
SOFTWARE HOUSES 473

SOFTWARE HOUSES

A ‘‘software house’’ is an organization that develops custo-
mized or bespoke software for a customer. This general defi-
nition, depending on the interpretation attached to the terms
‘‘customer’’ and ‘‘organization,’’ spans the software industry
spectrum from large, multinational software development
concerns to the information technology departments of vari-
ous government/industry organizations. From the outset, it
should be noted that with the software industry’s gradual ma-
turity, the notions of software reuse and software house are
inextricably intertwined. This is due largely to mass produc-
tion and tight time-to-market that have become dominant fac-
tors in modern large-scale software production.

Conceptually, a software house in the data processing in-
dustry is a place where the entire range of software develop-
ment activities are handled in a seamlessly integrated and
centrally managed manner. Such activities of product devel-
opment include: requirements analysis, requirements specifi-
cation, design, implementation, phase-specific reviews, mod-
ule and system testing, software quality assurance, software
reliability modeling, cost/effort/schedule estimation, configu-
ration management and version control, use of software tools,
and the important and pervasive issue of the judicious reuse
of various software artifacts as well as the potential use of
existing domain-specific software packages and components.–

The scope and structure of a software house also depends
on the scale of software being developed. Software develop-
ment can generally be divided into software development in-
the-large and software development in-the-small. Most of the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

474 SOFTWARE HOUSES

techniques, methodologies, and tools of software engineering limited distribution (3). The second era (mid-1960s to late
1970s) was characterized by the use of product software (i.e.,apply to software development in-the-large. Of course, we

should keep in mind that there is no industry-wide consensus, programs developed to be sold to one or more customers), thus
leading to the advent of ‘‘software houses’’ that were chargednor is there a standard definition for ‘‘small’’ or ‘‘large’’ in

this context. with developing software for widespread distribution in a
multidisciplinary market.The goal here is to consider situations as diverse as the

following: a small company that accepts orders from custom- A software house has been defined as a company that of-
fers both general and specialized software packages for saleers to build software; a multi-million or multi-billion dollar

company that builds software based on market analysis, cus- to computer system owners, or a company that develops soft-
ware for customers on a contractual basis (4). Another defini-tomer response, and so on; and a relatively small data pro-

cessing department in a company, whose primary product is tion offered for a software house is an organization that devel-
ops customized software for a customer, as contrasted with asomething other than software, developing in-house software

needed by the company. The differences are based on several software publisher that develops and markets software pack-
ages (5).factors including the nature and degree of interaction be-

tween customer(s)/developer(s) during development, whether Software houses are typically modeled after the software
factory concept. A factory implies (a) industrial scale, (b) thethe resulting software is generic or special purpose, the cost

of software development, and the issues of upward compati- ability to guarantee production quality, (c) budgeting, (d)
scheduling, and (e) the use of capital investment to make thebility and portability.

What makes an article on software houses different from production process more cost effective (6). However, software
consists of uniquely designed and complexly structured setsa typical technical paper is the fact that, due to the nature of

the topic, a discussion of software houses ought to be exposi- of assertions, instructions, and decisions, all of which must be
negotiated, codified, analyzed for consistency, and validatedtory in nature. There is no research, per se, reported or re-

search area, per se, conducted or funded under the rubric of for effectiveness in a constantly changing environment. En-
terprises are discovering that their corporate survival de-software houses. While being speculative and providing a vi-

sion is certainly called for, the bulk of the work reported must pends increasingly on their ability to master the notion of a
software factory and make the mysterious software processnecessarily be the repeatable and reliable state of the practice

in the software industry. However, the notion of a software predictably manageable (7). Typically, what is needed to
achieve such a goal is a well-understood generic productionfactory has received some attention from researchers. And,

being tangentially related to the topic of software houses, it process, which would allow the management to interpret the
daily events in terms of established targets and to respond tobehooves us to mention the work on software factories here.

In his book on software factories, Johnson (1) discussed the them accordingly, and a well-integrated set of technical tools
to support the process.issues involved in software development and maintenance

from the perspective of the information technology prac- In order to meet the ever increasing demand for software,
modern software houses specialize in specific areas. The di-titioners and for the consumption of information technology

managers. Rockwell and Gera (2) presented a conceptual ref- versity of the target audience is enormous. Software houses
can be found concentrating on diverse areas such as the ap-erence model for software factories, which they defined as in-

dustrial software production. By focusing on the communica- parel industry, hospitality fields, legal issues, debt recovery,
medical data acquisition, and aircraft-guided missile systems.tion requirements of large-scale software facilities, their

model provides a plausible way of describing existing systems Software houses, whether they are small or large, rela-
tively modern or old, generally use off-the-shelf products toand processes, as well as comparing and evaluating any pro-

posed alternatives and enhancements. Their model integrates develop software. Alternatively, highly specialized software
houses are unique in their development processes and envi-technical and organizational issues, while treating project

management concerns in the context of long-term capital ronments, platforms, and market segments. Software houses
can be found based in the United States, Europe, and else-planning.

The rest of this article is organized as follows: The next where. They variously render consulting and/or software de-
velopment services and resolve managerial/technical prob-section is the overview section that delineates the general po-

sition of software houses in the overall software development lems for production, services, or technology companies.
Software as a system undergoes a complete system devel-life cycle. The two main sections follow the overview section

and discuss the technical and managerial aspects of software opment life cycle. For a software house, regardless of the par-
ticular process model utilized, this means involvement in ac-houses. The categorization of the relevant issues into techni-

cal and nontechnical may seem rather arbitrary at times. The tivities and issues such as (a) understanding the customer’s
requirements and the scope of the product, (b) knowing howintent, however, is not presenting a precise taxonomy. The

goal is to paint as comprehensive a picture of the software the customer’s organization works and what other systems
are being used there, (c) estimating the degree of change thathouses as possible. The final section contains some concluding

remarks dealing with general trends and directions with re- the proposed product would bring and anticipate the possible
resistance to that change, (d) estimating cost (human andspect to software houses.
computing resources) and quote reasonable prices and deliv-
ery dates, (e) handling liabilities and other legal issues, (f)
reaching a contractual agreement that exactly defines whatOVERVIEW
is to be delivered and when, (g) breaking the system down
into components, (h) programming considerations such as theDuring the early years of software evolution (1950s to 1960s),

application software was custom-designed and had relatively choice of an implementation language and the associated data

SOFTWARE HOUSES 475

structures and algorithms, (i) decisions regarding the size and The result of one survey showed that 40% to 60% of all
code is reusable from one application to another, 60% of thecomposition of the development teams, (j) the existence and

adequacy of test plans ensuring the precise working of the design and code on all business applications is reusable, and
75% of program functions is common to more than one pro-system, (k) usability tests and user-friendliness issues, and (l)

user interface design considerations. gram. The survey also indicated that only 15% of the code
found in most programs is unique and novel to a specific ap-
plication (8). Over the life cycle of a system, reuse can provide
many advantages over the traditional approach of ‘‘designingTECHNICAL ASPECTS
from the ground up.’’ Such advantages include:

The technical aspects to be discussed in this section are not
generally the issues that one would encounter in a technical 1. Shortening development cycles and lowering production
journal on the state of the art in a single area of software costs for future development efforts by reusing existing
engineering. This is due to the encompassing nature of the components.
topic of software houses. All the same, some of the relevant

2. Improving system reliability by reusing proven compo-aspects include: software architecture, design patterns, soft-
nents and reducing the need for system testing.ware components, software classification, software reuse,

3. Reducing life-cycle maintenance costs by reducing thecomponent packaging, interface compatibility, component
‘‘ripple’’ effect of changes caused by revised require-composition, quality of a software system as a function of the
ments.quality of its components, cost estimation for a software sys-

tem based on the actual or estimated costs of its constituent 4. Enabling a software house to partially recover its in-
components, and a theoretical model for software houses. vestment in existing software systems when developing

Among the above-mentioned topics, the prominent ones new software products and undertaking new design ef-
are: reuse, software components, and software classification. forts (9).
Three of the four subsections that make up the rest of this
section take a more in-depth look at these three major issues Reuse and Software Houses. Software components are the
that essentially define a software house. It should be noted main commodity of a software house. Like any business, an
that there is some inevitable overlap in the coverage. For in- inventory of the main commodity is considered one of the
stance, a discussion of software reuse will be incomplete with- assets. Thus, a library of software components is one of the
out a reference to software components. The last subsection major assets of a software house. Regardless of whether a
in this section addresses the rest of the major technical issues software house employs the services of a number of subcon-
germane to software houses. tractors, develops all software in-house, utilizes off-the-shelf

components, or develops any hybrid mixture of the above, it
Reuse must develop and maintain a library of components for cur-

rent and future business.Productivity, adaptability, simplicity, maintainability, and re-
Existence of business modeling and domain-specific sys-liability are among the main issues concerning the construc-

tems is considered to be one of the prime factors in the suc-tion of software in a software house. In today’s marketplace,
cess of attempts at initiating and nurturing reuse programsa competitive software house is one that can reduce product
and reusable component library systems. About 85% of thedelivery time, increase the diversity of its products, enhance
reuse reported at IBM has come from domain-specific librar-interoperability among its products, and conform to the stan-
ies (10). The selection of a specific appropriate domain, fol-dardization of software components. Reuse is an emerging
lowed by performing domain analysis on that domain to de-practice in software development that favorably affects the
velop specific domain modules, is one of the primary factorsabove-mentioned issues.
in the success of a reuse project. One of the major problemsEffective reuse practice has exhibited significant docu-
of the software factory initiative in Japan’s NTT was the in-mented benefits, far more than other related ongoing activi-
appropriateness of the target domain (11). The REBOOT proj-ties addressing process improvement, in enhancing the soft-
ect, conducted under the auspices of a multinational consor-ware development process. Software reuse is the
tium of software development firms in Europe, emphasizesreapplication of a variety of components of existing systems
the domain-oriented method as a ‘‘secure way’’ to produce re-to a new and similar system. Obviously, this is a definition for
usable components (12).code reuse, which concerns only one of the possible reusable

software artifacts. All products of the software development
Reuse Methodologies. There is no single, widely acceptedprocess, such as requirement analysis documents, architec-

definition for reuse that is applicable to all phases of the soft-tural designs, detailed designs, planning documents, test
ware development process (from specification to design to im-plans, and test cases, can potentially to be reused (8).
plementation documents) and all levels of programA software house has in its core a production team con-
translation/compilation (from source code to assembly code tosisting of those who engineer software and write code. Gener-
templates to object code, and everything else in between). Inally, software engineers/programmers are constantly called
order to reap the benefits of reusability, a software houseupon to produce more and more software, and thus their pro-
needs to concern itself with reuse at all levels and stages.ductivity continues to be an increasingly pressing problem.
Reuse has a distinct definition for each of the above-men-Recent surveys and papers on the reusability of software indi-
tioned phases and levels. Moreover, the approaches and tech-cate that software reuse is a major way to boost software en-

gineering productivity. niques applied to them can be quite different.

476 SOFTWARE HOUSES

Generally, the complexity of the applicable reuse technique 3. Designing the component-based subsystems: adopting a
design model that is suitable for the implementation en-increases as it moves from the specification level to the code

and object code levels. On the positive side, the time and vironment.
space efficiency of the application of reuse techniques im- 4. Constructing and testing the component-based subsys-
proves in the same direction. Specification and design levels tem.
are at a higher level of abstraction than the other reuse lev- 5. Packaging the component-based system according to
els, and therefore their potential for accommodating reuse is the required configuration.
greater and adaptation to new applications can be simpler.
However, the reuse process of specification and design levels Reuse Obstacles. Lack of a clear, unified, and standard
ultimately involves coding (either manually or system gener- long-term strategy has hampered the full development, de-
ated), testing, and debugging. On the other hand, reuse at the ployment, and general acceptance of software reuse (15). Ab-
code level, especially in the form of black-box reuse, essen- sence of organizational commitment to reuse can compromise
tially eliminates recoding and unit testing; hence it is more the efficacy and lessen the overall productivity of a software
economical, given that a large collection of reusable code com- house. Traditional approaches to software development lack
ponents is organized in a software library. focus on (a) planned reuse, (b) system development from an

Regardless of the level of reuse, the design of a successful integrated perspective (i.e., from an organizational perspec-
reuse environment in a software house should provide an- tive rather than from a single stand-alone application per-
swers to the questions of what is the unit of reuse (or, what spective), and (c) strategic long-term organizational ad-
are the units of reuse) and how to put the units together, and vantage.
it also should address the following tasks: Having a stable and well-understood software asset base

is crucial to achieving successful software reuse in a software
1. Identifying and providing access to software compo- house. Among nontechnical obstacles to reuse, a notable one

nents based on user requirements (locating). is the not invented here (NIH) factor. Two of the other reuse
2. Facilitating component modification or development hindrances are (a) lack of organization-wide incentives for de-

(customization). velopment of reusable components and (b) licensing require-
ments and copyright laws. The list of technical obstacles in-3. Providing facilities to store, retrieve, and integrate re-
cludes, but is certainly not limited to, inadequate specificationusable components efficiently (configuration and version
technology for reuse, lack of standard formal models, andmanagement) (13).
scarcity of uniform design notations.

Component-Based Software Development. Component-based
Software Componentssoftware engineering (CBSE) or component-based software

development (CBD) is an emerging software development ap- A software house must deal with software components at var-
proach that has become the focal point of the reuse commu- ious levels. A previous section on software reuse addressed
nity. CBD has the potential to significantly impact how soft- the notion of software artifacts as components. The next sec-
ware houses conduct their business, and eventually to tion, which discusses classification and identification of soft-
revolutionize the software industry. Since 1995, several mod- ware components, addresses the cataloging of software com-
els have been proposed by major software companies and soft- ponents. This section attempts to shed some light on the
ware industry consortia as de facto standards for CBD (3). creation of software components (as a result of a reclamation

CORBA (common object request broker) published by OMG process based on the dissection and decomposition of existing
(the Object Management Group) provides a number of ser- software systems) and the use of software components
vices that enable objects (reusable components) to communi- (through interfacing and composition).
cate with other objects in a system. OLE (object linking and Megaprogramming is the term commonly used in reference
embedding), which is part of COM (component object model) to construction and engineering of software systems from ex-
published by Microsoft, defines a standard structure for reus- isting components, as contrasted with software development
able components. Other proposed tools, models, and stan- by coding one instruction at a time. The analogy is obviously
dards that facilitate CBD include ActiveX, Sun’s JavaBeans, industrial mass production techniques. The main goal is to
and Visual Basic. reduce time-to-market and improve the reliability and main-

As mentioned earlier, a successful CBD needs to be do- tainability of the final product. The economics of scale indi-
main-specific. Furthermore, components should have stan- cate, if not dictate, that megaprogramming is indeed the fu-
dard interfaces and should be portable and interoperable ture of software houses and the software marketplace.
across different applications within the same domain. The The software components industry, for which the term
CBD process modifies the traditional software life cycle in the megaprogramming has been coined, requires the creation and
following respects (14): existence of proven and well-defined components that are im-

plemented according to software composition principles (16).
1. Capturing the domain requirements: capturing domain The rest of this section presents a conceptual and formal

information with focus on commonality and variability framework for developing reusable software components that
of the current, future, and potential requirements, us- leverage the compositional capabilities of megaprogramming
ers, and constraints. languages.

The megaprogramming enterprise model consists of (a)2. Performing a robust analysis: identifying objects of
analysis, and systematically presenting their common- component production and component assembly governed by

software architecture principles and standards and (b) a bro-ality and variability.

SOFTWARE HOUSES 477

kerage that supervises the overall product line (by performing more tractable than the problem of specifying precise, unam-
cost analysis, feasibility analysis, configuration management, biguous, and generalizable interface specifications. The soft-
etc.) and releases the product to the end users. Megaprogram- ware industry is in the process of developing the requisite
ming implies the adoption of a process model (e.g., document- technologies to define a formalism for interfaces, so that soft-
based waterfall model or risk-based spiral model) that not ware components could interoperate smoothly.
only does not discourage reuse, but also promotes the black- Component composition in the megaprogramming technol-
box reuse approach (i.e., reuse with little or no modification). ogy has inherent risks rooted in the causes of component inte-

A conceptual framework is defined that distinguishes gration failures. Such causes include incompletenesses and
among three aspects of software components (6): inconsistencies involving data, control, timing, and implicit

assumption.
1. The concept or abstraction that the component repre-

sents.
Classification and Identification of Software Components

2. The content of the component or its implementation.
The capability to classify and store as well as to identify and3. The context under which the component is defined (or
locate software components is an important activity in a soft-what is needed to complete the definition of a concept
ware house. Classification schemes are essential for settingor content within a certain environment).
up and maintaining a software library. A software library is
a changing and growing collection of all of the modules thatThe concept represented by a reusable software component is
have been certified as reusable components. In order to bean abstract description of ‘‘what’’ the component does. Con-
able to catalog and subsequently access those components, itcepts are identified through requirements analysis or domain
is preferable that they be organized by attributes that definemodeling as providing the desired functionality for some as-
software structure, environment, function, implementation,pect of a system. A concept is realized by an interface specifi-
and the like (13).cation and a description of the semantics associated with each

A different approach in classification and identification ofoperation. The content represented by a reusable software
software components is the application of abstraction method-component is an implementation of the concept or ‘‘how’’ a
ologies. Abstraction has been applied extensively to help man-component does ‘‘what’’ it is supposed to do. It assumes that
age the intellectual and conceptual complexity of the softwareeach reusable software component may have several imple-
development process. Abstraction plays a focal role in the se-mentations that obey the semantics of its concept. The context
lection, customization, and integration phases of constructingrepresented by a reusable software component depends on
a software system utilizing software components that areunderstanding and expectations based on familiarity with
stored in a component repository.previous implementations.

These three aspects of a software component make the fol-
lowing assumptions about their environment: Classification Principle. A classification system for software

components is built based on a classification principle or
1. There is a problem space (specification domain) that can schema. According to Prieto-Diaz (17): ‘‘Classification is

be decomposed into a set of concepts (or objects, if one grouping like things together. All members of a group, or
prefers using an object-oriented paradigm). class, produced by classification share at least one character-

2. There is a solution space that is characterized by the istic that members of other classes do not. Classification dis-
contents (implementations) of the concept. plays the relationships among things and among classes of

things.’’ A classification schema is a tool to produce system-3. The solution space is populated by several different im-
atic order based on a controlled and structured index vocabu-plementations (or parameterized implementations) that
lary (13). A classification schema must be capable of express-can be instantiated by different contexts within the so-
ing hierarchical and synthetical relationships. Hierarchicallution space.
relationships are those that express subordination or inclu-

With the purpose being the development of useful, adaptable, sion relationships. The synthetical relationships are those re-
and reliable software modules with which to build new appli- lationships that are made to relate two or more ideas belong-
cations, the following three requirements (6) should be ad- ing to two or more hierarchies. Classification schemas are
dressed by a component-centered model of a system: typically hierarchical with synthetical classification depicted

as compound classes.
1. Components must be useful; that is, they must meet the A classification schema can be arranged in two principal

high-level requirements of at least one concept neces- ways: enumerative and faceted. The hierarchical enumerative
sary to design and implement a new software applica- method recursively divides knowledge into subclasses until it
tion. covers all possible compound classes. A typical example of

2. Components must be adaptable; that is, they must pro- enumerative hierarchy is the Dewey decimal classification
vide a mechanism such that modules can be easily tai- used in the classification of subjects in Library Science (18).
lored to the unique requirements of an application. The synthetical faceted method builds up relations from sub-

ject statements of documents. This type of relation is synthe-3. Components must be reliable; that is, they must accu-
sized from two or more concepts that exist in different hierar-rately implement the concept that they define.
chies. In the faceted method, the elemental component classes
of subject statements are extracted, listed, and stored, andEach component is basically made up of code plus interface

specifications. The problem of code development is generally their generic relationships are displayed.

478 SOFTWARE HOUSES

A classifier using the faceted schema has to represent a basic graph structure doesn’t change much during the expan-
desired subject in the assembled form of elemental classes (a sion of the collection of software components, and it tends to
compound class). This process is called synthesis, the orga- remain stable. Conceptual graph construction can be consid-
nized group of elemental classes are called facets, and the ered a substantial but one-time effort. Regardless, once con-
members/items of the facets are called terms. Facets within a structed, a conceptual graph would need tuning as users pro-
faceted scheme are ranked by citation order corresponding to vide feedback on retrieval performance.
their significance to the user requirements. Therefore, when
classifying, the most relevant term in a classification descrip- Domain Analysis. To make the faceted classification scheme
tion is selected from the facet most relevant to the user (18). a more efficient method for a software house, the domain

With the enumeration schema, classes are typically pre- analysis methodology is recommended. This section provides
pared for a user. While the user or classifier of a faceted an introduction to domain analysis and its application to clas-
schema must synthesize the multielement classes. This fea- sification and software reuse. According to Arango: ‘‘Domain
ture of a faceted schema makes it easier to expand, thus mak-

analysis is a knowledge intensive activity for which no meth-
ing it more flexible, precise, and suitable for dynamic and ex-

odology or any kind of formalism is yet available’’ (20).pandable environments as compared to an enumerated
Domain analysis is an activity that happens even beforeschema (13).

the system analysis phase of the software development life
cycle, and it creates a domain model to support the systemSoftware Classification. Software components can be de-
analysis. This information/model could be used in the subse-scribed by their function, procedure, and implementation de-
quent phases of the software development process. In the do-tails, among other things. Prieto-Diaz and Freeman (13) sug-
main analysis process, ‘‘information used in developing a soft-gested that a characterization of the functionality (what it
ware system is identified, captured, and organized with thedoes) and the environment (where it does it) of a software
purpose of making it reusable when creating a new system’’component would suffice for classification. Burton and Aragon
(17). Domain analysis could play an active role in the creation(19) used algorithm description, documentation, testing, and
and organization of a software factory. Matsumoto (21) re-version management plus functionality and environment as
ported the successful application of domain analysis in theclassification attributes. Prieto-Diaz and Freeman (13) sug-
development of software factories.gested the following attributes for faceted classification: func-

The domain analysis process can be incorporated into thetion, object, medium, system type, functional area, and
software development process. A simplified three-step domainsetting.
analysis procedure to advance reuse is as follows:The Prieto-Diaz and Freeman classification method actu-

ally employs a controlled vocabulary technique for indexing
software. They have used this technique to avoid duplicate 1. Identification of reusable entities
and ambiguous descriptors of software components. For ex- 2. Abstraction or generalization of those entities
ample, a software component described as

3. Classification and cataloging for further reuse
�move, words, file�

Based on the above procedure, Prieto-Diaz (17) proposed acould also be described as
procedural model for domain analysis. Using the faceted clas-�transfer, names, file�
sification schemes, his methodology is ‘‘to create and structure

Describing code using controlled vocabulary is not problem a controlled vocabulary that is standard not only for classify-
prone for an audience that is not composed of information ing but also for describing titles in a domain-specific collec-
specialists. A term thesaurus could be used to gather all syn- tion’’ (17).
onyms under a single concept, and one term that expresses In the context of domain analysis, Arango (20) sees reuse
the concept best would be the representative term (17). as a learning system. In his proposed model, software devel-

opment is a self-improving process which draws from a knowl-
Conceptual Closeness. When dealing with a faceted classi- edge source that is named reuse infrastructure, and it is inte-

fication system, the problem of where to insert a new compo- grated with the software development process. Reuse
nent presents itself. This is a problem about the attributes infrastructure consists of domain-specific reusable resources
used to characterize a software component. To decide which (i.e., components in particular and assets in general) and
terms are closer to each other, the idea of a conceptual graph, their description. In Arango’s reuse environment, by em-
to measure closeness among terms in a facet, can be used ploying the reuse infrastructure and utilizing the specifica-
(17). A conceptual graph is defined as an acyclic directed tion of the software to be built, an implementation of the de-
graph in which the leaves are terms and the nodes are consid- sired software is constructed. Then, the software thus
ered as supertypes. Supertypes represent general concepts re- produced is compared against the input of the system (i.e.,
lating two or more terms. The weights of the edges are as- the specification of the system).
signed by the user. Smaller weights represent the closeness There are three particular functions that are crucial for
of the terms to the supertype. reuse infrastructure. These functions (17) are the abstrac-

The concept of closeness measurement could be utilized tions of the duties of:
during retrieval. In cases where query for a term cannot
match any descriptor, a retrieval system can check the nearby

1. A librarian (making assets accessible to potential users)terms for related items. It is time-consuming to construct a
conceptual graph with more than few terms. However, the 2. An asset manager (controlling asset quality)

SOFTWARE HOUSES 479

3. A reuse manager (facilitating the collection of domain gaining popularity. Although there are no widely used soft-
ware development models or environments with software ar-analysis relevant data and coordinating all reuse opera-

tions) chitecture as an integral part yet, there is little doubt about
the increasing recognition of the importance of software archi-
tecture in developing software in software houses.Assets are those entities (documents, deliverables, and com-

Strictly speaking, abstractions of recurring patterns inponents) in a software development life cycle that are poten-
software design are called design patterns or frameworks;tially reusable.
whereas software architecture, algorithms, and data struc-The typical process resulting from the integration of con-
tures constitute the design phase of the conventional softwareventional software development and domain analysis is as
development life cycle. However, the two notions are suffi-follows:
ciently related to be treated together. The working definitions
that have been offered in the literature for software architec-1. Reusable resources are identified and added to the sys-
ture and patterns include the following:tem.

2. Reuse data are gathered and fed back to the domain
1. An abstraction of information about components andanalysis process for tuning the domain models and up-

connectors.dating the resource library.
2. Structural issues, which are part of the design phase in

the conventional life cycle, including:The newly developed system can then be used to refine the
reuse infrastructure (17). 2.1. organization of a system as a composition of com-

ponents,
Other Technical Issues 2.2. global control structures,

2.3. protocols for communication, synchronization, andIn this subsection some of the rest of the major technical as-
data access, andpects of software houses are briefly examined.

2.4. assignment of functionality to design elements.
Quality Assurance. Quality assurance is concerned with 3. A solution to a recurring problem in a specific context

checking both product and process quality (22). Software or environment.
quality is more than verification and validation, especially as 4. Definition of a system in terms of computational compo-
far as software houses are concerned. Quality assurance en- nents and interactions among those components.
compasses software attributes such as maintainability, relia-
bility, and portability. A quality assurance plan should explic-

Some of the examples of software architectures and patternsitly identify the quality attributes that are most significant
are: pipes and filters, abstract data types and object-orientedfor a particular project, and it should provide principles and
inheritance hierarchies, event-based broadcast/response sys-guidelines as to how these attributes can be judged.
tems and implicit invocations, layered and monolithic sys-Some software houses have quality assurance departments
tems, repository-based development, table-driven applica-that are responsible for the end-to-end quality of the internal
tions, and state changes and state machine models. Thedocuments and deliverables as well as of the final documents
current focus of workers in the general area of software archi-and deliverables. Other software houses address the perva-
tecture is on evaluation of existing architectures using met-sive issue of quality in the context of total quality manage-
rics, methods of specification of new architectures using archi-ment (TQM) (3). TQM is basically a multistep process that
tecture description languages, extraction of the architectureinvolves the function of quality auditing through the use of
of existing systems for reverse engineering, and visualizationmetrics and/or reviews.
of architectures.

Cost/Effort Estimation. The most visible undesirable aspects
of software development in general and software houses in MANAGEMENT ASPECTS
particular have been notorious schedule slippages and cost
overruns (22). The explanations or justifications that are of- It is a widely expressed concern that the present approaches,
fered include incorrect or inaccurate design, frequent and techniques, and methodologies of constructing and acquiring
undocumented changes, dynamically changing run-time envi- large and complex customized or bespoke software-based sys-
ronment, unexpected technological changes, personnel turn- tems are unsatisfactory. The reason for this concern is that
over, and of course imperfect estimation tools. Having reason- the resulting systems never fully meet, and probably never
ably accurate estimates of the interrelated parameters of can meet, the requirements of the users when they come on
person-month, cost, and schedule are critical for coming up line. Improving this situation would have significant implica-
with a systematic and structured approach to software devel- tions for both the technical and management/commercial as-
opment and maintenance as well as for the nontechnical is- pects of software development. A useful approach for meeting
sues of time-to-market, public image of the software house, the challenge would be to establish a set of guidelines (25) to
and so on. assist a software house in developing software.

The nontechnical or management aspects of software
houses include legal issues, commercial aspects, training ap-Software Architecture. Focus on software architecture and

design patterns is a relatively new trend in institutional soft- proaches and techniques, customer support, TQM and the at-
tendant notion of quality assurance, and the issue of stan-ware development (23,24). Developing software based on re-

using existing software architectural primitives is gradually dards for various software products, deliverables, and

480 SOFTWARE HOUSES

processes. Understandably, some of the management issues The laws explicitly prohibit unauthorized copying of the ex-
pression of the idea or unauthorized use of any product thatoverlap with the technical issues, a good example being qual-

ity assurance. The difference is typically based on the per- contains the invention. Patent laws protect the idea, as well
as the invention itself, against independent creation. The in-spective that can include measurement, enforcement, and in-

terpretation. vention must satisfy the four requirements of patentability
before a patent is granted: novelty, utility, disclosure, andThe following two sections contain a discussion of the most

significant management issues of software houses. The first nonobviousness.
Although patent law provides the ultimate protection forsection addresses the general area of legal concerns in dealing

with software development. The second section briefly dis- intellectual property, there are several reasons that the soft-
ware industry has not adopted the patent law as the primarycusses the issue of process assessment and improvement.
means of protecting software. The cost, in terms of both
money and time, has steered many away from this form ofLegal Aspects of Software Development
protection. The patent examination process, during which the

With the proliferation of computers, the market for software patent examiner evaluates the invention against the four pa-
has grown exponentially. The capital investment in software tent conditions, is a lengthy one. It can take between 18
and software houses, together with the fierce competition for months and 3 years (sometimes more) to obtain a determina-
segments of the huge software market, has inescapably re- tion (27). In today’s fast-moving software world, the length of
sulted in a number of legal entanglements. It is a fact that the examination process is typically longer than the market
there is a plethora of legal issues that are directly or indi- life of most software products. Perhaps the biggest inhibitor
rectly related to software construction and software houses. to software patent protection is that most programs do not
However, the goal here is to keep the discussion as close to qualify for a patent because they are unable to satisfy the
the technical issues as possible. nonobviousness requirement (27).

One of the major technical aspects of software houses that The unpatentability of most computer programs, as well
can significantly impact productivity is software reusability. as the long lead times and expense associated with the patent
In the software engineering community, many perceive that examination process, have compelled software developers to
legal issues surrounding systematic reuse can discourage or look for alternative means to protect their software. The copy-
even prohibit software reuse (26). Although legal issues are right system provides another legal mechanism for pro-
less of an impediment to software development using in-house tecting software.
software components, there are significant legal considera- Copyrights. A copyright is a legal means for protecting
tions for reuse among organizations. software from unauthorized copying or misappropriation. A

copyright provides the author of a protected work a set of ex-
clusive rights to the expression of ideas within that work. ALegal Protections for Software. Current legislation does not

consist of dedicated laws that address software and software copyright owner has the following exclusive rights to his/her
work:reuse specifically and explicitly (12). However, there are legal

protections for software that are adapted from intellectual
1. To reproduce the work.property law. Intellectual property is any product of the hu-

man thought processes that has some intellectual, informa- 2. To prepare derivative works.
tional, or economic value (26,27). Although ideas, in and of 3. To distribute copies of the work.
themselves, are not protectable as intellectual property, their

4. To perform the work publicly.expression or embodiment in a tangible object will afford
5. To display the work publicly.them some form of intellectual property protection (28). There

are four basic forms of intellectual property protection in the
Unlike patent law, the copyright laws do not protect the ideasUnited States: patent law, copyright law, trade secret law,
contained within a protected work. Rather, they merely theand trademark law (29).
expression of those ideas, and a copyright does not protect anA patent protects ‘‘novel and nonobvious’’ inventions and
author from independent creation of the same expressiongives the inventor exclusive rights to make, use, or sell the
from another author. In fact, a copyright does not extend toinvention. A copyright is a legal device that provides the au-
any idea, procedure, process, system, method of operation,thor of a literary work the right to control how that work is
concept, principle, or discovery.used. Trade secret laws protect information about some intel-

There are three prerequisites to full copyright protection,lectual property interest that is maintained as a proprietary
as outlined below:secret and can potentially provides the owner with a commer-

cial advantage. Trademark laws protect original names,
1. Fixation. The work must be fixed in some tangible me-words, phrases, logos, or other symbols that are used to dis-

dium of expression or representation; the embodimenttinguish products in the marketplace (26,29,27).
of the work must be sufficiently permanent or stable soAn overview of the different types of intellectual property
that it can be perceived, copied, or otherwise communi-law is provided below. Since trademarks are primarily mar-
cated.keting tools, trademark law will not be explored further in

2. Originality. The work must be an original work of thethis subsection.
author; that is, the work must have been created inde-Patents. A patent for an invention gives the patent owner
pendently.a statutory monopoly on the invention. Upon issuance of a

patent for an invention, the patent owner has the exclusive 3. Creativity. A minimal amount of creativity is required
for a copyright.right to make, use, license, or sell the invention for 17 years.

SOFTWARE HOUSES 481

Once these three criteria are satisfied, copyright protection is tory. The various phases of development (analysis, design, im-
plementation, and testing) are considered individually fromautomatic for that work. The term of this protection lasts for

the lifetime of the author plus 50 years; for works made for the legal perspective.
Analysis Phase. Obtaining domain knowledge from a reposi-hire, the term is 75 years from publication or 100 years from

creation, whichever is shorter. tory provides the development team an introduction to the
problem domain and provides a basis for determining the cus-Note that a copyright notice is not required to obtain pro-

tection. Although copyright registration is inexpensive ($20) tomer’s requirements (12). The use of domain knowledge
poses no legal barrier to the developer, unless that knowledgeand is granted with little examination, a copyright owner

does not have to file a copyright application with the Copy- is protected as a trade secret. Regardless of the product or
software development phase in which that product is used, ifright Office. The ease of obtaining copyright protection for

software provides a distinct advantage over patent protection. trade secret protection is extended to the information ob-
tained from a reuse library, the software development teamTrade Secrets. A trade secret is any formula, pattern, de-

vice, or compilation of information that provides a competitive must ensure that adequate precautions are taken to prevent
unauthorized disclosure.advantage over one’s competitors in business. Trade secrecy

laws give the holder of a trade secret only one exclusive right: Although copyright protection may be extended to the form
or expression of the domain knowledge, the information itselfOthers may not obtain the secret through unlawful or im-

proper means. In other words, trade secrets are protected (i.e., the facts about the domain) is not protected. The use
of knowledge available to the general public does not violateonly against unauthorized appropriation through unfair prac-

tices. copyright law. In fact, the copyright system is designed to en-
courage the use and advancement of such knowledge. The re-Although trade secret protection is provided under state

laws rather than federal law, the basic elements of trade se- use of functional and nonfunctional requirements can provide
significant savings in development costs. Reusing functionalcrecy do not vary significantly from state to state. There are

three requisite conditions that must be satisfied for a trade requirements has the same legal interpretation as reusing do-
main knowledge (30).secret to be afforded legal protection: novelty, secrecy, and

value. Trade secret protection is extended as long as the infor- Design Phase. The purpose of this phase is to identify how
the new application or system will satisfy the functional andmation is kept secret. Accidental, negligent, or intentional

disclosure is one way to lose trade secret protection. This form nonfunctional requirements specified during the analysis
phase. This phase can be divided into two major subphases:of protection does not prevent or prohibit others from learning

the secret through fair means, such as independent discovery
or lawful reverse engineering. 1. Architectural design, where the system is described in

Analogous to the copyright system, this form of protection terms of parts of the whole.
offers some advantage over patent protection. The legal costs

2. Detailed design, where each of the system parts is de-associated with obtaining a patent are much higher; the only
scribed in full.significant costs associated with trade secrecy are the ex-

penses of establishing appropriate external and internal con-
trols to protect the secret, such as execution of nondisclosure Both of the subphases require some legal consideration.

Based on the results of Apple v. Microsoft, it appears thatagreements and distribution or licensing agreements (28).
reusing standard architectures and frameworks is relativelyTrade secrecy can be used in conjunction with copyright. Soft-
safe in terms of legal liability. Because the goal of implement-ware and related artifacts can be afforded both forms of pro-
ing standards is to move toward a standard, any use or ‘‘copy-tection at the same time. This combination may provide maxi-
ing’’ of a standard architecture or framework is relativelymum protection possible under current intellectual property
risk free.law.

The detailed design phase may not be as free of risk. In
Whelan v. Jaslow, the court defined the expression of a com-Impact on Software Development. Anyone who is associated
puter program to be its ‘‘structure, sequence, and organiza-with a software development project, especially if it is within
tion’’ (31). The expression and, therefore, the detailed designthe context of a software house, needs to be aware of the vari-
specifications can be afforded copyright protection. In reusingous forms of intellectual property protection available for soft-
design descriptions, it is recommended that the developmentware. The developer should know whether his/her work quali-
team obtain permission to copy or adapt the components.

fies for protection. More importantly, the developer needs the
Implementation Phase. In the implementation phase of the

ability to determine whether he or she is infringing upon software development process, the detailed design obtained
someone else’s patent or copyright and to determine whether from the previous phase is translated into source code. The
his or her actions are violating trade secret laws. Companies, source code, some of which is directly reused or adapted from
employers, and managers of software development teams also reusable components, is integrated to form a new, complete,
need to be aware of the legal issues related to intellectual and fully functioning product. The reuse of source code war-
property as it applies to software. By law, an employer can be rants special legal attention. Whenever source code is reused
held liable for infringement, even if he or she is unaware that or adapted, permission to do so must be obtained from the
the infringement took place (28). appropriate copyright holder. This must be done even for test

versions or prototypes that are never intended to be sold.
Legal Issues on Software Development for Reuse. In this sub- If a software development team opts to reuse a design but

section the focus is on legal considerations of developing soft- not necessarily all the source components that were created
as a result of the original design, the outcome of the afore-ware systems from software components in a software reposi-

482 SOFTWARE HOUSES

mentioned case indicates that this is legally accepted by the software capability evaluation program using the CMM has
been reported in the open literature (33). The contractor-se-courts (31). During this phase, the developers should ensure

that appropriate notices are embedded in the new application. lection process can have as an integral part a number of on-
site and post-on-site evaluation activities.Upon the initiation of the new application, a message con-

taining intellectual property information should be displayed.
In addition, the team should ensure that this information is

CONCLUDING REMARKSincluded with each distinct component of the system. Al-
though comment fields are an excellent way to document in-

There are a number of emerging trends and technologies fortellectual property information for each module, this informa-
software houses. Generally, these trends and techniques aretion is lost once the module is converted to object code.
not innovative and revolutionary, but instead they have sim-Testing Phase. The purpose of the testing phase is to ensure
ply become mature enough to be incorporated into the me-that the new application or system functions correctly. Al-
thodical and systematic software development processes uti-though testing is an integral part of the entire system life
lized in a software house.cycle, the focus of the testing is to determine if the system

The most important innovation is concurrent engineering,satisfies its specifications—that is, all of the functional and
which can be interpreted as both (a) software development innonfunctional requirements. The reuse of test components
parallel (extraction of the parallelism inherent in the specifi-(i.e., test plans, scenarios, etc.) in the testing phase may re-
cation, design, and implementation, and exploiting it toquire some attention.
streamline and expedite the development process) and (b)The components that are reused in the testing phase
parallel software development (developing software for paral-should be treated much like the reuse of components in the
lel platforms). The latter obviously offers more challengesanalysis phase of software development. The reuse of test
since it essentially encompasses the former. Software engi-cases, test data, and test environments does not pose a legal
neering for parallel and distributed systems generally dealsrisk to the developer. Analogous to the use of domain knowl-
with the identification of problem-domain and solution-edge and functional requirements, protection may apply to
domain parallelism as well as the optimal utilization of thethe form of this information but not to the information itself.
concurrency in the specification and design phases.When a software development team reuses test documents,

The software development process in a software house canthe team must ensure that appropriate actions are taken in
be enhanced not only by effectively utilizing the concurrencythe creation and publication of new test documents. These
inherent in a software problem/solution and the platform, butdocuments should be handled as any other traditional literary
also by utilizing the internet/intranet network services viawork, such as a novel or screenplay.
the use of object-oriented design techniques (such as design
patterns, information hiding, and layered modularity) andProcess Assessment and Improvement
object-oriented language features (such as inheritance, pa-

For a software house to be successful in the market, it is es- rameterized types, templates, abstract classes, and dynamic
sential that it should deliver quality software products that binding).
fulfill the combined expectations of the customer. This is par-
ticularly true for smaller software enterprises. It is reason-

BIBLIOGRAPHYable to assume that the quality of a complex software product
can only be predicated on having a mature software develop-

1. J. R. Johnson, The Software Factory: Managing Software Develop-ment process. The quality of software development process
ment and Maintenance, Wellesley, MA: QED Information Sci-in an organization must be assessed, preferably regularly, to
ences, 1989.determine the capability of the organization and to initiate

2. R. Rockwell and M. H. Gera, The Eureka software factory core:process improvement, if necessary.
A conceptual reference model for software factories, Proc. Softw.For assessment of standalone software houses or software
Eng. Environ. Conf., Reading, UK, July 1993, pp. 80–93.houses that are part of a larger parent organization, several

3. R. S. Pressman, Software Engineering: A Practitioner’s Approach,methodologies have been have been proposed. Examples in-
4th ed., New York: McGraw-Hill, 1997.clude the CMM (capability maturity model), BOOTSTRAP,

4. Webster’s New World Dictionary of Computer Terms, 3rd ed., Newand the new standard ISO 15504 formerly called SPICE (soft-
York: Webster’s New World, 1988.ware process improvement capability determination). For

small enterprises, however, sophisticated and high-priced as- 5. A. Freeman, The Computer Glossary: The Complete Illustrated
Desk Reference, 5th ed., New York: AMACOM American Manage-sessment methodologies that depend on several external con-
ment Association, 1991.sultants are not entirely viable. A more economically and

6. J. J. Marciniak, Encyclopedia of Software Engineering, New York:technically feasible approach would be to conduct initial self-
Wiley, 1994.evaluations and periodic follow-up structured reviews and in-

7. B. J. Cox, Planning the software industrial revolution, IEEEterviews (32).
Softw., 7 (6): 25–33, 1990.While software process improvement is the main goal of

various software development assessment approaches, a 8. W. J. Tracz, Software reuse: Motivators and inhibitors, Proc.
COMPCON87, San Francisco, CA, 1987, pp. 358–363.rank-ordering of software houses can have other uses as well.

For instance, a large-scale software development contract can 9. C. W. Krueger, Software reuse, ACM Comput. Surv., 24 (2): 131–
183, 1992.be awarded based on such a rank ordering. The experiences

of a government team in determining the winner of a major 10. J. S. Poulin, Populating software repositories: incentives and do-
main-specific software, J. Syst. Softw., 30 (3): 187–199, 1995.software contract using the Software Engineering Institute’s

SOFTWARE MAINTENANCE 483

11. S. Isoda, Experience report on software reuse projects: its struc-
ture, activities, and statistical results, Proc. Int. Conf. Softw. Eng.,
Melbourne, Australia, 1992, pp. 320–326.

12. E. Karlsson (ed.), Software Reuse: A Holistic Approach, New York:
Wiley, 1995.

13. R. Prieto-Diaz and P. Freeman, Classifying software for reusabil-
ity, IEEE Softw., 4 (1): 6–16, 1987.

14. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse, New York:
ACM Press and Addison-Wesley, 1997.

15. M. K. Zand and M. H. Samadzadeh, Software reuse: Current sta-
tus and trends, Invited Editorial, J. Syst. Softw., 30 (3): 167–
170, 1995.

16. M. D. McIlroy, Software components, IEEE Softw., 1 (4): 2–23,
1984.

17. R. Prieto-Diaz, Classification of reusable modules, in T. Biggers-
taff and A. Perlis (eds.), Software Reusability: Concepts and Mod-
els, Vol. I, New York: ACM Press, 1989, pp. 99–123.

18. B. Buchanan, Theory of Library Classification, London: Bingley,
1979.

19. B. A. Burton and R. W. Aragon, The reusable software library,
IEEE Softw., 4 (4): 25–33, 1987.

20. G. Arango, Domain engineering for software reuse, Ph.D. thesis,
Comput. Sci. Dept., Univ. of California, Irvine, CA, 1988.

21. Y. Matsumoto, A software factory: An overall approach to soft-
ware production, in P. Freeman (ed.), IEEE Tutorial on Software
Reusability, Los Alamitos, CA: IEEE Computer Society Press,
1987, pp. 155–178.

22. I. Sommerville, Software Engineering, 5th ed., Reading, MA: Ad-
dison-Wesley, 1996.

23. M. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline, Upper Saddle River, NJ: Prentice-Hall,
1996.

24. E. Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

25. A. Kemp, Software procurement and superconcurrent engi-
neering, Comput. Control Eng. J., 5: 299–303, 1994.

26. T. R. Huber, Reducing business and legal risks in software reuse
libraries, Proc. 3rd Int. Conf. Softw. Reuse: Adv. Softw. Reusability,
Los Alamitos, CA: IEEE Computer Society Press, 1994.

27. S. Fishman, Copyright Your Software, Berkeley, CA: Nolo Press,
1994.

28. F. L. Cooper III, Law and the Software Marketer, Englewood
Cliffs, NJ: Prentice-Hall, 1988.

29. I. H. Donner, Intellectual property protection for multimedia ap-
plications (part 1): So many flavors, so little time, IEEE Comput.,
28 (7): 92–93, 1995.

30. N. Carr and M. K. Zand, Legal aspects of software development
with reuse, Proc. 12th Int. Conf. Comput. Appl., Tempe, AZ,
March 1997.

31. J. Drezel, What Is Protected in a Computer Program? Copyright
Protection in the United States and Europe, Weinheim, Germany:
VCH, 1994.

32. P. Grunbacher, A software assessment process for small software
enterprises, Proc. 23rd EUROMICRO Conf. (EUROMICRO97):
New Front. Inf. Technol., Budapest, Hungary, 1997, pp. 23–128.

33. D. Rugg, Using a capability evaluation to select a contractor,
IEEE Softw., 10 (4): 36–45, 1993.

MANSUR H. SAMADZADEH

Oklahoma State University

MANSOUR K. ZAND

University of Nebraska—Omaha

