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SOFTWARE PERFORMANCE EVALUATION

The specification of a software system includes describing
what software is supposed to do, that is, its functionality. Its
performance, size, modularity, reliability, cost, and design
time are other metrics that affect its design process. Power
consumption is a newer and an increasingly important soft-
ware metric. Evaluating or analyzing these metrics is an inte-
gral part of the software design process. This article focuses
on evaluating the performance and power metrics of software.

Software performance refers to execution time of the given
program. Software power consumption refers to the power
consumption by the hardware on which the given piece of
software is executed. Both performance and power depend on
the number of instructions executed during the program and
the sequence in which the instructions are executed. Perfor-
mance further depends on the execution time of each executed
instruction, and similarly, power depends on the power cost
of each executed instruction. However, for the purpose of ex-
position, it is better to treat these metrics separately. The
first part of the article deals with software performance evalu-
ation, and the second part deals with software power evalua-
tion and the relationship between the two metrics.

COMPONENTS OF SOFTWARE PERFORMANCE EVALUATION

Software performance evaluation is the estimation and analy-
sis of the running time of programs. The scope of this article
is limited to single software components or processes. The
analysis of multiple processes belongs to the larger field of
system-level performance analysis. However, the concepts
and techniques discussed here are fundamental to both single
and multiprocess performance evaluation:

Three components affect a program’s running time:

1. System. The underlying hardware and the system soft-
ware. Following are main elements of the hardware
that affect program performance:
(a) Instruction execution time: This is the amount of

time needed to execute each basic instruction. It de-
pends on the processor architecture and is typically
reported in terms of the number of processor clock
cycles needed.

(b) Memory access time: The memory system usually
has a hierarchical organization. On-chip caches are
the lowest level, followed by off-chip caches, main
memory, and finally disk storage (in the case of vir-
tual memory systems). Data elements needed most
frequently are stored at the lowest levels. The time
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needed to access memory and the storage size in- of statements, different ways of using program con-
structs, such as ‘‘for,’’ and ‘‘while’’ loops, differentcreases up the hierarchy. Thus, the execution time

for an instruction that involves memory access de- organizations of program data in the form of data
structures, all lead to different program perfor-pends on the level of hierarchy at which the access

occurs. It is one or two cycles for on-chip cache, sev- mance. The process of translating the high-level
source code into machine instructions, that is, theeral cycles for off-chip caches, tens of cycles for main

memory, and thousands of cycles for disk accesses. process of compilation also leads to varying perfor-
mance, because there are many ways to map a high-(c) System software: The system software (e.g., the op-
level program into a machine-level program.erating system, device drivers, etc.) is the level of

software just above the hardware. It coordinates
and provides services to the user-level programs. CLASSIFICATION OF SOFTWARE
Thus it is a factor in the performance of programs. PERFORMANCE EVALUATION
For example, in systems with multiple processes,
the operating system schedules the use of the pro- Software performance evaluation is classified under two
cessor for individual processes. The total execution broad categories:
time of the program thus depends on how often and
for how long it is scheduled to run. The operating Average Case
system also provides predefined software routines

Average case performance analysis loosely refers to the per-for performing specific tasks, such as communicat-
formance of the program in the most common case, that is,ing with input/output devices. Programs use these
the most likely input values and external system behavior.service routines, and thus their performance also
The performance of the program based on a small set of testdepends on the performance of these routines.
runs is evaluated, and it is used to represent its overall per-2. Inputs. The input data values and external stimuli,
formance. Few or no guarantees are made on the variancesuch as interrupts, are external factors affecting a pro-
of the performance. A typical example is a text compressiongram’s performance. The behavior of a program, or the
program, whose average speed is often stated in bytes com-path that it takes to execute, often depends on the value
pressed per second.of input data items. The performance of a program thus

cannot be looked at independently of the input data.
Extreme Case3. Program. The following factors internal to software

also affect performance: Systems generally interact with the outside world. This in-
volves measuring sensors and controlling actuators, commu-(a) Algorithm: The algorithm defines the fundamental
nicating with other systems, or interacting with users. These‘‘work’’ to solve the problem, that is, the basic steps
tasks have to be performed at precise times. A system withand the sequence of steps needed to achieve the
such timing constraints is called a real-time system. A typicalgiven function. The choice of algorithm determines
example is an automotive engine control unit which gathersthe performance of the program at the highest level.
data from sensors and computes the proper air/fuel mixtureFor example, for sorting a given set of data values
and ignition timing for the engine within a single rotation.in an increasing or decreasing order, a program im-
Software is increasingly used to implement the functionalityplementing the bubble sort algorithm is slower than
of such systems (in which case they are called embedded com-one implementing quick sort, as the number of data
puter systems). In such systems, the response time of the soft-items to be sorted increases.
ware must comply with the specified timing constraints underPerformance analysis of algorithms is usually in
all possible conditions. Thus, the performance metric of inter-the form of asymptotic or order analysis (1). The
est here is the extreme case performance of the software.idea is to specify a mathematical function which de-

scribes the order of magnitude of the algorithm’s ex-
ecution time. It describes the asymptotic increase in APPLICATIONS OF SOFTWARE PERFORMANCE EVALUATION
the running time of a program as its input sets gets
larger. For example, for sorting n elements, the bub- The main applications of the categories of software perfor-
ble sort algorithm is of the order of n2 [O(n2)], and mance evaluation previously mentioned are as follows.
quick sort is of the order of n � log(n) �O[n � log(n)]�.
Thus, as n increases, quick sort outperforms bubble

Average Case
sort. [More rigorously: a function f is of an order of
function g, i.e., f � O(g), if there are positive con- • Performance Tuning. Performance analysis helps to

identify performance bottlenecks in programs. A smallstants r and c, such that f (n) � r � g(n) for all n big-
ger than c.] section of badly written code could be responsible for

slowing down the entire program, and searching for this(b) Program implementation: In most practical situa-
piece of code is an activity with potentially high returns.tions, the algorithm is already known and the per-
Then optimization efforts are focused on this piece offormance of the algorithm’s implementation has to
code, maximizing their efficiency.be evaluated. This can be done at different levels.

The higher level of abstraction is the source code of • System Design Exploration. Performance analysis of pro-
grams also indicates the performance bottlenecks in thethe program, as written in a higher-level language,

such as FORTRAN, LISP, or C. Different numbers system. For example, it can point to the excessive re-
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sponse time of an I/O subsystem or the performance deg- 1. Modeling: estimating the average execution time for a
given sequence of instructions when they are executedradation of the network interface. Without careful analy-

sis, these trouble spots go undetected. on the given system.
2. Path analysis: finding the ‘‘typical’’ paths from among• Compiler Optimizations. Compilers are software tools

all possible ones through the program or the paths thatthat translate high-level programs into machine instruc-
execute most often. A path is an instruction trace or ations. Performance analysis provides quantitative data
sequence of consecutively executed instructions.about the quality of the code generated. These data guide

the development and refinement of compiler optimiza-
tions to generate better codes. Extreme case performance analysis has similar components:

1. Modeling: estimating the extreme case execution timeExtreme Case
for a given sequence of instructions when they are exe-

• System Verification. Extreme case analysis is used to an- cuted on the given system.
swer the question: Does the system do what it is sup-

2. Path analysis: finding the extreme case paths throughposed to? In systems with specified performance con-
the program.straints, meeting the constraints is necessary for correct

functionality. For example, consider a factory control sys-
Modeling is directly related to the system and to the in-tem program that must respond to a pressure sensor sig-

puts. Path analysis is directly related to the program and tonal by releasing a valve within 50 ms. If it does release
the inputs. Both must be solved for accurate performancethe valve but does so after 60 ms, it has not met its de-
analysis. Methods to solve them are discussed here.sired functionality. In certain situations, performance vi-

olations result in catastrophic situations, for example, in
Modelingthe previous case or in fly-by-wire aircraft systems. Veri-

fication requires that the specified performance con- For modeling, simple methods are often used to predict the
straints are met under all input conditions and all possi- performance of a given sequence of instructions. The idea is
ble starting states. to add up the execution time (the number of execution cycles)

• System Hardware Selection. As a flip side of the previous of each instruction in the sequence. The problem with this is
point, it is also important to verify that the system does that, in modern processors, the execution time of an instruc-
not overly exceed the performance constraints. Pessimis- tion in a given sequence depends on the surrounding instruc-
tic estimates of the extreme case performance of the soft- tions and on the processor state. In addition to the processor
ware lead to overdesigned systems, for example, choosing pipeline, the caches, the system memory, and the I/O subsys-
a faster processor or a more efficient operating system. tem also must be modeled because they directly affect perfor-
Overdesign typically translates into more expensive sys- mance. It is no longer sufficient to specify a single number as
tems. Even a small increase in system cost is undesir- the execution time for an instruction. For example, the Mo-
able, especially for high volume products. torola MC68040 processor manual contains 37 pages of for-

mulas to describe instruction timing.• Design Space Exploration. In embedded systems, the de-
Using pessimistic bounds for the execution time of eachsign process involves deciding how the functionality is

instruction makes the task easier, but the final estimate haspartitioned between the hardware and the software. This
too much approximation error to be useful. As an illustration,is called the hardware-software partitioning problem.
consider the following instruction sequence from the MIPSSoftware is typically a more economical way of imple-
R4000 processor. To account for the variability of executionmenting functionality, as long as it runs fast enough to
time for each instruction, bounds for the number of executionmeet the system performance constraints. Thus, a care-
cycles for each instruction are also shown:ful choice of hardware-software functionality requires ac-

curate performance analysis of software.
• Real-Time Schedulers. Real-time systems must respond

to environmental stimuli in real time. The factory control
system mentioned previously is an example. Real-time

mul.d f4,f6,f8 1-26 cycles
and r1,r2,r3 1-15 cycles
lw r4,o(r1) 1-29 cycles
mul.d f5,f6,f8 1-26 cycles

systems typically must respond to multiple stimuli
Separately adding the upper and lower bounds for eachwithin specified time limits for each. The software for

instruction gives the following bounds for the performance ofsuch systems is designed in the form of multiple pro-
the sequence: 4-96 cycles. Although these bounds are guaran-cesses, and system software, that is, the scheduler, has
teed, their large difference limits the usefulness of the es-to schedule the processes to guarantee that the deadlines
timate.for each process are met. The schedulers thus need accu-

A more detailed analysis of the previous sequence can leadrate information about the performance bounds for each
to tighter bounds. For example, the second instruction in theprocess. Loose estimates lead to inability to guarantee
sequence is guaranteed to finish in just one cycle, because itdeadlines or the poor utilization of system resources.
does not interact with the previous instruction. This improve-
ment in the estimate requires additional information about
the processor. Similarly, a model for the cache behavior im-METHODS FOR SOFTWARE PERFORMANCE EVALUATION
proves the bounds for the load instruction lw, because then it
is possible to determine if the data operand is available in theAverage case performance analysis has two main compon-

ents: cache or not.
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Thus, for more accurate performance analysis, a more re- quence). So each instruction in the basic block is executed as
many times as the basic block. Instructions are also addedfined modeling of all potential interactions among instruc-

tions and interactions with the external system is desirable. for specialized bookkeeping, for example, to keep track of the
number of times conditional branches are taken. InformationGenerally this is very difficult. Analytical models have been

built, however, to solve the modeling problem in some cases, such as this can help the program writer fine-tune the perfor-
mance of the program.and these are discussed in greater detail later.

Then the instrumented code is executed, and the desired
statistics are generated as a by-product of the execution [seePath Analysis
Fig. 1(c)]. The statistics are then put out to the user in a vari-

For straight line code, that is, code with no jumps or ety of forms, such as tables or graphs, depending on the user’s
branches, there is exactly one execution path to consider. needs. Profilers come in different shapes and forms and pro-
Complexity creeps in only in the presence of control flow con- vide a variety of capabilities. Representative examples in-
structs, such as branches and loops. Each branch doubles the clude pixie (4), a profiling tool for MIPS processors, and
number of possible paths, leading to an exponential blowup VTune (5), a profiling tool for Intel processors.
of the number of possible execution paths. This makes path The limitations of profiler tools are that they modify the
analysis a very hard problem to solve generally. [In particu- code that they are supposed to profile. So the collected statis-
lar, extreme case analysis is undecidable, because it is equiv- tics do not fully represent the original code. Minimizing the
alent to the halting problem (2)]. Different techniques with impact of the code instrumentation typically results in less
varying levels of effectiveness are used for path analysis. detail in the collected data. Thus, there is a trade-off involved

here. In addition, profilers also cannot account for the full
General Heuristics. General heuristics derived from basic complexities of today’s processors, such as long, complex pipe-

program statistics are used for informal path analysis. This lines and elaborate memory hierarchies involving multiple
is more appropriate for average case analysis where crude levels of caches and virtual memory systems. These complexi-
performance estimates often suffices. These estimates are ties introduce a great amount of variation in the number of
based on code size and prior experience or on heuristics, for cycles needed to execute different instances of the same in-
example, the observation that most backward branches are struction. Profilers must rely on approximate models to ac-
taken and most forward branches are not taken. Prior experi- count for the impact of these effects on performance. For ex-
ence, designer insight, and crude estimates are also used for ample, pixie models pipeline interlocks pessimistically
extreme case analysis. Generally, these are less applicable in (assume that an interlock happens each time it can), and as-
that case, because of the desire for guaranteed tight bounds. sume a perfect memory system, that is, one where all the data

are available in the same constant amount of time.
Profiling. This technique incorporates elements of both The following are other profiling techniques:

modeling and path analysis. It is a dynamic technique, be-
cause it requires actual execution of the program under con-

• Sampling. The technique of sampling is an alternativesideration. The term profiling, as used here, also includes
to instrumentation. In the time-based version of thistechniques known as program tracing. It involves collecting
technique, the processor is periodically interrupted, andrun-time statistics for a specific run of the given program.
the addresses of the instructions under execution are re-The common mechanism is instrumenting the program
corded. The recorded addresses are matched against rou-code (3). The original program [see Fig. 1(a)] is modified to
tines called from a given program, and a database of thecreate an instrumented version of the program [see Fig. 1(b)].
sampled data is created. The ratio of samples in which aThis involves adding instructions and data spaces to the code
particular routine was being executed is an estimate ofto keep count of the number of times each basic block is exe-
the ratio of time spent in executing that routine. VTunecuted. A basic block is the largest contiguous sequence of in-
is such a profiling tool. It provides graphical interfaces tostructions that contains a single entry point (at the start of
allow the user to extract a variety of information aboutthe sequence) and a single exit point (at the end of the se-
the program’s behavior. The UNIX profiling utility prof
is also based on sampling.

• Hardware Monitoring. Certain modern microprocessors
monitor the behavior of the processor as it executes given
programs in real time. Counters are built into the pro-
cessor to count events, such as cache misses, branch mis-
predictions. These counters are readable by user-level
programs, and software tools are built to use this infor-
mation. This is a very powerful idea, and will see more
use in the future.

• Simulation. Programs are profiled by simulating their
execution on models of the system, instead of running
them on the real system. Simulation is orders of magni-
tude slower than real execution. However, the simulation
models are built to provide arbitrarily high levels of de-

Input Input

Output Output

Instrumenter Instrumented
program

Instrumented
program

Statistics

Program

Program

(a) (b) (c)
tail. This level of detail is impossible to obtain through
instrumenting profilers and very expensive to monitorFigure 1. Profiling through code instrumentation.



SOFTWARE PERFORMANCE EVALUATION 535

through hardware. Simulation is most commonly used to acceptable to all concerned parties and is supposed to be equi-
table and not have an inherent bias toward any implementa-evaluate the performance impact of caches. Information,

such as the distribution of the kind of cache misses and tion. For example, to compare different JPEG compression
software packages that may be available in the market, athe relationship of cache behavior to program data struc-

tures, etc. is obtained. Representative examples of such common set of images is used for comparative analysis. Al-
though standard benchmarks are often controversial, theytools include memspy (6) and CProf (7).
practically solve the problem of input characterization. A gen-
eral solution to the problem, however, is still an open areaProfilers are very useful tools, despite their limitations be-
of research.cause of the following:

• Modeling the complexities of today’s systems is a very EXTREME CASE PERFORMANCE ANALYSIS
hard task, as previously discussed. However, profilers
provide an avenue for performance evaluation while Extreme case performance analysis is typically performed by
dealing with this complexity. Although profilers are not analytical techniques because dynamic techniques, such as
always perfect representations of real systems, they can profiling, require actually executing the given program. For
be tailored to be accurate for the statistics of most inter- large programs with many conditional branches, only a frac-
est to a given set of users. This may not be possible tion of all possible paths are exercised during program execu-
through analytical modeling techniques, which are still tion. (The total number of paths is exponential in terms of the
an area of research and are currently limited in their number of branches. Backward branches (i.e., loops), make
application. the problem even harder.) Extreme case performance analy-

• Profilers enable the program developer to identify ‘‘trou- sis, however, requires determining the worst case (or best
ble spots’’ within the code. User-friendly data that pro- case) path from all possible paths. Exercising all possible
cess back-ends of the tools correlate the collected profil- paths by profiling is not a practical solution. On the other
ing data with the original source code and make this task hand, analytical techniques try to traverse the search space
easier. Then program performance improvement efforts more efficiently. Extreme case analysis is generally undecid-
are focused on these trouble spots, improving the pro- able. Thus, for analytical techniques to work, the program
grammer’s productivity. must meet certain restrictions (2):

Analytical Techniques. Analytical path analysis techniques • All loop statements must have bounded iterations, that
do not require actual execution of the given program. This is is, they cannot loop forever.
a relatively new approach, and systematic and rigorous ana- • There are no recursive function calls.
lytical techniques are an area of active research. These tech-

• There are no dynamic function calls.
niques are mostly applicable to extreme case performance
analysis and are discussed later. Analytical techniques for extreme case performance analy-

sis are a relatively recent area of research. Some representa-
tive ideas are briefly described here.AVERAGE CASE PERFORMANCE ANALYSIS

Extreme Case SelectionAverage case performance is analyzed with profiling tech-
niques. Although general heuristics are acceptable in some In worst case (best case) analysis, a straightforward approach
cases, generally they do not provide the level of accuracy is to always assume that the worst case (best case) choice is
needed. The biggest problem in average case analysis is the made for each branch and loop. For example, in the timing
question: What is the average case for the given program? schema approach (8), for an if-then-else statement, the execu-
Given a fixed system and a program, this translates into de- tion times of the true and false statements are compared and
termining the average case input set. There are no generally the larger one taken for worst case estimation. Although this
applicable standards or guidelines for this. Instead the perfor- works well in simple cases, generally different parts of the
mance of the system is evaluated from a sample input data program are related. Consider the example shown in Fig. 2.
set that is considered representative of the typical application S1 and S3 are always executed together, and so are S2 and
environment for the program. Then profiling techniques are S4. If extreme case selection is used, statements S1 and S4 are
used with the sample input data set. Profiling implicitly ac- selected for worst case analysis. However, these two state-
counts for both modeling and accurate path analysis for the
given input set.

It should be apparent from the above discussion that the
usefulness of average case performance analysis is tied to the
ability to characterize the ‘‘typical’’ input set. This is a non-
trivial problem, especially for complex functions, for example,
How can one determine a representative set of images for a
JPEG compression program?

An approach called benchmarking is used specifically to
compare different software implementations for a given appli-

if (ok)
S1 i � i�i � 1; /� i is non-zero! �/

else
S2 i � 0;

/� ... �/
if (i)

S3 j��;
else

S4 j � j�j;
cation. The idea is to select an input set that will be used as
a standard benchmark. The chosen benchmark set must be Figure 2. Different parts of the code are sometimes related.
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ments are never executed together in practice, and the tech-
nique results in loose estimation. Other researchers have
shown that this technique can be extended to allow the pro-
grammer to provide simple execution count information for
certain statements. This permits nonpessimistic choices lo-
cally and leads to better estimation.

Path Enumeration

To capture the relationship between different parts of the pro-
gram, another approach is to statically enumerate some of the
paths. For extreme case analysis, this partial enumeration
must be pessimistic, that is, it must include paths that bound
the extreme case behavior, even if they are never actually
exercised. It has been observed (9) that all statically feasible
execution paths can be expressed by regular expressions. For
example, the following equations show the regular expression
for the if-then-else statement and that for the while loop
statement with loop bound n, respectively:

if B then S1 else S2 : B � (S1 � S2)

while B do S : B � (S � B)n

Let the set of statically feasible execution paths be repre-
sented by a regular expression Ap. The user can provide path
information by using a script language called information de-
scription language (IDL) (9), which is subsequently translated
into another regular expression denoted as Ip. The intersec-
tion of Ap and Ip, denoted as Ap � Ip, represents all feasible
execution paths of the program. Then the best case and worst
case execution paths and their corresponding execution times

d1
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d5

d3

d2

d4

x4

B1 

B2 

B3

B4

B5 

B6 

B7 

x3

x6

d9

d10

x7

d6 d7

d8

x2

x1 s = k;

while(k<10)

if(ok)

j++; j = 0;

K++

r = j;

  (b) Control flow graph
are determined from the regular expression Ap � Ip. Figure 3. An example showing how structural and functionality con-

The use of IDL is a vast improvement over earlier methods straints are constructed.
because it allows expressing path relationships directly. How-
ever, the main drawback of this approach is that the intersec-

other path information. As an example, consider Fig. 3, intion of Ap and Ip is a complicated and expensive operation. To
which a conditional statement is nested inside a while loop.speed it up, pessimistic approximations are used in the inter-
Figure 3(b) shows the control flow graph (CGF). Each edge insection operation, which limit the accuracy of the method.
the CFG is labeled with a variable di which is both a label for
that edge and a count of the number of times that the pro-

Bounding Techniques gram control passes through that edge. Structural constraints
are derived from the CFG because, for each node Bi, its execu-An alternative approach is used in the Cinderella project (10).
tion count is equal to the number of times that the controlThe basic idea is to use integral-linear programming to deter-
enters the node (inflow) and is also equal to the number ofmine the execution counts for all blocks in the extreme case
times that the control exits the node (outflow): xi � � inflowexecution of the program. Let xi be the execution count of a
� � outflow.basic block Bi, and ci be the execution time of the basic block.

The structural constraints cannot provide any loop-boundIf there are N basic blocks in the program, then the total exe-
information. This information is provided by the user as acution time of the program is given by:
functionality constraint. In this example, note that because k
is positive before it enters the loop, the loop body is executed
between 0 and 10 times each time the loop is entered. The
constraints to specify this information are 0x1 � x3 � 10x1.

Total execution time =
N∑

i

cixi (1)

Further, observe that the else statement (B5) is executed at
most once inside the loop. This information is specified as: x5Determining the values of xi’s for extreme case execution
� 1x1. These constraints form the input to an integral linearis the path analysis component of the problem, and estimat-
programming formulation. This mechanism is more powerfuling the values for ci’s is the modeling component. The possible
than IDL (9) in describing path information (10).values of xi’s are constrained by the program structure and

the possible values of the program variables. These are ex-
pressed as linear constraints divided into two parts: (1) struc- FURTHER DETAILS ON MODELING
tural constraints, which are derived automatically from the
program’s control flow, and (2) functionality constraints, Significant variations in program execution time result from

varying uses of system resources. The way the program refer-which are provided by the user to specify loop bounds and
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ences memory or occupies pipeline resources, etc., all have to a potential cache miss. These equations provide a gen-
eral framework for guiding software code optimizationssignificant impact on program performance. Analytical model-

ing of this source of performance variation is a nascent field to improve cache performance.
of research. The techniques currently available work under • Bounding techniques: The cinderella project presents an
simplifying assumptions, which often limit their scope. Exam- alternative approach to cache modeling. It integrates the
ples of these techniques are briefly discussed here. Relevant impact of program execution on the cache with the
references can be obtained from (11). bounding techniques used in path analysis (10).

Microarchitectural Resources SOFTWARE POWER EVALUATION
Today some of the key performance factors in systems revolve

The increasing popularity of power-constrained mobile com-around the program’s utilization of the processor’s microar-
puters and embedded computing applications drives the needchitectural resources. Early works in this area assumed a
for analyzing and optimizing power in all the components ofvery simple microarchitecture, such as the Motorola M68000
a system. This has forced an examination of the power con-microprocessor, where the instruction execution times are as-
sumption characteristics of all modules, ranging from disksumed constant and independent of each other. With fairly
drives and displays to individual chips and interconnects. Fo-complex superscalar pipelines becoming more common even
cusing solely on the hardware components of a design ignoresin embedded processors, simple processor models often no
the impact of the software on the overall power consumptionlonger suffice for estimating or bounding program perfor-
of the system. Software constitutes a major component of sys-mance. To be useful, processor performance models must con-
tems where power is a constraint. Its presence is very visiblesider utilizing individual functional units and the issue rate
in a mobile computer, as system software and application pro-down the processor pipelines. Pipelines are relatively easy to
grams running on the main processor. But software also playsmodel, and they have been studied extensively. Most pipeline
an even greater role in general digital applications. An evermodeling methods model the pipeline states within a short
growing fraction of these applications are now being imple-sequence of straight line instructions, such as a basic block.
mented as embedded systems. As mentioned earlier, the func-Although some works consider pipeline effects across the
tionality in these systems is partitioned between hardwarebranches and loops, it is generally felt that analysis using
and software components. The software component usuallylimited code length sequences is fairly accurate.
consists of application-specific software running on a dedi-
cated processor, whereas the hardware component usuallyMemory Behavior
consists of application-specific circuits. Given these trends,

With processor speeds improving at a much faster rate than there is a clear need to consider the power consumption by
memory speeds, the relative importance of memory behavior the software component of systems.
to program performance has increased significantly in recent
years. In response to this, researchers have explored several

COMPONENTS OF SOFTWARE POWER EVALUATIONways of producing estimates, or bounds, on program memory
performance. Some of these are briefly discussed here:

Software affects the system power consumption at various
levels. At the highest level, this is determined by the way

• Renewal theory models: The use of simulation for evalu- functionality is partitioned between hardware and software.
ating program memory behavior was discussed earlier. The choice of the algorithm and other higher level decisions
Although simulation provides arbitrarily high levels of about the design of the software component affect system
detail, it suffers from the drawback that it is quite slow. power consumption in a big way. The design of the system
To avoid this, the alternative is to estimate performance software, the actual application source code, and the process
statistics based on samples of memory reference traces. of translation into machine instructions, all of these deter-
The cache state is unknown at the beginning of each mine the power cost of the software component.
sample. To deal with this, renewal theory models have To systematically analyze and quantify this cost, however,
been developed to analyze memory behavior based on it is important to start at the most fundamental level, the
this partial information. individual instructions executing on the processor. Just as

• Locality analysis: Locality analysis is widely used by logic gates are the fundamental units of computation in digi-
compiler writers to offer good estimates of memory be- tal hardware circuits, instructions are the fundamental unit
havior in loop-oriented scientific codes. The analysis re- of software. Accurate modeling and analysis at this level,
lies on computing a set of reuse vectors that summarize therefore, is essential. Instructional level models can then be
how the loop’s array accesses reference (and rereference) used to quantify the power costs of the higher constructs of
memory locations and cache lines. This information is software (application programs, system software, algorithm,
used to guide memory prefetching algorithms. etc.). This aspect of software power evaluation is akin to the

modeling component of software performance evaluation (see• CM equations: Cache-miss (CM) equations build on the
ideas of locality analysis. These equations represent the first section).

The other component of software power evaluation consistsdetail the cache misses in loop-oriented scientific code.
Mathematical equations are generated to summarize of methods to collect information about the instructions car-

ried out during program execution, in particular, methods toeach loop’s memory behavior. Mathematical techniques
for manipulating these equations allow computing a determine the number of times each instruction in the pro-

gram was executed and the exact sequence in which the in-number of possible solutions. Each solution corresponds
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structions were executed (i.e., the program path). This aspect
of software power evaluation is therefore the same as the
path analysis component of software performance evaluation
(see first section).

The focus of discussion in this part of the article is on in-
structional level power modeling, because the path analysis
component is the same as that for performance.

APPLICATIONS OF SOFTWARE POWER EVALUATION

The following are the main applications for software power
evaluation:

MOV DX, [BX] NOP
MOV AX, CX MOV DX, [BX]
ADD AX, DX NOP

NOP
Power � 1.15 Watts MOV AX, CX
Energy � 8.6 	 10�8 Joules NOP

NOP
ADD AX, DX
NOP

Power � 0.99 Watts
Energy � 22.3 	 10�8 Joules

(a) (b)

Figure 4. Illustration of the difference between power and energy.• Software power analysis is needed to assign an accurate
power cost to the software component of a system. For
power-constrained embedded systems, this helps to ver-
ify that the overall system is meeting its specified power POWER AND ENERGY
budget.

• The most common way of specifying power consumption At this point, it is helpful to clarify the distinction between
in processors is through a single number, the average the term power that has been used so far in this article and
power consumption. Because power consumption varies the term energy as they relate to software. The average power
with instructions, a single number is not enough to cap- consumed by a processor while running a given program is
ture the power consumption characteristics of processors. given by P � I 	 Vdd, where P is the average power, I is the
This also makes it difficult to compare processors. Thus, average current, and Vdd is the supply voltage. Power is also
there is a need to develop programs for use as power defined as the rate at which energy is consumed. Therefore,
benchmarks. Instructional level analysis provides a finer the energy consumed by a program is given by
level of resolution about the processor’s power consump- E � P 	 T, where T is the execution time of the program.
tion. This additional resolution can guide the careful de- This in turn is given by T � N 	 
, where N is the number of
velopment of software power benchmarks and more clock cycles taken by the program and 
 is the clock period.
meaningful comparisons between processors. Energy is thus given by E � I 	 N 	 Vdd 	 
. Because Vdd

• For systems in which part of the functionality is imple- and 
 are constant for a given system, E is proportional to
mented in software, it is natural to expect a potential for I 	 N, whereas P is proportional to I.
power reduction by modifying software. Software power The difference between the two metrics is highlighted by
analysis is needed to effectively exploit this potential. It two instructional sequences (for the Intel 486DX2 processor)
helps in identifying the reasons for variation in power shown in Fig. 4. The two sequences have the same functional-
from one program to another. This enables the search for ity, but sequence (b) has some additional NOP instructions.
low power alternatives for each program. In particular, The NOPs are a little cheaper in terms of power than the
the information provided by software power analysis can other instructions, and thus the average power cost for se-
guide higher level design decisions like hardware-soft- quence (b) is about 14% lower than that of sequence (a). Be-
ware partitioning and choice of algorithm. It can also be cause of its increased running time, however, sequence (b)
directly used by automated tools like compilers, code gen- consumes 158% more energy. Energy consumption is the pri-
erators, and code schedulers to generate codes targeted mary concern for mobile systems, which run on the limited
toward low power. energy in a battery. Power consumption, on its own, is impor-

Power reduction by software modification is cheap. In tant in applications where cooling and packaging costs are a
contrast to hardware-based power reduction techniques, concern, because power consumption leads to heat dissipa-
it entails no increase in system cost or complexity. Also tion. Energy consumption is the primary focus of attention
note that software power analysis is a new field and has in this article. Although an attempt is made to maintain a
gained attention only in the recent past. Until recently, distinction between the two terms, the term power is some-
the potential for power reduction through software modi- times used to refer to energy, in adherence to common usage.
fication was poorly understood and thus was not ex- Nevertheless, power and energy are closely related, and the
ploited. energy cost of a program is simply the product of its average

power cost and its running time.• Power analysis also provides insight into where and how
power is consumed within the system’s hardware. This
additional insight provides directions for modifications in
system hardware design that lead to the most effective METHODS FOR SOFTWARE POWER EVALUATION
overall power reduction. For example, instructions can
be evaluated in terms of their power cost and frequency As can be seen from the above discussion, the ability to mea-

sure the current drawn by a processor during the executionof occurrence in typical compiler or even hand-generated
code. This combined information can be used during pro- of a program is essential for evaluating the power/energy cost

of software. Different methods for measuring processor cur-cessor design to rank the instructions that should be im-
plemented for less power expense. rent are discussed below. The main concepts described in this
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article are independent of the method used to measure aver- serted in series with the power supply and the processor. The
ammeter is a standard off-the-shelf, digital ammeter.age current.

Now if the given program is executed in a short time, a
Current Estimating Through Simulation current reading cannot be visually obtained from the amme-

ter. To overcome this, the programs being considered are putThe most commonly used method for power analysis of cir-
in infinite loops. The current waveform is now periodic. Digi-cuits is through specialized power analysis tools that operate
tal ammeters average current over a window of time (e.g., 100on abstract models of the given circuits. The models can be at
ms), called the integrating window. If the period of the cur-different levels of the design process, such as the circuit, gate,
rent waveform is much smaller than the integrating window,or architectural level. These tools can be used for software
almost the same number of loop iterations occur within con-power evaluation, too. A model of the given processor and a
secutive windows. Thus, the average current reading dis-

suitable power analysis tool are required. The idea is to simu- played by the ammeter will be stable.
late the execution of the given program on the model. During The limitation of this approach is that it cannot be used
simulation, the power analysis tool estimates the power (cur- directly for large programs, because the average current
rent) drawn by the circuit using predefined power estimating value continuously varies from one window to the next. How-
formulas and algorithms. ever, this is not a limitation, because the main use of the mea-

However, this method has some drawbacks. It requires surement technique is for an instructional level power analy-
models that capture the internal implementation details of sis. As discussed in the next section, short loops are adequate
the processor. This is proprietary information, to which most for this. This inexpensive current measurement approach
software designers do not have access. Even if the models are works very well here and has been validated on three com-
available, there is an accuracy versus efficiency tradeoff. The mercial processors (14). It should be stressed again, however,
most accurate power analysis tools work at the lower levels that the main concepts in this article are independent of the
of the design, switch level or circuit level (12,13). These tools, method for measuring average current.
however, are slow and impractical for analyzing the total
power consumption of a processor as it executes entire pro-

INSTRUCTIONAL LEVEL POWER MODELSgrams. More efficient tools work at the higher levels, register
transfer or architectural, but these are limited in the accuracy

The previous section presented feasible methods for measur-of the estimates.
ing the power cost of entire programs. But these methods can
also be used to obtain the finer level of resolution needed toCurrent Measurement
analyze the power impact of individual instructions. By mea-

The previous problems are overcome if the current drawn by suring the current drawn by the processor as it repeatedly
the processor during the execution of a program is physically executes certain instructions or certain short instruction se-
measured. The instantaneous current drawn by the processor quences, it is possible to obtain most of the information
is a time-dependent quantity that varies rapidly. The current needed to evaluate the power cost of a program for that pro-
waveform peaks following a clock edge and then goes down cessor.
until the next clock edge. To capture this waveform, the cur- The intuition behind this idea is as follows. Execution of
rent measurement system has to sample the current many each instruction in the instruction set involves specific pro-
times during a cycle. For a cycle time of a few nanoseconds, cessing across various units of the processor, which is charac-

teristic of that instruction. If the processor is executing thevery elaborate and expensive real-time data acquisition sys-
same instruction over and over again, it seems intuitive thattems are required. However, as can be seen from the defini-
the entire activity in the processor can be attributed to thetion of average power, the average current drawn by the pro-
basic processing required to execute that instruction. The av-cessor must be measured. For this, a much simpler and
erage current drawn by the processor, then, is the basic cur-cheaper alternative method can be used.
rent cost for executing that instruction. In real programs,The basic idea is illustrated in Fig. 5. The power supply
there may be other effects that affect the processor’s powerconnection to the processor is isolated from the rest of the
consumption. These include pipeline stalls, cache misses, andsystem. Then an ammeter (a current measuring device) is in-
the effect of change in circuit state when consecutive instruc-
tions differ from one another. These effects involve more than
one instruction, but executing programs where these effects
occur repeatedly also provides a way of isolating the power
costs of these effects.

This idea has been empirically verified for three commer-
cial processors (14). The power costs of individual instructions
and interinstructional effects are obtained by experiments
which involve creating specific programs and measuring the
current drawn during their execution. These costs are the ba-
sic parameters that define the instructional level power model
of a given processor, as described following.

Instructional Base Costs

Power
supply

CPU

Mem

Rest of the system

A A

The primary component of the power models is the set of base
costs of instructions. The experimental procedure for de-Figure 5. Experimental setup for current measurement.
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termining these costs requires a program containing a loop consisting of a mix of instructions, the actual cost is never
less than the estimate obtained by using the base costs. Forconsisting of several instances of the given instruction. The

average current drawn during the execution of this loop is example, consider a loop of the following pair of instructions
for the 486DX2:measured. The product of this current and Vdd is the base

power cost of the instruction. The base power cost multiplied
by the number of nonoverlapped cycles needed to execute the
instruction is proportional to its base energy cost. Table 1

XOR BX,1

ADD AX,DX
presents a sample of the base costs of some instructions for The base costs of the XOR and ADD instructions are 319.2
the Intel 486DX2 and the Fujitsu SPARClite ’934. The mea- and 313.6 mA respectively. The expected base cost of the pair,
sured average current I, number of cycles N, and the base using the individual base costs, is their average, that is, 316.4
energy costs are also shown. The base energy costs are de- mA, whereas the actual cost is 323.2 mA, greater by 6.8 mA.
rived from the formula in the previous section. The concept of circuit state overhead for a pair of instruc-

The following are some points to be noted for assigning tions deals with this effect. Given any two instructions, the
base costs to instructions: current for a loop consisting of an alternating sequence of

these instructions is measured. The difference between the
• The definition of base costs follows the convention that measured current and the average base costs of the two in-

the base costs of instructions should not reflect the power structions is defined as the circuit state overhead for the pair.
contribution of effects like stalls and cache misses. The Adding in the average circuit state overhead for each pair of
programs for determining the base costs must be de- consecutive instructions in an instruction sequence leads to a
signed to avoid these effects. The power costs of these much closer power estimate than using base costs alone.
effects are modeled separately. Although this effect was observed for all of the processors

• Generally, instructions with similar functionality have studied so far, limited impact is reported on the 486DX2 and
similar base costs. Thus, similar instructions can be ar- the Fujitsu ’934 (14). The explanation for the limited impact
ranged in classes, and a single average cost can be as- may lie in the fact that, in large complex processors, a major
signed to each class. part of the circuit activity is common to all instructions, for

• The base cost of an instruction varies with the value and example, the clocks, instruction prefetch, memory manage-
address of the operands used. Although appropriate mea- ment, pipeline control. Circuit state certainly results in sig-
surement experiments give the exact cost if the operand nificant variation within certain control and data path mod-
and address values are known, in real applications these ules. But the impact of the variation on the net power
values are often unknown until run time. The alternative consumption of the processor is masked by the much larger
is to assign a single average cost as the base cost for an common cost. It should also follow from the above that, if in-
instruction type. This is justified, because it has been ob- struction control and the data path constitute a larger frac-
served that the variation in operands leads only to a lim- tion of silicon, the impact of the circuit state should be more
ited variation in base costs. visible. This indeed happens for the digital signal processor

(DSP), a smaller, more basic processor.
Effect of Circuit State

Other Interinstructional Effects
The switching activity and, hence, the power consumption in
a circuit is a function of the change in circuit state resulting The final component of the power model is the power cost of

other interinstructional effects that occur in real programs.from changes in two consecutive sets of inputs. Now, during
the determination of base costs, the same instruction executes These include pipeline stalls and cache misses. Base costs of

instructions do not reflect the impact of these interinstruc-each time. Thus, it is expected that the change in circuit state
between instructions would be less here than in an instruc- tional effects. Separate costs must be assigned to these effects

through specific current measurement experiments. The basictional sequence in which consecutive instructions differ from
one another. This is confirmed by the fact that, for a sequence idea is to write programs where these effects occur repeat-

Table 1. Sample Base Costs for the Intel 486DX2 and the Fujitsu SPARClite ’934

Intel 486DX2 Fujitsu SPARClite ’934

I, Energy, I, Energy,
No. Instruction mA N 10�8 J Instruction mA N 10�8 J

1 nop 276 1 2.27 nop 198 1 3.26

2 mov dx,[bx] 428 1 3.53 ld [%10],%i0 213 1 3.51

3 mov dx,bx 302 1 2.49 or %g0,%i0,%l0 198 1 3.26

4 mov [bx],dx 522 1 4.30 st %i0,[%l0] 346 2 11.4

5 add dx,bx 314 1 2.59 add %i0,%o0,%l0 199 1 3.28

6 add dx,[bx] 400 2 6.60 mul %g0,%r29,%r27 198 1 3.26

7 jmp (taken) 373 3 9.23 srl %i0,1,%l0 197 1 3.25
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edly. This helps to isolate the power costs of these effects. [For
example, for the data cache in the 486DX2 (size 8K, four-way
set associative, 16 byte block size), a sequence of five memory
accesses to the addresses 0H, 800H, 1000H, 1800H, 2000H
causes a cache miss each time.] Multiplying the power cost of
each kind of stall or cache miss by the number of cycles taken
for each gives the energy cost of these effects.

SOFTWARE POWER ESTIMATING METHODOLOGY

The basic components of the instructional level power models
of typical processors were previously described. These models
form the basis for estimating the energy cost of entire pro-
grams. For any given program P, its overall energy cost EP is
given by

EP =
∑

i

(Bi × Ni ) +
∑

i, j

(Oi, j × Ni, j ) +
∑

k

Ek (2)

The base cost Bi of each instruction i, weighted by the
number of times Ni, it is executed, is added up to give the
base cost of the program. To this, the circuit state overhead
Oi, j for each pair of consecutive instructions (i, j), weighted by
the number of times Ni, j the pair is executed, is added. The
energy contribution Ek of the other interinstructional effects
k (stalls and cache misses) that occur during the execution of
the program is finally added.

Table 2. Illustration of the Estimating Process

Program Current, mA Cycles

; Block B1
main:
mov bp,sp 285.0 1
sub sp,4 309.0 1
mov dx,0 309.8 1
mov word ptr -4[bp],0 404.8 2
;Block B2
L2:
mov si,word ptr -4[bp] 433.4 1
add si,si 309.0 1
add si,si 309.0 1
mov bx,dx 285.0 1
mov cx,word ptr _a[si] 433.4 1
add bx,cx 309.0 1
mov si,word ptr _b[si] 433.4 1
add bx,si 309.0 1
mov dx,bx 285.0 1
mov di,word ptr -4[bp] 433.4 1
inc di, 1 297.0 1
mov word ptr -4[bp],di 560.1 1
cmp di,4 313.1 1
j1 L2 405.7(356.9) 3(1)
;Block B3
L1:
mov word ptr _sum,dx 521.7 1
mov sp,bp 285.0 1

The base cost and overhead values are obtained as de-
scribed in the previous sections. The other parameters in the
previous formula vary from program to program. The execu-

If some cache misses are expected in the actual execution of
tion counts Ni and Ni, j depend on the execution path of the

this program, their energy overhead has to be added. The ac-
program. This is dynamic, run-time information that must be

tual measured average current is 385.0 mA.
obtained by some of the analytical techniques for software

When average values are used for base costs, etc., the accu-
performance described in the first part of this article. In cer-

racy of the energy estimate given by the model described in
tain cases it can be determined statically but in general it is

Eq. (1) is limited to some extent by the range of variation in
best obtained from a program profiler. To estimate Ek, the

the average and the actual costs. However, the accuracy of
number of pipeline stalls and cache misses must be deter-

the energy estimate is primarily limited by the accuracy in
mined. Again this is dynamic information that is statistically

determining the dynamic information for the program. In cer-
predictable only in certain cases. In general, this information

tain applications, for example, speech processing, some statis-
is obtained from a program profiler and cache simulator.

tical characteristics of the input data are known (15). Incorpo-
The 486DX2 program shown in Table 2 illustrates the ba-

rating this knowledge into the power model leads to more
sic elements of the estimating process. The program has three

accurate power estimates. This is specially beneficial for
basic blocks shown in the table. The average current and the

smaller processors, such as DSPs, which are more sensitive
number of cycles for each instruction are provided in two sep-

to data-based power variations than large general purpose
arate columns. For each basic block, the two columns are

processors.
multiplied and the products are summed up over all instruc-
tions in the basic block. This yields a value proportional to

Overall Flow
the base energy cost of one instance of the basic block. The
cost of the j1 L2 statement is not included in the cost of B2, A typical overall flow of the estimating procedure is illus-

trated in Fig. 6. Given an assembly or machine level program,because its cost is different depending on whether the jump
is taken or not. The jump is taken three times and not taken it is first split up into basic blocks. The base cost of each in-

stance of the basic block is determined by adding up the baseonce. B1 is executed once, B2 four times, and B3 once. Multi-
plying the base cost of each basic block by the number of costs of the instructions in the block. These costs are provided

in a base cost table. The circuit state overhead is determinedtimes it is executed and adding the cost of the unconditional
jump j1 L2, a number proportional to the total energy cost of for each basic block from a table of energy costs for pairs of

instructions. (Alternatively, if the circuit state overhead doesthe program is obtained. Dividing it by the estimated number
of cycles (72) gives an average current estimate of 369.1 mA. not show much variation for a processor, a constant value is

used.) The energy overhead due to pipeline, write buffer, andAdding in the circuit state overhead offset value of 15.0 mA
(a constant value is used for the circuit state overhead, be- other stalls is estimated for each basic block and added to the

basic block cost. Next, the number of times each basic blockcause of the limited variation in this quantity for the 486DX2)
gives 384.0 mA. This program does not have any stalls, and is executed has to be determined. This depends on the path

that the program follows and is obtained by dynamic paththus, no further additions to the estimated cost are required.



542 SOFTWARE PERFORMANCE EVALUATION

Memory Power Modeling

In addition to the processor power consumption, the software
execution also results in power consumption by the memory
system. This can be a significant part of the total power con-
sumption of the system. In addition, this consumption is also
a function of the software being executed and thus merits
similar modeling. The current drawn by the memory system
is measured in the same way as for the processor. Then, by
executing programs that repeatedly access memory, the mem-
ory system power consumption is analyzed. [Details of such a
study for a dynamic random access memory (DRAM) chip are
presented in Ref. 17.]

FUTURE DIRECTIONS

The concepts in this article can form the basis for further
work in software power evaluation. Certain important future
directions are presented here for the interested reader.

Software Power Profilers

An interesting extension of the software power estimating
methodology described previously is the development of
power profilers for given processors. The instructional level
power model described here suggests that this is easily done
by enhancing existing performance-based profilers with the
power costs of instructions and interinstructional effects. Us-

Assembly/machine
code

Determination of
basic blocks

Basic block cost
estimation

Global program
cost estimation

Final program cost

Stall analysis

Execution profiling

Base cost table

Cache penalty est.
(cache simulation)

ing this data, the profilers generate a cycle-by-cycle profile of
Figure 6. Software energy estimating methodology. the power consumption of given programs.

Impact of Dynamic Power Management

Dynamic power management, the shutting down of modulesanalysis techniques, such as program profiling. Given this in-
not needed for a given computation, is gaining popularity asformation, each basic block is multiplied by the number of
a power reduction technique. An aggressive application of dy-times it is executed. An estimated cache penalty is added for
namic power management inside a processor has interestingthe final estimate. The cache penalty overhead computation
ramifications for the instructional level power analysis of theneeds an estimate of the miss ratio, obtained through memory
processor. In particular the following issues deserve furtherperformance analysis techniques, such as cache simulation.
investigation: (1) the base costs of different instructions may
show greater variation; (2) variations due to differences in op-

Idle Time Evaluation erand data values may increase; (3) the overall reduction in
power may also make the effect of circuit state overhead moreThe previous discussion is for an active processor constantly
prominent; and (4) some power management features may beexecuting instructions. However, a processor is not always
activated depending on the occurrence of specific sequences ofperforming useful work during program execution. For exam-
instructions, and this may require special handling.ple, during the execution of a word processing program, the

processor may simply be waiting for keyboard input from the Power Analysis for Newer Architectures
user. If it executes a busy wait, that is, executes a loop of

It is important to extend the instructional level power analy-instructions while waiting, it is wasting power. A power re-
sis methodology to all major processor architectures. In par-duction technique that is gaining popularity in systems is to
ticular, analysis of processors based on superscalar and veryput the processor in a low-power state during such ‘‘idle’’ pe-
large instruction word (VLIW) architectures is especially im-riods.
portant. These seem to be the architectures of choice for high-To account for these low-power periods, the average power
performance processors in the near future, and, with ever in-cost of a program is thus given by: P active 	 
active � P lp 	 
lp,
creasing integration and clock frequencies, the power problemwhere P active is the average power consumption when the pro-
will become even more acute for these processors.cessor is active and 
active is the fraction of the time during

which the processor is active. P lp and 
lp are the correspond-
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