
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright c© 1999 John Wiley & Sons, Inc.

PROGRAM CONTROL STRUCTURES

A program control structure (or a control structure) in a programming language is a control statement and
a collection of statements it controls. The execution order of statements in a program is determined by the
combination of the sequential control and the control structures. A sequential control specifies the execution
of statements in the order they appear in the source code (i.e., if statement S1 appears immediately before
statement S2, the execution of S1 should appear immediately before that of S2). The control structures specify
departures from the sequential control and include structures for the conditional control, the repetition control,
and the invocation control. A conditional control selects a group of statements to execute when its corresponding
control condition is true; it is usually represented by an IF statement. A repetition control specifies the execution
over a group of statements many times; it is usually represented by a DO statement, a WHILE statement, a
FOR statement, and so on. An invocation control, usually represented by a CALL statement, stops the current
normal execution, starts executing the called procedure, and resumes the normal execution after the procedure
is finished. These are common program control constructs. Other program control constructs, such as those
specifying parallel execution of multiple computations of a program, are also used in some parallel languages.

To speed up the execution of computer programs, modern computers rely heavily on a technique known
as parallel processing. Parallel processing executes several independent statements (or sections) of a single
program at the same time. The more independent statements a program has, the faster this program can
be run using parallel processing. One approach to finding independent statements of a program is to use a
restructuring compiler to recognize them automatically. This process is also referred to as parallelization.
Restructuring compilers for parallelization consider repetition control structures and check to see if the com-
putations specified by these repetition structures, which take most of the execution time of a program, can be
run in parallel.

Although control structures help a programmer to write a computer program in a structured and concise
way, some structures, especially conditional control structures, can make it difficult for computer programs to
run faster. Conditional control structures affect the exactness of program analysis, and therefore may reduce
the effectiveness of a restructuring compiler. When a conditional control structure is involved in the recurrence
relation of a loop, parallelizing such a loop is especially difficult. In the following sections, two approaches
will be presented to parallelizing repetition control structures containing conditional control structures and
invocation structures.

Repetition Control Structures

In general, the repetition control structures can be categorized into iterative DO loops (also called iterative loops
or DO loops) and WHILE loops. A DO loop is a loop with a known index set, that is, the number of iterations
that the loop has at run time is known to be fixed before the loop is run, and this number is independent of
the calculation inside the loop. The DO loops defined here should not be confused with the loops constructed
by DO statements as in the FORTRAN language, which may contain exit conditions causing the loops to be

1

2 PROGRAM CONTROL STRUCTURES

Fig. 1. Typical forms of WHILE loops.

Fig. 2. Transforming a WHILE loop into a DO loop.

terminated earlier than specified by their index sets. The rest of the loops are WHILE loops whose number of
iterations are dependent on the calculations of the loops.

While Loops. WHILE loops can be in many forms. Three typical forms are shown in Fig. 1. Figure
1(a) has a Boolean expression that specifies the loop control at the top of the loop, as in a C WHILE loop. This
form of loop allows zero-trip execution. When the Boolean expression evaluates to false, the loop will finish its
execution.

Figure 1(b) has a Boolean expression for loop control at the bottom of the loop, represented in a C DO-
WHILE loop structure. This form of loop will execute its body at least once. At the end of each iteration, the
Boolean expression is evaluated. If it evaluates to false, the loop will finish its execution.

The last form of loop, shown in Fig. 1(c), is represented by a FORTRAN DO loop with an exit IF statement
that conditionally branches out of the loop. This form also allows zero trip (when N < 1).

Parallelizing these forms of loops in general is difficult because the number of iterations is dependent
on the calculation of the loop. Recurrence relations occur often in these loops, and thus are also obstacles for
parallelizing them. Some special WHILE loops, however, can be transformed into DO loops, and therefore can
be handled by well-studied parallelization techniques for DO loops (1,2,3). For instance, the WHILE loop in
Fig. 2(a) can be transformed into the DO loop shown in Fig. 2(b).

DO Loops. If a DO loop contains only assignment statements, as in Fig. 2(b), it is referred to as a
simple DO loop. A DO loop may also contain conditional branching (IF statements). DO loops with conditional
branching can be classified by the availability of the predicate values defining the branching. If conditional
branching is based on variables that are not a part of the recurrence relation in the loop, the loop is referred to
as a with-IF DO loop (or a with-IF loop). The following is such an example:

DO I = 1, N IF (A(I) > 0) THEN B(I) = C(I) + D(I) ELSE B(I) = C(I) − D(I) ENDIF ENDDO

PROGRAM CONTROL STRUCTURES 3

A conditional cyclic loop (or conditional cyclic DO loop) is a DO loop with conditional branching in which
the values of the variables upon which conditional branching is made are not known before executing the
loop (i.e., some of the variables defining the predicates are evaluated within the loop itself). For instance, the
following loop is a conditional cyclic loop:

DO I = 2, N IF (X(I−1) > 0) THEN X(I) = A(I) ELSE X(I) = B(I) ENDIF ENDDO

Note that these two forms of loops with conditional branching have the number of iterations that do not
depend upon the calculations of the loops, and therefore they are not WHILE loops.

These forms of loops can be further categorized in terms of the presence of recurrence relations in loops.
For example, a with-IF loop that contains recurrence relations is termed a recurrence with-IF loop. In the
following sections, techniques for parallelizing the DO loops are discussed.

Parallelization of do Loops

For shared-memory multiprocessor systems, the iterations of a DO loop can be executed on different processors,
and this can shorten the execution time of the loop. To make this parallel execution possible, data dependence
in the original loop must be preserved in the parallel execution.

To preserve data dependence among different iterations running on different processors, one approach is
to add communication and synchronization statements into the iterations. The loops that are run in parallel this
way are generally referred to as DOACROSS loops. It is true that any loop can be converted to a DOACROSS
loop, but this will not necessarily shorten the execution time.

For loops which do not have data dependence among different iterations, their parallel execution does not
involve interaction among different iterations; therefore, these parallel loops are referred to as DOALL loops.
Because of the absence of communication and synchronization statements, DOALL loops do not have overhead
caused by such statements and are more likely to speed up the execution of the loops. Many DO loops can be
converted to DOALL loops because they either do not have dependence among different iterations or can be
transformed into DOALL loops using techniques such as the ones discussed in the following sections. In this
article, we will discuss DOALL loops only.

Dependence Relations. Data dependence exists when a statement accesses the same memory loca-
tions as another statement. Consider two statements Si and Sj when Si precedes Sj on the control flow path of
a given program. Several types of dependence are possible (1).

• Sj is data flow dependent on Si if Si writes to a memory location before Sj reads from that location.
• Sj is data antidependent on Si if Si reads from a memory location before Sj writes to that location.
• Sj is output dependent on Si if Si writes to a memory location before Sj rewrites to that location.

Control dependence arises if the execution of Sj is determined as a result of the control path chosen by the
execution of a conditional statement Si. For convenience, that Sj is dependent on Si is denoted as SjδSi without
distinguishing the type of the dependence.

Along with dependence information, information on dependence distance (or direction) across the loop
iterations is often helpful (4,5). Suppose that statements S1 and S2 are enclosed in a loop that has index i,
and suppose that Si

11 is an instance of S1 when i = i1. If Si
22 is dependent on Si

11 , the dependence is denoted
as Si

22δSi
11 and it is said to have a dependence distance i2 − i1 (4). If the dependence distance is positive, the

dependence has a direction vector (<) and is denoted as S2δ(<)S1. If the dependence distance is negative or

4 PROGRAM CONTROL STRUCTURES

Fig. 3. Loop parallelization.

zero, the dependence has a direction vector (>) or (=), respectively. So, a dependence with its direction vector
(<) or (>) is a cross-iteration dependence, which prohibits the iterations from being executed independently.

A dependence graph for a program is composed of directed edges connecting dependent operations as
nodes. For parallel machines, the dependence graph plays the important role of exposing parallelism because
edges in the graph impose a partial ordering of operations to be executed.

Parallelizing Loops without Recurrence. Consider an example in Fig. 3. We would like to run all
the iterations of each loop in Fig. 3 in parallel, but in Fig. 3(b) the memory location being read in each iteration
(except for the first iteration) was written in the previous iteration. Trying to run them in parallel could not
preserve the data-dependence relations existing between the different iterations.

In Fig. 3(a), there are no data-dependence relations among the different iterations. Therefore, this loop
is parallelizable. This loop, however, does contain a flow-dependence relation within each iteration. Because
transforming loops into DOALL loops does not break these flow-dependence relations, this flow dependence
does not affect the parallelization of the loop.

Any dependence relation within an iteration is called a loop-independent dependence relation, whereas
any dependence relation among different iterations is called a loop-carried dependence relation (1). We can say
that all the iterations of a loop can be run in parallel if and only if there is no loop-carried dependence in that
loop.

In general, a conventional algorithm of loop parallelization checks all array-reference pairs in a loop. If
there is no loop-carried dependence, this loop is parallelizable. This general scheme can be extended to loop
nests. A loop in a loop nest is parallelizable if there is no loop-carried dependence corresponding to this loop. If
all the loops in the loop nest are parallelizable, the loop nest is parallelizable.

For each array-reference pair, dependence equations are formed to detect whether a loop-carried depen-
dence exists. The existence of integer solutions to the dependence equations shows the existence of dependence
for this pair. Computing integer solutions is also referred to as solving the dependence equations in the integer
domain. Most techniques assume that array subscripts and loop bounds are affine functions of loop indices. This
assumption is reasonable and covers most of the loops in practice. Under this assumption, the dependence equa-
tions are equivalent to an integer programming problem. Unfortunately, integer programming is NP-complete.
The general algorithm for integer programming, which is of exponential time complexity, is too expensive to
be applied. As a result, many approximation algorithms, and even some exact algorithms under more strict
constraints, are used in practice. The earliest algorithms, such as the greatest common divisor (GCD) test
and the Banerjee test (6,7), are the most widely used. However, they only give the sufficient conditions for
the nonexistence of dependence. If these conditions are true, then these algorithms prove the nonexistence
of dependence. If these conditions are false, then they assume the existence of dependence without knowing
whether a dependence really exists.

The GCD test gives the necessary and sufficient conditions for integral solutions to the dependence
equations that exclude the constraints on loop bounds and direction vectors. The Banerjee test considers both

PROGRAM CONTROL STRUCTURES 5

Fig. 4. Parallelization of reduction.

bounds and direction vectors, but in general, it generates the sufficient conditions for the nonexistence of
dependence in the real domain. No real solutions in the Banerjee test means no integer solutions.

The Fourier-Motzkin algorithm (8) solves the dependence equations in the real domain as the Banerjee
test does. It also enhances the Banerjee test by achieving the exact solutions in the real domain. It, however,
does not exactly solve the problem in the integer domain. The Fourier-Motzkin algorithm in general can be
expensive, but several reports in the literature (9,10) assert that it is reasonably efficient in practice.

Other approximation algorithms can also be found in Ref. 9. Some algorithms (see Ref. 9) can be used to
get the exact solutions for special cases, whereas several other algorithms (10,11) solve an integer programming
problem exactly. For dependence analysis, these algorithms for solving an integer programming problem have
been shown to be reasonably efficient in practice.

The techniques discussed previously can handle loops that are part of simple loops or with-IF loops. When
a loop contains recurrence relations, a technique particular for parallelizing recurrence may be used.

Parallelizing Loops with Recurrence. Recurrence occurs frequently in practice, and parallelizing it
is very important. Recurrence appears if the computation of one iteration relies on the values computed in
the previous iterations. A simple form of recurrence is reduction, which has been extensively studied (12). For
example, a reduction loop in Fig. 4(a) can be converted to a parallel one in Fig. 4(b), where p is the number of
processors. For other forms of recurrence, as in Fig. 3(b), some fast methods were created (12). These methods
change the recurrence solving algorithm into one that exhibits more parallelism. Of course, these methods may
need additional hardware support and may produce redundant computations.

Appearance of IF statements in loops may make parallelization of these loops even more difficult. If a
with-IF loop has recurrences and its conditional branching is based on variables that are not a part of the
recurrence relation in the loop, the loop is termed a recurrence-with-IF loop. If the recurrence is linear of order
1, it is called an R < n,1 > with-IF loop, which can be parallelized (5).

A conditional cyclic loop is a with-IF loop with recurrence and its conditional branching is based on
variables that are a part of the recurrence relation. It is difficult to parallelize a conditional cyclic loop because
it is difficult to precompute possible values of the predicate. Conditional cyclic loops are not rare in sequential
programs and present a major obstacle to automatic restructuring of nonnumerical programs for parallel
processing (13).

In the following sections, we assume that programs are written in FORTRAN. We will discuss how a
conditional cyclic loop is related to a Boolean recurrence. We then discuss parallelizing conditional cyclic loops
based on a binary tree representation of the loops. For convenience, log n will denote log2 n and will be assumed
to have an integer value. The values of x/y and

√
x will also be assumed to be integers. We also discuss an array

data-flow analysis to recognize parallel loops that are not conditional cyclic loops. This approach can handle

6 PROGRAM CONTROL STRUCTURES

call statements, IF statements, and symbolic variables; therefore, it is powerful enough to handle loops in the
real programs.

Parallelizing Conditional Cyclic Loops

Conditional cyclic loops can be classified by how easily one can figure out all possible values of the variables
that define the predicate of the IF statement in the loop. A mixed recurrence loop is a conditional cyclic loop
where the statement Si causes a recurrence by itself and the recurrence variables are the ones defining the
predicate of the IF statement. So, the possible values of the variables are not known until the recurrences are
solved. If the recurrences are linear, the loops are called linear mixed recurrence loops. In practice, nonlinear
mixed recurrence loops are extremely rare; they never occurred in our experiment (13). A postfix-IF loop of
order m is a conditional cyclic loop in which the data dependence Sjδ(<)Si has a distance m, where Si is an
assignment statement that does not cause a recurrence by itself and Sj is an IF statement. In postfix-IF loops,
the two possible values of the predicate variables (one for the true branch and the other for the false branch) at
every iteration of the loop are available without the need to solve a recurrence relation [i.e., the possible values
of the variables are “immediately” available (14)]. We consider parallelizing linear mixed recurrence loops only,
of which postfix-IF loops are a special case.

Figure 5 shows some typical examples and (abstract) dependence graphs of cyclic loops with conditional
branching, where (·) denotes a direction vector of singly nested loops. Figure 5(a) shows an example of an
R < n,1 > loop for which fast efficient parallel algorithms are known, whereas Figs. 5(b) and 5(c) show
examples of conditional cyclic loops. If one can convert a conditional cyclic loop into a form of an R < n,1 >

loop by precomputing the possible values of the predicate of the branching, then conditional cyclic loop can be
parallelized as well.

Consider the loop shown in Fig. 5(b), which is a postfix-IF loop of order 2. To determine the predicate value
of the branching at a particular iteration, one needs to know the value of the array elements in the predicate.
Because there are two possible choices for the array element value at each iteration, there can be four possible
cases of the predicate evaluations at a particular iteration. These predicate evaluations can be expressed by
the following Boolean equations:

where b̄ denotes the negation of the Boolean expression b and “.” represents Boolean AND. By solving the
Boolean equations, one can parallelize the loop. As we can see from the example, the difficulty of parallelizing
a conditional cyclic loop depends on how complex the Boolean equations are.

Towle (15) defined a B-postfix-IF loop, which has a very restricted form of Boolean equation, while Banerjee
and Gajski (14) proposed a Boolean equation solving hardware for a general form of postfix-IF loops. No other
attempts have been made to parallelize linear mixed recurrence loops, of which postfix-IF loops are a simple
special case. In the following section, we discuss how complex the Boolean equations are in linear mixed
recurrence loops.

PROGRAM CONTROL STRUCTURES 7

Fig. 5. Cyclic loops with conditional branching: (a) recurrence loop with IF; (b) post fix-IF loop of order 2; (c) linear mixed
recurrence loop of order 1.

Boolean Recurrences and Conditional Cyclic Loops. Suppose that we have a conditional cyclic
loop like the following:

L: DO1 i = 2,n IFc (xi − m, . . ., xi − 1) THEN xi = φi ELSE xi = πi 1 CONTINUE

where φi and πi are arbitrary functions. Although the expression c may contain any xi (1 ≤ i ≤ n), we
use the notation c(xi − m, . . ., xi − 1) to highlight dependence cycles between the predicate and the assignment
statements. If φi and πi are known values before executing the loop (i.e., constants or functions not involving
xi’s), then L is a postfix-IF loop of size n. If φi and πi are linear recurrences of xi, then L is a linear mixed
recurrence loop of size n.

Consider a set of Boolean variables {b1, . . ., bi} with an integer i. Let the 2i minterms (a minterm is a
Boolean AND of bi’s) of these variables be numbered 1, 2, . . ., 2i as they appear in a usual truth table, and

8 PROGRAM CONTROL STRUCTURES

Pt(b1, . . ., bi) be the tth minterm. Then loop L can be represented by the following set of equations:

where Boolean variable bi is defined as the following nonlinear Boolean recurrence of order m:

and ei,t represents a value of the Boolean expression c(xi − m, . . ., xi − 1) for one of 2m possible cases of the
predicate evaluation based on xk’s [(i − m) ≤ k ≤ (i − 1)]. The value of the Boolean variable bi depends on the
paths chosen by the branching at the previous iterations, which are represented by the values of bk’s [(i − m)
≤ k ≤ (i − 1)]. So, every conditional cyclic loop has an imbedded Boolean recurrence.

To solve the Boolean recurrence, the coefficients ei,t’s need to be evaluated first. However, to evaluate ei,t’s
for a linear mixed recurrence loop, we need to solve linear recurrences whose coefficients can be determined
only after solving the Boolean recurrence. The straightforward way of breaking this circularity is to evaluate
all the possible values of the linear recurrence variables. This leads to solving a full-order Boolean recurrence:

Evaluating all the possible values of the linear recurrence variables requires considering all possible branching
decisions made at previous iterations. Thus, there are 2i − 1 possible cases of evaluating the predicate c at a
particular iteration i. The evaluation of ei,t’s is considerably more complex than for postfix-IF loops.

Suppose that in loop L, φi = ai ∗ xi − 1 + ci and πi = āi ∗ xi − 1 + c̄i, where ai, ci, āi, and c̄i are constant
coefficients. Then we have a linear mixed recurrence loop of order 1. Based on the idea of solving a full-order
Boolean recurrence, the program can be changed as in Fig. 6. Loop L1 is for the precomputation of all possible
values of xi. If we consider loop L1 as an example for evaluating 2n − 1 linear recurrences of size n − 1, this
can be executed in O(log n) time with p = (n − 1) · 2n − 1 processors using the idea in Ref. 16. Loop L2 can be
done in a constant time with p = 2n − 1 − 1 processors, assuming that the time for evaluating the expression c
is constant. Because loop L4 is a first-order linear recurrence with an IF, it can be executed in O(log n) time
with p = (n − 1) processors (5). So, we could solve any linear mixed recurrence loop of order 1 in O(log n) time
if we could solve the full-order Boolean recurrence, loop L3, in O(log n) time. However, by the “fan-in lemma”
(17,18), which states that one cannot evaluate an expression of binary operations on n data in less than log n
time even with an infinite number of processors, we cannot solve this full-order Boolean recurrence in O(log
n) time because there are n − 1 expressions of �(2n) variables to be evaluated, assuming that a processor can
consume at most two operands at a time.

Binary Trees and Conditional Cyclic Loops. Because it is not desirable to parallelize a general
conditional cyclic loop as long as one tries to solve directly the Boolean recurrence caused by the loop, another
approach, which is based on a binary tree representation, can be considered as in the Boolean recurrence solver
suggested for postfix-IF loops (14).

Consider loop L in the previous section. By having each node of a binary tree represent each possible value
of branching predicate c, and the two edges from each node represent the two branches of the IF statement,

PROGRAM CONTROL STRUCTURES 9

Fig. 6. Restructured equivalent of a linear mixed recurrence loop.

say the left edge for the false branch and the right edge for the true branch, loop L can be naturally represented
by a binary decision tree of height n − 1.

Consider the complete binary tree of height n − 1. Let ei,t be the tth node from the left on the ith level of
the tree (see Fig. 7). Then ei,t (1 ≤ t ≤ 2i − 1) represents a predicate value based on one of 2i − 1 possible cases
of evaluating c at the ith iteration of loop L. So, the execution of a conditional cyclic loop L is equivalent to
forming a particular path from the root by selecting a node at each level of the tree, provided that the tree is
already formed.

Selecting a path on the tree is basically a parallel prefix problem (19). Let Patht (1 ≤ t ≤ 2i − 1) be the
Boolean product of all the ei,t ’s on the path from the root to the tth leaf node. Then,

10 PROGRAM CONTROL STRUCTURES

Fig. 7. Tree representation of conditional cyclic loop.

where ē denotes the negation of the Boolean value e.
Suppose that a processor is assigned to each “mutually exclusive” complete subtree of height 2 of the

binary tree from top to bottom (i.e., processors are assigned to the nodes on every other level of the tree starting
from the root). By checking the value of the root of the subtree, each processor can determine which one of its
two descendant nodes will be taken for the actual execution path. This produces (2n − 1)/3 edges for the tree of
height n. With these edges, a tree of reduced height can be formed.

Consider a binary tree of height 4 as shown in Fig. 8. Suppose one processor is assigned to the root node
and four processors to the nodes at level 3. Thus, there are five subtrees of height 2 to be checked in parallel.
In each subtree, by checking the value of a parent node, one can determine which one of the two descendant
nodes should be included in the execution path if the parent node is a part of the execution path. Assuming
five edges (E1 to E5) are the resulting edges as in Fig. 8, a reduced tree is formed as follows. Because edge E1
is taken at the root node, edges E4 and E5 cannot be a part of the execution path. So, they are excluded. E2(E3)
becomes a left(right) son of E1, because in the original tree the parent node in E2(E3) is a left(right) son of the
descendant node in E1. The resulting tree’s height becomes half of the original (see Fig. 8). This tree reduction
is essentially a step of Boolean product in parallel.

Algorithm PATH (Path finding for a conditional cyclic loop) /∗ the value of every ei,t

is known ∗/ /∗ Pi,t is an ordered set of nodes ∗/ /∗ P1,1 is the output ∗/ L1: DO 1 k = 1,
log(n − 1) L2: DOALL 2 j = 1, (n − 1)/2k i = (j − 1)2k + 1 L3: DOALL 3 t = 1, 2i − 1 IF (k
= 1) THEN IF ei,t THEN Pi,t = {ei,t} ∪ {ei+1,2t} ELSE Pi,t = {ei,t} ∪ {ei+1,2t − 1} ELSE BEGIN ei+2k− 1 − 1,x =
the last entered element of Pi,t IF ei+2k− i − 1,x THEN Pi,t = Pi,t∪Pi+2k− 1,2x ELSE Pi,t = Pi,t∪Pi+2k− 1,2x − 1
END 3 CONTINUE 2 CONTINUE 1 CONTINUE

PROGRAM CONTROL STRUCTURES 11

Fig. 8. Tree reduction.

Repeating the preceding tree reduction recursively until the tree is reduced to a single node gives the
sequential execution path in O(log n) time. The algorithm for finding a “correct” execution path in the binary
tree representation of a conditional cyclic loop is described as Algorithm PATH. Notice that when the number
of available processors p = 1, Algorithm PATH is equivalent to the sequential execution of a conditional cyclic
loop. The correctness of the algorithm can be easily checked by induction.

To use Algorithm PATH to parallelize a linear mixed recurrence loop, we need to precompute the possible
values of ei,t’s to set up the tree representation of the loop. For a linear mixed recurrence loop of order m and
of size n, the precomputation is equivalent to solving 2n − 1 linear recurrences of order m. Suppose that all the
recurrences are solved in parallel by using a fast parallel recurrence solving algorithm like the one in (16) or
(20) because m is expected to be “small” in practice. Then the recurrences can be solved in approximately (2
+ log m) log n time with an unlimited number of processors. So, any arbitrary linear mixed recurrence loop of
order m and of size n can be executed in O(log n) time with an unlimited number of processors, assuming m �
n.

Although parallelizing a general linear mixed-recurrence loop based on its binary tree representation
seems less efficient than one may hope for, a majority of linear mixed recurrence loops encountered in practice
are of simpler forms: either postfix-IF loops or loops having very simple linear recurrence relations of order 1.
These simpler forms of linear mixed recurrence loops limit the number of possible values of predicate variable,
and the loops can be parallelized with a better efficiency.

Because a postfix-IF loop does not include a linear recurrence relation, it does not require solving a set
of recurrence equations to set up its binary tree representation. A postfix-IF loop of order m and of size n can
be executed in O(log n) time with an unlimited number of processors by taking the first 2m nodes at each level
from its binary tree representation. Notice that all the ei,u’s result in the same value of bi as ei,j where j = (u −
1) mod 2m − 1 + 1, because the value of each ei,u depends only on the values of el,t’s [(i − m) ≤ l ≤ (i − 1)]. In a
postfix-IF loop of order m, there are at most 2m nodes at each level of the tree. Because p processors can cover
p/2m levels of the tree, path-selection can be done in O[(2m

n/p) log (p/2m)] time. Because it is rare for m to be
greater than three, we may consider 2m to be a constant. So parallelizing a postfix-IF loop gives a reasonable
speedup of O(p/log p).

In most linear mixed recurrence loops, the linear recurrence that needs to be solved is order 1 with
constant coefficients. Furthermore, the coefficients take the value of either 1 or 0. Consider a linear mixed

12 PROGRAM CONTROL STRUCTURES

recurrence loop of order 1, which can be represented by the following equation:

where ai, ci, āi, and c̄i are coefficients. Then we have the following three special cases:

Case I: ci = 0, c̄i = 0, ai are fixed for all i, and āi are fixed for all i.
Case II: ai = 1, āi = 1, ci are fixed for all i, and c̄i are fixed for all i.
Case III: Either ai = 0 for all i or āi = 0 for all i (0 and 1 are integer)

Notice that all the special cases are recurrences with constant coefficients. Cases I and II are cases of
constant coefficients with one of the two coefficients knocked off, and Case III has a linear recurrence from only
one side of the branching.

The number of possible cases for evaluating the predicate of the branching is drastically reduced in these
special cases. By the commutativity principle of multiplication (for Case I), by the commutativity principle of
addition (for Case II), and by induction (for Case III) there are i possible cases of the predicate evaluation at
ith iteration. This reduced number of possible cases of the predicate evaluation and the constant coefficients
naturally simplify the precomputation to set up the binary tree representation and the path selection from
the tree. These simple forms of first-order linear mixed recurrence loops can be parallelized with speedup
proportional to n/log n with n2 processors (see Ref. 13 for the experimental results of program parallelization
using the approach described).

An Interprocedural Array Data-Flow Analysis

The dependence definition says that two statements are dependent if they access the same memory locations.
Dependence analysis based on this definition is also called memory disambiguation (or address-based data
dependence analysis). Memory disambiguation is an approximation to the exact dependence analysis which is
based on values, as defined originally in Ref. 17.

For a dependence definition based on values, consider two statements Si and Sj when Si precedes Sj on
the control flow path of a given program. Several types of dependence are possible (5,17).

(1) Sj is data flow dependent on Si if a value of a variable used by Sj was computed by Si.
(2) Sj is data antidependent on Si if a value of a variable after being used by Si is recomputed by Sj.
(3) Sj is output dependent on Si if both compute the same variable and a value of the variable computed by Sj

is to be stored after that computed by Si.

In contrast to address-based dependence analysis, dependence analysis based on the preceding definition
is called a value-based data dependence analysis.

Although memory disambiguation is very useful in practice, its limitations have been reported in Ref. 21.
One of its limitations is array privatization (22,23), which is important for loop parallelization. As a result,
many approaches to value-based dependence analysis have been proposed (24,25,26,27), as well as the one
presented next.

Interprocedural Analysis. Procedural calls are frequently used inside loops, and the loops containing
calls usually have more computations. Therefore, it is important to parallelize loops that contain calls. Unfor-

PROGRAM CONTROL STRUCTURES 13

tunately, the pairwise dependence tests discussed previously cannot be easily extended to handle procedural
calls. As a result, analyzing procedural calls has been studied widely (23,28,29,30). Procedural calls can be
handled by either inlining or interprocedural analysis. Inlining replaces calls by their corresponding routines,
and in general, it is expensive. Interprocedural analysis summarizes the side effects of a called routine with
sets of array elements that are modified or used by routine calls, called MOD sets and USE sets, respectively.
Data dependences involving routine calls can be tested by intersecting these sets. Existing approaches can be
categorized according to methods of set representation. Convex regions (8) and data access descriptors (31)
define sets by a system of inequalities and equalities, while bounded regular sections (28,29) use range tuples
to represent sets. Even though bounded regular sections are less precise than convex regions and data access
descriptors, they are much easier to implement.

A flow-sensitive summary approach is a summary approach in which control flow information is needed
for collecting summary information. The approaches that collect only USE and MOD sets of array elements are
not flow-sensitive (also called flow-insensitive). Furthermore, an approach is called path-sensitive if branching
conditions are taken into account to distinguish the summary information collected for different branches.
The experiment (23,32) shows that a powerful approach should be flow-sensitive and path-sensitive. Such an
approach that collects sets of upwards exposed uses (UE) in addition to USE sets and that uses guarded array
regions as its set representation is discussed next.

Guarded Array Regions. A guarded array region (GAR) contains a regular array region and a guard.
An array region is a bounded regular section, denoted by A(r1, r2, . . ., rm), where m is the dimension of A;
each of ri, r2, . . ., and rm is a range in the form of (l:u:s), and l, u, s are symbolic expressions. The triple (l:u:s)
represents all values from l to u with step s. We write (l) to mean (l:u:s) if l = u, and (l:u) to mean (l:u:s) if s = 1.

A GAR is a tuple [P, R] that contains a regular array region R and a guard P, where P is a predicate
that specifies the condition under which R is accessed. If either P is false or R is ∅, we say that [P, R] is ∅. For
simplicity, [P, R] is denoted by R if P is true (T).

For any given program segment that has a unique entry node and a unique exit node, the side effect of a
program segment can be captured by modification sets (MOD sets) and upward-exposed sets (UE sets). Take
the following segment for example:

DO I=2, N A(I)=A(I−1)+B(I) B(I)=C(I)+B(I) ENDDO

Consider the loop body first. The MOD sets and UE sets, for an arbitrary iteration i, follow:

(1) A:
(2) B:
(3) C:

(1) MOD: A(i)
(2) MOD: B(i)
(3) MOD: ∅

(1) UE: A(i − 1)
(2) UE: B(i)
(3) UE: C(i)

For convenience, these MOD sets and UE sets are represented by MODi and UEi, respectively. The
subscript i indicates that the sets are for an arbitrary iteration i. Similarly, MOD<i and UE<i represent MOD
and UE sets, respectively, for all iterations prior to iteration i, where MOD>i and UE>i represent MOD and

14 PROGRAM CONTROL STRUCTURES

UE sets, respectively, for all iterations after iteration i. For array A, these sets are

For the loop, the MOD sets and UE sets are

(1) A:
(2) B:
(3) C:

(1) MOD: A(2:N)
(2) MOD: B(2:N)
(3) MOD: ∅

(1) UE: A(1)
(2) UE: B(2:N)
(3) UE: C(2:N)

Operations on GARs. Three kinds of operations on GARs—namely union, intersection, and
difference—are necessary for the array data-flow analysis. These operations in turn are based on union,
intersection, and difference operations on regular array regions as well as logical operations on predicates.
Here, we discuss only the top-level operations and refer the readers to 23 for more details. Given two GARs,
T1 = [P1, R1] and T2 = [P2, R2], we describe the set operations next:

• T1 ∩ T2 = [P1 ∧ P2, R1 ∩ R2]
• T1 ∪ T2 Two cases of union operations are the most frequent:

• If P1 = P2, the union becomes [P1, R1 ∪ R2]
• If R1 = R2, the result is [P1 ∨ P2, R1]

• T1 − T2 = [P1 ∧ P2, R1 − R2] ∪ [P1 ∧ P̄2 R1]

Because symbolic variables may appear in both arithmetic expressions and predicates, the results of these
operations may not be known. To avoid the loss of accuracy resulting from this fact, these operations are handled
under the following rules. For a union operation, two GARs are kept in a list when they cannot be merged
together. For an intersection operation, the difference T1 − T2 is not evaluated—unless the result is a single
GAR or until the last moment at which the actual result must be solved in order to finish data-dependence
tests or array privatizability tests. When the difference has not yet been evaluated by these formula, it is kept
(see Ref. 33 for details).

The intersection operation is needed in data dependence tests, in array privatizability tests, and in the
simplification of array regions. In the process of collecting summary sets, the intersection is not used. In other
words, the intersection does not affect the accuracy of summary sets; it affects final dependence tests and array

PROGRAM CONTROL STRUCTURES 15

Fig. 9. Example of the HSG.

privatizability tests. When the result of an intersection is unknown, a demand-driven symbolic analysis is used
to evaluate symbolic variables.

Collecting Summary Sets. By propagating the summary sets for each node over a hierarchical super-
graph (HSG), the MOD and UE information can be calculated. The HSG contains three kinds of nodes—basic
block nodes, loop nodes, and call nodes. An IF condition itself forms a single basic block node. A DO statement
forms a loop node. A loop node is a compound node that has its attached flow subgraphs describing the control
flow within the DO loop. A call statement forms a call node with its outgoing edge pointing to the entry node
of the flow subgraph of the called routine. The call node also has an incoming edge from the unique exit node
of the called routine. Because of the nested structures of DO loops and routines, a hierarchy is derived among
the HSG nodes, with the flow subgraph at the highest level representing the main program. We assume that
the program contains no recursive calls. For simplicity of presentation, we further assume that a DO loop does
not contain GOTO statements that branch out the loop (therefore, it is an iterative DO loop). We also assume
that the HSG contains no cycles that result from backward GOTO statements. Under these assumptions and
treatment, the HSG is a hierarchical dag (directed acyclic graph). Figure 9 shows an HSG. Because the guards
are attached to regular array regions, the calculation of the MOD information involves only union operations.
The calculation of the UE information, on the other hand, requires both union and difference operations.

The algorithm for summarizing a code segment is named sum segment. For simplicity, we consider that
the algorithm is to summarize one array only. (In practice, the algorithm summarizes all arrays at the same
time.) Let UE(n) and MOD(n) be the UE set and the MOD set for node n, respectively, and let UE IN(n) and
MOD IN(n) be the UE set and MOD set for the part of the currently summarized segment that is reachable
from node n, respectively. The algorithm follows:

sum segment(mod, ue, G(s,e)) /∗ G(s,e): flow subgraph with starting node s and exist-
ing node e. ∗/ /∗ mod is the mod set of G(s,e). ∗/ /∗ ue is the upward exposed use set
of G(s,e). ∗/ Step 1: Find UE(n) and MOD(n) for each node n in G(s,e). FOR each node n
in G(s,e) DO IF (n is a basic block) Summarize n; Guards in GARs are set true; ELSE IF
(n is a loop node) Let g ′(s′,e′) be the flow subgraph of the loop body. sum segment(m, u,

16 PROGRAM CONTROL STRUCTURES

g ′(s′,e′)); UE(n) = expand(u), MOD(n) = expand(m); ELSE IF (n is a call node) Let g ′(s′,e′)
be the flow subgraph of the called routine. sum segment(m, u, g ′(s′,e′)); UE(n) = map(u),
MOD(n) = map(m); ENDIF ENDFOR Step 2: Propagate MOD and UE of each node backward, from
e to s. Propagation follows the following flow equations and rules. MOD IN(n) = MOD(n) ∪
(∪p∈succ(n) MOD IN(p)) UE IN(n) = UE(n) ∪ (∪p∈succ(n) UE IN(p) − MOD(n)) (Note that succ(e) = ∅.)

If n is a basic block containing IF-condition, add the condition to the guard of each GAR in MOD IN(n)
and UE IN(n) If any expression in the MOD IN(n) and UE IN(n) contains a variable that is defined within n,
then that variable must be substituted by the right-hand side of the defining statement within n. If the right-
hand side is too complicated, the expression is marked as unknown. If a variable is defined by a procedure or
a function, we propagate information through the subgraph of this procedure or function. At the end of the
propagation, we have mod = MOD IN(s), ue = UE IN(s)

In this algorithm, function expand() is used to expand summary sets for a loop body into the summary sets
for the whole loop, whereas function map() is used to map the summary sets to the calling context. Function
expand() in general can be complex, but it can be computed easily for most cases in practice. The mapping
process may involve array reshaping. These functions are discussed in more details in the literature (23,33).

The summary sets for a basic block node can be computed easily. Figure 10 shows an example. Suppose
that we want to summarize the loop body of loop S0. The simplified HSG is shown on the right-hand side of
the figure, in which the details of each DO compound node are omitted for simplicity. s and e are the starting
and exiting nodes, respectively. Suppose that we have the summary sets for each loop node, S2 and S5, i.e.,

(1) Loop S2:

(1) A:
(2) MOD: A(1:M)
(3) UE: ∅

(1) B:
(2) MOD: ∅
(3) UE: B(i,1:M)

(1) Loop S5:

(1) A:
(2) MOD: ∅
(3) UE: A(1:M)

(1) B:
(2) MOD: B(i,1:M)
(3) UE: ∅

The process of propagation for array A is described as follows:

MOD IN (S5) = ∅, UE IN(S5) = A(1:M) MOD IN (S4) = ∅, UE IN(S4) = [p, A(1:M)] MOD IN (S2)
= MOD(S2) = A(1:M), UE IN(S2) = [p, A(1:M)] − A(1:M) = ∅ MOD IN (S1) = [p, A(1:M)],
UE IN(S1) = ∅

PROGRAM CONTROL STRUCTURES 17

Fig. 10. A loop with a privatizable array.

The summary sets for the body of loop S1, denoted by UEi and MODi, are MOD IN(S1) and UE IN(S1),
respectively, that is,

Similarly, the summary sets for array B are

Array Privatization and Loop Parallelization. An array A is a privatization candidate in a loop L if
its elements are overwritten in different iterations of L (see Ref. 22). Such a candidacy can be established by
examining the array subscripts: if the subscripts of array A do not contain any induction variables of L, then
A is a candidate. A privatization candidate is privatizable if there exist no loop-carried flow dependences in L.
For an array A in a loop L with an index I, if MOD<i ∩ UEi = ∅, then there exists no flow dependence carried
by loop L. In Fig. 10, for example, array A is obviously a privatization candidate. Because UEi = ∅, we have
MOD<i ∩ UEi = ∅. So A is privatizable within loop S0.

The essence of loop parallelization is to prove the absence of loop-carried dependences. For a given DO
loop L with index I, the existence of different types of loop-carried dependences can be detected in the following
order:

(1) Loop-carried flow dependences exist if and only if UEi ∩ MOD<i �= ∅.
(2) Loop-carried output dependences exist if and only if MODi ∩ (MOD<i ∪ MOD>I) �= ∅.
(3) Loop-carried antidependences exist if and only if UEi ∩ MOD>i �= ∅. This formula is valid in the absence of

loop-carried output dependences. It is applied only after our algorithm successfully proves the absence of
loop-carried flow and loop-carried output dependences in steps 1 and 2. (If loop-carried antidependences are

18 PROGRAM CONTROL STRUCTURES

Fig. 11. A parallel version of the loop in Fig. 10.

considered separately, they should be detected using DEi instead of UEi in the preceding formula, where
DEi is the downwards exposed use set of iteration i.)

It is not difficult to show that array B in Fig. 10 does not cause any loop-carried dependence. Actually,
we have MOD<i = [p, B(1:i − 1, 1:M)] and MOD>i = [p, B(i + 1:N, 1:M)]. The intersection of UEi ∩ MOD<i is
empty, that is,

The intersections of MODi ∩ (MOD<i ∪ MOD>i) and of UEi ∩ MOD>i are also empty. Therefore, loop S0 is
parallelizable. The parallel version of the loop is shown in Fig. 11.

Further Reading

Traditional dependence analysis for loop parallelization is discussed in detail in Refs. 1, 9, and 34. More details
on parallelizing loops with recurrence can be found in Ref. 12. The array data-flow analyses that do not handle
procedural calls are proposed in Refs. 25,26,27 and 35,36,37, whereas the summary array data-flow analyses
that can handle procedural calls are proposed in Refs. 22, 33, and 38,39,40.

BIBLIOGRAPHY

1. M. Wolfe High Performance Compilers for Parallel Computing, Redwood City, CA: Addison-Wesley, 1996.
2. U. Banerjee Loop Transformations for Restructuring Compilers: The Foundations, Norwell, MA: Kluwer Academic,

1993.
3. H. Zima B. Chapman Supercompilers for Parallel and Vector Computers, Reading, MA: Addison-Wesley, 1991.
4. R. Kuhn Optimization and Interconnection Complexity for: Parallel Processors, Single-Stage Networks, and Decision

Trees. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana-Champaign, Feb 1980.
5. M. J. Wolfe Optimizing Super Compilers for Supercomputers, Ph.D. thesis, Department of Computer Science, University

of Illinois, Urbana-Champaign, 1982.

PROGRAM CONTROL STRUCTURES 19

6. M. J. Wolfe U. Banerjee Data dependence and its application to parallel processing, Int. J. Parallel Programming, 16
(2): 137–178, 1987.

7. U. Banerjee Dependence Analysis for Supercomputing, Norwell, MA: Kluwer Academic, 1988.
8. R. Triolet Interprocedural analysis for program restructuring with Parafrase, Technical Report CSRD Rpt. No. 538,

Center for Supercomputing Research and Development, University of Illinois, Urbana-Champaign, December 1985.
9. D. E. Maydan Accurate Analysis of Array References, Ph.D. thesis, Stanford University, October 1992.

10. W. Pugh A practical algorithm for exact array dependence analysis. Commun. ACM, 35 (8): 1992.
11. C. Eisenbeis J.-C. Sogno A general algorithm for data dependence analysis, 6th ACM Int. Conf. Supercomput., July

1992.
12. M. Wolfe Optimizing Supercompilers for Supercomputers, Cambridge, MA: MIT Press, 1989.
13. G. Lee C. Kruskal D. J. Kuck An empirical study of automatic restructuring of nonnumerical programs for parallel

processors, IEEE Trans. Comput., C-34: 927–933, 1985.
14. U. Banerjee D. Gajski Fast evaluation of loops with if statement, IEEE Trans. Comput., C-33: 1030–1033, 1984.
15. R. A. Towle Control and Data Dependence for Program Transformations, Ph.D. thesis, Department of Computer Science,

University of Illinois, Urbana-Champaign, 1976.
16. S. Chen D. Kuck A. Sameh Practical band triangular system solvers, ACM Trans. Math. Software, 4 (3): 270–277, 1978.
17. D. J. Kuck The Structure of Computers and Computations, Vol. 1, New York: Wiley, 1978.
18. I. Munro M. Paterson Optimal algorithms for parallel polynomial evaluation, J. Comput. Syst. Sci., 7: 189–198, 1973.
19. R. E. Ladner M. J. Fischer Parallel prefix computation, J. ACM, 27 (4): 831–848, 1980.
20. A. Sameh R. Brent Solving triangular systems on a parallel computer, SIAM J. Numer. Anal., 14 (6): 1101–1113, 1977.
21. W. Blume R. Eigenman Performace analysis of parallelizing compilers on the Perfect benchmarks programs, IEEE

Trans. Parallel Distrib. Syst., 3: 643–656, 1992.
22. Z. Li Array privatization for parallel execution of loops, ACM Int. Conf. Supercomput., pp. 313–322, July 1992.

20 PROGRAM CONTROL STRUCTURES

23. J. Gu Z. Li G. Lee Symbolic array dataflow analysis for array privatization and program parallelization, Supercomputing
’95, December 1995.

24. T. Brandes The importance of direct dependences for automatic parallelization, ACM Int. Conf. Supercomput., July
1988.

25. P. Feautrier Dataflow analysis of array and scalar references, Int. J. Parallel Programming, 2 (1): 23–53, 1991.
26. W. Pugh D. Wonnacott An exact method for analysis of value-based array data dependences, 6th Annu. Workshop

Programming Languages Compilers Parallel Comput., Portland, OR, in Lecture Notes in Computer Science 768, Berlin:
Springer-Verlag, August 1993.

27. T. Gross P. Steenkiste Structured dataflow analysis for arrays and its use in an optimizing compiler, Software—Practice
Experience, 20 (2): 133–155, 1990.

28. D. Callahan K. Kennedy Analysis of interprocedural side effects in a parallel programming environment, ACM SIG-
PLAN ’86 Symp. Compiler Construction, June 1986, pp. 162–175.

29. P. Havlak K. Kennedy An implementation of interprocedural bounded regular section analysis, IEEE Trans. Parallel
Distrib. Syst., 2: 350–360, 1991.

30. B. Creusillet F. Irigoin Interprocedural array region analyses, Proc. 8th Workshop Languages Compilers Parallel Com-
put., No. 1033, in Lecture Notes in Computer Science, Berlin: Springer-Verlag, August 1995, pp. 46–60.

31. V. Balasundaram A mechanism for keeping useful internal information in parallel programming tools: The data access
descriptor, J. Parallel Distributed Comput., 9: 154–170, 1990.

32. R. Eigenmann J. Hoeflinger D. Padua On the automatic parallelization of the Perfect benchmarks, Technical Report TR
1392, CSRD, University of Illinois, Urbana-Champaign, November 1994.

33. J. Gu Z. Li G. Lee Experience with efficient array data flow analysis for array privatization, 6th ACM SIGPLAN Symp.
Principles Practice Parallel Programming, June 1997, pp. 157–167.

34. U. Banerjee Dependence Analysis, Norwell, MA: Kluwer Academic, 1997.
35. E. Duesterwald R. Gupta M. L. Soffa A practical data flow framework for array reference analysis and its use in

optimizations, ACM SIGPLAN ’93 Conf. Programming Language Design Implementation, June 1993, pp. 68–77.
36. J. F. Collard D. Barthou P. Feautrier Fuzzy array dataflow analysis, ACM SIGPLAN Symp. Principles Practice Parallel

Programming, June 1995.
37. V. Maslov Lazy array data-flow dependence analysis, Proc. Annu. ACM Symp. Principles Programming Languages,

Jan. 1994, pp. 311–325.
38. P. Tu D. Padua Automatic array privatization, Proc. 6th Workshop Languages Compilers Parallel Comput., August

1993, pp. 500–521.
39. M. W. Hall et al. Interprocedural analysis for parallelization, Proc. 8th Workshop Languages Compilers Parallel Comput.,

No. 1033, in Lecture Notes in Computer Science, Berlin: Springer-Verlag, August 1995, pp. 61–80.
40. B. Creusillet Array Region Analysis and Applications, Ph.D. thesis, École des Mines de Paris/CRI, December 1996.

GYUNGHO LEE
University of Texas—San Antonio
JUNJIE GU
University of Minnesota

