisson process. The last section presents a new soft- lated software reliability engineering terminologies.
ware reliability model, which considers environmental fac-
tors, and its application illustrating the model. Operational Profile. The set of operations that the software

can execute given the probabilities of their occurrence.
Software Reliability Engineering Concepts Software Availability. The probability that a system is not

down due to a software fault.Research activities in software reliability engineering have
Software Defect. A generic term referring to a fault or abeen conducted during the past 25 years, and more than 50

failure.statistical models have been proposed for estimating software
Software Error. An error made by a programmer or de-reliability (2). Most existing models for predicting software

signer, such as a typographical error, an incorrect nu-reliability are based purely on observation of failures of the
merical value, an omission, etc.software product. These models also require considerable

numbers of failure data to obtain an accurate reliability pre- Software Failure. A failure that occurs when the user per-
diction. Information concerning the development of the soft- ceives that the software ceases to deliver the expected
ware product, the method of failure detection, environmental result with respect to the specification input values. The
factors, etc., however, are ignored. user may need to identify the severity levels of failures,

Nevertheless, not many practitioners, developers, or soft- such as catastrophic, critical, major, and minor, de-
ware users use these models to evaluate the reliability of com- pending on their impacts to the systems. Severity levels

may vary from one system to another and from applica-puter software because they do not know how to select and

SOFTWARE RELIABILITY 567

tion to application. Typically the severity of a software products is unknown. Therefore, detecting and correcting a
serious software defect would entail recalling hundreds ofsystem effect is classified into the four following cate-

gories: thousands of products.
Catastrophic: This category is for disastrous effects,

Software Versus Hardware Reliabilitysuch as loss of human life or permanent loss of prop-
erty, for example, the effect of an erroneous prescrip- The development of hardware reliability theory has a long
tion of medication or an air-traffic controller error. history and hardware reliability has improved greatly while

Critical: This category is for disastrous but restorable the size and complexity of software applications have in-
damage. It includes damage to equipment where no creased. In hardware reliability, the mechanism of failure oc-
human life is hurt or where there is major but cur- currence is often treated as a black box. Emphasis is on the
able illness or injury. analysis of failure data. In software reliability, one is inter-

ested in the failure mechanism. The emphasis is on the mod-Major: This category is for serious failures of the soft-
el’s assumptions and the interpretation of parameters. Hard-ware system where there is no physical injury to peo-
ware reliability encompasses a wide spectrum of analysesple or other systems. Included in this category might
that strive systematically to reduce or eliminate system fail-be erroneous purchase orders or the breakdown of a
ures which adversely affect product performance. Reliabilityroad vehicle.
also provides the basic approach for assessing safety and riskMinor: This category is reserved for faults that lead to
analysis. The consequence of these considerations is that soft-marginal inconveniences to a software system or its
ware quality and reliability must be built into software dur-users. Examples might be a vending machine that
ing the developmental process.momentarily cannot provide change or a bank’s com-

Software reliability strives systematically to reduce orputer system that is down when a consumer requests
eliminate system failures which adversely affect performancea balance.
of a software program. Software systems do not degrade overSoftware Fault. An error that leads to a fault in the soft-
time unless they are modified. Although many of the reliabil-ware. Software faults can remain undetected for extended
ity and testing concepts and techniques of hardware are ap-periods of time. Often they are not detected until they
plicable to software, there are many differences. Therefore,cause software failure.
a comparison of software reliability and hardware reliability

Software Reliability. The probability that software will not would be useful in developing software reliability modeling.
fail during a mission. Table 1 shows the differences and similarities between the
Software MTTF. The expected time when the next failure two. In hardware, materials deteriorate over time. Hence, cal-
is observed due to software faults. endar time is a widely accepted index for a reliability func-

tion. In software, failures never happen if the program is notSoftware MTTR. The expected time to restore a system to
used. In the context of software reliability, time is more ap-operation upon a failure due to software faults.
propriately interpreted as the stress placed on or amount ofSoftware Testing. A verification process for software qual-
work performed by the software. The following time units areity evaluation and improvement.
generally accepted as indices of the software reliabilitySoftware Validation. The process of ensuring that the soft-
function:ware is performing the right process.

Software Verification. The process of ensuring that the Execution time: CPU time; time during which the CPU is
software is performing the process right. busy
System Availability. The probability that a system is avail- Operating time: Time the software is in use
able when needed.

Calendar time: Index used for software running 24 h a day
Run: A job submitted to the CPU

SOFTWARE DEVELOPMENT LIFE CYCLE Instruction: Number of instructions executed
Path: The execution sequence of an input

As software becomes an increasingly important part of many
different types of systems that perform complex and critical

Software Testing Concepts
functions in many applications, such as military defense, nu-
clear reactors, etc., the risk and impacts of software-caused Software is a collection of instructions or statements in a com-

puter language. It is also called a computer program, or sim-failures have increased dramatically. There is now general
agreement on the need to increase software reliability by ply a program. Upon the execution of a program, an input

state is translated into an output state. Hence, a program caneliminating errors made during software development. Indus-
try and academic institutions have responded to this need by be regarded as a function f , mapping the input space to the

output space (f: input � output), where the input space is theimproving developmental methods in the technology known
as software engineering and by employing systematic checks set of all input states and the output space is the set of all

output states. An input state can be defined as a combinationto detect errors in software during and in parallel with the
developmental process. Many organizations today make re- of input variables or a typical transaction to the program.

A software program is designed to perform specified func-ducing defects their first quality goal. The consumer electron-
ics business, however, pursues a different goal: keeping the tions. When the actual output deviates from the expected out-

put, a failure occurs. However, the definition of failure differsnumber of defects in the field at zero. When electronics prod-
ucts leave the showroom floor, the final destination of these from application to application and should be clearly defined

568 SOFTWARE RELIABILITY

Table 1. Software Reliability versus Hardware Reliability

Software Reliability Hardware Reliability

Without considering program evolution, failure rate is statistically Failure rate has a bathtub curve. The burn-in state is similar to the
nonincreasing. software debugging state.

Failures never occur if the software is not used. Material deterioration can cause failures even though the system is
not used.

Failure mechanism is studied. Failure mechanism is also studied, similar to the software.
CPU time and run are two popular indices for the reliability Calendar time is a generally accepted index for the reliability

measure. measure.
Most models are analytically derived from assumptions. Emphasis Failure data are fitted to some distributions. The selection of the un-

is on developing the model, the interpretation of the model as- derlying distribution is based on the analysis of failure data and
sumptions, and the physical meaning of the parameters. experiences. Emphasis is placed on analyzing failure data.

Failures are caused by incorrect logic, incorrect statements, or incor- Failures are caused by material deterioration, random failures, de-
rect input data. This is similar to the design errors of a complex sign errors, misuse, and environment.
hardware system.

Software reliability can be improved by increasing the testing effort Hardware reliability can be improved by improving design, better
and by correcting detected faults. Reliability tends to change con- material, applying redundancy, and accelerated life testing.
tinuously during testing periods due to the addition of problems
in new code or to the removal of problems by debugging errors.

Software repairs establish a new piece of software. Hardware repairs restore the original condition.
Software failures are rarely preceded by warnings. Hardware failures are usually preceded by warnings.
Software components have rarely been standardized. Hardware components can be standardized.
Software essentially requires infinite testing. Hardware can usually be tested exhaustively.

in specifications. For instance, a response time of 30 s could of all possible output states for a given software and input
space. As we know, different inputs have different chances ofbe a serious failure for an air traffic control system but is

acceptable for an airline reservation system. A fault is incor- being selected, and we can never be sure which inputs are
selected in the operational phase of real-world applications.rect logic, an incorrect instruction, or an inadequate instruc-

tion that, by execution, causes a failure. In other words, faults During the operational phase, some input states are executed
more frequently than others. A probability can be assigned toare the sources of failures, and failures are the realization of

faults. When a failure occurs, there must be a corresponding each input state to form the operational profile of the pro-
gram. This operational profile can be used to construct thefault in the program, but the existence of faults may not cause

the program to fail because a program never fails as long as software reliability model. This type of model is also called
the input-domain model.the faulty statements are not executed.

Software reliability is the probability that a given software
Software Life Cyclefunctions without failure in a given environmental condition

during a specified time. Another deterministic model defines A software life cycle provides a systematic approach to devel-
software reliability as the probability of successful execu- oping, using, operating, and maintaining any software sys-
tion(s) of an input state randomly selected from the input tem. The standard definition of the software life cycle as fol-
space under specified operating conditions. Another definition lows: ‘‘That period of time in which the software is conceived,
is the probability of failure-free execution of the software for developed and used.’’ A software life cycle consists of the fol-
a specified time in a specified environment. For example, an lowing five successive phases which are shown in Fig. 1:
operating system with a reliability of 95% for 8 h for an aver-
age user should work 95 out of 100 periods of 8 h without 1. Analysis
any problems. A software failure here means the inability to

2. Designperform an intended task specified by a requirement. A soft-
3. Codingware fault is an error in the program source-text, which
4. Testingcauses a software failure when the program is executed under

certain conditions. Hence a software fault is generated at the 5. Operation
moment a programmer, designer, or system analyst makes
a mistake. In the early phases of the software life cycle, a predictive

Software testing is the process of executing a program to model is needed because no failure data are available. This
find an error. A good test case is one that has a high probabil- type of model predicts the number of initial faults in the soft-
ity of finding undiscovered error(s). In software testing, it is ware before testing.
not possible, if not unrealistic, to continue testing the soft-
ware until all faults are detected and removed, because, for Analysis Phase. The analysis phase is the first step in the

software development process. It is also the most importantmost computer programs, testing of all possible inputs would
require millions of years. Therefore, failure probabilities must phase in the whole process and the foundation of building a

successful software product. A survey at the North Jerseybe inferred from testing a sample of all possible input states,
called the input space. In other words, input space is the set Software Process Improvement Network workshop in 1995

showed that, on average, about 35% of the effort in softwareof all possible input states. Similarly, output space is the set

SOFTWARE RELIABILITY 569

Figure 1. A software development life

OperationTestingCoding

Software development process

DesignAnalysis

cycle.

development projects should be concentrated in the analysis Testing Phase. Testing is the verification and validation ac-
tivity for the software product. The goals of the testing phasephase. The purpose of the analysis phase is to define the re-

quirements and provide specifications for the subsequent are (1) to affirm the quality of the product by finding and
eliminating faults in the program; (2) to demonstrate thephases and activities. The analysis phase is the foundation of

building a successful reliable software product and is com- presence of all specified functionality in the product; and (3)
to estimate the operational reliability of the software. Duringposed of three major activities: problem definition, require-

ments, and specifications. the testing phase, program components are combined into the
overall software code and testing is performed according toProblem definition develops the problem statement and the

scope of the project. It is important to understand what the a developed test (software verification and validation) plan.
During this phase, system integration of the software compo-user’s problem is and why the user needs a software product

to solve the problem. The requirement activity consists of col- nents and system acceptance tests are performed against the
requirements.lecting and analyzing requirements. Requirement collection

includes product capabilities and constraints. Requirement
Operating Phase. The final phase in the software life cycleanalysis includes a feasibility study and documentation.

is operation. The operating phase usually contains activitiesBased on the collected user requirements, further analysis is
such as installation, training, support, and maintenance.needed to determine if the requirements are feasible. After
After completion of the testing phase, the turnover of the soft-requirements, the next activity in the analysis phase is speci-
ware product is a very small part of the life cycle, but it isfications, which is transforming the user-oriented require-
quite important. It involves transferring responsibility forments into a precise form oriented to the needs of software
maintaining the software from the developer to the user byengineers.
installing the software product. Then the user is responsible
for establishing a program to control and manage theDesign Phase. The design phase is concerned with how to
software.build the system to behave as described. There are two parts

of designs: system architecture design and detailed design.
Software Verification and ValidationThe system architecture design includes system structure and

the system architecture document. System structure design is Verification and validation (V&V) are the two ways to check
the process of partitioning a software system into smaller whether the design satisfies the user’s requirements. Ac-
parts. Before subdividing the system, we need to do further cording to the IEEE Standard Glossary of Software Engi-
specification analysis, examining the details of performance neering Terminology,
requirements, security requirements, assumptions and con-
straints, and the needs for hardware and software. Detailed Software verification is the process of evaluating a system or com-

ponent to determine whether the products of a given developmentdesign is about designing the program and algorithmic de-
phase satisfy the conditions imposed at the start of that phase.tails. The activities within detailed design are program struc-
Software validation is the process of evaluating a system or com-ture, program language and tools, validation and verification,
ponent during or at the end of the development process to deter-test planning, and design documentation.
mine whether it satisfies specified requirements.

Coding Phase. Coding involves translating the design into In short, Boehm (3) expressed the difference between the soft-
the code of a programming language. It starts when the de- ware verification and software validation as follows:
sign document is base lined. Coding is composed of the follow-
ing activities: identifying reusable modules, code editing, code Verification: ‘‘Are we building the product right?’’
inspection, and final test planning. The final test plan should Validation: ‘‘Are we building the right product?’’.
be ready at the coding phase. Based on the test plan initiated
at the design phase, with the feedback of coding activities, In other words, verification checks whether the product under

construction meets the requirements definition. Validationthe final test plan should provide details of what needs to be
tested, testing strategies and methods, testing schedules, and checks whether the product’s functions are what the cus-

tomer wants.all necessary resources.

570 SOFTWARE RELIABILITY

failures as in the time-domain example, we would record two
failures in the first 1 h interval, four failures in the second
interval, one failure in the third interval, and one in the
fourth. Intervals, however, do not need to be equally spaced
for data collection. For example, if the interval for data collec-
tion is a test session, one session may last 4 h, and the next
may be 8 h. Models with assumptions that handle this situa-

Table 2. Data Recording for Time-Domain Approach

Failure Actual Failure Time Between
Records Time (minutes) Failures

1 25 25
2 55 30
3 70 15
4 95 25

tion should be considered for higher fidelity forecasts for sys-
tems with interval-domain data.

The time-domain approach always provides better accu-More often, programming is done primarily by scientists or
racy in the parameter estimates with current existing soft-engineers, who have little training in the aspects of software
ware reliability models but involves more data collection ef-development or programming skills. These people, of course,
forts than the interval-domain approach. The practitionersare highly motivated to get a program running in the shortest
must trade off the cost of data collection with the accuracytime possible. The consequence of expedited results is that
reliability level required by the model predictions.the users find the bugs in the software program after the soft-

ware product is put into operation. Although it costs the de-
veloper very little to fix faults during the development phase, NHPP SOFTWARE RELIABILITY MODELS
that is, testing phase, it would definitely cost orders of magni-
tude more to fix faults during the operating and maintenance Software reliability assessment is increasingly important in
phases. The cost of fixing an error, both in time and money, developing and testing new software products. Before newly
increases dramatically as the software life cycle progresses. developed software is released to the market, it is extensively

Verification should be integrated not only in the testing tested for errors that may have been introduced during the
phase alone but in all phases of the software development life development process. Detected errors are removed immedi-
cycle. In fact, verification is most effective and efficient when ately. In the process of debugging, however, new errors may
applied from the beginning of the development process and be introduced. Erroneous software released to the market in-
should be performed independently by a group different from curs high failure costs. Debugging and testing, on the other
the development group. hand, reduce the error content but increase the developmentIn general, validation determines the correctness of the

costs.end product, for example, code, with respect to the software
Thus, one wishes to determine when to stop testing therequirements, that is, Does the output conform with what was

software. During system testing, reliability measure is an im-required? Verification is performed at each phase and be-
portant criterion in deciding when to release the software.tween each phase of the development life cycle. It determines
Several other criteria, such as number of remaining errors,that each phase and subphase product is correct, complete,
failure rate, or total system cost may also be used to deter-and consistent with itself and with its predecessor product.
mine optimal testing time (4).

In this section, we define a nonhomogeneous Poisson pro-Data Analysis
cess (NHPP). Allowing both the error content function and

Traditionally, there are two commonly types of failure data, the error detection rate to be time-dependent, a generalized
time-domain data and interval-domain data. These types of software reliability model based on NHPP and an analyticaldata are usually used by practitioners when analyzing and

expression for the mean value function are presented. Severalpredicting reliability applications. Some software reliability
existing NHPP models are also summarized. An NHPP is amodels can handle both types of data. The time domain ap-
realistic model for predicting software reliability and has aproach involves recording the individual times at which fail-
very interesting and useful interpretation in debugging andure occurred. This approach is illustrated in Table 2. The first
testing the software.failure occurred 25 min into the test, the second 55 min into

the test, the third at 70 min, and the fourth at 95 min. Some
Notationmodels may require obtaining the time between failures in
m(t) expected number of error detected by time t (‘‘meanlieu of the actual failure time. From this example, the values

value function’’)25, 30, 15, and 25 should be used as the time-domain data set.
N(t) random variable representing the cumulative num-The interval-domain approach is characterized by counting

ber of software errors detected by time tthe number of failures occurring during a fixed period (e.g.,
�(t) the intensity functiontest session, hour, week, day). Using this method, the col-
y(t) actual values of N(t) [yi :� y(ti)]lected data are a count of the number of failures in the inter-
Sj actual time at which the jth error is detectedval. This approach is illustrated in Table 3. Using the same

reliability during (t, t � s] given that the last error
R(s/t) occurred at time t

Nonhomogeneous Poisson Processes

The counting process �N(t), t 0� that represents the cumula-
tive number of software errors detected by time t is an NHPP
process. Basic assumptions about that counting process lead
to the commonly accepted conclusion that, for any fixed t
0, N(t) is Poisson-distributed with a time-dependent Poisson

Table 3. Data Recording for Interval-Domain Approach

Time Observed Number Cumulative Number
(h) of Failures of Failures

1 2 2
2 4 6
3 1 7
4 1 8

SOFTWARE RELIABILITY 571

parameter m(t), the so-called mean value function. The main ent assumptions, the model ends up with different functional
issue in the NHPP model is to determine an appropriate forms of the mean value function. The mean value function
mean value function to denote the expected number of fail- must be defined analytically. This is usually done by express-
ures experienced up to a certain time. The NHPP model is ing the mean value function as a function of two other func-
based the following assumptions: tions, the error content a(t) and the error detection rate b(t).

By making assumptions about the analytical behavior of
• The failure process has an independent increment, that these two functions, a(t) and b(t) are then defined as functions

is, the number of failures during the time interval (t, of time with one or more free parameters. Some of these pa-
t � s] depends on the current time t and the length of rameters might be determined through mathematical or
time interval s and does not depend on the past history physical inferences. In most cases, however, these parameters
of the process. have to be inferred statistically. The derivation of the general-

ized mean value function is presented next. Most of the ex-• The failure rate of the process is given by
isting NHPP models for the mean value function build upon
the assumption that the error detection rate is proportional
to the residual error content (5–9). Pham and Nordmann (10)

P{exactly 1 failure in (t, t + �t)} = P[N(t + �t) − N(t) = 1]

= λ(t)�t + o(�t)
recently formulated a generalized NHPP software reliability
model and provide an analytical expression for the meanwhere �(t) is the intensity function.
value function. The generalized form for the mean value func-• During a small interval �t, the probability of more than
tion can be obtained by solving the following equations (10):one failure is negligible, that is,

P{2 or more failures in (t, t + �t)} = o(�t) ∂m(t)
∂t

= b(t)[a(t) − m(t)] (4)

• The initial condition is N(0) � 0.
with the initial condition

On the basis of these assumptions, the probability that ex-
actly n failures occurring during the time interval (0, t) for m(t0) = m0
the NHPP is given by

where
Pr{N(t) = n} = [m(t)]n

n!
e−m(t), n = 0, 1,2, . . . (1)

a(t) � total error content at time t
where b(t) � error detection rate per error at time t.

In the simplest model, the two functions a(t) and b(t) are con-m(t) = E[N(t)] =
∫ t

0
λ(s)ds (2)

stants. This model is known as the Goel–Okumoto NHPP
model (7). A constant a(t) stands for the assumption that noIt can be shown that the mean value function m(t) is nonde-
new errors are introduced during the debugging process (per-creasing.
fect debugging). A constant b(t) implies that the proportional
factor relating the error detection rate �(t) to the total numberReliability Function. The reliability R(t), defined as the
of remaining errors is constant. Many existing models de-probability that there are no failures in the time interval (0,
scribe perfect debugging, that is, a(t) � a, with a time-depen-t), is given by
dent error detection rate b(t). Other studies deal with an im-
perfect debugging process and a constant error-detection rate
b(t) � b.

R(t) = P{N(t) = 0}
= e−m(t)

In the generalized model, the functions a(t) and b(t) are
both functions of time, and for practical purposes both of themIn general, the reliability R(x/t), the probability that there are
are increasing with time. An increasing a(t) shows that theno failures in the interval (t, t � x), is given by
total number of errors (including those already detected) in-
creases with time because new errors are introduced during
the debugging process. An increasing proportional factor b(t)

R(x|t) = P{N(t + x) − N(t) = 0}
= e−[m(t+x)−m(t)] (3)

indicates that the error detection rate usually increases as
debuggers establish more and more familiarity with theand its density is given by
software.

The general solution for the mean value function m(t) off (x) = λ(t + x)e−[m(t+x)−m(t)]

Eq. (4) can be obtained using the techniques of differential
equations and is given as follows (10):

A Generalized NHPP Software Reliability Model

The mean value function represents the expected number of
software errors that have accumulated up to time t. In mathe-
matical functions, then m(t) � E[N(t)]. Therefore, with differ-

m(t) = e−B(t)

[
m0 +

∫ t

t0

a(s)b(s)eB(s) ds

]
(5)

572 SOFTWARE RELIABILITY

where cal solutions for the function m(t). For given the two func-
tions a(t) and b(t), the mean value function m(t) can be easily
obtained by using Eq. (5). Following is a summary of the
NHPP models for the mean value functions appearing in the

B(t) =
∫ t

t0

b(s) ds

current literature (Table 4) (11).

and t0 is the time to begin the debugging process.
In the following, we assume that m(0) � 0, which means

PARAMETER ESTIMATIONthat no errors are yet detected at time t � 0, the starting
point of the debugging process. Unfortunately, the cumber-

Parameter estimation is of primary importance in softwaresome integration in the previous equation cannot be elimi-
reliability prediction. Once the analytical solution for m(t) isnated by an algebraic exercise, unless particular function
known for a given model, the parameters in this solution havetypes are specified for a(t) and b(t). Simple functional rela-
to be determined. Parameter estimation is achieved bytionships yield solutions that are not complex but less realis-
applying a technique of the maximum likelihood estimatetic. More elaborate functions yield more complex but more re-
(MLE), the most important and widely used estimation tech-alistic results. Depending on how elaborate a model one
nique. Depending on the format in which test data are avail-wishes to obtain, imposing more or less restrictions on the

functions a(t) and b(t) will yield more or less complex analyti- able, two different approaches are frequently used. A set of

Table 4. NHPP Software Reliability Models and Their Mean Value Functions (MVFs) (11)

Model Name Model Type MVF [m(t)] Comments

Goel–Okumoto (G–O) (7) Concave m(t) � a(1 � e�bt) Also called exponential model
a(t) � a
b(t) � b

Delayed S-shaped S-shaped m(t) � a[i � (1 � bt)e�bt] Modification of G–O model to make it S-shaped
SRGM (5)

Inflection S-shaped Concave m(t) �
a(1 � e�bt)
1 � �e�bt Solves a technical condition with the G–O model; be-

SRGM (5) comes the same as G–O if � � 0
a(t) � a

b(t) �
b

1 � �e�bt

Gompertz S-shaped m(t) � a(bc�) Used by Fujitsu, Numazu Works

Pareto Concave Assumes failures have different failure rates, and failurem(t) � a�1 � �1 �
t
��1���

with highest rate is removed first
Weibull Concave m(t) � a(1 � e�btc

) Same as G–O when c � 1
Yamada exponential Concave m(t) � a�1 � e�r�[1�e(��t)]� Attempt to account for testing effort

a(t) � a
b(t)r��te��t

Yamada Rayleigh S-shaped Attempt to account for testing effortm(t) � a�1 � e�r�[1�e(��t
2
/2)]�

a(t) � a
b(t) � r��te��t2/2

Yamada imperfect de- S-shaped m(t) �
ab

� � b
(e�t � e�bt) Assumes exponential fault content function and constant

bugging model 1 error detection rate
a(t) � ae�t

b(t) � b

Yamada imperfect de- S-shaped Assumes constant introduction rate � and error detectionm(t) � a(1 � e�bt)�1 �
�
b�� �at

bugging model 2 rate
a(t) � a(1 � �t)
b(t) � b

m(t) �

a(1 � e�bt)�1 �
�
b�� �at

1 � �e�btPham–Nordmann (10) S-shaped and Assumes introduction rate is a linear function of testing
concave time, and the error detection rate function is nonde-

a(t) � a(1 � �t)
creasing with an inflectional S-shaped model

b(t) �
b

1 � �e�bt

Pham–Zhang (11) S-shaped and Assumes introduction rate is an exponential function ofm(t) �
1

(1 � �e�bt) �(c � a)(1 � e�bt)
concave the testing time, and the error detection rate is nonde-

creasing with an inflectional S-shaped model�
ab

b � �
(e��t � e�bt)�

a(t) � c � a(1 � e�1�t)

b(t) �
b

1 � �e�bt

SOFTWARE RELIABILITY 573

failure data is usually collected in one of two common ways ADVANCES IN SOFTWARE RELIABILITY MODELS WITH
ENVIRONMENTAL FACTORSand is discussed next.

The software reliability models which use testing time onlyType 1 Data: Interval-Domain Data. Assume that the data
as an influencing factor may not be appropriate for a softwareare given for the cumulative number of detected errors yi in a
reliability assessment. It is necessary to develop a softwaregiven time-interval (0, ti) where i � 1, 2, . . ., n and 0
 t1

reliability model which incorporates the environmental fac-t2
 . . .
 tn. Then the log likelihood function (LLF) takes
tors during the development of the software systems. Severalon the following form:
researchers (12–14) have indicated that many environmental
factors, such as programmer’s skill, programming language,
programming techniques, reuse of existing code, mentalLLF =

n∑
i=1

(yi − yi−1) · log[m(ti) − m(ti−1)] − m(tn)

stress, and human nature, have some influence on error char-
acteristics. They need to be incorporated into the software re-

Thus the maximum of the LLF is determined by the following liability model to predict an accurate reliability measure-
system of equations: ment. In this section, a generalized software reliability model

that incorporates environmental factors is presented (15).

A Generalized Model With Environmental Factors0 =
n∑

i=1

∂

∂θ
m(ti) − ∂

∂θ
m(ti−1)

m(ti) − m(ti−1)
(yi − yi−1) − ∂

∂θ
m(tn)

A newly developed software reliability model that considers
environmental factors by combining the proportional hazard

where � is one of the unknown parameters, is to be substi- model (16) and an existing software reliability model is dis-
tuted. cussed in this section. Such factors are, for example, the com-

Using the observed failure data (ti, yi) for i � 1, 2, . . ., n, plexity metrics of the software, the development and environ-
we can use the mean value function m(ti) to determine the mental conditions, the effect of mental stress and human
expected number of errors to be detected by a future time ti nature, the level of the test-team members, and the facility
where i � n � 1, n � 2, etc. level during testing. The proportional hazard model has been

widely used in medical applications to estimate the survival
Type 2 Data: Time-Domain Data. Assume that the data are times of patients.

given for the occurrence times of the failures or the times of Based on the proportional hazard model, let us consider
successive failures, that is the realization of random vari- the failure intensity function of a software system as the
ables Sj for j � 1, 2, . . ., n. Given that the data provide n product of an unspecified baseline failure intensity �0(t), a
successive times of observed failures sj for 0 � s1 � s2 � � � � function that only depends on time, and an exponential func-
� sn, we can convert these data into the time between fail- tion term incorporating the effects of a number of environ-
ures xi where xi � si � si�1 for i � 1, 2, . . ., n. Given the mental factors. The basic assumption of this model is that the
recorded data on the time of failures, the log likelihood func- ratio of the failure intensity functions of any two errors ob-
tion takes on the following form: served at any time t associated with any environmental factor

sets z1i and z2i is a constant with respect to time and they are
proportional to each other. In other words, �(ti; z1i) is directly
proportional to �(ti; z2i).

LLF =
n∑

i=1

log[λ(si)] − m(sn)

A generalized failure intensity function of the software re-
liability model that considers environmental factors can beThe MLE of unknown parameters � � (�1, �2, . . ., �n) can be
written asobtained by solving the following equations:

λ(ti; zi) = λ0(ti)e
(
∑m

j=1 β j z ji) (6)

where
0 =

n∑
i=1

∂

∂θ
λ(Si)

λ(Si)
− ∂

∂θ
m(Sn)

zji is an environmental factor j of the ith errorwhere
�j is the regression coefficient of the jth factor
ti is the failure time between the (i � 1)th error and ith er-

ror, i � 1, 2, . . ., nλ(t) = ∂

∂t
m(t)

zi is the environmental factor of the ith error
m is the number of environmental factorsand for � every of the unknown parameters is to be substi-

tuted.
The equations to be solved for the MLE of the system pa- It is easy to see that �0(t) is a baseline failure intensity func-

tion that represents the failure intensity when all environ-rameters are nonlinear. To make use of the iterative Newton
method, the author developed an Excel-macro, called FREE- mental factor variables are set to zero.

Let Z be a column vector consisting of the environmentalME, that computes the maximum likelihood estimates of free
parameters for an arbitrary mean value function of a given factors and B be a row vector consisting of the corresponding

regression parameters. Then the above failure intensityset of test data.

574 SOFTWARE RELIABILITY

model can be rewritten as equations simultaneously:

λ(t;Z) = λ0(t)e(BZ) (7)

Therefore, the reliability of the software systems can be writ-
ten, in a general form, as follows:

n∑
i=1

∂

∂αk
[λ0(ti)]

λ0(ti)
+ e(

∑m
j=1 β j z ji)

∂

∂αk
[R0(ti)]

R0(ti)

 = 0

for k = 1, 2, . . ., p

n∑
i=1

zsi{1 + e(
∑m

j=1 β j z ji) ln[R0(ti)]} = 0 for s = 1, 2, . . ., m

Environmental Factor Estimation Using Maximum Partial

R(t; Z) = e− ∫ t
0 λ0 (s)eBZ ds

=
[
e− ∫ t

0 λ0 (s) ds
]e(BZ)

= [R0(t)]eBZ

(8)

Likelihood Approach

where R0(t) is the time-dependent software reliability. According to the idea of Cox’s proportional hazard model, we
The pdf of the software system is given by can use the maximum partial likelihood method to estimate

environmental factors without assuming any specific distribu-
tions about the failure data and estimating the baseline fail-
ure intensity function. The only basic assumption of this

f (t; Z) = λ(t; Z) · R(t; Z)

= λ0(t)eBZ[R0(t)]eBZ (9)

model is that the ratio of the failure intensity functions of
any two errors observed at any time t associated with anyThe regression coefficient B can be estimated, using either
environmental factor sets z1i and z2i is constant with respectthe MLE method or the maximum partial likelihood ap-
to time and they are proportional to each other.proach, which is discussed later, without assuming any spe-

First we estimate the environmental factor parameterscific distributions about the failure data and estimating the
based on the partial likelihood function. The partial likelihoodbaseline failure intensity function.
function of this model is given by

Environmental Factors Estimation Using MLE

Assume that there are p unknown parameters in the baseline
L(B) =

n∏
i=1

e(β1 z1i+β2z2i+···+βmzmi)∑
k∈Ri

e(β1z1k+β2z2k+···+β1z1k)
(11)

failure intensity function �0(t), say, �1, �2, . . ., �p and there
are m environmental factors �1, �2, . . ., �m. Let A � (�1, �2, where Ri is the risk set at ti. Take the derivatives of the log
. . ., �p) be a set of unknown parameters �1, �2, . . ., �p and partial likelihood function with respect to �1, �2, . . ., �m, and
B be a set of �1, �2, . . ., �m. Then the likelihood function is let them equal to zero. Therefore, we can obtain all of the
given by estimated �s by solving these equations simultaneously using

numerical methods. After estimating the factor parameters
�1, �2, . . ., �m, the remaining task is to estimate the un-
known parameters of the baseline failure intensity function
�0(t).

L(A,B) =
n∏

i=1

f (ti; zi)

=
n∏

i=1

{
λ0(ti)e

(
∑m

j=1 β j z ji)[R0(ti)]
e(

∑m
j=1 β j z ji)

} (10)

Enhanced Proportional Hazard Jelinski–Moranda Model

The Jelinski–Moranda (JM) (17) model is one of the earliestThe log likelihood function is given by
models developed for predicting software reliability. The fail-
ure intensity of the software at the ith failure interval of this
model is given by

λ(ti) = φ[N − (i − 1)] i = 1, 2, . . ., N

ln L(A,B) =
n∑

i=1

ln[λ0(ti)] +
n∑

i=1

n∑
j=1

β jz ji

+
n∑

i=1

e(
∑m

j=1 β j z ji) ln[R0(ti)]

and the probability density function is given by

Taking the first partial derivatives of the log likelihood func- f (ti) = φ[N − (i − 1)]e−φ[N−(i−1)]ti
tion with respect to (m � p) parameters, we obtain

From Eq. (6), the enhanced proportional hazard JM model
(15), called the EPJM model, which is based on the propor-
tional hazard and JM model, is expressed as

λ(ti; zi) = φ[N − (i − 1)]e(
∑m

j=1 βi z ji)

∂

∂αk
[ln L(A,B)] =

n∑
i=1

∂

∂αk
[λ0(ti)]

λ0(ti)
+

n∑
i=1

e(
∑m

j=1 β j z ji)

∂

∂αk
[R0(ti)]

R0(ti)

∂

∂βs
ln L(A,B) =

n∑
i=1

zsi +
n∑

i=1

zsie
(
∑m

j=1 β j z ji) ln[R0(ti)]

and the pdf corresponding of �(ti, zi) is given by

where k � 1, 2, . . ., p and s � 1, 2, . . ., m. Setting the
previous equations equal to zero, we can obtain all the (m �
p) parameters by solving the following system of (m � p)

f (ti; zi) = φ[N − (i − 1)]e(
∑m

j=1 βi z ji)e{−φ[N−(i−1)] ti e
(
∑m

j=1 βi z ji) }

(12)

SOFTWARE RELIABILITY 575

Next, we discuss how to estimate the (m � 2) unknown pa- intensity function model has the form
rameters of the EPJM model using the MLE method and the
maximum partial likelihood approach. λ(ti; zi) = φ[N − (i − 1)]e(β1z1i+β2z2i+···+βmzmi)

= φ[N − (i − 1)]Ei
The Maximum Likelihood Method. From Eq. (12), the likeli-

hood function of the model is given by where

Ei = e(β1 z1i+β2i+···+βmzmi)

The pdf is given by

f (ti; zi) = φEi[N − (i − 1)]e−{φEi[N−(i−1)]ti}

L(B, N, φ) =
n∏

i=1

f (ti; zi)

=
n∏

i=1

(φ[N − (i − 1)]e(
∑m

j=1 βi z ji)

e{−φ[N−(i−1)]tie
(
∑m

j=1 βi z ji) })
The likelihood function is given by

The log likelihood function is given by
L(N, φ) =

n∏
i=1

(φEi[N − (i − 1)]e−{φEi [N−(i−1)]ti})

By taking the log of the likelihood function and its derivatives
with respect to N and � and setting them equal to zero, we
obtain the following equations:

ln L(B,N, φ) = n lnφ +
n∑

i=1

ln[N − (i − 1)] +
n∑

i=1

�
n∑

j=1

β jz ji

�

−
n∑

i=1

φ[N − (i − 1)]tie
∑m

j=1 (β j z ji)

Taking the first partial derivatives of the log likelihood func-
tion with respect to (m � 2) parameters �1, �2, . . ., �m, N,

∂ ln L
∂N

=
n∑

i=1

1
N − (i − 1)

−
n∑

i=1

φEiti = 0

and �, we obtain the following:
and

∂ ln L
∂φ

= n
φ

−
n∑

i=1

Ei[N − (i − 1)]ti = 0

The estimated N and � can be obtained as follows. First, the

∂ log L
∂φ

= n
φ

−
n∑

i=1

[N − (i − 1)]tie
∑m

j=1 (β j z ji)

∂ log L
∂N

=
n∑

i=1

1
[N − (i − 1)]

− φ

n∑
i=1

tie
∑m

j=1 (β j z ji)

parameter N can be obtained by solving the following equa-
and tion:

∂ ln L
∂β j

=
n∑

i=1

z ji −
n∑

i=1

φ[N − (i − 1)]tiz jie
∑m

j=1 (β j z ji)

{
n∑

i=1

Ei[N − (i − 1)]ti

}{
n∑

i=1

1
[N − (i − 1)]

}
= n

n∑
i=1

Eiti (14)

Setting all of these equations equal to zero, we can obtain the
After finding N, now the parameter � can be easily obtainedestimated (m � 2) parameters by solving the following system
and is given byequations simultaneously using a numerical method:

φ =

n∑
i=1

1
[N − (i − 1)]

n∑
i=1

Eiti

Applications

To illustrate the EPJM model, we use the existing software

n∑
i=1

[N − (i − 1)]tie
∑m

j=1 (β j z ji) = n
φ

n∑
i=1

1
[N − (i − 1)]

= φ

n∑
i=1

tie
∑m

j=1(β j zji)

n∑
i=1

φ[N − (i − 1)]tiz jie
∑m

j=1 (β j z ji) =
n∑

i=1

z ji

f or j − 1, 2, . . ., m (13) failure data reported by Musa (18), which is related to a real-
time command and control system. To demonstrate the use of
the EPJM model, we generate a failure-cluster factor and giveThe Maximum Partial Likelihood Method. Assume that the

baseline failure intensity has the form of the JM model. That its value, which is logically realistic based on the failure data
and consultation with several local software firms by themeans that the basic assumption of this model is satisfied and

that the ratio of the failure intensity functions of any two author.
One of the assumptions of the JM model is that the timeerrors observed at any time t associated with any environ-

mental factor sets z1i and z2i is a constant with respect to time between failures is independent. However, in many real test-
ing environments, the failure times indeed occur in a cluster,and they are proportional to each other.

Having estimated the factor parameters �1, �2, . . ., �m, that is, the failure time within a cluster is relatively shorter
than that between the clusters. The data shows that it is rea-the remaining tasks are to estimate the unknown parameters

of the baseline failure intensity function. Note that the failure sonable in that particular application. This may indicate that

576 SOFTWARE RELIABILITY

the assumption of independent failure time is not correct. We • Time intervals between occurrences of failure are inde-
pendent of each other.can enhance the JM model considering the failure-cluster fac-

tor by generating this factor based on the failure data. • Whenever a failure occurs, a corresponding fault is re-
We assume that if the present failure time compared with moved with certainty.

the previous failure time is relatively short, then some corre- • The fault that causes a failure is assumed to be instanta-
lation may exist between them. Let us define a failure-cluster neously removed, and no new faults are inserted during
factor, such as the removal of the detected fault.

• The software failure rate during a failure interval is con-
stant and is proportional to the number of faults re-
maining in the program.

zi = 1 when
ti−1

ti
≥ 7 or

ti−2

ti
≥ 5

0 otherwise

for i � 1, 2, . . . The data used in this model include both the Based on the above assumptions, the program failure rate
failure time data and the explanatory environmental factor (without environmental factors) at the ith failure interval is
data and are given in Table 5. The explanatory variable data given by
is dynamic, that is, it changes depending on the failure time.
For example, in Table 5, the time between the fourth and fifth λ(ti) = φ[N − (i − 1)], i = 1, 2, . . ., N
errors is 115 s, the time between the fifth and sixth errors is
9 s. Therefore, z5 is assigned to 0 and z6 is equal to 1. where

Jelinski–Moranda Model. The Jelinski–Moranda model (14) � � a proportional constant
is one of the earliest software reliability models. Many proba- N � the number of initial faults in the program
bilistic software reliability models are variants or extensions ti � the time between the (i � 1)th and the ith failures.
of this basic model. The assumptions in this model include
the following: The software reliability function (without environmental fac-

tors) is given by
• The program contains N initial faults which is an un-

known but fixed constant.
• Each fault in the program is independent and equally

likely to cause a failure during test.

R(ti) = e− ∫ ti
0

λ(s) ds

= e−φ[N−(i−1)]ti

Table 5. Software Failure Data with an Environmental Factor

Num Time z Num Time z Num Time z Num Time z Num Time z

2 3 0 31 36 1 61 0 1 91 724 0 121 75 1
2 30 0 32 4 1 62 232 0 92 2323 0 122 482 0
3 113 0 33 0 1 63 330 0 93 2930 0 123 5509 0
4 81 0 34 8 0 64 365 0 94 1461 0 124 100 1
5 115 0 35 227 0 65 1222 0 95 843 0 125 10 1
6 9 1 36 65 0 66 543 0 96 12 1 126 1071 0
7 2 1 37 176 0 67 10 1 97 261 0 127 371 0
8 91 0 38 58 0 68 16 1 98 1800 0 128 790 0
9 112 0 39 457 0 69 529 0 99 865 0 129 6150 0

10 15 1 40 300 0 70 379 0 100 1435 0 130 3321 0
11 138 0 41 97 0 71 44 1 101 30 1 131 1045 1
12 50 0 42 263 0 72 129 0 102 143 1 132 648 1
13 77 0 43 452 0 73 810 0 103 108 0 133 5485 0
14 24 0 44 255 0 74 290 0 104 0 1 134 1160 0
15 108 0 45 197 0 75 300 0 105 3110 0 135 1864 0
16 88 0 46 193 0 76 529 0 106 1247 0 136 4116 0
17 670 0 47 6 1 77 281 0 107 943 0
18 120 0 48 79 0 78 160 0 108 700 0
19 26 1 49 816 0 79 828 0 109 875 0
20 114 0 50 1351 0 80 1011 0 110 245 0
21 325 0 51 148 1 81 445 0 111 729 0
22 55 0 52 21 1 82 296 0 112 1897 0
23 242 0 53 233 0 83 1755 0 113 447 0
24 68 0 54 134 0 84 1064 0 114 386 0
25 422 0 55 357 0 85 1783 0 115 446 0
26 180 0 56 193 0 86 860 0 116 122 0
27 10 1 57 236 0 87 983 0 117 990 0
28 1146 0 58 31 1 88 707 0 118 948 0
29 600 0 59 369 0 89 33 1 119 1082 0
30 15 1 60 748 0 90 868 0 120 22 1

SOFTWARE RELIABILITY 577

The property of this model is that the failure rate is constant, then the reliablity of the software for the next 100 s is given
byand the software stage is unchanged during the testing.

Based on the data given in Table 5, the estimates of the
two parameters N and � using MLE are as follows: R(t137 = 100)

= 0.908394931 for z = 1 with probability = 0.20588

0.983721648 for z = 0 with probability = 0.79412
N̂ = 142

φ̂ = 3.48893 × 10−5

and therefore,
Therefore, the current reliability of the software system is
given by R(t137 = 100) = 0.95375

Similarly, the reliability of the software for the next 1000 s isR(t137) = e−φ̂[N̂−(137−1)]t137

given by
Now we want to predict the future failure behavior using only
data collected in the past after 136 errors have been found.
For example, the reliability of the software for the next 100 s
after 136 errors are detected is given by

R(t137 = 1000)

= 0.382601814 for z = 1 with probability = 0.20588

0.848637633 for z = 0 with probability = 0.79412

or

R(t137 = 1000) = 0.74021

R(t137 = 100) = e−φ̂[N̂−(137−1)]t137

= e−(0.0000348893)[142−136](100)

= 0.979284

It is worthwhile to note that one may want to consider theSimilarly, the reliability of the software for the next 1000 s is
environmental factor variables Zji as a function of time. Ingiven by
this case, a mathematical generalized form of the failure in-
tensity function is given byR(t137 = 1000) = e−(0.0000348893)[142−136](1000)

= 0.811123
λ(ti; zi) = λ0(ti)e

[
∑m

j=1 β j z ji (ti)]

Assume that we use the maximum partial likelihood ap-
The techniques discussed in the previous section can be usedproach to estimate the environmental factor parameter for
to estimate the parameters of environmental factors and thethe EPJM model. Because there is a factor in this application,
baseline failure intensity function.we can easily obtain the estimated parameter, using the sta-

tistical software package SAS:
FURTHER READING

β1 = 1.767109

There are many survey papers on software reliability that can
with a significance level of 0.0001. Then the estimates of N be read at an introductory stage. Interested readers are re-
and � are given as follows: ferred to the review papers by Ramamoorthy and Bastani

(1982), Goel (1985), and Cai (1998).
Software Reliability by H. Pham, Springer-Verlag, 1999,

Handbook of Software Reliability Engineering by M. Lyu (ed.),

N̂ = 141

φ̂ = 3.28246 × 10−5

McGraw-Hill and IEEE CS Press, 1996, the book Software-
Reliability-Engineered Testing Practice by J. Musa, McGraw-Therefore,
Hill, 1997, and Software Assessment: Reliability, Safety, Test-
ability by Friedman and Voas (Wiley, New York, 1995), are
recently new and good textbooks for students, researchers,

Ei = eβ1z1i = 5.853905235 for z = 1
1 for z = 0

and practitioners.
In addition, the edited books, Software Reliability Models:The current reliability of the software system is given by

Theoretical Developments, Evaluation, and Application, by
Malaiya and Srimani, IEEE Computer Society Press, 1991
and Software Reliability and Testing by H. Pham, IEEE Com-
puter Society Press, 1995 recently reprinted many classic and
quality papers on the subject.

R(t137) = e−φ̂E137[N̂−(137−1)]t137

= e−9.6076048.10−4t137 for z = 1

e−1.64123.10−4t137 for z = 0 This list is by no means exhaustive, but it will help readers
get started learning about the subject.Assuming that

BIBLIOGRAPHY

1. H. Pham, Fault-Tolerant Software Systems: Techniques and Appli-
cations, Los Alamitos, CA: IEEE Computer Society Press, 1992.

P(Z = 1) = 28
136

= 0.20588

P(Z = 0) = 108
136

= 0.79412

578 SOFTWARE REUSABILITY

2. H. Pham, Software Reliability and Testing, Los Alamitos, CA:
IEEE Computer Society Press, 1995.

3. B. W. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

4. H. Pham and X. Zhang, A software cost model with warranty and
risk costs, IEEE Trans. Comput., 48: 1999 (in press).

5. S. Yamada, M. Ohba, and S. Osaki, S-shaped software reliability
growth models and their applications, IEEE Trans. Reliab., R-33:
289–292, 1984.

6. S. Yamada and S. Osaki, Optimal software release policies for a
nonhomogeneous software error detection rate model, Microelec-
tron. Reliab., 26: 691–702, 1986.

7. A. L. Goel and K. Okumoto, Time-dependent error-detection rate
model for software and other performance measures, IEEE Trans.
Reliab., R-28: 206–211, 1979.

8. H. Pham, A software cost model with imperfect debugging, ran-
dom life cycle and penalty cost, Int. J. Syst. Sci., 27: 455–463,
1996.

9. M. Ohba and S. Yamada, S-shaped software reliability growth
models, Proc. 4th Int. Conf. Reliability Maintainability, Perros
Guirec, France, 1984.

10. H. Pham and L. Nordmann, A generalized NHPP software relia-
bility model, Proc. 3rd Int. Conf. Reliability and Qual. in Design,
Anaheim, CA, 1997.

11. H. Pham and X. Zhang, An NHPP software reliability model
and its comparison, Int. J. Reliab., Quality Safety Eng., 4 (3):
1997.

12. T. Furuyama, Y. Arai, and K. Iio, Fault generation model and
mental stress effect analysis, Proc. 2nd Int. Conf. Achieving Qual-
ity in Software, Venice, Italy, 1993.

13. W. W. Everett and M. Tortorella, Stretching the paradigm for
software reliability assurance, Software Qual. J., 3: 1–26,
1994.

14. H. Pham and X. Zhang, A study of environmental factors in
software development, prepared for the U.S. D.O.T. Federal Avia-
tion Administration, Atlantic City Int. Airport, NJ, October,
1998.

15. H. Pham, A generalized software reliability model with environ-
mental factors, IE Working Paper, Rutgers Univ., 1998.

16. D. R. Cox, Partial likelihood, Biometrika, 62: 1975.
17. Z. Jelinski and P. B. Moranda, Software reliability research, in

W. Freiberger (ed.), Statistical Computer Performance Evaluation,
New York: Academic Press, 1972.

18. J. D. Musa, A theory of software reliability and its applications,
IEEE Trans. Softw. Eng., SE-1: 312–327, 1975.

HOANG PHAM

Rutgers University

