
SOFTWARE COST ESTIMATION

Many modern software systems are expensive to develop.
Most software is complex and there is an explosive demand
for increased functionality in new software products, mak-
ing new software development more expensive. Accurate
estimation of the cost of a projected software project is es-
sential if sufficient resources are to be allocated for the
project’s completion. In extreme cases, estimation of the
cost of a projected software project can help determine if
a proposed software project is simply too big or complex
for the amount of resources that feasibly can be allocated
to the project’s completion. Many software projects, and
indeed, many software companies, have failed because of
inaccurate estimation of software costs (1).

As with any new product development, the cost of a soft-
ware project depends upon several factors:

1. The sheer amount of software required for a project.
Modern software packages such as the Microsoft Ex-
cel spreadsheet comprise over 1.2 million lines of
source code (2). Such software is necessarily far more
expensive to develop than was Visicalc, which was
one of the original versions of personal computer
spreadsheet software, and which was distributed on
a single floppy disk and ran on computers with as lit-
tle as 32 K of memory (3). Software cost appears to
grow exponentially with project size.

2. The amount of new software that will be needed for
the project. This in turn depends on the amount of
software that can be reused as is, without modifica-
tion, for the project; the amount that must be cre-
ated to be created; and the amount of existing soft-
ware that is to be reused after modification (4). The
most extreme case of reusing existing software is in-
corporating an entire product into a new software
system; such existing software is often called COTS
(commercial, off-the-shelf) or GOTS (government, off-
the-shelf) software, depending on its place of origin.

3. The complexity of the software that is to be created is
an essential consideration, especially if there is any
difficulty in meeting the requirements of the project
due to tight time performance constraints or limited
memory in the expected run-time environment. Sys-
tems that are required to react to external phenom-
ena within prescribed time limits (so-called real-time
software) are necessarily more expensive to build
than other systems without these requirements, with
some additional costs just for testing that the system
meets the software timing constraints.

4. Very high general quality requirements for software
correctness in certain application domains are a ma-
jor factor in the cost of a software system. The poten-
tial effects of an error in software may depend on the
application domain. For example, a software failure
in a word processing system that forces a user to re-
boot a personal computer and results in the loss of
a few paragraphs of work is annoying, with the level
of annoyance directly correlated with the amount of
work lost. Such system failures can be tolerated if

they are infrequent and the software offers enough
features at reasonable cost. However, such system
failures cannot be tolerated in software that con-
trols human life, such as monitoring medical devices,
controlling processes in a chemical or nuclear power
plant, or maintaining the safety of airline passengers
in an air traffic control system. Correctness of other
software systems, such as the ones used to coordi-
nate banking transactions and payments to recipi-
ents of Social Security checks in the United States
is also essential, although human life may not di-
rectly depend on the software systems functioning
correctly. These extra demands for system correct-
ness and robustness mean that the software must be
of particularly high quality. This increased quality is
obtained by a precise process with additional testing,
reviews, and perhaps external certification of quality
control. The increased quality requirement naturally
increases software development costs.

5. The hardware and software resources available to
the project become important if the project has a
tight schedule. The cost of a project can only increase
if there are not enough computers available for the
software development team or if compilation is slow
because of slow computers with limited memory. In-
ability to access existing software libraries because
license renewals have not been paid can increase the
cost of a project by wasting resources.

6. The development environment available to the
project can have an important effect on programmer
productivity. Software tools that allow a programmer
to examine source code in one window, while seeing
the value of certain variables in another window, can
be valuable aids in the software development process.
Other useful software tools allow automatic collec-
tion and analysis of the results of running the soft-
ware on previously-developed test suites, or browsing
through libraries of classes for object-oriented soft-
ware development. Still other software tools encour-
age a consistent view of software throughout the re-
quirements gathering, design, coding, testing, inte-
gration, and maintenance phases of the software’s
life cycle. Maintenance is costs incurred after the
software is delivered. The software tools described in
this paragraph are often referred to as CASE (com-
puter aided software engineering) tools.

7. The training and experience of the project personnel
is also an important factor in the cost of a software
product. For instance, many CASE tools often have
a steep learning curve before they can be used effec-
tively, even by experienced software engineers. Thus
a project that requires use of an unfamiliar CASE
tool can incur greater costs than if the team was fa-
miliar with the CASE tool being used. Beginning pro-
grammers, more experienced software engineers who
must learn a new programming language, or even
software engineers unfamiliar with a particular ap-
plication domain, are unlikely to be as productive as
a software engineer experienced in the programming
languages to be used and the terminology of the ap-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Software Cost Estimation

plication domain. This is true, even if the program-
mers are equally talented. Programmer productivity
is an essential component of software development
cost.

8. Changes in technology can have a major effect on
the cost of a product’s development. For example, the
object-oriented paradigm of languages such as C++
(5) has had a major impact on standards for computer
graphics and representation of graphical objects. The
effect of the Java programming language (6) and
Internet-based software development paradigms on
the personal computer industry has had far-reaching
consequences for both applications and operating
systems development and this effect is certain to con-
tinue. The use of Java “applets“ within programs al-
lows the incorporation of small software applications
to be considered as components that can be inserted
easily into larger software systems. Recent, evolving,
standards such as HTML (hypertext markup lan-
guage) and HTTP (hypertext transfer protocol) al-
low such artifacts as graphical images and output of
spreadsheets to be inserted into applications for the
Internet. Many projects have been forced to change
direction in mid-stream, due to changing technology
and the resulting effects on the marketplace. This in-
creases cost.

9. The expected lifetime of a software system can play
a major role in the cost of the system. For example,
some versions of the software that controls the flow of
railroad traffic in the United States have been in use
for over twenty-five years. This 25 year period has
seen major changes in programming languages, op-
erating systems, and the underlying computer hard-
ware. Communications protocols have changed im-
mensely, as have techniques for allowing concurrent
access to shared resources such as railroad tracks.
Clearly the cost of such software systems is much
larger than it would be if the software had only been
in use for one year. The maintenance costs for this
software over a period of 25 years are much higher
than if the software was discontinued after one year.
Maintenance often accounts for 75 % of the total life-
time costs for many software systems.

10. The quality of the project’s management affects the
cost of a software development project. For example,
a highly inefficient project schedule, with many soft-
ware engineers unable to proceed because they are
waiting for delivery of a critical product, will affect
cost adversely. Lack of quality control can result in in-
adequate, incomplete, or contradictory requirements,
which in turn can increase costs of producing soft-
ware dependent on these requirements. Other, ap-
parently minor, decisions can lead to enormous costs
during the remainder of the software’s development
or during its maintenance. For example, the so-called
“Year 2000 problem,” which often was caused by a
simple design decision to allocate only two digits for
storage of years in a date field, required a major in-
vestment to fix a huge inventory of existing software
for business, financial, medical, and other applica-

SPECIFICATION

DESIGN

CODE

TESTINGAND INTEGRATION

MAINTENANCE

Figure 1. A stylized version of the classical waterfall model of
software development.

Develop
Prototype

Test and
Integrate
Prototype

Evaluate
Prototype

Initial
Specifications

Create new
Specifications

Figure 2. A stylized version of the rapid prototyping model of
software development.

tions.
11. In many cases, the process used to develop a software

project can also affect the software’s cost.A rigidly fol-
lowed process using the classical waterfall life cycle
model will certainly increase overall costs for an orga-
nization’s software products if technological changes
are so rapid that they make the assumptions made
in the initial requirements invalid. Figure 1 shows
a stylized version of the classical waterfall model of
software development in which the software is under-
stood to go through distinct phases of requirements,
design, coding, testing and integration, and main-
tenance. An alternative model of software develop-
ment, based on iteration of a succession of prototypes,
and known as the rapid prototyping model, is illus-
trated in Figure 2. Creation of too many prototypes
can also slow down a software project’s development.

It is clear that each of these eleven factors affects the
cost of developing a software system. The major difficulty
in software cost estimation is determining a quantitative
basis for the effect that these factors have on the cost of a
particular project. The problem is so complex that in most
software projects, any other factors are ignored because
they have at most second order effects and the first order
effects listed above are difficult enough to quantify.

Software Cost Estimation 3

We note explicitly that the controlled experiments so
important in many sciences are not usually practical in
software engineering, because most organizations cannot
afford the resources necessary to perform parallel exper-
iments on actual production of software systems. In par-
ticular, the smaller scale experiments typically carried out
in academic software engineering experiments using stu-
dents typically have little relevance to typical cost estima-
tion problems in industry or government.

SOFTWARE COST ESTIMATION FOR THE PRACTICING
SOFTWARE ENGINEER

In general, software cost data and estimation models can-
not be compared across organizations because of differ-
ences in how costs are recorded, how these costs are
charged to particular sub-accounts for individual projects,
and even how these costs are measured. Often there are
major differences in software accounting procedures and
standards, even between different units of the same or-
ganization. The only commonality between the software
developed is typically mandated externally to the organi-
zation, such as in the case of software developed to meet
the detailed specifications of a government contract. For
an organization developing new software, the most impor-
tant sources for detailed information often are to be found
within the organization itself.

For the reasons listed above, most organizations have
developed their own procedures for software cost estima-
tion. The procedures are based on the organization’s pre-
ferred methodology for software development. The proce-
dures are used as the basis for software cost estimation
models which are used by the organization.

In spite of the differences between various organiza-
tional approaches to software development, there are some
common general approaches to software cost estimation.
The approaches all have several features in common, and
use feedback from other software projects that are deemed
similar to the new project to improve the cost estimation
process, at least for those organizations that are successful
in predicting their software costs, which is illustrated in
Figure 3:

1. A model for the organization’s software costs es-
timation is selected. Such a cost model may be
mathematically-based and consist of one or more for-
mulas, each of which may have several parameters
that must be determined. Initial, default, values may
be used for these parameters if no additional infor-
mation is available.

2. There is a systematic assessment of the size and rel-
ative complexity for each new software project. This
assessment often is based on a decomposition of the
project into smaller components which can be eval-
uated easily and the results are aggregated into an
assessment of the entire project. The amount of soft-
ware reuse, the number of complete COTS products
used, and the underlying software technology used
are very important at this stage.

Figure 3. A model of the iterative process of developing cost es-
timation models and improving them

3. A database of experiences for other software develop-
ment projects is created. This database is consulted
for the new software development project and param-
eters such as those listed earlier are estimated for
the new project, using the assessment of the size and
complexity in the previous step.

4. The parameters estimated in step 2 are used as in-
puts into a cost model. The cost model will produce
an estimate of cost and a range of likely values, to-
gether with an estimate of the time needed for the
project’s completion.

5. The cost estimates obtained in step 4 are then pre-
sented to a group of experienced managers for a re-
view and a “sanity check” to make sure that the esti-
mates are reasonable and that the development costs
for the new software project is within the limits that
the organization wishes to spend.

6. The project is then developed, with cost and schedule
data collected and reviewed at different milestones
(such as completed requirements or design, delivery
of the first prototype, acceptance of the software by
the customer, etc.).

7. Cost and schedule data for the project is compared
with the estimated cost and schedule to determine
any major deviations and to assess the reasons for
the deviations, if any.

8. The detailed cost and schedule data obtained for the
recently completed project is then incorporated into
the database. Any deviations of the actual cost and
schedule from those projected by the cost models are
noted and then used to recalibrate the choice of pa-
rameters used in the mathematical model used for
cost estimation. Statistical techniques such as re-
gression analysis may be used (7).

Alternatively, a software cost model may be based on
artificial intelligence techniques or even use neural nets.
Such a model must, of course, be calibrated by data on the
organizations relevant existing projects before being used.
Generally speaking, such models are highly linked to the
specific data and assumptions of the developing organiza-
tion, and are not easily ported to different software devel-
opment project cost modeling.

4 Software Cost Estimation

COCOMO SLIM and other mathematical cost models

A mathematical model of costs is generally given as one or
more formulas that take a set of inputs, which are usually
attributes of the particular software that is to be devel-
oped, and a set of parameters, which can be fine-tuned or
recalibrated, according to the experiences of the organiza-
tion developing the software. The output is an estimate of
the cost, and in many cases, an estimate of the amount of
time, needed for completion of the software development
project.

The size of a software project is often an important com-
ponent in a mathematical cost model. For example, the CO-
COMO cost model developed by Boehm requires a measure
of the size of the software system in terms of the number of
lines of code. The model is described in detail in his book,
Software Engineering Economics, which is still one of the
best general-purpose references in the field (7).

Boehm suggests the use of two formulas to compute the
amount of effort (measured in person-months) and the time
needed for completion of the project (measured in months).
Boehm developed a hierarchy of three cost models: basic,
intermediate, and advanced. We describe the basic and in-
termediate models briefly in this section, but will ignore
the advanced model, referring the reader to Boehm’s orig-
inal book. Boehm’s models are based on an assessment of
the size of the system to be produced.

In the original COCOMO model, the first step is to es-
timate the size in lines of code. This total will be used as
the variable K in the COCOMO formulas. It is measured in
units of thousand lines of code. The article entitled “Soft-
ware Metrics” in this encyclopedia describes some of the
issues in software measurements and some approaches
to formalizing the terminology to compare the concept of
“lines of code” in different programming languages and ap-
plication areas. Other measurements of software size are
based on function points,which are a description of the soft-
ware’s functionality, rather than being based on the num-
ber of lines of code needed to construct software with this
functionality. The book by Capers Jones (8) gives a good
overview of function points and their use in software es-
timation. The number of lines of code and the number of
function point are the metrics most commonly used for cost
estimation.

Since the software system under consideration does not
exist as an entirety at this point, the size (in lines of code or
other measurement) must also be estimated, rather than
measured exactly. The approach to size measurement is
often is called a “work breakdown structure” because the
software project to be developed is broken into smaller por-
tions. Development of a work breakdown structure will be
discussed in the next section.

A careful reader might object to this estimation process,
because it replaces the estimate of the size of the entire sys-
tem by a total of the estimates of the sizes of the individual
components of the system. However, many practitioners
of this approach believe that any errors in overestimating
the size of individual components are likely to be balanced
by other errors underestimating the size of other compo-
nents. In any event, estimating the size of a project by a
work breakdown structure is often used in practice.

Figure 4. An attempt to fit a smooth curve to data in a scatter
diagram using a COCOMO model approach.

Once the number of thousands of lines (K) has been esti-
mated, the time and number of personnel can be estimated.
We discuss the basic COCOMO model first. The relevant
formulas are
E = ab * K * exp(bb)
D = cb * E * exp(db)

where the coefficients ab, bb, cb, and db, and db are based
on relatively informal assessments of the relative complex-
ity of the software. The computed quantities E and D are
the amount of effort required for the project and the time
needed for development of the project, respectively. The two
quantities do not include the cost or time needed for soft-
ware maintenance. The values of the constants ab, bb, cb,
and db should be taken from the appropriate entries in Ta-
ble 1.

Note that the estimates for the quantities E and D are
themselves based on estimates of the quantity K. Thus it is
not reasonable to expect an exact match between estimates
and actual values for the size and resources needed for a
project. At best, an approximation with an expected range
of accuracy can be determined, and this range of allowable
error is heavily influenced by both the experience of the
estimator and the quality of the information available in
the organization for comparison with similar projects.

A typical relationship between the basic COCOMO
model and some cost data is shown in Figure 4.

A technique such as linear regression (9) can be used to
estimate the values of the parameters that provide a “best
fit” to the existing software cost data in the database. If
no such numbers are available, the default values of the
formula should be used.

The basic COCOMO model can be extended to the so-
called “intermediate COCOMO model.” The intermediate
COCOM model uses a set of “test driver attributes” which
are given in Table 2.

The weights of these test driver attributes are to be en-
tered on a scale from 1 to 6 and the resulting sum is used
to create a multiplication factor that is used to modify the
results of the basic COCOMO model. The rationale behind
the extension of the basic COCOMO model to the interme-
diate COCOMO model is that mathematical cost estima-
tion models should have a mechanism for incorporation of
additional information into the cost estimates for projects
(7).

The advanced COCOMO model extends the intermedi-
ate COCOMO model in much the same way that the in-

Software Cost Estimation 5

Table 1. Coefficients for the Basic COCOMO Model

Software project type ab bb cb db
Small project, experienced team, flexible requirements (“organic”) 2.4 1.05 2.5 0.38
Hard real-time requirements and strict interoperability (“embedded”) 3.6 1.2 2.5 0.32
A mixture of the other two type of projects (“intermediate”) 3.0 1.12 2.5 0.35

Table 2. “Test Driver Attributes” for the Intermediate COCOMO Model

Test Driver Attribute Weight
Product attributes:

Reliability requirements
Size of application’s database

Software complexity
Hardware attributes

Run-time performance constraints
Memory limitations

Other processes competing for virtual memory
Personnel attributes

Analyst experience
Software engineer experience

Application domain experience
Virtual machine experience

Programming language experience
Project attributes

Use of software tools
Use of software engineering methods

Required development schedule
TOTAL

termediate COCOMO model extends the basic COCOMO
model (7). It is considerably more complex.

The COCOMO model has been extended, and, to some
extent, superseded recently by the COCOMO-2 model (10).
The COCOMO-2 model includes assessment of the amount
of software reuse and the difficulty of incorporating exist-
ing software components and COTS products into a new
software system.

The SLIM estimation model is based on a model by Put-
nam of the assignment of effort during the various phases
of a software project during its development lifetime, and
often farther (10). The primary equation relates three pa-
rameters: effort, size, and productivity, of a project in a sim-
ple way, although the determination of the three parame-
ters is often difficult. SLIM has been implemented as part
of a suite of commercially available software estimation
tools as well as in academic projects.

Many implementations of SLIM include an equation
similar to:
S = E * Effort1/3 * td

4/3

Here td represents the software delivery time; E is the
so-called environment factor that represents the produc-
tivity in the development environment, the size S (usually
measured in LOC), and the Effort (usually measured in
person-years).

Estimation of Size and Relative Complexity

The term “work breakdown structure” is used in cost es-
timation to describe the result of repeated decomposition
and stepwise refinement of a software project into smaller
components whose size can be measured and whose cost
presumably can therefore be estimated. A work breakdown
structure is created by the following five step process:

1. Examine the list of detailed requirements.
2. For each requirement, estimate the number of lines of

code needed to implement the requirement. Alterna-
tively, estimate the number of function points needed
to implement the requirement.

3. If the number of lines of code needed to implement a
requirement cannot be estimated, decompose the re-
quirement into smaller requirements until the num-
ber of lines of code (or function points) needed to fulfill
each decomposed requirement can be estimated.

4. Use the size estimates obtained in steps 2 and 3 to es-
timate the number of lines of code (or function points)
needed to meet the individual requirements.

5. Ignore any requirements for which an existing func-
tion, procedure, object, configuration file, software
component, or COTS product can be reused as is.

6 Software Cost Estimation

If an existing function, procedure, object, configura-
tion file, software component, or COTS product must
be changed before it is used, estimate the amount of
changes that must be made before it can be reused.
Include an estimate of the size of any “filters” or
“glueware” that are necessary to interface existing
reusable software components with the rest of the
software system to be developed.

6. Compute the total of all new lines of code (or function
points) needed for the entire project.

Clearly the estimation of the size in step 2 has a great
potential for errors. However, the underlying premise of the
work breakdown structure approach is that even a large
error in the estimation of the size of an implementation of
an individual requirement (as measured by lines of code,
function points, or similar metric) will be a relatively small
factor in the overall estimation of the size of the system.
For example, a fifty percent underestimation of size for an
implementation of a requirement accounting for five per-
cent of a system can cause at most a 2.5 percent error for
the implementation of the overall system, assuming that
most other estimates are accurate and the number of un-
derestimates balances the number of overestimates.

The amount of reuse has a considerable effect on the
cost of fulfilling a requirement. However, the cost models
depend on the amount of change that a potentially reusable
component must undergo before it can be reused in a soft-
ware system. For example, if a component can be reused
as is, without any changes, to meet a requirement, soft-
ware development using the classic waterfall development
process will have a cost that can be described as
cost = M * (non-reuse costs to develop)
+
integration and maintenance costs of non-
reuse-based system

Here the constant M represents a multiplier that is con-
sidered to be approximately 12.5% for software components
reuse as is, without any changes (4). This description in-
dicates the explicit need to integrate the existing software
component into a system, to maintain it, and, most impor-
tantly, to locate the potentially reusable component and
certify its correctness.

If the component is not reused as is, but has a relatively
small number of changes (fewer than 25%), the cost model
would be something like
cost = M * (non-reuse costs to develop)
+
.25 * (non-reuse costs to develop)
+
integration and maintenance costs of non-
reuse-based system

Here the constant M is still 12.5%.
The effect of reuse can be incorporated into other cost

models as well. For example, software development based
on the rapid prototyping approach would have a cost model
of the form
cost = cost of requirements for non-reuse
system
+

.125 * (cost to evaluate non-reuse system)
+
cost to maintain system

if the requirements can be fulfilled by reusing an exist-
ing software component as is, and
cost = cost of requirements for non-reuse
system
+
sum (for all prototypes) of

.125 * (cost to evaluate non-reuse system)
+
reuse factor * (cost to develop prototype)
+
integration costs (non-reuse-based system)

+
cost to maintain system

if multiple prototypes must be developed with reuse fac-
tors other than one.

Establishment of a Baseline

Due to the complexity of software cost estimation and the
risks involved with either underestimating or overestimat-
ing costs by large amounts, most organizations prefer to
use only very experienced software managers to estimate
costs for projects. Such managers often know the organiza-
tion’s history of successes and failures and can determine
similarities between the project whose cost is being esti-
mated and previous projects that are considered to be “sim-
ilar.” This in turn requires that adequate cost data must be
available for these previously-developed “similar” projects.
The most systematic approach to formalize the knowledge
of these experienced software managers in the area of cost
estimation is to develop a “baseline.”

A baseline is a database of information about previous
software projects. Different software development orga-
nizations use different approaches to database structure.
Some common fields of a database include:

� Name of project
� Application domain
� Size of the project
� Special requirements, such as real-time or safety-

critical systems
� Special interface requirements, such as other systems

with which the software must be interoperable
� Programming language(s) used
� Computer hardware used for the final product
� CASE (computer-aided software engineering) or other

software tools used for development
� Software development methodology used (classical

waterfall, rapid prototyping, etc.)
� Number of project personnel used
� Time for delivery of the project
� Cost of each deliverable item for the project
� Cost of the entire project

Software Cost Estimation 7

� Unusual problems encountered during development
� Unusual problems encountered during maintenance

Note that some of the fields in the database used to cre-
ate a baseline of project cost and size information are simi-
lar to those listed for the COCOMO and COCOMO-2 mod-
els.

The deliverable items for a typical software project
might include: initial systems engineering analysis, pre-
liminary and detailed requirements, preliminary and de-
tailed design, source code, test plan, test data, integration
plan, documentation, training manuals, and maintenance
plans. Project management costs would also be included in
the baseline database.

Since there are many different methodologies for soft-
ware development, there is little common ground in the
way that the cost of different deliverable products is
treated. An organization using the classical waterfall
model might have only two design documents as deliver-
able products: a preliminary, high level design and a more
detailed, final design. In some highly complex projects, an-
other, intermediate, design document might be produced.
This is different from a prototyping model of software
development. In this iterative development methodology,
many intermediate design documents will be produced,
at least one for each iteration of the software prototype.
Comparing costs of different intermediate deliverables for
different software development methodologies is meaning-
less.

Clearly, separate baselines must be developed for differ-
ent development methodologies. The same is true for most
of the other components of the baseline database.

Frequently, the completeness of the information in the
database will vary by project, due to differences in account-
ing or project reporting procedures. Clearly, the quality of
the information in the baseline affects the quality of cost
and schedule prediction. It should be noted that the num-
ber of projects in the baseline database should exceed the
number of parameters to be used in the mathematical cost
model in order to avoid wide variations in estimation of
future projects because there is insufficient data to deter-
mine the best values for parameters properly.

Once the database is used to establish a baseline, it is
possible to indicate a range of costs for related software
projects. For example, suppose that three projects consist
of 250 KLOC, 280 KLOC, and 300 KLOC, with correspond-
ing total costs of $1,500,000, $1,680,000, and $1,800,000,
respectively. The acronym KLOC means thousand lines of
code. If these three projects are in the same application do-
main, use the same programming language, target hard-
ware, and CASE development tool, with all other factors
being the same, then it is reasonable to expect that a simi-
lar software project of size 290 KLOC will have a cost some-
where between $1,500,000 and $1,800,000. More complex
analyses can be performed, depending on the quality of in-
formation in the baseline database and on the project.

On the other hand, if a new project is estimated to have
a size of 300 KLOC, but has real-time or safety-critical
requirements that were not needed or relevant for other
items in the baseline, then the project cost is likely to be

considerably more than the $1,800,000 for the previous
project in the database, which was of similar size, but which
was less complex.

Managerial evaluation of cost estimates

A formal review of cost estimates for a new software devel-
opment project by a team of senior software managers is
often included in an organization’s cost estimation process.
Once the formal presentation is made and time has been
allotted for the review of the project’s initial set of require-
ments for completeness and accuracy, the senior managers
are consulted for their own estimates. The goal is to get
a consensus estimate of the true cost of the system to be
developed.

One way in which consensus is reached in some soft-
ware development organizations is often called the Del-
phi method, after the Oracle at Delphi which, according to
Greek mythology, was consulted for advice and was noted
for the cryptic nature of its answers. The idea is that the
managers are given the information from the reviews and
then they disperse to develop their own cost estimates for
the system to be developed. After completion of their initial
estimates, the managers will come together and describe
the reasoning used to develop their estimates. After each
manager has presented his or her case, they separate again
to revise their estimates, incorporating as much of their col-
league’s analyses as they see fit. They then come together
as a group and resume the discussion of their (revised) es-
timates. The process is repeated until the managers either
come to consensus or determine that no consensus can be
reached. Lack of consensus is a sign to upper management
that the project may be risky.

Return on Investment and Risk Analysis

Once there is agreement on the size and cost of a project,
a cost-benefit analysis must be performed. The organiza-
tion must determine if the perceived value of the proposed
software, in terms of its potential to improve market share,
competitive advantage, or, in the case or government, se-
curity, exceeds its projected cost. Even if there is sufficient
perceived advantage, there may be other competing pro-
posals and resources that are too limited to handle two
or more software development projects of a certain size
and complexity at the same time. It is at this stage that
an organization’s potential return on investment might be
computed. This calculation will involve other estimations
of the potential increase in market share or revenue, the
likelihood of other opportunities for use of the same re-
sources during the project’s development lifetime, and the
cost of money if funds must be borrowed. Such decisions
clearly involve many non-technical factors and negative
decisions to terminate projects can annoy software engi-
neers who championed the canceled projects. Decisions to
cancel projects are often an impetus to the development of
start-up software companies.

Another factor that can affect the decision of an orga-
nization to go forward with a project is the perceived risk.
Any software development in the 1980s that focused ex-
clusively on the Commodore-64 or Atari computers would
have been risky. Not knowing the likely direction of the

8 Software Cost Estimation

industry in hardware, operating systems, standards, net-
working, or applications packages could lead to unaccept-
able amounts of risk for some organizations.

A final, less precisely defined factor that can affect
the decision to continue a software project is the confi-
dence that senior management has in the accuracy of the
cost estimation process. Without a well-designed baseline
database of information on previously completed software
projects, an accurate estimate of costs for future projects
will be nearly impossible to obtain. Lack of good infor-
mation about the cost (and quality) of previous projects
would make senior management highly skeptical of cost
estimates for any proposed software projects. The natural
reaction of senior management in the face of limited infor-
mation would be to assume that cost estimates may be very
low; therefore, many otherwise meritorious projects might
be canceled because their cost/benefit ratio appears to be
high and the return on investment is perceived to be low.

Scheduling

Once a cost estimate is obtained for a project, an assess-
ment of the project’s duration can be determined. Fre-
quently, the estimation of the project’s duration is a by-
product of the cost model used, as is the case for the CO-
COMO and COCOMO-2 models. The total predicted time
can then be broken down further into a schedule of project
milestones, including deliverable prototypes, requirements
and design reviews, etc.

The database used as a cost estimation baseline can be
used to provide guidance in project scheduling. The time
needed for each milestone can be read from the baseline
database and the historical profile of the percentage of time
spent on each project activity can be used to provide an
initial estimate of the current project’s schedule.

RESEARCH DIRECTIONS IN SOFTWARE COST
MODELING

Much of the research in software cost estimation can be
classified as falling into one of three categories:

1. Many universities perform small research projects
using student programmers. These projects often in-
clude experiments that evaluate the efficiency of par-
ticular strategies on software development. Strate-
gies include reorganizing sets of requirements to ac-
commodate some preexisting software components or
even COTS products. Here the “cost” of a software
project is measured indirectly by the number of hours
indicated by students in project reports. This type of
research can set a direction for researchers in the
filed of software cost modeling, but the results ob-
tained often do not scale up to industrial applications.

2. Many organizations, or single sites within an orga-
nization, perform comparative studies of moderate-
sized projects. The research is usually restricted to
consider software projects within a single applica-
tion domain. These studies generally take the form
of a comparative study or effectiveness of particular
methods of software cost estimation. Often the study

is limited to comparison of features of commercial
software that can be used by project managers to aid
in software cost estimation. Other studies examine
baseline databases to determine patterns that might
have predicted costs better than the cost models that
were used for the initial cost estimates of the base-
line projects (11). The data analysis suffers from the
incompleteness of databases. The results may not be
applicable to other organizations because of differ-
ences in software development methodology or the
special nature of the particular application domain.

3. There are a few research efforts to consider large
projects across government and several industries.
The COCOMO-2 project at the University of South-
ern California is one of the most prominent examples
(12). The advantage of this approach is that the data
is wide-ranging. The disadvantage is that there is no
controlled experiment and the data obtained might
be somewhat flawed because of the lack of a rigidly
controlled experimental process.

We note explicitly that the Software Engineering Lab-
oratory at NASA’s Goddard Space Flight Center, which
is a partnership between NASA, the University of Mary-
land at College Park, and Computer Sciences Corporation,
performs all types of research (small, formal experiments;
comparative studies; and case studies) and is an excellent
source of cost modeling information (13). The Software En-
gineering Institute is also an excellent source of informa-
tion on software cost modeling (14).

Research Directions in Software Reuse and Cost Modeling

Software reuse can be a major factor in reducing software
costs and is therefore an important component of cost mod-
els. From the perspective of software cost modeling, the
most difficult problem occurs when the software compo-
nent to be reused is either in the form of a complete COTS
product with no source code available, or is such a complex
system that there are so many interactions with operating
system services or other COTS applications that the task
of integrating the software becomes much more expensive
than might have been allowed for in the cost estimates.
Essentially, the “glueware” or “filters” become more of an
expense than the reused software component. There are
few metrics that appear to be relevant for determining the
size of the glueware of filters and even less reliable infor-
mation on prediction of integration costs.

Characterization of software as matching one of a set
of patterns is an important new research area in software
engineering, particularly for object-oriented software (15).
Few large industrial software projects have been developed
using the approach of matching patterns within a frame-
work. However, it is clear that new methods of software
cost modeling will be necessary for accurate prediction of
any substantial software system developed using this ap-
proach. As with cost modeling of software projects devel-
oped with COTS products, prediction of the cost of integra-
tion is a major stumbling block, due to unforeseen low-level
interactions.

Software Cost Estimation 9

The use of COTS may require a change in an organi-
zation’s software development process, because so much of
the cost of COTS selection and analysis may occur before
a contract is obtained for software development and sys-
tems integration. The paper by Waund indicates some of
the issues in the case of a defense contractor developing
COTS-based systems for the government (16). Ellis has a
related paper (17).

A sophisticated systematic approach to software reuse
is known as “product line architectures”. In this approach,
software components and subsystems considered likely
to be reused are developed simultaneously with product
schedules, and the cost models are best treated system-
wide. An easily accessible source of current best practices
for software product line architectures is available from
the Software Engineering Institute (18).

An interesting doctoral dissertation by Sassenburg (19)
addresses the effects of modeling of cost and quality in de-
termining new releases of software systems. It may be es-
pecially useful when combined with product line architec-
ture approaches.

Research Directions in Java, the Internet, and Software
Cost Modeling

The influence of the explosive growth of the Java program-
ming language, its associated application programming in-
terfaces (API), and the smooth interface between Java and
the Internet has had a profound effect on software devel-
opment. As yet, there are few careful studies of the effect
of Java or the Internet on software costs for real systems.
This is due primarily to the lack of data regarding the costs
of software maintenance for systems written in Java or the
cost of providing configuration management of web sites.

Java allows APIs to applications written in multiple lan-
guages. As such, there is the potential for the same type of
hidden costs due to unforeseen low-level interactions be-
tween software components. It remains to be seen if the
popularity of Java will result in a fundamentally different
approach to software cost modeling. The same holds true
for scripting languages, which are beginning to be popular
for Internet applications.

ACKNOWLEDGEMENTS

This research was partially funded by the United States
Government under agreement number W911W6-06-2-
0008. This research was also partially supported by the Na-
tional Science Foundation under grant number 0324818.

The U. S. Government is authorized to reproduce and
distribute reprints notwithstanding and copyright nota-
tion therein.

The views and conclusions contained in this document
are those of the author and should not be interpreted as
representing the official policies, either express or implied,
of the U. S. Government.

BIBLIOGRAPHY

1. W. Humphrey, Managing the Software Process, Addison-
Wesley, Reading, Massachusetts, 1989.

2. M. A. Cusumano, R. W. Selby,“ How Microsoft Builds Soft-
ware”, Commun. ACM, Vol.40, No. 6,June, 1997.

3. D. Bricklin,“ Visicalc ’79”, Creative Computing, Vol.10, 1984,
pp. 122–124.

4. R. J. Leach, Software Reuse: Methods, Models, Costs, McGraw-
Hill, New York, 1996.

5. B. Stroustrup, The C++ Programming Language, second edi-
tion, Addison-Wesley, Reading, Massachusetts, 1991.

6. E. Au, D. Makower, Java Programming Basics, MIS Press,
New York, 1996.

7. B. Boehm, Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

8. Capers Jones, Assessment and Control of Software Risks,
Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

9. O. J. Dunn,V. A. Clark,Applied Statistics:Analysis of Variance
and Regression, John Wiley, New York, 1987.

10. L. Putnam, W. Myers, Measures for Excellence, Yourdon Press
Computing Series, 1992.

11. M. Shepperd, C. Schofield, B. A. Kitchenham,“ Effort Estima-
tion Using Analogy,” International Conference on Software En-
gineering, ICSE-18, Berlin, 1996.

12. B. Boehm, B. Clark, S. Devnani-Chulani,“ Calibration Re-
sults of COCOMO II” Proceedings of the Software Engineer-
ing Workshop, NASA Goddard Space Flight Center, Greenbelt,
Maryland, December 3-4, 1997.

13. Software Engineering Laboratory (SEL), NASA Goddard
Space Flight Center, Greenbelt, Maryland.

14. Software Engineering Institute (SEI), Carnegie-Mellon Uni-
versity, Pittsburgh, Pennsylvania.

15. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, Massachusetts, 1995.

16. C. Waund,“ COTS Integration and Support Model,” in Systems
Engineering in the Global Marketplace: NCOSE International
Symposium, St. Louis, Missouri, July 24-26, 1995.

17. T. Ellis,“ COTS Integration in Software Solutions - a Cost
Model,” in “Systems Engineering in the Global Marketplace,”
NCOSE International Symposium, St. Louis, Missouri, July
24-26, 1995.A Framework for Software Product Line Practice,
Version 4.2, www.sei.cmu.edu/productlines/framework.html.
Software Engineering Institute, Pittsburgh, Pennsylvania,
2005.

18. D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering:A
Family-Based Software Development Process,Addison-Wesley,
Reading, Massachusetts, 1999.

19. H. Sassenburg,“Design of a Methodology to Support Soft-
ware Release Decisions: Do the Numbers Really Matter?,” The-
sis, University of Groningen, SE-CURE AG(www.se-cure.ch),
2005.

Cross-References

See also: software engineering, software metrics, software selec-
tion, software management, software reusability, computer aided
software engineering, cost-benefit analysis

RONALD J. LEACH

10 Software Cost Estimation

Department of Systems and
Computer Science, College of
Engineering, Architecture,
and Computer Sciences,
Howard University,
Washington, DC

