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SOFTWARE QUALITY

A software product has to present several quality attributes.
Modularity has been considered one of the most important
software product quality criteria from an engineering point of
view. For instance, in Ref. 1, modularity is cited as a criterion
that can affect several software quality factors, such as effi-
ciency, flexibility, interoperability, maintainability, reusabil-
ity, and verifiability. A software product is considered modu-
lar if its components exhibit high cohesion and are weakly
coupled (2). A module has high cohesion if all of its elements
are related strongly. These elements, such as statements, pro-
cedures, or declarations, are used to achieve a common goal,
which is the function of the module. On the other hand, cou-
pling characterizes a module’s relationship to other modules
of the system. A coupling measure should gauge the level of
the interdependence of two modules (e.g., module M calls a
procedure provided by module N or accesses a variable de-
clared by module N).

Weak module coupling is considered to be a desirable qual-
ity for modular programs. This belief stems from the supposi-
tion that a module will be easier to understand, modify, test,
or reuse if it is weakly coupled with other modules. In addi-
tion, we believe that in that case an error in a module will
propagate less into other modules of a system. Moreover, a
weakly coupled module has a good chance to be less error-
prone than a strongly coupled module.

Given the importance of coupling and cohesion for software
quality, it is desirable to measure the cohesion and coupling
of a software system. By doing so, we may be able to under-
stand better the relationship between modularity (a software
engineering design and implementation criterion) and soft-
ware quality factors. Once we can measure the level of cou-
pling and cohesion of a software system, we will be able to
better characterize its quality, assess it with regard to other
systems, and predict its product quality, for example with re-
gard to maintenance costs and error-proneness.

The goal of this work is twofold. First, we are concerned
with identifying the different forms coupling can take in a
modular software system. As pointed out in Ref. 3, there are
many different kinds of coupling. Each kind of coupling may
have different effects on software quality. Second, we are en-
gaged in measuring the different kinds of coupling and evalu-
ating their effect on error-proneness (a software quality at-
tribute).

RELATED WORK

Chidamber and Kemerer (4) have proposed a suite of object-
oriented (OO) design metrics, called MOOSE metrics, which
have been validated in Ref. 5. They provide a very simple
coupling measure, called CBO. A class is coupled to another
one if it uses its member functions and/or instance variables.
CBO equals the number of classes to which a given class is
coupled. Similarly to MOOSE, MOOD (6) includes a coupling
measure, called the coupling factor. In MOOD, a class, A, is
coupled with another one, B, if A sends a message to B. Both
MOOSE and MOOD coupling measures are very simple and
only take into account message exchange among classes.

Recently, Briand et al. (7) have defined a suite of coupling
metrics for the design of OO systems. In this work a suite of
24 kinds of OO design coupling measures have been defined.
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These coupling measures take into account different kinds of
coupling that can exist in an OO-oriented design.

Regarding code coupling, in Ref. 3 eight different levels of
coupling were proposed. For each coupling level, the shared
data (parameters, global variables, etc.) are classified by the
way they are used. In a more recent work, Offutt et al. (8)
have extended the eight levels of coupling to twelve, offering
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a more detailed measure of code coupling. The coupling levels
Figure 1. An example of modular system.are defined between pairs of units, say P and Q. For each

coupling level, the call/return parameters are classified by the
way they are used. These uses are classified into computation

anduses (C uses), predicate uses (P uses), and indirect uses (I
uses). We will detail these three kinds of uses in the next
section.

Our work is inspired by Ref. 8. In addition, we have used

∀Mi = (EMi, RMi) ∈ MC, ∀Mj

= (EM j, RM j ) ∈ MC, EMi ∩ EM j = �
the measurement framework proposed in Ref. 7. In fact, our
work is complementary to that described in Ref. 7, in which Example. Figure 1 shows the type of modular system we will
OO design coupling measures were defined. Here, we are consider in this empirical study.
mainly concerned with coding coupling measures.

In this context, coupling quantifies the strength of inter-
connection between modules of the same modular system.

COUPLING OF MODULES Reference 9 states that a coupling measure must have cer-
tain properties—for example, be nonnegative, and null when

Before using the notions of software system, module, and there are no relationships among modules. Another important
modular system, let us introduce them. We adopt the basic required property is that merging modules can only decrease
definitions proposed by Briand et al. (9). coupling, so that we are encouraged to merge highly coupled

modules in a single new module.
What Is a Modular System? Before presenting in detail the set of identified module cou-

pling levels, we specify the object of study. We consider aSystem. A system S is represented as a pair �E, R�, where E
module as a collection of units, collected in a file and its asso-represents the set of elements of S and R is a binary relation
ciate header. A program unit is one or more contiguous pro-on E (R � E � E) representing the relationships between S’s
gram statements having a name by which other parts of theelements.
system can invoke it (e.g., procedure, function, method). We
consider in our example that all modules are written in theExample. E represents the set of code statements and decla-
C/C�� programming language.rations and R the set of control flows from one statement to

A good software system should exhibit low coupling be-another.
tween units in different modules. Coupling increases the in-
terconnections between the two units (and thus the two mod-Module. A module M of S is a pair �EM, RM�, where EM is a
ules) and increases the probability that a fault in one unitsubset of E and RM is a subset of EM � EM and of R.
will affect other connected units. In our context, we are inter-
ested in identifying possible interconnections between twoExample. A module M could represent a code segment, a
units belonging to two different modules. We have to defineprocedure, a set of such procedures packaged in the same file,
different interconnection levels between two units m and n ofor a class.
two modules M and N. The architecture of such a system is
illustrating in Fig. 1.

M’s elements are connected to other system elements
by incoming and outgoing relations InputR(M) and Out- Identified Levels of a Module’s Coupling
putR(M):

We distinguish between different kinds of module intercon-
nections. Figure 2 shows this. If the modules are to be usedInputR(M) ={(e1, e2) ∈ R|e2 ∈ EM and e1 ∈ E − EM}

= set of relationships from elements outside

M to those inside M

OututR(M) ={(e1, e2) ∈ R|e1 ∈ EM and e2 ∈ E − EM}
= set of relationships from elements inside

M to those outside M

Modular System. A modular system is a 3-tuple S � �E, R,
MC� where S is a system and MC a collection of S’s modules
such that

Value-parameter
interconnection

Content
interconnection

No-parameter
interconnection

Module
interconnections

Common
interconnection

Unit-call
interconnection

∀e ∈ E (∃M ∈ MC (M = (EM, RM ) and e ∈ EM )) Figure 2. Module interconnection levels.
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together in a useful way, there must be some external refer- • Return-Data Interconnection. m and n are connected by
a return statement. The returned value has a C use.ences, in which the code of one module refers to a location in

another module. This reference may be to a data location de- • Stamp-Data Interconnection. A structure or a class ob-
fined in one module and used in another, as in common inter- ject in m is passed as an actual parameter to n, and it
connections. On the other hand, it may be to the entry point has a C use but no P use or I use.
of a unit (the callee) that appears in the code of one module • Scalar-Control Interconnection. Some scalar variable in
and is called from another module unit (the caller). This is m is passed as an actual parameter to n, where it has a
the case of unit-call interconnection. The distinction between P use.
different kind of modules interconnection is based on three

• Return-Control Interconnection. m and n are connected
criteria: by a return statement. The returned value has a P use.

• Stamp-Control Interconnection. A structure or a class ob-• The kind of information shared by interconnected mod-
ject in m is passed as an actual parameter to n, where itules (parameters or global areas)
has a P use.

• The type to which the shared information belongs (sca-
• Scalar-Data–Control Interconnection. Some scalar vari-lar, structure, class, etc.)

able in m is passed as an actual parameter to n, where
• What use is made of the shared information it has an I use but no P use.

• Return-Data–Control Interconnection. m and n are con-In the context of the last criterion, Ref. 8 classifies uses into
nected by a return statement. The returned value has ancomputational uses (C use), predicate uses (P use), and indi-
I use.rect uses (I use). A C use happens when a variable is used on

• Stamp-Data–Control Interconnection. A structure or athe right side of an assignment statement or in an output
class object in m is passed as an actual parameter to n,statement. A P use occurs when a variable is used in a predi-
where it has a I use but no P use.cate statement. An I use occurs when a variable is used in an

• Tramp Interconnection. A variable x in m is passed toassignment to another variable, and this latter variable is
n; n passes x to another unit p � P without having ac-then used in a predicate statement. Table 1 gives an illustra-
cessed or changed the variable. The type of x may be sca-tion of this.
lar or structure/class.

Unit-Call Interconnection. This corresponds to the case
Content Interconnection. This case occurs when the calleewhere m calls n or n calls m, with or without passing parame-

unit n of module N refers to and changes parameters passedters. In the case where m calls n, m is the caller and n the
by the caller unit m of module M. These parameters arecallee. We begin with the case where no parameters are trans-
passed by address (or reference). We identify eight kinds ofmitted from m to n.
such interconnections:No-Parameter Interconnection. Here m calls n or n calls

m. There are no passing of parameters, references to common
• Scalar-Reference Data Interconnection. The address of avariables, or common references to external media. The num-

scalar variable in m is passed as an actual parameter tober of occurrences of such interconnections, called NPI, is
n, where it has a C use.computed for each unit module, for each module, and then for

• Scalar-Reference Control Interconnection. The address ofthe entire system.
a scalar variable in m is passed as an actual parameterValue–Parameter Interconnection. The modules M and N
to n, where it has a P use.are connected through their respective units m and n. The

caller m transmit parameters to the callee n, which uses them • Scalar-Reference Data-Control Interconnection. The ad-
without modifying their values. The distinction between the dress of a scalar variable in m is passed as an actual
following interconnection scenarios is based on two criteria: parameter to n, where it has a I use but no P use.
the type of the transmitted information and the use made of • Scalar-Reference Modification Interconnection. The ad-
it. We wish to compute the number of occurrences of each dress of a scalar variable in m is passed as an actual
scenario for each module unit, for each module, and for the parameter to n, where it is modified.
whole system. • Stamp-Reference Data Interconnection. The address of a

structure/class variable in m is passed as an actual pa-
• Scalar-Data Interconnection. Some scalar variable in m rameter to n, where it has a C use.

is passed as an actual parameter to n, where it has a C
• Stamp-Reference Control Interconnection. The address of

use but no P use or I use. a structure/class variable in m is passed as an actual
parameter to n, where it has a P use.

• Stamp-Reference Data-Control Interconnection. The ad-
dress of a structure/class variable in m is passed as an
actual parameter to n, where it has a I use but no P use.

• Stamp-Reference Modification Interconnection. The ad-
dress of a structure/class variable in m is passed as an
actual parameter to n, where it is modified.

Common Interconnection. This corresponds to the case
where two modules share same global spaces. Instead of com-

Table 1. Examples of Potential Uses of x

Type of Use Examples

C use t=a*x*x�b*x;
printf(�%d\n�,x);

P use if ((x*x-4*a*c)�0)...

I use t=a*x+b;...;
while (t�0)...;
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municating with one another by passing parameters, two and units. The total coupling is computed as the sum of im-
port and export coupling.modules access and eventually change information in a global

area. We distinguish five interesting kinds of interconnection: For each module M and for the whole system, we define
the module interconnection measure of type k, MIMk as fol-

• Global-Data Interconnection. M and N share references lows:
to the same global variable. This latter is defined and
used in N, and C-used in M. It is possible that this vari-
able is not visible to the entire system.

• Global-Control Interconnection. M and N share refer-
ences to the same global variable. This latter is defined
and used in N, and P-used in M.

MIMk(M)= MIMk,imp(M)+MIMk,exp(M)

=
∑

m@ unit of M

MIMk,imp(m)+
∑

m@ unit of M

MIMk,exp(m)

MIMk(S)=
∑

M@ module of S

MIMk,imp(M)=
∑

M@ module of S

MIMk,exp(M)

• Global-Data–Control Interconnection. M and N share
references to the same global variable. This latter is de- since the modules are disjoint. Here
fined and used in N, and I-used in M, but not P-used.

• Global-Modification Interconnection. M and N share ref-
erences to the same global variable. This latter is defined
and used in N, and accessed and modified in M.

• Type Interconnection. M and N share references to the

k ∈ Modules Coupling Type

= {NPI, SDI, RDI, StDI, SCI, RCI, StCI, SDCI, RDCI,

StDCI, TI, SRDI, SRCI, SRDCI, SRMI, StRDI, StRCI,

StRDCI, StRMI, GDI, GCI, GDCI, GMI, TyI}
same user date type (UDT). This UDT is defined and used
in N, and used in M. This kind of interconnection in-
cludes what previous works called external-medium cou- EMPIRICAL VALIDATION OF COUPLING MEASURES
pling (communication through a file, etc.).

In this section, we address the empirical validation of the
The next subsection introduces the approach we have fol- suite of measures introduced in the previous section. To do
lowed to measure the identified types of module coupling. so, we use a product-metric validation (10). To better under-

stand the relationship between code coupling and softwareMeasuring Module Coupling
quality, we have investigated the use of a machine learning

In the previous subsection, we have listed and defined the algorithm to build characterization models (11).
identified types of module interconnection (MI). All these
identified MIs are disjoint, so that if MIi(M) is defined as Validation Data

In order to validate our suite of coupling measures, we haveMIi(M) ⊆ InputR(M) ∪ OutputR(M)
verified if these measures are useful to predict fault-prone
classes. To do so, we have used the data from an openthat is, the set of MI of type i in module M—then we have
multiagent system development environment. This systemMIi(M) � MIj(M) � � �i, j.
has been developed and maintained since 1993. It contains 85We will use a subset of MIi(M): MIi(m) � MIi(M) is the set
C�� modules/classes and approximately 47K source lines ofof MIs of type i in unit m of M. On the other hand, we will
C�� code (SLOC).specify, for each module interconnection type, the amounts of

In this work, we have used: (1) the source code of the C��importing and exporting relative to the total amount of cou-
classes, (2) data about these classes, (3) fault data. The faultpling. This quantifies the effect that one module’s statements
data collected correspond to concrete manifestations of the er-have on the statements of an interconnected module.
rors found by the 50 beta testers of the system on versionsFigure 3 gives an example of a modular system with the
1.1a and 1.1. Version 1.1a was delivered in January 1997, andcomputation of the import and export coupling for modules
version 1.1 in November 1996.

The actual data for the suite of measures we have proposed
were collected directly from the source code. The data prepa-
ration consisted in the extraction of seven types of facts. The
resulted fact base was then exploited by a rule-based measur-
ing system in order to infer for each module/class its associ-
ated MIMk. It is important to note here that the measures
were derived purely by static analysis. Only the classes that
were developed by the development team were utilized.
Classes reused from libraries or generated automatically by
software tools were not used in this study, due to the obvious
effects software reuse and code generators have on software
quality (5).

Validation Strategy

To validate the OO design measures as quality indicators, we

Unit m

: Unit call

For units m:
Couplingexp (m)=1;
Couplingexp (m)=2;

Coupling (m)=3 
Couplingexp (n)=1;
Couplingexp (n)=0;

Coupling (n)=1 

For modules:
Couplingexp (M)=2;
Couplingexp (M)=4;

Coupling (M)=6 
Coupling (N)=5 

For the entire system:
Coupling(system)=7

: Reference to
  a data location
  (common
  interconnection)

Unit n

M
N

P
use a binary dependent variable aimed at capturing the fault-
proneness of classes: did a fault occur in a class due to anFigure 3. An example of coupling computations in modular systems.
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operational failure? We used logistic regression (12) to ana-
lyze the relationships between our suite of measures and
class fault-proneness. Logistic regression has already been
successfully used to build software quality models and vali-
date product software metrics, for example in Refs. 13, 5,
and 7.

A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic regres-
sion model is a special case of this, where only one variable
appears):

p(x1, . . ., xn) = ea+∑
i bi xi

1 + ea+∑
i bi xi

where p is the probability that a fault occurred in a class dur-
ing software operation and the Xi’s are the coupling measures
included as explanatory variables in the model [called covari-
ates of the logistic regression equation (12)].

As in Refs. 5 and 7, we consider that an observation is the
(non)detection of a fault in a C�� class. Each (non)detection
is assumed to be an event independent of any other fault
(non)detection. Each data vector in the data set describes an
observation and has the following components: an event cate-
gory (fault, no fault) and a set of measures characterizing ei-
ther the class where the fault was detected or a class where

Table 2. Descriptive Statistics of Coupling Measures

Measure Maximum Minimum Mean Median Std. Dev.

NPI 152 0 17.52 8 28.44
SDI 11 0 1 0 2.39
SCI 18 0 0 1.34 3.36
SDCI 10 0 0.29 0 1.37
RDI 88 0 9.64 4 13.83
RCI 49 0 7.24 3 10.7
RDCI 50 0 6.1 3 9.35
StDI 2 0 0.05 0 0.31
StCI 2 0 0.05 0 0.31
StDCI 2 0 0.048 0 0.308
TI 15 0 1.59 0 3.21
SRDI 19 0 0.61 0 2.32
SRCI 19 0 0.73 0 2.40
SRDCI 0 0 0 0 0
SRMI 0 0 0 0 0
StRDI 21 0 3.09 1 4.63
StRCI 21 0 2.69 1 4.75
StRDCI 11 0 0.939 0 2.19
StRMI 8 0 0.74 0 1.73
GDI 0 0 0 0 0
GCI 0 0 0 0 0
GDCI 0 0 0 0 0
GMI 0 0 0 0 0
TyI 40 0 10.65 8 8.73

no fault was detected. For each measure, we provide the fol-
lowing statistics:

these measures using this system, that does not imply that
these measures will not add information when analyzing• The coefficient bi is the estimated regression coefficient.
other systems. In addition, we are here dealing with an OOThe larger the coefficient is in absolute value, the
software system. According to OO design guidelines (15),stronger the effect (positive or negative, according to the
global variables should not be used. Functions and proceduressign of the coefficient) of the explanatory variable on the
in a modular software system written in a procedural lan-probability p that a fault occurs in a class.
guage, such as C or Pascal, may have a higher level of cou-• �	 is based on the notion of odds ratio and represents the
pling than an OO one, due to exchange of global variables.reduction or increase in the odds ratio when the value of
Therefore, further investigation is necessary in order to as-X increases by 1 unit (14). �	 provides an insight into
sess the usefulness of these measures.the effect of explanatory variables and is more interpret-

With regard to SRDCI and SRMI and to the scalar vari-able than logistic regression coefficients.
ables used as parameters in module interchanges, it is com-

• The statistical significance (p-value) provides an insight
prehensible again that these measures present a very lowinto the accuracy of the coefficient estimates. It tells the
variance. In OO software systems, in general, we transmitreader about the probability of the coefficient being dif-
objects as parameters, not scalar variables as in proceduralferent from zero by chance. The larger the level of sig-
software systems. We can see in Table 2 that the measuresnificance, the larger the standard deviation of the esti-
Stxxx (i.e., StDRI, StRCI, StRDCI, StRMI) have a higher vari-mated coefficients, and the less believable the calculated
ance than SRDCI and SRMI, since Stxxx measures deal witheffect of the explanatory variables.
structures and objects. Again, further investigation will be
necessary to assess the importance of SRDCI and SRMI.

Results
However, we believe that SRDCI and SRMI will be exchange-
able with Stxxx: SRDCI and SRMI will be more useful whenTable 2 shows the descriptive statistics of measures extracted

from the system under study. We can see that many mea- procedural software systems are studied, and Stxxx when OO
software systems are.sures have small variance in our data set. Indeed, six mea-

sures have no variance at all. As a consequence, at least in Table 3 presents the measures that affect the predicted
probability, in the C�� class, of (not) having a fault. Table 3our data set, these measures are not likely to be useful pre-

dictors of class fault-proneness. This lack of variance may be lists only the coupling measures that have a p value smaller
than 0.05. These results have been obtained by univariate lo-explained by the fact that we are studying an OO product.

OO products usually do not have the same kind of coupling gistic regression analysis. Regarding �	 (i.e., the effect of the
measure on the probability of having a fault and the probabil-we found in a procedural code.

With regard to Gxx (i.e., GDI, GCI, GDCI, GMI) measures, ityof not having one), the eight measures listed in Table 3
appear to have a considerable effect on p. For instance, therethe application we have investigated has very few global vari-

ables. In addition, global variables have not been used as pa- is an increase of 95.50% in the odds ratio 	 when NPI in-
creases by one unit. Similarly, the measures RDI, RCI, RDCI,rameters. It is important to realize that other applications

may present different behavior. So, even we cannot validate StRDI, and TyI have odds ratios greater than 80%. That
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Table 4. Two-Class Classification Performance Matrix

Classified as

Real value No errors Errors Completeness

No errors 47 7 87%
Errors 11 20 64%
Correctness 81% 74%

Overall correctness 78.82%
Overall misclassification 21.18%

Table 3. Results from Univariate Logistic Regression

Measures Coefficient �	 p value

NPI �0.046 95.50% 0.007
RDI �0.130 87.8% 
0.001
RCI �0.092 91.21% 0.0003
RDCI �0.142 86.76% 0.0003
SRDI �1.195 30.27% 0.001
SRCI �1.160 31.34% 0.001
StRDI �0.106 89.94% 0.012
TyI �0.198 82.04% 
0.001

means that individually these five coupling measures have
prone, which could lead to an overallocation of resources topretty large effects on p.
verification and validation (i.e., to waste). Completeness is de-
fined as the percentage of those faulty C�� classes (or mod-

FAULT-PRONE PREDICTIVE MODELS ules) that were judged as fault-prone. We want to maximize
completeness, because as completeness decreases, more C��

In order to understand better the relationship between code classes (or modules) that were fault-prone are misidentified
coupling and software quality, we have built a characteriza- as not fault-prone, which leads to a shortage of resources for
tion model, which can be used to easily assess error-prone verification and validation.
modules/classes due to their level of coupling. The model- In order to calculate values for correctness and complete-
building technique that we used is a machine learning algo- ness, we used a V-fold cross-validation procedure (18). For
rithm called C4.5 (16). C4.5 induces classification models, also each observation X in the sample, a model was developed
called decision trees, from data. It is derived from the well- based on the remaining observations (sample � X). This
known ID3 algorithm (17). C4.5 works with a set of examples model is then used to predict whether observation X will have
where each example has the same structure, consisting of a errors or no errors. This validation procedure is commonly
number of attribute–value pairs. One of these attributes rep- used when data sets are small.
resents the class of the example. The problem is to determine Table 4 summarizes the quantitative results obtained with
a decision tree that, on the basis of answers to questions C4.5. As we can see, C4.5 presents good results in our exper-
about the nonclass attributes, correctly predicts the value of iment.
the class attribute. Usually the class attribute takes only the The model generated by C4.5 is composed of five rules (four
values �true, false�, or �success, failure�, or something equiv- explicit rules and a default rule). Figure 4 presents the in-
alent. duced rules. For example, rule 1 of the model can be read

The C4.5 algorithm partitions continuous attributes (in as: A class is erroneous if the no-parameters interconnection
our case the coupling measures), finding the best threshold measure is greater than 16, and the return-data control inter-
among the set of training cases to classify them on the depen- connection measure is greater than 0, and the stamp-refer-
dent variable (in our case fault–no-fault classes). Classes with ence modification interconnection measure is less or equal to
one or more faults have been classified as fault, and the other

3.
classes as no-fault. We chose this technique because the mod-

We have also investigated the usefulness of import and ex-els are straightforward to build and are also easy to interpret.
port coupling measures with regard to their capabilities toIn addition, this class of modeling techniques has been used
accurately predict/assess fault-prone classes by building twoin the software engineering literature to build software qual-
different predictive models: one using only importing mea-ity predictive models (11), and therefore there already is some
sures, and another one using only exporting measures. Tablesfamiliarity with it. Models built with C4.5 can be taken as

complementary to the models built with logistic regression,
mainly by software managers and software engineers who are
not very familiar with statistical techniques.

To evaluate the class fault-proneness characterization
model based on our coupling measures, we need criteria for
evaluating the overall model accuracy. Evaluating model ac-
curacy tells us how good the model is expected to be as a
predictor. If the characterization model based on our suite of
measures provides good accuracy, it means that our measures
are useful to identify fault-prone classes. Three criteria for
evaluating the accuracy of predictions are the predictive va-
lidity criterion, and measures of correctness and com-
pleteness.

Correctness is defined as the percentage of C�� classes (or
modules) that were deemed fault-prone and were actually
fault-prone. We want to maximize the correctness, because if
it is low, then the model is identifying many C�� classes (or

Rule 0: SRCI � 0
TYI � 7
� class error [89.9%]

Rule 1: NPI � 16
RDCI � 0
StRMI � 3
� class error [79.5%]

Rule 2: SDI � 0
StRCI � 2
StRMI � 3
� class error [64.5%]

Rule 3: NPI � 16
SRCI � 0
� class no-error [80.2%]

Default class: no-error

Figure 4. The induced model.modules) as being fault-prone when they really are not fault-
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Table 5. Fault-Prone Predictive Model Using Only Importing
Coupling Measures

Classified as

Real value No errors Errors Completeness

No errors 50 4 92%
Errors 8 23 74%
Correctness 86% 85%

Overall correctness 85.88%
Overall misclassification 14.12%

Table 7. Fault-Prone Predictive Model Using Importing
Coupling Measures and SLOC

Classified as

Real value No errors Errors Completeness

No errors 50 4 92%
Errors 9 21 70%
Correctness 84% 84%

Overall correctness 84.52%
Overall misclassification 15.48%

5 and 6 show these two models, respectively. We have found CK propose a coupling measure called coupling between object
classes (CBO), which states that class A is coupled to class Bthat the fault-prone predictive model based only on import

coupling measures (Table 5) has proved to be more accurate if A uses B’s member functions and/or instance variables.
CBO counts the classes to which a given class is coupled.than the predictive model shown in Tables 4 and 6. This re-

sult demonstrates that a class is most vulnerable to changes Then, we analyze our measures with regard to C-FOOD (7),
a suite of OO design measures specially conceived to identifyin its peers. Based on these results, we can say that one may

use only importing coupling to predict fault-prone classes. If coupling among classes. C-FOOD contains measures that can
be applied at early phases of the product life cycle (high-levelour only goal is to deal with fault-proneness, we can thus sim-

plify the data-collecting programs and analysis, and by doing OO coupling design), as well as measures that can only be
captured after the detailed design is accomplished (low-levelso we reduce by half the number of measures to be calculated.

However, exporting coupling measures might be useful to OO coupling measures).
Table 7 shows the predictive model constructed by combin-identify potential reusable classes. Classes that have a high

level of exporting coupling measures should thus be further ing our importing measures and SLOC. It is important to note
that SLOC was not selected. This means that SLOC was notanalyzed with a view to their inclusion in domain-specific

component libraries. These classes, after a careful analysis, a useful predictor of fault-prone classes when our importing
measures are available. Note also that the results are almostmay be better documented to facilitate reuse. In this work

we did not analyze classes reused from libraries, nor those the same as for the model presented in Table 5. The small
differences are due to noise in the data introduced by SLOC.generated automatically by programs. Further work is needed

to verify if exporting coupling measures are useful to identify Although SLOC was not selected as a predictor of fault-prone
classes, many papers in the literature show that this metricpotential reusable classes.
can be useful for characterizing, assessing, and predicting
other attributes of software product quality. The results pro-

COMPARISON BETWEEN OUR MEASURES vided in this work, however, show that our importing coupling
AND EXISTING MEASURES measures are better predictors of fault-prone classes than

SLOC. Figure 5 and Table 7 summarize the obtained results.
In this section we compare our measures with existing ones. Further research is needed to verify if our metrics are also
As in Selby and Porter (19), we use a machine learning algo- better predictors of other software quality attributes (e.g.,
rithm (e.g., C4.5) to select measures that are useful for pre- software maintainability) than SLOC.
dicting error-prone classes. If a measure is not selected, it was On comparing our measures with CK measures (4), we ver-
not useful as a predictor. We first compare our measures with ified that CBO was the only CK measure selected by C4.5
the SLOC measure. This measure is extremely easy to calcu- algorithm. This means that CBO (the only CK measure that
late and has been used to build several quality models by dif-
ferent software organizations, e.g., NASA, SEL, and HP.
SLOC represents the program size. In general, the larger a
program is, the greater will be the number of defects. We also
compare our measures with Chidamber–Kemmerer (CK)
measures (4), a very well-known suite of OO design measures.

Rule 0: SRCIimp � 0
� class error [89.9%]

Rule 1: RDCIimp � 3
TIimp � 0
� class error [84.3%]

Rule 2: RDCIimp � 3
SRCIimp � 0
TYIimp � 4
� class no-error [94.4%]

Rule 3: RDCIimp � 1
SRCIimp � 0
� class no-error [84.8%]

Rule 4: TIimp � 0
SRCIimp � 0
� class no-error [79.5%]

Default class: error

Figure 5. Importing measures and SLOC-induced model.

Table 6. Fault-Prone Predictive Model Using Only Exporting
Coupling Measures

Classified as

Real value No errors Errors Completeness

No errors 45 9 83%
Errors 17 14 45%
Correctness 72% 60%

Overall correctness 69.41%
Overall misclassification 30.59%
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fully tested and/or recoded in order to reduce code coupling
and, in consequence, improve software quality.

From the results provided above we can draw the follow-
ing conclusions:

• Our measures seem to be better predictors of fault-prone
classes than are existing coupling measures. The use of
other OO coupling measures did not improve the level of
accuracy of the prediction model based only on our im-
porting coupling measures.

• Our measures are better predictors of fault-prone classes
than existing size measures such as SLOC. By the re-
sults presented above, our measures are not redundant
with SLOC, which did not improve the model’s predictive
accuracy for class fault-proneness.

• Our measures can only be applied after the code is ready
for analysis, whereas other OO coupling measures can be
used at early phases of product life cycle. Therefore, our
measures seem to be more suitable for use by software
quality engineers at the maintenance/testing phase. OO
design measures such C-FOOD and the CK measure can
be used during analysis and design phases for helping
software managers to select OO designs that have a low
probability of faults. Given the fact that our measures
act on the code, they can identify other forms of coupling

Rule 0: RDIimp � 2
SRCIimp � 0
OMMEC � 60
� class no-error [96.3%]

Rule 1: RCIimp � 5
SRCIimp � 0
TYIimp � 6
AMMEC � 5
� class no-error [90.6%]

Rule 2: SRCIimp � 0
TYIimp � 6
AMMIC � 2
AMMEC � 5
� class no-error [89.9%]

Rule 3: SRCIimp � 0
� class no-error [89.9%]

Rule 4: RDCIimp � 3
TYIimp � 6
AMMEC � 5
� class err [87.1%]

Rule 5: OMMEC � 60
� class error [79.4%]

Rule 6: RDIimp � 2
RDCIimp � 3
OCMIC � 10
� class error [70.7%]

Default class: no-error

Figure 6. Model induced by importing and C-FOOD measures. that cannot be captured during analysis and design.
• The overall accuracy of the fault-proneness prediction

models provided in this work is substantially higher thancaptures coupling) appears to be useful for identifying fault-
that of other models based on other measures.prone classes due to code coupling. In fact, by the rules gener-

ated by C4.5, we have verified that in our data set, classes
with CBO greater than 14 have a higher probability of faults. CONCLUSION
However, this number cannot be used for other data sets
without a careful analysis. It is important to note that the The goals of this work are: (1) to identify the different forms
results did not improve when we used CK measures. The pre- coupling can take in a modular software system; (2) to mea-
dictive model for error-prone classes that only uses our im- sure these different forms of coupling via a mathematically
porting measures is still the better one. sound set of coupling measures; (3) to validate these mea-

We have compared our measures with C-FOOD (see the sures empirically by evaluating the effect of code coupling on
results in Fig. 6 and Table 8). These results lead one to prefer error-proneness (a software quality attribute); (4) finally, to
the C-FOOD (7) low-level design coupling measures as useful provide accurate predictive models based on these measures.
predictors of fault-prone classes. They do not, however, lead To validate our measures, we have used an industrial sys-
one to reject C-FOOD high-level design measures, since these tem. This system was implemented according to the OO para-
measures can be obtained earlier in the software product life digm. Some of our measures demonstrate a poor variance on
cycle, whereas ours can only be obtained after the imple- this system and, in consequence, could not be empirically vali-
mentation stage. Based on these results, we can argue that dated. We believe that our measures will behave differently
C-FOOD measures seem to be more suitable for helping soft- when used on procedural-oriented software systems.
ware managers decide which classes should be further in- Despite the low variance of our data set, the results of our
spected during the analysis/design phase, whereas ours are experimentation demonstrate that our measurse can predict
better to use during the validation phase to help software fault-prone classes (an index of software reliability) with
quality engineers decide which classes should be more care- higher accuracy. Three predictive models have been gener-

ated. A subset of our measures proved to be quite accurate
(92% completeness).

We intend to replicate this study using other data sets. In
this work we have used an OO software system. Further stud-
ies are necessary to verify if we will continue to obtain such
promising results using procedural code, written in C or
Pascal.
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Classified as

Real value No errors Errors Completeness

No errors 48 6 88%
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Correctness 82% 77%

Overall correctness 81.18%
Overall misclassification 18.82%
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