
548 SOFTWARE PROTOTYPING

SOFTWARE PROTOTYPING

The concept of a prototype is well known from the industrial
production world. For example, before an automobile is mass-
produced, a prototype model is developed. The prototypers are
interested in testing the functionality and performance of the
proposed vehicle, including its user interfaces, appearance,
handling, and adherence to standards. The company builds
the prototype to help ensure a satisfactory product before
tooling for mass production.

In software development, the notion of mass production is
missing; but the initial development cost of a software prod-
uct is analogous to the cost of tooling a production line. In the
software industry it is also wise to ensure that the product is
satisfactory before committing the resources of an expensive
development effort. Moreover, managing the development of
software products has proven remarkably difficult. The his-
tory of large-scale software developments is littered with ex-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

SOFTWARE PROTOTYPING 549

amples of large cost overruns, missed deadlines, and project traditional waterfall, the spiral model, an object-oriented pro-
cess, or an evolutionary process. In any case, the applicationfailures.

Software prototyping constitutes one among a number of of prototyping, including tools and methods and the prototyp-
ing goals, is profoundly affected by the choice of software pro-methods addressing the lack of predictability of large-scale

software development. Rapid software prototyping has be- cess model. Although prototyping is useful in all phases of the
waterfall and spiral process models, its application is consid-come the generic term for different techniques involving the

production and use of prototypes in the software development ered particularly appropriate as part of the early require-
ments specification and system design phases.process. The term prototyper refers to the team of specialists

who are charged with constructing a prototype. The term user A substantial proportion, typically more than 50%, of
faults discovered during software development can be tracedrefers to the customer who will eventually use the system be-

ing prototyped; the user is the domain expert who is often back to mistakes made in the requirements specification or in
the system design. Many of these faults are detected duringbest qualified to evaluate the prototype.
or even after system test. The later an error is discovered,
the more expensive it is to correct. According to (3), leaving aSUMMARY OF BENEFITS AND RISKS
requirements fault undetected until implementation can be
10 times more expensive than correcting it immediately.In the proper circumstances, the use of software prototyping
Leaving it undetected until deployment can be 50 to 200 timescan provide significant benefits to a software development
as costly. Consequently, there is a strong need to improve theproject. A survey of case studies (1) indicates that projects
quality of the requirements engineering process; this is a ma-which use evolutionary prototyping can expect reduced devel-
jor focus of prototyping methods and technology development.opment times of up to 70%. To realize the benefits, manage-

Software development is a fractal process. The notions ofment must understand the prototyping life cycle and, in par-
requirements, design, implementation, and deployment areticular, be aware of the differences between an evolutionary
replicated at many levels. It is well established that earlyand an exploratory prototype (see below). The prototyper
fault detection is quite cost-effective. Whenever requirementsmust understand the application domain and be adept at
engineering is appropriate (e.g., overall system functionality,managing reactions to a working prototype.
data modeling, component design), prototyping is a possible
requirements exploration and validation tool. Effective use of

• Reduction of development risk
prototypes will find faults early with a corresponding de-

• Reduction of development time crease in project costs.
• Improved development process visibility
• Increased customer and user participation

THE PROTOTYPING PROCESS

There are also some risks when applying prototyping methods
Regardless of where prototyping is applied in the softwareresulting in:
development process, the prototyping process should follow a
process similar to the following:

• Unrealistic development schedules and budgets
• Unrealistic user expectations 1. Identify the hypothesis to be validated.
• Poor design 2. Construct the prototype.
• Poor long-term maintainability 3. Construct the operational environment.

4. Construct validation scenarios.
THE GOALS OF SOFTWARE PROTOTYPING 5. Extract information from the scenario enactments.

6. Use this information in the development process.
A prototype is an artifact that is relatively inexpensive to
build and enables the evaluation of some hypotheses about a Whether the development then proceeds by refining the proto-
planned software product. In addition, it is desirable that the type or by constructing a completely new product distin-
artifact be executable, meaning that it is possible to subject guishes the two broad categories of software prototyping
it to operational scenarios in some automated fashion. See methods: exploratory prototyping and evolutionary proto-
Ref. 2 for a complete discussion of these concepts. typing.

The purpose of prototyping is to limit the risks associated
with a development step. A prototype should be developed

Exploratory Prototyping
with a particular hypothesis in mind and should be con-
structed to check that hypothesis. For instance, the hypothe- An exploratory prototype is created with the explicit under-

standing that it will be discarded. As Frederick Brooks (4)sis may address system functionality (would the user be satis-
fied with a certain set of functions?), usability issues (which observed regarding software development, ‘‘plan to throw one

[software system] away; you will, anyhow.’’of two user interface designs is better?), algorithmic correct-
ness (will a particular algorithm correctly evaluate the queu- To create a prototype, a subset of expected system charac-

teristics is identified, implemented relatively quickly, and in-ing load on a network node?) or resource allocation (will a
given distribution of a database handle the expected query vestigated. Exploratory prototypes are used to investigate a

variety of subsets offering different perspectives on theload?).
Prototyping is an important tool for risk assessment, planned system. Some common examples of prototype usage

include the following: (1) Users react to proposed user inter-whether the software engineering process being used is the

550 SOFTWARE PROTOTYPING

face designs, (2) system architects create functional proto- the point of being able to make modifications interactively
types using extant components, and (3) programmers explore while experimenting.
algorithm designs using experimental code. A prototype is a form of abstraction of the system under

consideration. This grants the prototyper the luxury of ignor-
Requirements Feedback. An exploratory prototype is used ing minor or troublesome features of the system being proto-

to increase understanding of a planned system and its opera- typed. In particular, a prototype often ignores the handling of
tional context. It is a learning tool for the users and the soft- exceptional circumstances (5).
ware development team. The result of a successful explor- In the case of an exploratory prototype, the prototyper
atory prototype is intended to be captured as an improved set need not be concerned with documentation, performance, or
of requirements. maintainability. The prototyper should adopt the appropriate

set of tools for the hypothesis being tested [e.g., a rapid appli-
Domain Exploration. Exploratory prototyping is particu- cation environment for functionality and a user interface edi-

larly useful for a project that lacks extant traditions for do- tor for graphical user interface (GUI) design]. Such choices
main and systems structures. Used by the planned system will usually be at the cost of overall system quality but will
users, an exploratory prototype is an excellent tool for elic- not matter since the exploratory prototype will be thrown
iting requirements. Many studies indicate that use of proto- away.
type results in increased user participation in the require-
ments definition and consequent improved likelihood of

Information Extractionacceptance of the final product. (See Ref. 1 for a summary of
many projects studied.) Expert systems and rapid application The operating environment of a prototype needs to maximize
development (RAD) techniques are commonly used tools for the information extractable from each validation scenario.
domain exploration; these will be discussed in more depth Moreover, it must be clear from prototype usage what infor-
later. mation is significant and what is incidental.

Exploratory prototyping is also useful in examining the A challenge when designing a prototype is to manage the
planned product’s software architecture and in investigating information flow. On one hand, it is desirable to obtain a large
the choices in resource allocation, overall system structure, quantity of information for analysis. It is in the nature of ex-
and the architectural design for the product’s operational periments, including prototyping, to seek the unexpected.
characteristics. In these instances, the distinction between When the unexpected occurs, it is important to be able to ana-
the notions of prototyping, design, and modeling can become lyze the cause and significance of the observed behavior. On
fuzzy. the other hand, there is a danger of becoming overwhelmed

by the data, thereby missing significant information. The suc-
Evolutionary Prototyping cessful prototyping environment provides the development

team with tools for information filtering and extraction (6).In evolutionary prototyping, a prototype evolves gradually un-
til the finished system is deployed. In its ultimate form there
is no maintenance phase; the life of a system is considered
a series of prototypes until its final decommissioning. This RISKS IN PROTOTYPING
perspective on software development coincides with the obser-
vation that the distinction between development and mainte- Any engineering activity, including prototyping, involves
nance is rather arbitrary. The distinction between a prototype trade-offs and risks. The prototyping risks can be character-
and the formal product deployment may become a matter of ized as either technology-based or managerial.
packaging and marketing rather than one of system differen-
tiation.

Technology RisksThe shift in emphasis—from discarding a prototype to de-
ploying it—results in substantively different concerns regard- Degeneration of System Structure. To begin an evolutionary
ing the prototyping process itself. The most profound differ- prototype, one does not need a complete requirements speci-
ence is that exploratory prototyping is one among many tools fication nor a complete design. It is normal for requirements
that can be applied to requirements validation, whereas evo- to change frequently during the development process and for
lutionary prototyping is a defining part of the development the prototype to change in response. In the hands of unskilled
process. developers, the prototype’s overall structure can quickly de-

generate as changes are introduced. Some of the case studies
Prototype Requirements in Ref. 1 report such degeneration.
Prototyping goals imply that a prototype must be inexpensive
to develop and available early in the development process. User-Centric Development. The choice of system parts to
Furthermore, it should extract information by executing the prototype is commonly driven by the need for risk assess-
validation scenarios, and the information extracted should be ment. A project builds prototypes when there is a substantive
readily transformed into feedback for the next development risk of user rejection; GUI design is a good example since it
step. is so visible to the users. Such a user-centric focus may result

in a skewed perspective on the importance of certain features.
Rapidity It can result in design decisions being driven by the choice of

surface features and the ease whereby features can be addedPrototypes are created for learning and experimentation, and
they must be simple to construct and easy to modify, even to to a prototype.

SOFTWARE PROTOTYPING 551

Management Risks • Validation of System Structure. This is the domain of sys-
tem architectures and addresses the overall internal

The use of prototypes can result in unrealistic user or cus-
structures of a system as well as the performance issues

tomer expectations. Since a prototype is constructed in a rela-
related to those structures.

tively short time, the user may not understand why it is nec-
essary to provide further funding in order to move the system
from its prototyping (but seemingly functional) stage to a de- VALIDATION OF SYSTEM PRESENTATION
liverable state.

User interface prototyping focuses on the portion of a soft-
Feature Overload. A related issue is the ease whereby users ware system that interacts with the end user. GUIs are the

can add features to a prototype. The result can be a system norm in interactive systems; tools and techniques for user in-
suffering from severe feature overload, because features tried terface prototyping exist primarily for the development of
out by distinct user communities are combined in the de- GUIs with little consideration given to textual user interfaces.
ployed system. The objective of a user interface prototype is to explore the

usability and functionality of the system as presented to its
Quality Cannot Be Retrofitted. An exploratory prototype is potential users. In the narrowest sense, such a prototype fo-

created with little concern for long-term sustainability. The cuses on the detailed design of data presentation and user
result of forcing the further development of such a prototype interaction. It concentrates on the control devices (e.g., point-
into a deployed product is likely to be overwhelming mainte- and-click, the locations of input fields, and the GUI button
nance cost, possibly causing an early retirement or full reen- design), the presentation of information (e.g., the use of
gineering. A related problem arises because an exploratory graphs and color to present information from data repositor-
prototype is often constructed using special-purpose tools, en- ies), and the user’s progression from screen to screen.
vironments, and languages. If the prototype is transformed As user interfaces have become more sophisticated, the de-
into a deployable product, it will be burdened with its devel- velopment cost has risen markedly (7). The high cost of inter-
opment environment to the detriment of execution efficiency, face development makes the use of prototypes increasingly
platform independence, and maintainability. important. Equally important is the need to involve users in

the early stages of project development. An interface proto-
Not Throwing Away a Throwaway. Customers will often be type is a tangible artifact which stimulates the requirements

tempted to view the successful exploratory prototype as a sat- discussion between software developers and users. It is much
isfactory, deliverable system. This is particularly a danger too expensive to entertain such discussions after the product
when exploring user interface issues or when the prototype is GUI is implemented.
created using a rapid development toolset. Such prototypes Prototyped GUIs enable earlier and different feedback
exhibit major features expected of the product, and the short- from the users than requirements presented in text. Pres-
cuts and support structures enabling its rapid development enting the users with a seemingly working system is more
may not be apparent to the nontechnical person. likely to identify missing functionality and requirement mis-

conceptions. In the broad sense, a user interface prototype is
Risk/Reward Evaluation employed to understand system requirements. The essential

question to be answered is, Will the planned system offer theOverall, prototyping technologies exhibit an excellent risk/re-
users satisfactory functionality?ward ratio. The primary risks are managerial rather than

Active user participation in the software development pro-technical. When well understood and properly applied, proto-
cess is called user-centered design (8). With this developmenttyping reduces both schedule and feature risks of system de-
style, users and prototypers collaborate on constructing a pro-velopment. See Ref. 5 for a discussion of these trade-offs.
totype GUI. When users are satisfied that the interface meets
their needs, the prototype is translated into a production GUI
that becomes part of the software system. The effort requiredPRESENTATION, FUNCTIONALITY, AND STRUCTURE
to translate from prototype to production interface depends
on whether a prototyping tool supports exploratory versusIt is useful to distinguish three important prototyping do-
evolutionary development, and it will be discussed below.mains, each with its own set of traditions, methods, and tool

Participants involved in interface prototyping may includesupport:
graphic artists, human factors specialists, the software spe-
cialists, and the users. Graphics artists are consulted on mat-• Validation of System Presentation. This is the domain of
ters of aesthetics and interface layout. Human factors special-user interface design. The objective is to evaluate the
ists address issues of interface usability and ergonomics.quality of the user interface with respect to the various

user communities that will interact with the system, and
to provide early corrective feedback in order to ensure

TOOLS AND METHODS FOR PROTOTYPINGsystem usability. The validation of system presentation
SYSTEM PRESENTATIONis intimately related to the validation of system function-

ality.
Interface Storyboarding

• Validation of System Functionality. This is the domain
of functional specifications and addresses the underlying The initial phase of interface prototyping typically presents

interface sketches to the users. This phase of prototype devel-computational functionality that the user interface exer-
cises. opment is called storyboarding. The term is borrowed from

552 SOFTWARE PROTOTYPING

the film industry, where it describes the process used to • Screen sensitization, whereby specified areas of an inter-
face screen can be defined as ‘‘hot spots’’ that are sensi-sketch the scenes of a motion picture in preparation for actual

filming. In the same way, storyboards show users how the tive to user input
GUI will appear in the final product. Initial storyboarding • Scripting, whereby prototypical interface behavior is de-
may not involve the use of computer-based tools. Prototypers fined using a programming language
may draw sketches by hand; after initial discussion, the

• GUI library access, so that elements of a production GUIsketches are then prepared on the computer.
can be added to prototype screens to augment hand-A general-purpose drawing editor is a useful tool for the
drawn elements.preparation of computer-based storyboards. A drawing editor

is simple to use and flexible in the interface sketches that can
In many prototyping tools, storyboard screens can be orga-be drawn. Another advantage of preparing storyboards with a
nized into navigable collections. Two common organizationgeneral-purpose editor is platform independence. Frequently,
metaphors are stacks of cards or books of pages. Navigationspecial-purpose prototyping tools are designed to run on a
commands include moving forward, backward, to the front, tospecific platform that often limits the range of GUI styles that
the back, and chronologically through most recently visitedcan be storyboarded.
screens.A disadvantage of platform-independent storyboards is the

Prototypers can create typical scenarios that guide a userdifficulty of evolving to the production interface. Most produc-
through a storyboard collection. Scenarios can be displayed astion GUI libraries do not support general drawing as the basis
sequential slide shows, whereby a user presses buttons tofor interface development. Rather, GUI libraries provide a
move between screens. Advanced scenarios allow user inputfixed set of interface components in a limited set of styles. It
that simulates interactions that will be carried out on the ac-is likely that storyboarding using a drawing editor, which
tual production interface. For example, instead of pressinglacks specific prototyping capabilities, will make it more dif-
the forward arrow to move to the next screen, the user couldficult to evolve the GUI into a production interface.
press an actual interface button or type some text into a dia-Tools designed specifically for interface prototyping add
logue box. In response, the scenario will display a screen thatsome or all of the following features to a drawing editor:
represents how the system would respond. An example of the
initial screen for a scenario-style prototype is shown in Fig. 1.• Presentation management, to support viewing story-
The complete scenario shows a series of screen storyboards,boards in useful orders, accompanied with explanatory

remarks augmented with remarks about the scenario’s progress and

Welcome to Speedy Burger
Fast Food Ordering System

BURGERS:

Regular Burger

Cheese Burger

Chili Burger

Works Burger

DRINKS:

Cola

Lemon-Lime

Orange

Water

Small
Medium
Large
X-Large

SIDES:
YOUR ORDER

SO FAR:

Screen seen
by user

Scenario
Instructions
and remarks

Fries

Onion Rings

Apple pie

Simply touch your desired selections
on the screen with the ordering wand

SIZE:

Small
Large

ITEM AMT PRICE

Lettuce
Tomato
Pickle
Onion
Mustard
Mayo
Catsup

YES NO EXTRA

SIZE:ADD-ONS:

Scenario Remarks:
This is the initial user screen before

any ordering has taken place.

Scenario Instructions:
Click on the “Regular Burger” button

under “BURGERS:”

Figure 1. Sample screen of a user interface prototype showing interface contents plus explana-
tory remarks for the prototype viewer.

SOFTWARE PROTOTYPING 553

instructions showing the user how to interact with the • Accessing an object in the prototype screen with the ‘‘last
line of screenField OrderSoFar’’ constructscreens.

Prototypes that allow the user to interact directly with • Performing an update to the interface screen with the
screen elements are developed using screen sensitization. ‘‘highlight last line’’ construct
Such an element is sensitive to user input, such as a mouse
click or key press. The elemental form of sensitization links a When a script is added to a prototype, a fundamental change
user action with a predefined screen. For example, in the sce- results in the nature of the prototype. In the unscripted ver-
nario screen of Fig. 1, the developer has linked a mouse click sion, there is a single predefined screen that displays the re-
on the box labeled ‘‘Regular Burger’’ to a screen that shows a sponse to the ‘‘RegularBurger’’ button. The behavior of press-
regular hamburger added to ‘‘Your Order So Far.’’ This exam- ing this button is shown in the transition from the screen
ple is single-threaded; there is only one sequence the user can with an empty ‘‘Order So Far’’ to the screen with exactly one
follow in the prototyped scenario. Single threading forces the regular burger added to the ‘‘Order So Far.’’ In the scripted
user to interact with a single screen object. Multithreaded prototype, only one copy of the interface screen is needed to
scenarios are created by allowing the user to interact with show the effects of pressing ‘‘Regular Burger.’’ The prototypi-
multiple objects on a single screen. Multithreaded scenarios cal behavior of the button press is shown by changing the
are inherently more difficult to manage and may result in contents of the ‘‘Order So Far’’ field on the screen. Further-
user confusion if not carefully designed. more, each button press results in an updated display; an-

Storyboarded scenarios are fundamentally no more than other regular burger is added to the order. In this way, the
‘‘storefronts’’ for a software product. To use another analogy scripted prototype depicts functionality in a more general way
from film production, a storyboarded scenario is like the than the unscripted version.
Western town constructed with storefronts that appear au- This script illustrates how a prototype can provide reduced
thentic but are actually propped up with supports. These functionality when compared to the production system. In the
props appear real in a movie but do not function as real build- production version of the Speedy Burger ordering system, the
ings. In a similar way, a storefront GUI does not function as ‘‘Order So Far’’ display would be updated—not by appending
a real program; no actual computation is performed in re- a new line for every burger ordered, but by incrementing a
sponse to user interactions. Rather, the entire set of screen regular burger order counter. To do this, the script for the
outcomes is predefined; the order in which the screens are ‘‘Regular Burger’’ button would be enhanced to perform some
presented can vary but there is no functionality. To provide arithmetic to increment the burger count. In addition, the
real functionality, the prototyper must use interface scripting. script must employ a conditional computation to respond cor-

rectly on the first button press as compared to subsequent
presses. There is a obvious trade-off between prototype com-Interface Scripting
plexity versus prototype development time. The level of proto-

In Fig. 1, the response to a user click on the ‘‘RegularBurger’’ type scripting must be determined by the members of the de-
button is a transition from the first storyboarded screen to velopment team based on their needs. In general, when the
the following screen. In an unscripted prototype such as this, prototype conveys system functionality to the end user in a
the only means to depict interface behavior is to transition clear manner, the prototype is complete. At that point, the
from one predefined screen to another. When scripting is em- process of evolving the interface prototype to a production
ployed, the prototyper may add specialized functionality that GUI can begin.
is invoked in response to user-initiated events. This function-
ality can perform computation that approaches that of a pro- GUI Development
duction system. For example, the following script could be

The transition from a scripted prototype to a production GUIattached to the ‘‘Regular Burger’’ button in Fig. 1:
can be seamless if the prototyper uses a tool that supports
evolutionary development. Such a tool must provide two capa-on MouseUpEvent
bilities to the prototyper:put ‘‘1 Burger $1.89’’ + newline

after the last line of screen field OrderSoFar
• The ability to place operational GUI elements onto a pro-highlight the last line of screen field

totype screenOrderSoFar
end MouseUpEvent • A general scripting language that supports production

software development
This script is written in an English-like programming lan-
guage similar to the language of a typical prototyping tool. From a technical standpoint, a fundamental distinction can
The result of the script is to append a string into the ‘‘Order be made between the behavior of a scripted storyboard versus
So Far’’ area of the interface display. a production GUI. Specifically, a production GUI is more than

In general, prototyping scripting languages have the func- a picture with selected areas sensitized. A true GUI is a col-
tionality of conventional programming languages, plus spe- lection of interactive elements (called widgets) that have their
cialized features to deal conveniently with objects displayed own well-defined, intricate behaviors. Examples of common
in a prototype interface. For example, the above script uses GUI widgets include push buttons, pull-down menus, and
the following scripting language features: scrollable text boxes. In Fig. 1, the ‘‘RegularBurger’’ button is

drawn as a shaded rectangular graphic, not as push-button
• Connecting to a specific user-initiated event with the ‘‘on widget. The sensitization of the rectangle is performed after

the fact, as a convenient way to support user interaction. In aMouseUpEvent’’ construct

554 SOFTWARE PROTOTYPING

production GUI, a push-button widget replaces the sensitized Expert Systems
rectangle. Among the distinctions between a sensitized Expert systems development processes evolved to create soft-
graphic and a GUI widget are the following: ware from inadequately articulated knowledge by trans-

forming such knowledge into enactable code. In the domain of
• A widget is designed to connect to a compiled function artificial intelligence software, expert system methods are of-

that is part of a production software system, whereas a ten employed to create fully functional products. Expert sys-
sensitized graphic connects with an interpreted script. tem methods can also be used for prototyping, even if the ulti-

mate system implementation is based on explicit coding. The• A widget has built-in behaviors that are more sophisti-
most important attributes of an expert system relevant tocated than a sensitized graphic; for example, a push-but-
prototyping are the rapidity with which a system can be de-ton widget responds to a mouse-down event by high-
veloped and the rule-based representation that permits a pro-lighting itself, and it responds to a mouse-up event by
totype to be defined in higher-level terms than with a conven-unhighlighting.
tional procedural programming language.

In most evolutionary prototyping tools, there is no automatic LISP Systems
way to convert from a sensitized graphic to a corresponding

Another set of prototyping tools from the artificial intelligencewidget. Instead, the initial prototype storyboards are not
community is that of functional programming, specifically thedrawn with graphical shapes, but with actual widgets that
LISP-based systems. LISP has proven useful for the creationcan be graphically manipulated on a prototype screen. Tools
of exploratory prototypes. The interpretative nature of LISP,that support such a development style are called interface
together with its weak typing, makes it particularly useful forbuilders.
prototyping. Being interpreted, the code–compile–run cycleMany interface builders are less flexible than full-feature
becomes irrelevant because code can be modified incremen-prototyping tools. For example, most interface builders do not
tally. Being weakly typed, the system becomes quite forgivinginclude general-purpose drawing functions and supply only a
of coding changes since no time will be spent hunting for typefixed set of predefined widgets. If a desired GUI element is
mismatches. The former is less of a concern today; the latternot available, the behavior may be difficult to define, poten-
may be argued as being a detriment to prototyping since weaktially requiring substantial program development. Such work
typing may preclude the early detection of serious type prob-defeats the spirit of rapid interface prototyping.
lems. Polymorphic and subtyping constructs offer most of theThe combination of the rapid interface prototyping plus
convenience of weak typing without sacrificing the safety ofsupport for evolutionary development is emerging in the de-
strong typing.velopment environments for some programming languages,

such as Visual Basic and Java. Such tools have the potential
Rapid Application Development Environmentsto provide a full set of predefined widgets in addition to the

features of prototyping tools that make interface development Another reason for the continuing popularity of LISP-based
rapid and convenient. systems is the availability of excellent development tools and

a rich base of extant system components. This is also the
strength of object-oriented RAD systems. RAD systems pro-
vide developers with a large set of definitions and compo-VALIDATION OF SYSTEM FUNCTIONALITY
nents, a set of reuse mechanisms (e.g., subtyping, inheritance,
and polymorphism), and support for a rapid code–compile–By broadening the scope of experiments from user interfaces,
test cycle. RAD tools transcend single-file compilation to sup-prototypes can be constructed that include some functionality
port the notions of software projects, bringing together withinand support the prototyped GUIs with prototype implementa-
a single framework the code, the user interface, and the sup-tions. The exploratory programming techniques developed by
porting libraries of predefined modules. They often supply thethe artificial intelligence community have a long history of
prototyper with graphics-based tools for interface design.addressing this prototyping domain.
RAD tools also offer module interconnection formalisms,The object-oriented community’s emphasis on reuse
which enable rapid software construction from reusable com-through the use of rapid application development (RAD) envi-
ponents.ronments (focusing on programs), component reuse (focusing

on experimental architectures), and so-called ‘‘middleware’’
Compound Reusetechnologies (which are likely to introduce permanent system

architecture features) has also worked well as a basis for soft- The prototyping techniques described thus far generally focus
ware prototyping. on defining specific details of prototype behavior. Such tech-

The developers may ignore a number of long-term issues niques can be characterized as small-grain prototyping. An
when focusing an exploratory prototype on a requirements alternative large-grain prototyping technique is based on the
set. There is an expectation that system construction will be reuse of existing software components with predefined behav-
easier and swifter when ignoring efficiency or other secondary ior. In this approach, a prototype is assembled from a collec-
concerns. Expert systems and formal specification methods tion of existing components retrieved from a well-organized
represent the highest abstraction in this regard. Common to component library. Until recently, the software industry has
both is the capture of system requirements as sets of rules or employed a number of proprietary technologies for compound
logical assertions, which become subject to analysis or exe- reuse based on specific, proprietary interface development en-

vironments (IDEs). The software industry has adopted stan-cution.

SOFTWARE PROTOTYPING 555

dards on component definition for reusability that show much of the development environment, thereby forcing future devel-
opers to use the same tool set.promise for the development community. Examples of such

standards are CORBA and Sun Microsystem’s JavaBeans. Common to all these risks is the seduction of the developer
into making more of a prototype than initially warranted
and expected.Formal Methods

Though these risks are significant, they should be consid-
Formal methods are a set of development technologies with

ered management risks rather than problems intrinsic to pro-
certain similarities to expert systems. As with expert sys-

totyping. When properly used as a device for systems experi-
tems, formal methods can be used for full-scale system devel-

mentation and risk reduction, prototyping is a valuable tool
opment, as well as for prototyping. Formal methods and ex-

for exploring system functionality.
pert systems share the attribute of high-level software
representation that makes both methods suitable for proto-
type development. Also, some formal methods use rule-based VALIDATION OF SYSTEM STRUCTURE
techniques similar to the techniques used in expert systems.
The result of using a formal method is a set of formal descrip- Most development organizations clearly understand the rea-
tions of the planned system, expressed in a formal logic, such sons for prototyping the graphical user interface of a system
as of universal algebra (9), first-order logic (10), or modal logic under development. It is far less common to consider proto-
(11). Unlike the other methods, formal specifications are often typing the architectural structures of a new system; in fact,
not intended to be executable or to synthesize executable many organizations are still struggling with their processes
code. Instead, the focus is on analyzing the specification using for building the actual system structures and have never con-
verifiers or consistency checkers, checking whether the sys- sidered prototyping.
tem as described by the specification satisfies the require- There are several good reasons for building prototypes to
ments as perceived by the system users. See FORMAL SPECIFI- study system structures:
CATION OF SOFTWARE for further information.

• To Understand Performance Issues. The performance of
a software system is often directly related to the systemRISKS IN USING PROTOTYPING IN VALIDATING
structure design choices. Prototyping can assist develop-SYSTEM FUNCTIONALITY
ers in understanding these performance relationships.

A functioning system can be quite seductive. If a prototype • To Consider the Trade-Offs Among Alternative Designs.
is the primary repository for capturing the functionality of a Developers often make significant design decisions in an
proposed system, it is likely there will be functional deficien- ad hoc manner. They may have become aware of a partic-
cies. An experiential approach to system design is prone to ular system structure in a course or on a previous proj-
get caught up by what is rather than identifying what should ect. Perhaps they recently read a journal article. Proto-
be. The use of prototyping must be accompanied by a separate typing can provide an inexpensive tool for studying
means for capturing the results of the prototyping experi- alternatives.
ence—either as systems documentation (evolutionary proto- • To Study the Feasibility of a Particular Design. A design
typing) or as an improved requirements document (explor- mistake discovered later in the development cycle can be
atory prototyping). very expensive. Prototyping can help prevent such mis-

Since a prototype represents an abstraction, the developer takes.
is obliged to identify explicitly what carries over when trans-
forming the prototype into a production system. One of the It is useful to consider system structures from two points of
potential risks of prototyping is that the rapid creation of the view. Static structures are embodied physically in the soft-
abstract prototype makes the transition of functionality diffi- ware; they are abstractions created by the developer to under-
cult. For instance, the use of weak typing in a prototype may stand and simplify the software structure. Resource consider-
make the transformation to production code, which may re- ations are issues, such as memory size or performance, that
quire strong typing, difficult. As has been pointed out earlier, arise when the program is executing. System structure deci-
quality cannot be retrofitted. If quality is one of the aspects sions often merit consideration for prototyping.
of system construction that has been abstracted away in a
prototype, then the prototype should be of the exploratory va-

Static Structures
riety.

Similarly, it can be difficult to transition to production code There are good reasons for designing software structures at
different abstraction levels. Each level serves a purpose fora prototype that has been developed using a RAD tool. The

efficiency of the tool is often a result of its intimate interac- different phases of the life cycle. Design hypotheses, suitable
for prototyping, are made at each level. For example, the deci-tion with the system being created, with subsequent problems

when the system is to be extricated from the development sion to use a client–server software architecture might be
made early in a product life cycle by the development man-environment. The obvious example is when the prototype is

interpreted; the interpreter is properly regarded as part of ager. The decision to design a particular user interface mod-
ule might be taken by a senior designer in the design phase.the system with the implications on execution efficiency and

platform independence. More insidious may be the RAD tool A programmer might decide, late in the project’s cycle, to use
a linked-list data structure. A common static structure taxon-that generates the code of the prototype. Though nominally

independent of the development environment, the code gener- omy, from the lowest to the highest abstraction level, is dis-
cussed in the following sections.ated by the tool may itself be unmaintainable in the absence

556 SOFTWARE PROTOTYPING

Code and Data Structures. These are the structures created Architectural Languages
in some programming language. A typical decision, taken by

Architectural languages exist to model structural designs.
a programmer, would be the choice of a particular data struc-

Such languages may be textual or graphical. Some languages
ture (e.g., array) to contain the data for an abstraction (e.g.,

have a rich semantic content and allow the prototyper to gen-
set).

erate code or execute simulators. There are also architectural
languages that can be interpreted symbolically.

Module Design. A module is a separately compilable unit Some architectural languages have little or no semantic
that contains a set of related functions or classes. A typical content and serve only as a notation for the system architec-
software design comprises a set of modules combined to form ture. Use of the latter type should be thought of as design
the high-level design of a software system. The module inter- work rather than prototyping.
face forms the abstraction that defines how the module is
viewed by a software developer. A typical decision might be Code Reuse. Structural hypotheses can be tested by con-
to create a particular class (e.g., set) to represent a needed ab- structing subsystems with extant components such as class
straction. libraries, general-purpose functions, or GUI modules. Code

reuse is a useful technique for both throwaway and evolution-
ary prototyping.Software Architecture. A software architecture describes

Reusable components are widely available as commercialthe decisions taken concerning the interrelationship between
products; many vendors allow short trials of a product formodules. Typically, there is a pattern in such relationships;
throwaway prototyping purposes. There are thousands ofsome common patterns are client-server, object-oriented, and
components available on the Internet at no charge or for aprocess control. The software developer, early in the life cycle,
nominal shareware charge. See SOFTWARE REUSABILITY.would take the decision to use a particular architecture. See

(12) for a description of software architecture concepts.
Data Modeling

A data model is a logical representation of the data to be usedRun-Time Considerations
in the application. The term data modeling is usually associ-

There are a number of run-time considerations suitable for ated with applications that access their data using a database
prototyping by system developers. Paramount among these is management system (DBMS). It is quite common to build a
performance; failure to meet performance goals is a common prototype data model during the early stages of the product
problem. And it is quite difficult to improve performance after life cycle for several reasons:
a system is implemented. As performance is quite visible to
the users, it is an excellent candidate for prototyping to mini-

• A prototype data model is an excellent medium for pro-
mize risk. viding feedback to users; building a data model is an ob-

Projects using the evolutionary prototyping process are es- vious task during the analysis phase.
pecially vulnerable to performance risks because a working

• Data modeling decisions are significant. The data modelprototyping is a seductive artifact. Users observe a working
contains all the data fields that will be provided to theartifact that has been constructed quickly at minimal cost; it
user. The model can drastically affect update and queryis easy to overlook that other users will be expecting a speci-
performance.fied performance level.

• It is easy to alter the data model early in the life cycle;Another run-time consideration is resource utilization.
it can be quite difficult once a database is populated.Some examples are as follows:

There are a large number of methods and tools available for
• How much memory or disk space will the system re- data modeling. The formal foundations are well established

quire? and widely taught. Every DBMS vendor provides tools for
• Is the bandwidth of channel X sufficient? building a prototype database; for large projects, the vendors

will sometimes contribute analysts to assist the data model-• What is the expected response time for operation Y?
ing effort. Such assistance is part of their marketing effort.

Prototypers check resource consumption for the same reasons
Simulationthey check performance; they want to minimize risks when

the system is deployed. The risks can be significant, especially A software simulation is created to mimic one or more product
in embedded systems. If, for example, the software for a pace- behaviors. Behaviors such as user response time, transaction
maker is constrained to a specified memory size, it will likely rates, and disk usage are commonly simulated. For example,
be impossible to add more memory. In such a scenario, the the developer may wish to determine the CPU power needed
effect could be product failure. to reach a specified transaction rate. A simulation can answer

such a question.
An exploratory prototype can also be thought of as a simu-

lation of the product’s functional behavior; users and develop-TOOLS AND METHODS FOR PROTOTYPING
SYSTEM STRUCTURES ers evaluate that behavior when using the prototype. In con-

trast, an evolutionary prototype is not a simulation because
There exists a variety of techniques for checking hypotheses it is, in fact, the actual product.

To be useful, a simulation must be validated. Some com-about system structures. In some cases, these techniques may
not be commonly considered as prototyping. mon methods to validate simulations are:

SOFTWARE QUALITY 557

• Analytical Model. For some types of systems, it is possi-
ble to construct an analytical model. For example, the
throughput of a transaction processing system can be
modeled using queuing theory. The analytical model pro-
vides an alternative method of computing throughput
and can validate the prototype simulator.

• Domain Experience. If the simulator has been used and
validated for similar problems in the same application
domain, it is reasonable to assume that the simulation is
valid. For example, the companies that simulate main-
frame configurations have used their tools numerous
times; the simulations have been validated through suc-
cessful usage.

• Use. An exploratory prototype is validated through use;
users and developers commit resources to the validation
process.

Run-time simulations can sometimes be validated by
using the simulation as part of a larger system. For ex-
ample, suppose a simulation is created to model tele-
phone traffic for a large city. It may be feasible to connect
the simulation to a working telephone switch and use the
telephone switch to validate the simulation.

BIBLIOGRAPHY

1. V. S. Gordon and J. M. Bieman, Rapid prototyping: lessons
learned, IEEE Softw., 12 (1): 85–95, 1995.

2. D. P. Wood and K. C. Kang, A classification and bibliography of
software prototyping, CMU/SEI-92-TR-13, Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie-Mellon University, 1992.

3. A. M. Davis and M. D. Weidner, Software Requirements: Objects,
Functions, and States, Englewood Cliffs, NJ: Prentice-Hall, 1993.

4. F. P. Brooks, The Mythical Man-Month, 2nd ed., Reading, MA;
Addison-Wesley, 1995.

5. S. McConell, Rapid Development, Redmond, WA: Microsoft Press,
1996, pp. 433–444, 569–574.

6. Luqi and R. Yeh, Rapid prototyping in software development, in
J. J. Marciniak (ed.), Encyclopedia of Software Engineering, New
York: Wiley, 1994, pp. 978–984.

7. B. A. Meyers and M. B. Rosson, Survey on user interface pro-
gramming, Human Factors in Computing Systems, SIGCHI Proc.,
1992, pp. 195–202.

8. D. A. Norman and F. W. Draper, User-Centered Systems Design,
Hillsdale, NJ: Erlbaum, 1986.

9. M. Wirsing, Algebraic specification, in J. van Leuwen (ed.),
Handbook of Theoretical Computer Science, Cambridge, MA: MIT
Press, 1990.

10. B. Potter, J. Sinclair, and D. Till, Introduction to Formal Specifi-
cation and Z, Upper Saddle River, NJ: Prentice-Hall, 1996.

11. T. Bolognesi, J. van de Lagemaat, and C. Vissers, Lotosphere:
Software Development with Lotos, Norwell, MA: Kluwer, 1995.

12. M. Shaw and D. Garlan, Software Architectures, Upper Saddle
River, NJ: Prentice-Hall, 1996.

SIGURD MELDAL

GENE L. FISHER

DANIEL J. STEARNS

California Polytechnic State
University

PETER C. ÖLVECZKY

University of Bergen

