
522 SOFTWARE METRICS

ects which run over budget and over time. In this article,
prominent areas of software metrics are examined, and the
state of the art in terms of progress in these areas is de-
scribed. A number of themes relevant to the area of software
metrics are discussed, together with current progress being
made in each. The second section of this article addresses the
motivation for using software metrics. The role of measure-
ment theory in establishing a theoretical foundation is dis-
cussed, together with the role quality models play in satis-
fying common goals of the software development process.

Establishing that any proposed metric is theoretically
valid requires that it conforms to certain mathematical prop-
erties. In the third section 3, these properties are explained,
and an example is given to show how, in practice, this valida-
tion works.

Theoretical validation of a metric must be supported by
empirical evaluation of that metric, for example, determining
which features of the proposed metric are most useful to the
software engineer. In the next section, a description of the
empirical software engineering field is given, identifying re-
cent work in the area, and benefits obtainable from empiri-

SOFTWARE METRICS cal analyses.
The difficulty of maintaining legacy software is a recog-

Software metrics as measures of the quality of software play nized problem in the software industry, and places a large
an important role in the field of software engineering. Better burden on the software budget. The lack of a clear under-
understanding of the development process and the principles standing of what constitutes quality software contributes to
of sound software design and the ability to better estimate this phenomenon. Very little thought goes into understanding
costs and effort of future projects are just several of the poten- the constituents of software, the implications of ignoring fea-
tial benefits of using metrics. In this article, some important tures of software which have the most impact on the delivered
features of software metrics are described, and we review the system, and ways of improving software process management
state of the art. Issues covered include the importance of val- (2). The fifth section of this article addresses the problems
idating a metric and performing supporting experiments, of of developing and evaluating rigorous quality models which
developing and evaluating a quality model for software fac- address some of the problems mentioned. As the term sug-
tors such as maintainability, of identifying the characteristics gests, a model should provide a means by which high-level
of software complexity, and the ever-increasing role of sup- external attributes can be decomposed into low-level internal
portive data collection tools in the field of software metrics. attributes, which can be measured. A structure is thereby im-

posed throughout, ensuring a rigor in the analysis of quality.
Using quality modeling techniques at the design stages of de-INTRODUCTION
velopment can help to identify faults early on, so aiding later
maintenance; in later sections, some of these techniques areAccording to Fenton (1), measurement can be defined as the
described. In developing a quality model, we use maintain-process by which numbers or symbols are assigned to attri-
ability as an example, and show how to develop a qualitybutes of entities in the real world in such a way as to describe
model which evaluates its components. In any computer sys-them according to clearly defined rules. As such, measure-
tem, the problem of complexity is always going to be a consid-ment pervades everyday life, and continues to affect us in the
eration. The different types of complexity cover a wide areaway we live more and more. Indeed, the importance of mea-
from understanding the nature of the initial problem to un-surement can be traced back through the centuries and the
derstanding the developed system; the problem of main-invention of the Kelvin scale of temperature measurement by
taining systems can be seen as a problem of overcoming theLord Kelvin, who said:
complexity of understanding the system and its continued op-
eration.When you can measure what you are speaking about, and express

Relatively new paradigms such as the object-oriented styleit in numbers, you know something about it; but when you cannot
of design and programming offer new challenges in the as-measure it, when you cannot express it in numbers, your knowl-

edge is of a meagre and unsatisfactory kind. sessment of complexity, and necessitates new ways of mea-
suring that software. Metrics proposed in the past for the pro-
cedural paradigm are not always relevant or applicable. InIn the field of software engineering, software metrics help

us to identify and understand various features of software the next section, we consider the assessment of complexity in
systems, first, inherent to a particular system, where we ana-products and processes. The application of measurement the-

ory and practices to the software process provides a means of lyze a system in isolation and the features which contribute
to its complexity, and, second, between different systems, tobetter understanding the world of software engineering. For

example, attributes such as maintainability may be the focus which we give the term comparative complexity. A feature of
software which affects both inherent and comparative com-of measurement investigations. This is particularly important

in view of the software crisis, characterised by software proj- plexity is that of the coupling of modules. By coupling, we

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

SOFTWARE METRICS 523

mean the measure of the strength of association between one scale, an example of a counting metric being the number of
lines of code. An ordered metric, which expresses a range ofmodule and any other module with which it interacts. Many

metrics have been proposed which purport to capture the ex- values such as preference, would be measured on an ordinal
scale. In fact, a metric can be identified as belonging to onetent of coupling in systems, but it is still an area of current

interest and debate, as is software cohesion. of five major scale types (nominal, ordinal, interval, ratio, or
absolute). The representation condition of measurement (RC)A particular area of importance in the software metrics

world is that of software tools to collect the essential data for (1) emphasizes the importance of an empirical (observed) rela-
tionship also holding true in the mathematical world. For ex-analysis. Software tools automate time-consuming data col-

lection tasks and are becoming both more prevalent and so- ample, if a program X appears to be longer than program Y,
and assuming that the number of lines of code is a (proposed)phisticated in what they can achieve. However, they are still

crude in terms of the time and resources they consume (often measure of program length, then we would expect the number
of lines of code for X to be larger than the number for Y. Ac-prohibitive), the types of systems which they can be applied

to (they are often language dependent), and their reliability cording to Fenton (1), measurement is important for three ba-
sic activities: to understand, to control, and to improve. If(frequent failures in the software tool mean wasted time and

resources). In the final section, we consider the availability of measures are available to help understand what is happening
during development, the added control allows an easier as-tools, the potential for more powerful tools which may over-

come some of the problems currently faced (the size and com- sessment of future courses of direction, and better prediction
of likely outcomes; this applies as much to the maintenanceplexity of systems), and how they might meet future require-

ments and trends in the area of software engineering. process as any. The intended user of a metric must be borne
in mind when choosing a metric, since software developers,
testers, middle management, etc., have different data require-

MOTIVATION FOR USING SOFTWARE METRICS
ments. The scope of software metrics extends from cost and
effort estimation to assessment of reliability in software. The

Measurement in everyday life is invaluable in understanding
notion of control is central to all these areas. According to De

the entities around us and the important attributes of those
Marco (6), ‘‘You cannot control what you cannot measure.’’

entities; the same is true of software metrics in understand-
Fenton (1) adds to this, ‘‘You can neither predict nor control

ing software and its characteristics. In the 1970s, metrics
what you cannot measure.’’

tended to focus on features of the product under examination.
These two quotes imply that we must also be realistic in

McCabe’s cyclomatic complexity metric is a good example of
choosing attributes of software which can be measured. There

one of these early measures (3). This metric is obtained by
is no value in believing one has measured one attribute of

analyzing the control flow through a piece of software; an op-
software to find one has measured a different attribute. A dis-

timum level of the metric may be prescribed, beyond which a
tinction should be made between internal directly measurable

program is considered overly complex. The complexity metric
attributes such as size, and external indirectly measurable at-

has also been used as the basis of prediction systems for esti-
tributes such as comprehensibility, maintainability, etc. Met-

mating (among other things) testing difficulty and mainte-
rics are usually based on internal (low-level) attributes, de-

nance difficulty.
rived from external (high-level) attributes.

In the 1980s, the focus shifted to the analysis of models for
cost estimation and measurement of program specifications.

The Role of Quality ModelsThe best example of this type of model is COCOMO, the con-
structive cost model (4), a cost model derived from analysis of Use of a proper quality modeling technique helps to identify
sixty-three software projects. The model can be tailored to the the appropriate external and internal attributes. For exam-
requirements of the particular project, and has recently been ple, the goal question metric (GQM) (7) or factor criteria met-
updated to take new forms of software development into ac- ric (FCM) (8) model establish the high-level attributes, such
count (5). The early 1990s saw a further shift toward analyz- as reliability and productivity to be measured and how these
ing the development process, and measuring features of the are decomposed to the low-level capturable metrics. Using a
development process. For example, how good is the design in model which is rigorous in its application also means there
terms of maintenance needs during the development cycle? is a better chance that the model can be used effectively for
What is the relationship between the faults discovered in a prediction purposes.
system and the types of structures used in the design? This Application of quality models and the metrics they give
has particular significance in the object-oriented paradigm, rise to allows the following sorts of questions to be answered:
where we would want to know the effects of using a deep (as
opposed to a shallow) inheritance hierarchy, where a deep in- 1. Is the quality of the software we produce improving?
heritance hierarchy implies a system with a large amount of Here, quality might be expressed in terms of the size of
inheritance. the maintenance task, potential metrics for which

might be: mean time to failure (MTTF), measuring the
The Role of Measurement Theory expected time between one failure and the next, mean

time to repair (MTTR), measuring the expected timeThe use of sound measurement theory principles, applicable
taken to fix a bug, number of modification requests, etc.to measuring real-world entities, is a prerequisite for the de-

sign of any metric. However, there has been a lack of atten- 2. Is our productivity improving? Here, productivity might
be expressed in terms of costs of personnel. Characteri-tion paid to such rigor in the metrics field in the past. For

example, a metric must use the appropriate measurement sation of any entities and attributes we are interested
in measuring can be achieved by identifying the prod-scale. A counting metric would be measured on an absolute

524 SOFTWARE METRICS

ucts, processes, and resources used during software de- The theoretical approach to the validation of metrics requires
us to clarify what attributes of software we are measuring,velopment; this is often referred to as a metrics frame-

work. and how we go about measuring those attributes (10,13,14);
a metric must measure what it purports to measure.3. Are we meeting costs and time deadlines?

Fenton (1) describes the representation condition (the basis4. Are our goals being met? According to Gilb (9), ‘‘Projects
of the representational theory of measurement), satisfactionwithout clear goals will not achieve their goals clearly.’’
of which is the prerequisite for any metric to be viewed as
valid. The representation condition states that any measure-It is in these areas where measurement and the application
ment mapping must map entities into numbers, and empiri-of metrics have the most to offer. The main difficulties in soft-
cal relations into numerical relations, such that those rela-ware development are characterized by development which
tions are preserved. In other words, our observations in theoverruns both budget and time scale, and by high mainte-
real world must be reflected in the numerical values we ob-nance costs. Measurement has an important role to play in
tain from the mathematical world.alleviating these problems through control, understanding,

Briand and Morasca (11) argue for the need to unambigu-and improvement.
ously define the important features of software through a
sound mathematical framework, not specific to any particular

The Need for Rigor feature of software, yet rigorous in its application being based
on specific mathematical concepts. As an example from thisMeasurement as a software engineering discipline has at-
work, and a theme which we will return to later, consider thetracted considerable interest over the years. The lack of appli-
complexity of a system expressed in terms of the level of cou-cation of sound measurement theory to software and the lack
pling in that system. Here, coupling refers to intermodule re-of empirical studies using that theory as a foundation might
lationships. Valid coupling metrics should be based on mathe-explain the controversy surrounding software metrics in the
matically proven laws. For example, merging two modulespast. More recently, progress has been made toward laying
(between which there was no previous relationship) shouldsolid theoretical foundations for the application of measure-
not cause the level of coupling in the system to rise. Equally,ment theory to software engineering practice (10,11). En-
merging two modules (between which there was previously asuring consistency in the application of software metrics is
strong relationship) should cause the level of coupling in theessential for their widespread adoption. At present, however,
system to fall. Other properties such as nonnegativity are alsothere is still much debate in the metrics community on the
suggested: a system cannot have a negative size and cannotcorrect framework to adopt for software measurement valida-
have a negative level of coupling.tion (12).

In Fenton and Pfleeger (1), correct selection of the scaleIn the next section, we turn to recent work in these areas,
type and the potential impact this has for statistical opera-and the potential this work has for the development of quality
tions on collected data are emphasized. Often, an incorrectsoftware. We consider the issues of theoretical validation and
statistical analysis can be performed following the wrongempirical evaluation.
choice of scale type. The difficulty is knowing which scale type
is appropriate, a question that is far from straightforward. In

CONSISTENT APPLICATION the case of two sets of data measured on two different scale
types, appropriate transformations can be made to preserve

A major problem with introducing any potential software the integrity of the statistical operations on the two sets of
metric is ensuring that it conforms to a validation process data.
general enough to allow any metric to be assessed, yet rigor- Kitchenham et al. describe a list of features of metrics
ous enough to impose strict conditions on what constitutes a which must hold for that metric to be valid (10). For all met-
valid metric. A major consideration for any proposed metric is rics, the following criteria must hold for a metric to be consid-
to ensure that it is theoretically valid, and conforms to strict ered valid:
mathematical properties.

• For an attribute to be measurable, it must allow different
Theoretical Validation entities to be distinguished from one another.
In measuring attributes of software, Fenton (1) poses several • A valid measure must obey the representation condition,
questions, applicable for real-world entities, but more difficult that is, it must preserve all intuitive notions about the
to answer when considering software. The questions posed attribute and the way in which the measure distin-
highlight the more abstract nature of software, and the prob- guishes between entities.
lems associated with software measurement. • Each unit of an attribute contributing to a valid measure

is equivalent.
1. How much must we know about an attribute before it • Different entities can have the same attribute value

is reasonable to consider measuring it? within the limits of measurement error.
2. How do we know if we have really measured the attri-

bute we wanted to measure? For an indirect metric, the following criteria must also be con-
3. What meaningful statements can we make about an at- sidered. The metric should:

tribute and the entities that possess it?
4. What meaningful operations can we perform on mea- • Be based on an explicitly defined model of the relation-

ship between attributes.sures?

SOFTWARE METRICS 525

• Be dimensionally consistent. ment effort. In this study, various code metrics are shown to
be poor indicators of development effort.• Not exhibit any unexpected discontinuities.

Design metrics based on information flow were described
• Use the appropriate measurement scale.

and evaluated using data from a communications system (19).
The ability of the design metrics to identify change-prone, er-

Validation Example ror-prone, and complex programs was compared with that of
simple code metrics, that is, lines of code, number of branchesTake as an example, in the object-oriented paradigm, the
and so on. The conclusion arrived at was that code metricsweighted methods per class (WMC) metric of Chidamber and
were better at identifying such programs than the designKemerer (16). The metric was proposed as a measure of the
metrics. The Chidamber and Kemerer set of object-orientedcomplexity of a class, the hypothesis being that the more
metrics were validated empirically using eight medium-sizedmethods there are in a class, the more complex that class.
information management systems, and were assessed as pre-Each method of a class may perform a particular function on
dictors of fault-prone classes (13). For the WMC metric in par-an object. So, for example, a class BankAccount would have
ticular, the experimental hypothesis to be statistically testedmethods to return the account number, to return the balance,
was: A class with significantly more member functions thanto handle deposits, to handle withdrawals, and so on. To vali-
its peers is more complex and, therefore, tends to be moredate WMC against the first four criteria, we must decide what
fault-prone.the WMC measures directly; WMC is a direct (countable)

Fault data from the eight systems were then collected, andmeasure of the size of a class.
relationships identified. In this case, the WMC hypothesisTurning to the first set of criteria, it can be seen how one
was supported, leading to the conclusion that larger classesclass may be distinguished from another class in terms of the
are indeed more fault-prone.WMC value, if, for example, it has a different number of

methods. It is straightforward to see that the representation
condition holds, since, under normal conditions, the greater

EMPIRICAL SOFTWARE ENGINEERINGthe number of methods in a class, the greater the size of that
class. Each unit contributing to the metric is viewed as equiv-

Empirical software engineering can be defined as: The studyalent (since we make no distinction between one method and
of software-related artifacts for the purpose of characteriza-another), and different classes can have the same number of
tion, understanding, evaluation, prediction, control, manage-methods. We can therefore view the WMC metric as a valid
ment, or improvement through qualitative or quantitativeindicator of the size of a class.
analysis. The software research crisis has arisen from theTo validate WMC against the second set of criteria, we
continued practice of advocacy research at the expense of allmust decide what WMC indirectly measures, and see if a rela-
other possible forms of research (20). It is suggested that re-tionship exists between that direct measure (size) and the in-
search should be broken down into four phases:direct measure. Consider WMC as an indirect measure of

maintainability (16). Maintainability is a difficult concept to
define, but for the sake of argument assume it to mean modi- 1. The informational phase. Gather or aggregate informa-
fiability (i.e., how easy it is to make a modification to a class). tion via reflection, literature survey, people/organiza-
The question then is: Are small classes easier to modify than tional survey, or poll.
large classes? 2. The propositional phase. Propose and/or build a hypoth-

This question can only be answered in particular circum- esis, method or algorithm, model theory, or solution.
stances, after the collection of a large amount of empirical

3. The analytical phase. Analyze and explore a proposal,evidence. There are other hypotheses which we would also
leading to a demonstration or the formulation of a prin-like to test, such as the relationship between WMC and devel-
ciple or theory.opment effort. Through experimentation we can begin to un-

4. The evaluative phase. Evaluate a proposal or analyticderstand more about the validity of WMC. In addition to be-
finding by means of experimentation (controlled) or ob-ing theoretically valid, a metric should be shown to be valid
servation (uncontrolled, such as a case study) perhapsin an empirical sense. For real, large-scale systems, we would
leading to a substantial model, principle, or theory.like to know if WMC gives a good indication of the effort to

develop a class. This hypothesis forms the basis of an experi-
ment, carried out by collecting data from real systems, and Fenton (1) recommends examining the following criteria when
identifying whether a significant relationship exists between considering the viability of an experiment:
the WMC values for a system and a metric such as develop-
ment time; these activities form what is known as an empiri-

1. Is it based on empirical evaluation and data rather thancal evaluation (10,13,14,17).
intuition and advocacy?

2. Does it have a good experimental design? There areEmpirical Evaluation of Metrics
many possible ways an experiment can be designed.

It is preferable to have a metric which is both theoretically 3. Is it a toy situation or a real situation?
valid and can be shown to be of use through empirical evalua-

4. Are the measurements appropriate to the goals of thetion. For example, an empirical investigation has been de-
experiment?scribed which attempts to identify design metrics most useful

to the software engineer (18). A metric based on information 5. Was the experiment run long enough to evaluate the
true effects of the change in practice?flow is introduced, and found to correlate highly with develop-

526 SOFTWARE METRICS

Empirical evaluation usually begins with questions such as: main results were the small use of inheritance in the system
(133,000 lines of code), and the ability to predict numbers of
defects based on simple counts rather than complex suites ofDoes the use of formal methods in systems development
metrics.influence the quality of the end product?

A study of two releases of a major commercial system re-Does the level of training given to development staff affect
vealed a counterintuitive relationship between pre- and post-the final reliability of software?
release faults (29). Modules among the most fault-prone pre-
release were found to be among the least fault-proneA distinction is made between independent variables and de-
postrelease. Conversely, modules among the most fault-pronependent variables. In the last example, the independent vari-
postrelease were found to be the least fault-prone prerelease;able would be the level of training, and the dependent vari-
the need for further empirical investigations to support or re-able the reliability of software. A number of examples will
fute these claims is emphasised.help to illustrate the sort of experimentation currently being

undertaken, and the objectives which such experimentation
Threats to Validityseeks to fulfill. A good introduction to the area of experimen-

tation, and the steps in setting up and carrying out an experi- In performing an experiment, three types of threats to the
ment can be found in Refs. 21 and 22. The following section validity of that experiment have to be considered. These are
briefly reviews some recent results obtained through empiri- external, internal, and construct validity threats; each is now
cal software engineering research. explained.

External validity is the degree to which results from the
Examples experiment can be generalised to the population, that is,

other groups. The use of students as subjects in an experi-An investigation into the effects of using formal methods to
ment may be a threat to external validity, for example.develop an air-traffic control information system examined a

Internal validity is the degree to which we can concludenumber of methodologies during development, ranging from
that the dependent variable is accounted for by the indepen-Milner’s calculus of communicating sequential processes to a
dent variable. For example, to what extent can we say thattotally informal approach (23). For each approach, metrics
the reliability of software is due to the level of training re-such as total lines of delivered code, number of changes to
ceived by development staff? Are there other variables whichdelivered code, percentage of modules changed, and number
should be considered?of faults discovered were collected. Results suggested that us-

Construct validity is the degree to which the independenting an approach based on formal methods led to code which
and dependent variables accurately measure what they pur-was relatively simple and easy to test.
port to measure. For example, are we really measuring theA recent paper describes an experiment in which the main-
reliability of software or something completely different?tainability of object-oriented design documents was compared

Many of the empirical investigations described seek towith that of structured design documents (24). The conclu-
characterize a particular feature of software. For example, ansions arrived at were that there was no evidence to suggest
investigation of a metric for maintainability may be based onthat object-oriented design documents were easier to main-
the relationship between the metric and the number of faultstain than structured design documents, and if anything, ob-
found in a system. The main problem is the lack of studies onject-oriented design documents are more sensitive to poor
large systems; it is difficult to determine whether or not re-design.
sults from small systems will scale-up.Roper et al. (25) describe an empirical study carried out

to compare three defect detection techniques: code reading,
functional testing, and structural testing using branch cover- Benefits from Empirical Analyses
age. The conclusions were that individual techniques were

Until now, little empirical analysis has been performed usingbroadly similar in terms of observing failures and finding
a proper scientific basis (20,30). Much of the evidence put for-faults, but used in combination are much more effective. Por-
ward to support claims about the way software should be en-ter et al. (26) describe the results of an experiment to detect
gineered has been anecdotal, with no study of real systemsfaults in requirements documents. They introduce a scenario-
taking place. An example of such a claim might be: ‘‘By usingbased approach which improves on existing ad hoc and check-
a particular development technique, maintenance can be re-list detection techniques. The scenario method (a more spe-
duced by 30%.’’cific version of the checklist) was shown to identify more

It is only by analyzing large numbers of systems empiri-faults.
cally and building up a base of experience that such claimsThe findings of an experiment in which the benefits to
can be justified. The Software Engineering Laboratory (SEL)maintenance of using modular code against nonmodular
at the University of Maryland (in conjunction with NASA)(monolithic) code were examined (27). The experiment pro-
has, as a specific goal, the improvement of the software pro-duced results which went against the traditional view that
cess through an experience factory (31). Lessons from analy-modular code was easier to maintain than nonmodular code;
ses of previous projects are stored for future projects. Twoit was suggested that the initial experimental technique used
requirements must be met for a rigorous, scientific foundationwas at fault. This highlights the problem of placing too much
to software engineering:faith on the results of one experiment.

Cartwright and Shepperd (28) describe an empirical inves-
tigation of an industrial object-oriented system. Metrics were 1. A top-down evolutionary framework in which research

can be focused and logically integrated to produce mod-collected from a large telecommunications system. The two

SOFTWARE METRICS 527

els which can then be evaluated and tailored to the ap- developed). There are also quality guidelines based on the
ISO 9126 standard (33) and the QMS subsystem (34), whichplication environment.
identify the individual quality factors making up the overall2. A laboratory associated with the software artifact that
view of quality. For example, reliability has related conceptsis being produced and studied to develop and refine
of availability, correctness, and fault-tolerance; these criteriacomprehensive models based upon measurement and
can be broken down further and the metrics formed at theevaluation.
lowest level of the treelike structure produced. So, for exam-
ple, availability can be broken down into directly measurableGreater understanding of the way software behaves and ways
attributes such as percentage of time a machine is availableof improving the development of software are therefore two of
over a specific time period, response times, and maximumthe major benefits of empirical analyses. It is only through
loads.understanding that control can be exercised and improve-

ments made. The need to understand the nature of software
is particularly relevant to the area of maintainability, which The GQM Approach. The GQM approach (7) can be used in
accounts for a large percentage of the development budget. In a variety of settings. It can be used to control a software proj-
the following section we discuss how maintainability can be ect by monitoring progress and allowing feedback, to analyze
characterised and measured at an appropriate level. a current scenario with a view to its improvement, or as in

this article, to determine in some detail the characteristics of
a feature of software quality.SOFTWARE SYSTEM MAINTAINABILITY EVALUATION

The GQM approach defines a quality model on three levels:
Maintaining software in the sense of ensuring it continues to
provide the functionality it is supposed to is a time-consuming • Conceptual level (goal). A goal is defined with respect to
and difficult task. In the following sections, maintenance re- various models of quality, from various points of view,
fers to all types of maintenance: corrective maintenance and relative to a particular environment.
needed to correct errors in the software, adaptive mainte- • Operational level (question). A set of questions is used to
nance needed to preserve the purpose of the program in a define aspects of the object and to characterise the goal
changing environment, preventive maintenance in anticipa- in more detail.
tion of changes, and perfective maintenance to improve a pro-

• Quantitative level (metric). One or more metrics are as-gram in terms of its functionality. Care must also be taken to
sociated with every question.distinguish between faults and failures. A failure is defined

as a manifestation of a fault. Since all faults do not necessar-
Approach Adoptedily lead to failures it is likely that a system will contain undis-

covered faults throughout its lifetime. This has serious impli- A hybrid approach to the evaluation of maintainability is
cations for maintenance and the effort that should be invested adopted here. It draws on parts of the GQM approach, the
in the testing process. Conversely, many faults discovered ISO 9126 standard, and QMS subsystem. The overall goal (in
during testing and reviewing may be benign in the sense that keeping with the GQM approach) is: To improve the predic-
they would never realistically trigger a failure in operation. tion of quality from the developer’s viewpoint.
Maintenance encapsulates many areas of system behavior. In The question then has to be asked: What are the individual
the object-oriented paradigm, concepts such as inheritance factors contributing toward the overall view of quality? These
and polymorphism present difficulties by their very nature. can then be listed, among which is the maintainability factor.
Consider the problem of having to make a modification to a Other factors might include reliability, usability, functional-
class at the root of an inheritance hierarchy (from which all ity, and reusability. It is open to the developers of the model
other classes inherit). All inheriting subclasses are potentially to decide exactly which factors are most important in their
affected. As such, inheritance can be viewed as a form of cou- particular case. For a safety-critical system, the reliability
pling, in the sense that changes in one part of a system may factor will be more important than a factor such as reusabil-
have serious implications for other parts of the system. ity. From the ISO model, maintainability is defined as the set

Maintainability is related to system stability. Brand et al. of attributes that bear on the effort to make specified modifi-
(32) suggest developing separate metrics for classes in an OO cations. From the QMS model, maintainability is defined as
system which are stable, that is, that are not likely to be the ease with which faults can be diagnosed. The next ques-
changed (e.g., library classes), and those which are unstable tion which has to be asked is: What are the related concepts
and more likely to be changed. The overriding point to note is for maintainability?
that maintainability is an important factor in the assessment Related concepts can then be decided on; these could be:
of software quality. Exactly how it influences quality can be
better understood by developing a quality model in which its

• Understandability. How easy is it to understand a sys-constituent parts are evaluated.
tem and its components?

A Quality Model • Testability. How easy is it to test a system and its compo-
nents?Many models have been suggested as a means of identifying

• Stability. How stable is a system in terms of the stabilityquality. Most notable amongst these are Boehm’s quality
of its components?model for cost and effort estimation and the factor criteria

metric (FCM) model (in which the quality factors are broken • Modifiability. How easy is it to modify components of
the system?down into the respective criteria, from which metrics can be

528 SOFTWARE METRICS

These then are the candidate concepts for maintainability. Once the process and product metrics have been decided
The same process could be carried out for the other four fac- on, it is a question of identifying relationships between the
tors. The next question which needs to be asked is: Which of product and process metrics. For example, is there a relation-
the last concepts are most important when considering main- ship between the time taken to diagnose a fault, and the level
tainability (bearing in mind the original goal)? of inheritance in a system? Does the number of variables in a

We might decide that understandability and modifiability module affect the time taken to understand the requirements
are the key factors here. From a developer’s viewpoint, these for a modification? Each of these questions could form a hy-
two factors are very likely to be a major consideration. The pothesis as follows: It is more difficult to diagnose a fault in
next question which needs to be asked is then: What are the a system with a deep inheritance hierarchy than in a system
constituents of each of the concepts: modifiability and under- with little or no inheritance. It takes longer to understand the
standability? requirements for a modification if a module has a relatively

This is the stage at which the metrics start to evolve from large number of variables.
the higher level attributes via questions such as: Which pro- These hypotheses can then be tested empirically, and in
cess metrics and which product metrics are most appropriate this way an understanding of the features of the system un-
for each of the chosen factors (modifiability and understand- der examination can be obtained. From a high-level view of
ability)? what constitutes quality, a set of hypotheses have been devel-

For modifiability we might arrive at the following process oped which can be tested on real systems. Figure 1 illustrates
metrics: the stages by which the quality model was developed. Decom-

posing the concept of quality into its constituent parts until
• Number of modification requests (where a modification the low-level metrics are produced is an example of the divide

request is a request for change other than a fault fix). and conquer approach to problem solving. The purpose of per-
• Time taken for a modification request to be completed. forming empirical analyses is to try and understand the com-

plex nature of software, and to seek ways of improving soft-• Number of modification requests/KLOC (KLOC refers to
thousands of lines of code). ware development. In the next section, the concept of software

complexity is examined.• Number of faults.
• Time taken for a fault to be fixed.
• Number of faults/KLOC.

Measuring maintainability is a matter of capturing features
of the maintenance process. Product metrics for modifiability
would be measures which are likely to be related to the cho-
sen process metrics. Some candidate product metrics might
be:

• Number of modules in the system. In the object-oriented
paradigm, this might be the number of classes or meth-
ods.

• Number of variables per module. In an object-oriented
paradigm, this might be number of attributes per class.

• Number of variables in the system.
• Number of lines of code.
• Number of relationships between modules (as a measure

of coupling). This could be expressed in terms of calls by
modules to other modules.

In addition, there may also be measures specific to the para-
digm under examination: for example, measures of the inheri-
tance structure, and types of relationships between classes,
both of which may affect the modifiability of a system.

For understandability, we would consider the following
process metrics:

• Time taken to diagnose a fault.
• Time taken to understand requirements for a modifica-

tion prior to coding.
• Average time taken to diagnose a fault.

Goal: To improve the prediction of quality from the developer’s
viewpoint

Question: What are the individual factors contributing toward the
overall view of quality?

Answer: Maintainability,
Reliability,
Usability,
Functionality,
Reusability

Question: What are the related concepts for maintainability?
Answer: Understandability,

Testability,
Stability,
Modifiability

Question: Which of the last concepts are most important when
considering maintainability (bearing in mind the original
goal)?

Answer: Modifiability,
Understandability

Question: What are the constituents of each of the concepts:
modifiability and understandability?

Question: Which process metrics and which product metrics are most
appropriate for each of the chosen factors (modifiability and
understandability)?

Metrics: Modifiability process metrics:
Number of modification requests,
Time taken for a modification request to be completed
........
........
Understandability process metrics:
Time taken to diagnose a fault,
........
........

The product metrics could be similar to those for modifi-
ability. Figure 1. Developing a GQM quality model.

SOFTWARE METRICS 529

A VIEW OF COMPLEXITY ware. Early attempts to measure complexity were based on
the lexical content of programs; for example, Halstead’s met-

In recent years there has been a tendency to view complexity ric (38) counted the number of operators and operands in a
program. As another example, the complexity metrics of Yinas relating to products of the development process, expressed

in terms of the size or functionality of a system. A classic and Winchester (39) assessed the complexity of a system us-
ing the module calling structures, represented in the form ofexample is that of McCabe’s complexity metric which mea-

sures the control flow through a program (3). graphs. Such analysis gives a good indication of any struc-
tural weaknesses, and the dependancies between modules.In fact, complexity per se is by no means an easy concept to

define. Many attempts have been made to identify complexity The complexity metric (40) for the complexity of a procedure
was defined as:within software (1,5,35,36). Complexity is sometimes as-

sumed to be synonymous with size or functionality, in the be-
lief that larger systems are more complex. Lorenz and Kidd length × (fan-in × fan-out)2

(35) define complexity loosely as that characteristic of soft-
ware that requires effort (resources) to design, understand, or Here, the length of a procedure represents number of lines of
code; as such, complexity covers all stages of the development source text. Fan-in of a procedure is the number of flows of
cycle. In the next section, complexity is examined according information or control into a procedure and fan-out is the
to a framework discussed by Fenton (1). number of flows of information or control out of a procedure.

Similarly, the IF4 complexity metric suggested by Shepperd
Inherent Complexity (36), and based on similar work (40) identifies two types of

information flow. Local information flow is based on explicitComplexity can be defined as falling into one of four main
communication between modules; global information flow iscategories. Any system will contain these four categories of
based on access to shared data structures. A module call withcomplexity; as such, they can be seen as the inherent features
an argument would be an example of local information flow.of a system’s complexity.
An example of global information flow occurs if one module
updates a data structure and another module reads from thatProblem Complexity. This measures the complexity of the
data structure.underlying problem. The complexity of a problem is the

Analysis of software using these types of metrics can beamount of resources required for an optimal solution to the
useful for understanding code structure. Henry and Kafuraproblem, and complexity of a solution as the resources needed
(40) describe such metrics as useful management aids, impor-to implement a particular solution. For some problems, it can
tant design tools, and important in establishing a foundationbe shown that there is no solution, and hence, it cannot be
for comparing language constructs and methodologies. How-implemented by a computer. Solutions to other classes of
ever, a growing trend in the metrics community is to look toproblems can consume too many machine resources making
collect metrics as early as possible in the development processthem prohibitively expensive and time-consuming to im-
for the purpose of prediction, rather than using structuralplement.
complexity metrics taken from code.

Cognitive complexity is clearly subjective and consequently
Algorithmic Complexity. This reflects the complexity of the difficult to measure accurately. Boehm proposes a subjective

algorithm implemented to solve the problem. This is, in effect, understanding scale for COCOMO 2.0 (5), which ranks soft-
a measure of the efficiency of the software produced. Effi- ware according to structure, application clarity, and self-de-
ciency may be seen as becoming less of a consideration as scriptiveness. Software understanding is rated on an ordinal
hardware becomes cheaper and faster. scale of 1 to 5. So, a program with strong modularity, where

there is a clear match between program and application
Structural Complexity. This measures the structure of the world-views and which is documented well would be consid-

software used to implement the algorithm. To obtain this ered easily understandable, and rated accordingly. Alterna-
measure, we might look at control flow structure, hierarchical tively, a program with low cohesion with no match between
structure, and modular structure, for example. program and application world-views, and containing obscure

code would be rated at the other end of the scale.
Cognitive Complexity. This measures the effort required to

understand the software.
Comparative Complexity

Problem complexity and algorithmic complexity relate
strongly to the establishment of initial user requirements and In determining the comparative complexity of systems, a

different set of problems arise. There are clearly a largethe alternatives for providing a solution to the problem. An
important area of research at present centers on verifying re- number of variables which affect all forms of complexity, not

least of which is the size of the system. As far as cognitivequirements to ensure that they have been captured correctly.
This is essential in view of a recent study by Schneider et al. complexity is concerned, we also need to consider the pro-

gramming languages and environments, developer’s experi-(37), where it is claimed that finding and fixing a software
fault after delivery is one hundred times more expensive than ence, etc. Clearly, a manager needs to baseline project com-

plexities over a number of years to obtain comparativefinding it during the requirements and early design phase.
Thus, problem and algorithmic complexity are usually factors complexity profiles.

Unfortunately, there is a dearth of empirical investigationencountered during the early design stages of development.
Structured code metrics such as McCabe’s complexity mea- using industrial-sized systems. This makes it even more dif-

ficult to draw conclusions from past empirical analysessure can be used to analyze the structural complexity of soft-

530 SOFTWARE METRICS

largely carried out on small-scale manageable systems; it is be done in both areas, particularly in empirically evaluating
metrics. Development of comprehensive quality models helpsdifficult to judge the comparative complexity of large systems

based on such investigations. Collections from industrial- us to identify the most critical attributes of software particu-
lar to a system and ensures that the metrics collected aresized systems in differing application domains should be

made. This would provide design guidelines for the different both relevant to the attributes being examined and useful.
The combination of rigor and well-defined models of qualitytypes of system (as per COCOMO); the field of software met-

rics is only just beginning to address some of these problems. help to capture features such as the maintainability of sys-
tems. Handling the complexity inherent in all systems thenIn the next section, the question of the availability of tools to

carry out these collections is addressed. becomes easier. More sophisticated tools which can cope with
large scale systems easily and efficiently will be needed in the
future to facilitate accurate and timely data collection.MEASURING TOOLS

It is the combination of theoretical validation, empirical
evaluation, and practical application of supporting toolsAn important part of the measurement process is having the
which will enable some of the current problems faced in soft-tools to collect metrics automatically. We would like to be able
ware engineering to be tackled.to apply such tools to both large and small systems, and to

systems in different application domains. Automated tools do
exist to support the collection of metrics but are only as useful ACKNOWLEDGMENT
as the metrics suites themselves. Manual collection of data
can be a time-consuming, error-prone, and cumbersome pro- This work is supported by UK EPSRC project GR/K83021.
cess. The need to carry out manual data collection arises from
the fact that many of the metrics suites currently available BIBLIOGRAPHY
have no supporting tools for automated data collection. Man-
ual data collection is time-consuming and error-prone. How-

1. N. E. Fenton and S. L. Pfleeger, Software Metrics, A Rigorous and
ever, automated data collection using toolkits also suffers Practical Approach, International Thomson Computer Press,
from various problems: 1996.

2. B. A. Kitchenham and S. L. Pfleeger, Software quality: The elu-
• It can also be a time-consuming process, requiring a sive target, IEEE Software, 12–21, 1996.

large amount of machine resources. 3. T. McCabe, A complexity measure, IEEE Trans. Softw. Eng., 2:
• Few automated tools exist to capture metrics from de- 308–320, 1976.

sign documents. 4. B. W. Boehm, Software Engineering Economics, Englewood Cliffs,
NJ: Prentice Hall, 1981.

Consequently, there is an urgent need for new tools to help 5. B. W. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy,
in the collection of metrics. Such tools should capture metrics and R. Selby, COCOMO 2.0, Annals Software Eng., 1: 1–24, 1995.
at the right level of abstraction, be applicable to systems of 6. T. De Marco, Controlling software projects: Managements, mea-
all sizes and application domains, be reliable, and not con- surement and estimation, Yourdon Press, 1982.
sume overly large amounts of machine resources. The avail- 7. V. R. Basili and H. D. Rombach, The tame project: Towards im-
ability of supporting tools is also crucial to a proper empirical provement-oriented software environments, IEEE Trans. Softw.
evaluation. For example, as well as tools which collect metrics Eng., 14: 758–772, 1988.
from the design, tools for collecting process metrics such as 8. J. A. McCall, P. K. Richards, and G. F. Walter, Factors in soft-
development times and testing times should also be available. ware quality, Tech. Rep. NTIS AD/A-049 014,015,055, US Rome

Air Development Center, 1977.Time should also be invested in producing planning and fore-
casting tools to aid the evaluation of the metrics concerned. 9. T. Gilb, Software Metrics, London: Winthrop Publishers, 1977.

There is a clear need to speed up the learning process in 10. B. A. Kitchenham, S. L. Pfleeger, and N. Fenton, Towards a
terms of which metrics are useful, and which are not. This framework for software measurement validation, IEEE Trans.

Softw. Eng., 21: 929–944, 1995.can only come through provision of the required data through
efficient, automated measuring tools relevant to the state of 11. L. C. Briand and S. Morasca, Property-based software engi-

neering measurement, IEEE Trans. Softw. Eng., 22: 68–85, 1996.the art in the metrics field.
12. S. Morasca, L. C. Briand, E. J. Weyuker, and M. V. Zelkowitz,

Comments on: Towards a framework for software measurement
CONCLUSIONS AND FUTURE TRENDS validation, IEEE Trans. Softw. Eng., 23: 187–188, 1997.

13. V. R. Basili, L. C. Briand, and W. L. Melo, A validation of object-
In this article we have described the current state of the art oriented design metrics as quality indicators, IEEE Trans. Softw.
in the field of software metrics. Software engineering is an Eng., 22: 751–761, 1996.
intrinsically difficult and multidisciplinary profession which 14. N. E. Fenton, Software measurement: A necessary scientific ba-
plays an increasingly important part in the lives of everyone. sis, IEEE Trans. Softw. Eng., 20: 199–206, 1994.
Software metrics contribute to software engineering by offer- 15. L. C. Briand, K. El Emam, and S. Morasca, On the application of
ing a way of understanding the critical features of software, measurement theory in software engineering, Emp. Software
and as such, have an important role to play in controlling Eng. J., 1: 61–88, 1996.
the software development process. The work on theoretical 16. S. R. Chidamber and C. F. Kemerer, ‘‘Moose: Metrics for object
validation and empirical evaluation of metrics is still in its oriented software engineering,’’ in Workshop on Processes and
formative stages, but has already added rigour to an area Metrics for Object Oriented Software Development, OOPSLA ’93,

Washington, 1993.which previously had none. A great deal of work still needs to

SOFTWARE PERFORMANCE EVALUATION 531

17. N. F. Schneidewind, Methodology for validating software metrics, 39. B. H. Yin and J. W. Winchester, The establishment and use of
measures to evaluate the quality of software designs, in Proceed-IEEE Trans. Softw. Eng., 18: 410–422, 1992.
ings of the ACM Software Quality Workshop, pp. 510–518,18. D. C. Ince and M. J. Shepperd, An empirical and theoretical anal-
ACM, 1978.ysis of an information flow based design metric, in Proceedings of

the European Software Engineering Conference, Warwick, UK, pp. 40. S. Henry and D. Kafura, Software metrics based on information
flow, IEEE Trans. Softw. Eng., 7, 510–518, 1981.11–16, 1989.

19. B. A. Kitchenham, L. M. Pickard, and S. J. Linkman, An evalua-
tion of some design metrics, Software Eng. J., 50–58, Jan 1990. R. HARRISON

S. COUNSELL20. R. L. Glass, The software research crisis, IEEE Software, 42–47,
University of SouthamptonNovember 1994.

21. S. L. Pfleeger, Design and analysis in software engineering: Part
1: The language of case studies and formal experiments, ACM
Sigsoft Software Eng. Notes, 19 (4): 16–20, 1995.

22. S. L. Pfleeger, Experimental design and analysis in software en-
gineering: Part 2: How to set up an experiment, ACM Sigsoft
Software Eng. Notes, 20 (1): 22–26, 1995.

23. S. L. Pfleeger and L. Hatton, Investigating the influence of formal
methods, IEEE Computer, 33–43, 1997.

24. L. Briand, L. Bunse, J. Daly, and C. Differding, An experimental
comparison of the maintainability of object-oriented and struc-
tured design documents, in Proceedings of Empirical Assessment
in Software Engineering (EASE) ’97, Keele, UK, 1997.

25. M. Roper, et al. Comparing and combining software defect detec-
tion techniques: A replicated empirical study, in Proceedings of
Empirical Assessment in Software Engineering (EASE) ’97, Keele,
UK, 1997.

26. A. A. Porter, L. G. Votta, and V. R. Basili, Comparing detection
methods for software requirements inspections: A replicated ex-
periment, IEEE Trans. Softw. Eng., 21: 563–575, 1995.

27. J. Daly, et al, Verification of results in software maintenance
through external replication, in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM ’94), 1994.

28. M. Cartwright and M. Shepperd, An empirical analysis of object-
oriented software in industry, in Bournemouth Metrics Workshop,
Bournemouth, UK, April 1996.

29. N. E. Fenton and N. Ohlsson, Quantitative analysis of faults and
failures in a complex software system, submitted for publica-
tion, 1997.

30. N. E. Fenton, S. L. Pfleeger, and R. L. Glass, Science and sub-
stance: A challenge to software engineers, IEEE Software, 86–
95, 1994.

31. V. R. Basili, et al, The software engineering laboratory: An opera-
tional software experience factory, in Proceedings of the Interna-
tional Conference on Software Engineering, pp. 370–381, 1992.

32. L. C. Briand, J. W. Daly, and J. Wust, ‘‘A unified framework for
coupling measurement in object-oriented systems,’’ isern-96-14,
Fraunhofer Institute for Experimental Software Engineering,
1996.

33. ISO/IEC, Joint technical committee: Information technology—
software product evaluation—quality characteristics and guide-
lines for their use, international standard, ISO/IEC, 1991.

34. B. A. Kitchenham, J. D. Walker, and I. Domville, Test specifica-
tion and quality management: Design of a qms sub-system for
quality requirements specification, Project Deliverable A27, Al-
vey Project SE/031, Nov 1986.

35. M. Lorenz and J. Kidd, Object-oriented Software Metrics, Engle-
wood Cliffs, NJ: Prentice Hall Object-Oriented Series, 1994.

36. M. J. Shepperd, Design metrics: An empirical analysis, Software
Eng. J., 5 (1): 3–10, 1990.

37. G. M. Schneider, et al, An experimental study of fault detection
in user requirements documents, ACM Trans. Software Eng.
Method., 1 (2): 188–204, 1992.

38. M. H. Halstead, Elements of Software Science, New York: Else-
vier, 1977.

