
SOFTWARE MAINTENANCE INTEGRATED WITH
RELIAIBILITY

INTRODUCTION

For example, one study reports the following: About half
of applications staff time was spent on maintenance, over
40% of the effort in supporting an operational application
system was spent on user enhancements and extensions,
and about half a man-year of effort was allocated annu-
ally to maintain the average system (1). In another report,
the same authors list the factors that cause the signifi-
cant maintenance effort: system age, system size, relative
amount of routine debugging,and the relative development
experience of the maintainers (2). System age drives the
other factors: With increased system age, system size in-
creases, leading to greater effort allocated to routine debug-
ging; with increased system age, the relative development
experience of the maintainers declines because of organiza-
tional turnover and change. All of these factors tend to in-
crease the time and cost of performing maintenance. Thus
maintenance, integrated with reliability, is an area that
deserves a lot of attention. Improvements in maintenance
practices should result in reduced costs and increased ef-
fectiveness of performing maintenance.

However, there is a limit to reducing cost and increasing
effectiveness through improved practices, because the de-
veloper has largely determined the maintainability of the
software before it ever reaches the maintainer. That is, its
reliability has been determined. The maintainer can only
influence reliability during the maintenance phase of the
software life cycle. The reliability of the software as de-
signed is determined, in part, by whether the software de-
velopment methodology assists the developer in producing
maintainable software. Consequently, maintenance prac-
tices, which maintainers control, and development method-
ology,which developers control,need to be standardized (3).
The objective of standardization is to improve the main-
tainability of both existing and new software. One exam-
ple of standardization is the IEEE Standard for Software
Maintenance, IEEE 1219 (4). IEEE 1219 provides a pro-
cess for managing and executing maintenance activities.
Another example is ISO/IEC 12207, International Stan-
dard for Information Technology Software—Life Cycle Pro-
cesses. The objectives of 12207 are to provide 1) a stable
architecture for the software life cycle and 2) a common
framework for world trade in software (5). However, the
limitations of using standardization to solve the mainte-
nance problem should be recognized.

In addressing the issue of integrating maintenance and
reliability, it is useful to state what we expect of software.
Four questions and their answers address this topic, using
a hypothetical website example:

1. What must the software do (i.e., basic software relia-
bility and maintainability requirements)?

Consistently provide access to the user-designated
websites.

2. What must the software not do (i.e., advanced soft-
ware reliability and maintainability requirements)?

Be impervious to change as the need develops to
modify the initial design to incorporate features like
security.

3. What could the software do (i.e., user expectations)?
Consistently provide access to the user-designated

websites and display relevant information.
4. What does the software do (i.e., operational experi-

ence)?
If the user is lucky, it provides access to websites.

All questions are critical to meeting user needs, but
questions 1 and 2 are particularly relevant from a reli-
ability and maintainability perspective. Question 1 is re-
lated to, for example, providing high reliability under aver-
age load conditions and the capability to make minor soft-
ware changes without introducing faults. Question 2, on
the other hand, is related to, for example, providing high
reliability under extreme load conditions and the capabil-
ity to make major changes without causing catastrophic
faults. Interestingly, if questions 1 and 2 are not satisfied,
rather than achieving user goals, as in the answer to ques-
tion 3, the user would be relegated to the unsatisfying an-
swer to question 4!

APPROACHES FOR IDENTIFYING KNOWLEDGE
REQUIREMENTS IN SOFTWARE MAINTENANCE AND
RELIABILITY MEASUREMENT (6)

Two approaches exist to identifying the knowledge that
is required to plan and implement a software reliability
and maintenance measurement program. One approach is
issue-oriented, as shown in Table 1. The other is life cycle
phase-oriented, as shown in Fig. 1. The two approaches are
compatible but are different views of achieving the same
objective and have been provided to show the reader why
(issue-oriented) and when (phase-oriented) the need for
measurement occurs. A case study that addresses many of
the issues and life cycle factors that we describe here can
be found in a report on the NASA Space Shuttle software
development and maintenance process (7).

Figure 1shows four phases of the software development
cycle related to measurement, along with the documenta-
tion used in each phase and the metrics applicable to reli-
ability and maintenance. Static metrics are those that are
collected before the code is executed; dynamic metrics are
collected when the code executes. In addition, as we move
from left to right in the diagram, the metrics become pro-
gressively less qualitative and more quantitative because
requirements documents are typically fuzzy whereas code
listings, for example, are more definitive and can be sub-
jected to quantitative analysis (e.g., complexity metrics can
be computed).

Looking at Fig. 1, in the analyze phase, if reliability re-
quirements are specified without considering the fact that
all software is subject to change, the maintainability of the
software will be at risk. For example, if the software is spec-
ified to have a predicted time to next failure far exceeding
the mission duration, but says nothing about time to next

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Software Maintenance Integrated with Reliaibility

Table 1. Knowledge Requirements in Software Maintenance Measurement

Issue Function Knowledge
1. Goals: What maintenance goals are
specified for the system?

Analyze maintenance goals and spec-
ify reliability

Reliability
Engineering
Requirements
Engineering

2. Cost and risk: What is the cost of
achieving maintenance goals and the
risk of not doing so?

Evaluate economics and risk of main-
tenance

Economic
Analysis
Risk Analysis

3. Context: What application and orga-
nizational structure is the system and
software to support?

Analyze the application environment Systems Analysis
Software Design

4. Operational profile: What are the
criticality and frequency of use of the
software components?

Analyze the software environment Probability and
Statistical
Analysis

5. Models: What is the feasibility of
creating or using an existing reliability
model for assessment and prediction of
maintenance, and how can the model be
validated?

Model reliability and validate the
model

Probability and
Statistical Models

6. Data requirements: What data are
needed to support maintenance and re-
liability goals?

Define data type, phase, time, and fre-
quency of collection

Data Analysis

7. Types and granularity of mea-
surements: What measurement scales
should be used, what level of detail is
appropriate to meet a given goal, and
what can be measured quantitatively,
qualitatively, or judgmentally?

Define the statistical properties of the
data

Measurement Theory

8. Product and process test and
evaluation: How can product mainte-
nance and reliability measurements be
fed back to improve process quality?

Analyze the relationship between
product maintainability and reliability
and process stability

Inspection and
Test Methods

9. Product Maintainability, Relia-
bility and Process Quality Predic-
tion: What types of predictions should
be made?

Assess and predict product maintain-
ability, reliability, and process quality

Measurement Tools

Analyze
Metrics:
Risk Factors (e.g.,
reliability does not
consider
maintainability)

Design
Metrics:
States &
Transitions (e.g.,
transitioning from
state i to state j and
back to state i)

state i state

Coding
Metrics:
Size, Structure, and
Complexity

Test & Operate
Metrics:
Change Rate due to Faults
& Failures

Increasing Quantification of Measurement

Reliability
Requirements

Statecharts Program
Listing

Test Plan,
Computer

Code

static metrics dynamic
metrics

Figure 1. Life cycle measurement attributes.

failure requirement after the software has been changed,
it is likely the mission would be jeopardized.

The second facet of Fig. 1that we need to consider is
state transitions that should be identified during the de-

sign phase. An example is the state of the software when a
fault is found (state i in Fig. 1), correcting the fault (state
j), and returning to state i to find another fault. We would
want the software designed so that rather than returning

Software Maintenance Integrated with Reliaibility 3

to state j from i, the software would transition to the realis-
tic state k as the result of introducing a fault in the process
of correcting one.

Third, in the coding phase of Fig. 1, our interest is in
measuring the software with respect to size (e.g., source
lines of code), structure (e.g., path count), and complexity
[e.g., cyclomatic complexity (CC)]. Using the example of
CC, we can say that it is a metric function M = e − n + 2 p

whose inputs are number of edges e, number of nodes n, and
number of connected components p in a directed graph rep-
resentation of a program. The output of the function is a
single numerical value M that is interpreted as the degree
to which software possesses a given attribute (e.g., CC) that
may affect its reliability (8). If reliability is adversely af-
fected by excessive complexity, the implication is that the
software would be difficult to maintain.

Finally, in the test and operate phase of Fig. 1, a primary
concern is how maintainable the software will be when sub-
jected to changes as a result of correcting for faults and
failures. To do this task, one could examine the test plan to
see whether it provides for regression testing (i.e., retest-
ing everything in the code that could have been affected by
faults and failures). In addition, the code would be scru-
tinized for fault proneness (i.e., the tendency for complex
code to result in faults).

AN INTEGRATED APPROACH TO ANALYZING
MAINTENANCE PROCESSES AND PRODUCT
RELIABILITY

The relationship between product quality and process ca-
pability and maturity has been recognized as a major is-
sue in software engineering based on the premise that im-
provements in processes will lead to higher quality prod-
ucts. An important facet of process capability is stability.
Trend and change metrics across modules and within a
module define and evaluate process stability. Our integra-
tion of product and process measurement serves the dual
purpose of using metrics to assess reliability and risk and
to evaluate process stability. We use the NASA flight soft-
ware to illustrate our approach.

CONCEPT OF STABILITY

Trend Metrics

To gain insight about the interaction of the maintenance
process with product metrics like reliability, two types of
metrics are analyzed: trend and change. Both types are
used to assess maintenance process stability within and
across modules. By chronologically ordering metric values
by module, defect, or change date, we obtain discrete func-
tions in time that can be analyzed for trends. When ana-
lyzing trends, we note whether a trend is favorable (8). For
example, a decreasing trend in defect count D, as a func-
tion sloc or CC would be favorable (i.e., D decreases as sloc
and CC decrease).

Examples of Favorable Trends. Figures 2and 3show a fa-
vorable trend for D versus sloc and D versus CC, respec-

tively. A favorable trend is indicative of maintenance sta-
bility because, in these cases, the beginning of the trend
corresponds to the first module that is maintained and the
end of the trend corresponds to the last module. Thus, as
maintenance proceeds chronologically, with lower values
of sloc and CC, the reliability of the maintained software
increases.

In addition to using a plot to judge trend, we can use
the correlation coefficient as a point estimate of the trend.
These coefficients are shown below.

� 0.7418 D versus sloc
� 0.7342 D versus CC
� 0.8449 sloc versus CC

As sloc is highly correlated with CC (i.e., large software
is complex and small software is less complex), it would
be possible to use either sloc or CC, alone, as the trend
indicator for defect count.

Examples of Unfavorable Trends. We collected and ana-
lyzed historical reliability data for unfavorable trends be-
cause we want to identify problems in development and
maintenance that should be addressed. These data show
in retrospect whether maintenance actions were success-
ful in increasing (or decreasing) reliability based on a fa-
vorable (or unfavorable) trend. To this end, we determined
whether our maintenance effort results in decreasing reli-
ability within a module or over a sequence of modules. To
do this task, we plot graphs of reliability metrics, such as
time to next defect within a module and defect density (de-
fect count / sloc) across modules to indicate whether the
maintenance effort has been unsuccessful as it relates to
reliability.

Figure 4shows the former case for a given Module 11181,
where time to next defect is computed as �Ti, I+1. Unfor-
tunately, the trend does not support maintainability and
stability because the trend is increasing �Ti, I+1 as more
defects are discovered for this module. There could be prob-
lems in development or maintenance, or both, with this
module that should be investigated. The other modules
should be subjected to the same analysis. Figure 5shows
the latter case—trend across modules that is unfavor-
able. Recall that in Figs. 2and 3the tend was favorable
across modules. The apparent contradiction with Fig. 5is
explained by the fact that Fig. 5is based on normalization of
defect count by sloc (i.e., defect density). The lesson learned
from this exercise is that we should evaluate multiple met-
rics when assessing maintainability and reliability. In this
example, we would recognize that different results could
be obtained when module size is taken into account. Even
one unfavorable trend, such as the one in Fig. 5, should
lead us to question the effectiveness of our maintainability
and reliability processes.

Change Metric

Although looking for a trend on a graph is useful, it is not a
precise way of measuring stability, particularly if the graph
has peaks and valleys and the measurements are made at
discrete points in time. Therefore, we developed a Change

4 Software Maintenance Integrated with Reliaibility

0

5

10

15

20

25

30

40003500300025002000150010005000
sloc

D

First Module

Last Module 11202

favorable trend

Figure 2. NASA flight software defect count D vs. source lines of code (sloc) by module.

0

5

10

15

20

25

30

500450400350300250200150100500
CC

D

First Module 11181

Last Module 11202

favorable trend

Figure 3. NASA flight software defect count D vs. cyclomatic complexity (CC) by module.

-5

45

95

145

195

245

295

345

395

28262422201816141210

i

d
el

ta
 T

i,
i+

1

trend is not supportive of maintainability

mean time to next defect = 117.75 days

Module 11181

Figure 4. NASA flight software time to next defect (delta Ti,i+1) vs. defect i

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

1120111196111911118611181

Module ID

D
D

 (
d

ef
ec

ts
 p

er
 s

lo
c) trend does not support maintanability

Figure 5. NASA flight software module defect density DD vs. module ID

Software Maintenance Integrated with Reliaibility 5

-1.5000

-1.0000

-0.5000

0.0000

0.5000

1.0000

1.5000

1120111199111971119511193111911118911187111851118311181

j

M
j

changes than are detrimental to
maintainability

changes that support maintainability

Figure 6. NASA flight software module change metric Mj (defect count) vs. module j

Metric (CM), which is computed as follows (8):

1 Compute the relative change in the metric from j to j
+ 1 (e.g., module j to module j + 1):

(Mj+1 − Mj)/Mj) if Mj ≥ Mj+1

(Mj+1 − Mj)/Mj+1) if Mj<Mj+1
(1)

2 Compute the mean of equation (1):

M =
∑

j = 1n((Mj + 1 − Mj)/Mj) (2)

3.a If M in equation 2 is negative and M should be negative
(e.g., the mean of defect count changes is negative),
then M implies that maintainability is getting better
from j = 1 to j = n. Maintenance stability is indicated.

3.b If M in equation 2 is negative and M should be positive
(e.g., the mean of time to defect occurrence changes is
positive), then M implies that maintainability is get-
ting worse from j = 1 to j = n. Maintenance instability
is indicated.

4.a If M in equation 2 is positive and M should be positive
(e.g., the mean of time to defect occurrence changes is
positive), then M implies that maintainability is get-
ting better from j = 1 to j = n. Maintenance stability is
indicated.

4.b If M in equation 2 is positive and M should be negative
(e.g., the mean of defect count changes is negative),
then M implies that maintainability is getting worse
from j = 1 to j = n. Maintenance instability is indicated.

5 M is the CM in the range −1, 1. The numeric value of
CM indicates the degree of maintenance stability or
instability.

Now we compute various change metrics using the
NASA flight software—defect count and size and complex-
ity metrics—computed from the NASA maintenance activ-
ity. An example is shown in Fig. 6where the defect count
CM is plotted against module j. Increases in j represent
chronologically increasing module maintenance activity.
Values of Mj below the horizontal axis represent changes
that support maintainability; those above are detrimental
to maintainability. With this type of plot, software engi-
neers can see how maintainability changes in going from

module j to j + 1. For example, in transitioning from module
11183 to 11184, a detrimental change is induced (i.e., pos-
itive), whereas transitioning from module 11184 to 11185
induces a supportive change (i.e., negative). The values of
M—the CM—is equal to −0.0502, −0.0988, and −0.1330
for defect count, sloc, and CC, respectively. As all metrics
are negative, the implication is that maintenance activity
is stable. Furthermore, the fact that the CC CM is the most
negative suggests that complexity is a key factor in achiev-
ing maintainable software.

CONCLUSIONS

Our emphasis in this article was to propose a unified prod-
uct and process measurement model for both product eval-
uation and process stability analysis. We were less inter-
ested in the results of the NASA flight software stability
analysis, which were used to illustrate the model concepts.
We conclude, based on retrospective use of reliability, risk,
and maintenance metrics, embodied in trend and change
metrics, that it is feasible to measure and assess both prod-
uct quality and the stability of a maintenance process. The
model is not domain-specific. Different organizations may
obtain different numerical results and trends than the ones
we obtained for the NASA data.

BIBLIOGRAPHY

1. Lientz, B. P.; Swanson, E. B., Problems in Application Software
Maintenance. Commun. ACM 1981, 24(11),pp 763–769.

2. Lientz, B. P.; Swanson, E. B., Software Maintenance Manage-
ment. Addison-Wesley: Reading, MA, 1980.

3. Schneidewind, N. F., Software Maintenance:The Need for Stan-
dardization. (this paper has been translated into Russian and
published in the Soviet edition of this journal). Proc. IEEE 1989,
77,pp 618–624.

4. IEEE Standards. IEEE Standard for Software Maintenance,
IEEE Std 1219-1993. Institute of Electrical and Electronics En-
gineers: New York, 1993.

5. Pigoski, T. M., Practical Software Maintenance: Best Practices
for ManagingYour Software Investment.Wiley:NewYork,1997.

6 Software Maintenance Integrated with Reliaibility

6. Schneidewind, N. F., Body of Knowledge for Software Quality
Measurement. IEEE Computer, Computer Society Press, Los
Alamitos, CA, February 2002, pp 77–83.

7. Billings, C., et al. Journey to a Mature Software Process. IBM
Syst. J. 1994, 33(1),pp 46–61.

8. Schneidewind, N. F., Measuring and Evaluating Maintenance
Process Using Reliability, Risk, and Test Metrics. IEEE Trans.
Software Eng. 1999, 25(6),pp 768–781.

NORMAN F. SCHNEIDEWIND

Fellow IEEE

