
62 OBJECT-ORIENTED PROGRAMMING

OBJECT-ORIENTED PROGRAMMING

In the past decade or so, object-oriented (OO) technology has
become one of the dominant technologies in the computing
industry (1,2). In fact, the 1990s have been widely known as
the ‘‘decade of object-orientation (OO)’’ from the software de-
velopment point of view. The abbreviation OO is commonly
used to refer to both object-oriented, an adjective, and, object-
orientation, a noun, depending on the context in which it is
used. In a survey conducted in the early 1990s (3), it was
reported that over 75% of the Fortune 100 companies have
adopted OO technology to some degree for their computing
needs. A recent follow-up survey indicates that the companies
are beyond looking at OO technology on the drawing board
and that they are using objects as part of their main software
development technologies.

Many computer science disciplines have also successfully
integrated OO technology as a new approach to problem solv-
ing into their respective areas of research and development.
This is evident from the use of the burgeoning OO technology
in the areas of programming (4–6), database management
systems (7,8), and systems analysis and design (9–12), just to
name a few.

The popularity of OO can be further demonstrated by look-
ing at the number of computer programmers that has turned
to OO. It has been reported that for C��, a popular OO pro-
gramming language, ‘‘there’s is a doubling of C�� program-
mers every seven months (13)!’’ Also to echo the ubiquity of
OO, the keynote speaker of a recently held OOPSLA confer-
ence (14), the biggest OO conference in the world, stated that
‘‘OO is now in the air we breath’’ (in reference to the popular-
ity of OO).

The push for OO can be attributed to recognition by the
software development community that as software becomes
more and more complicated, there needs to be a better means
of tackling the overwhelming amount of software backlog
problems and software engineering inefficiencies. (These
problems and inefficiencies are primarily ascribed by many to
the traditional procedural approach to software development.)
The OO approach is touted as a means of handling the afore-
mentioned problems.

So, what is the OO approach and how does it differ from
the traditional approach? Swiftly onset, the OO approach dif-
fers in that instead of focusing on just the procedural aspects
of software design, which is not how users perceive their re-
quirements, the OO approach packages the data and the pro-
grams that manipulate the data into a single unit called an
object. This is a drastic departure from the procedural ap-
proach where the data and program are very much separated.

To model the real-world objects more closely, the OO ap-
proach attempts to mimic how real-world objects are per-
ceived. Imagine if you were asked to describe an airplane to

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

OBJECT-ORIENTED PROGRAMMING 63

someone. Your answer might be that an airplane is an object This quotation clearly shows that the OO approach is fun-
damentally different from the procedural approach at boththat supports a form of transportation by air; namely, it flies.

Alternatively, your answer might be that airplane allows one the micro and macro levels. The more natural way of model-
ing system requirements in OO allows software designers toto get from point A to point B relatively quickly, that is, you

emphasize the speed by which it transports. As can be seen communicate better with users, and as a result better quality
software can be built. This is the great potential that the newin this simple example, an object can typically be described

by its behavior (e.g., an airplane flies) and its data (e.g., the OO paradigm offers. However, because of the paradigm’s new-
ness, it is generally a challenge for someone who has beenspeed of an airplane).

With the OO approach, an airplane has both the data and preexposed to the traditional paradigm to shift to the OO way
of thinking. Some studies have reported that the paradigmbehavior packaged into a single unit. The behavior (also com-

monly called the services or operations) allows the users of the shift might take as long as six months.
The remainder of this article is organized as follows. Theobjects to manipulate the data indirectly, that is, via a well-

defined protocol in the behavior (e.g., request a change on the second section gives a brief historical tour of OO program-
ming. The fundamentals, that is, the ‘‘nuts and bolts’’ of OOcurrent cruising altitude of an airplane object). With the tra-

ditional approach, a data structure is defined to capture the are discussed in the following section. The next section de-
scribes the defining characteristics of OO, polymorphism, in-data. Then the data structure needs to be passed from func-

tion to function to manipulate the data. Because no behavior heritance, and encapsulation, and provides examples and
benefits for each of the characteristics. The state of the art ofis associated with the data, there is no well-defined protocol

for data manipulation, and this can be problematic for the object technology is examined in the last section.
integrity of the data.

At the macro level, an OO system exemplifies the way real-
world objects interact with each other by having the objects in OO PROGRAMMING: A BRIEF LOOK AT THE HISTORY
the system communicate by sending messages. The messages
represent requests for the objects to exhibit their behavior Even though OO was not known to the software community

at large until the 1980s, almost all of the major concepts of(e.g., to fly an airplane at a certain speed). The autonomous
manner in which individual objects interact via message pass- OO were developed in the 1960s by Dahl and Nygaard in the

Simula 67 programming language (18).ing is analogous to a traffic control system (15). Each object
(e.g., car, bus, pedestrian) adheres to certain internalized As the name Simula suggests, the Simula 67 language was

inspired by problems involving the simulation of real-life sys-rules that govern how the object should behave vis-a-vis the
other objects when they are in their respective states. For ex- tems. Thus, the general software community was not aware

of the general appeal of the language design in the earlyample, when a traffic light object changes its state from green
to red, then a car should stop, and a pedestrian going in a years. In fact, the importance of the language constructs was

recognized only slowly, even by the original developers of thedifferent direction should proceed. If all of the objects behave
correctly, then the collaborating objects go through the traffic language (19).

It was not until Alan Kay, considered by many the fathersystem safely without any accidents!
That is in contrast to a train control system, a metaphor of OO, organized a research group at Xerox PARC in the

1970s and developed a language known as Smalltalk that thefor a traditional computer program, where a central control
facility is established to monitor the movements of all trains. Simula language appeared again. Kay was concerned with

discovering a programming language that would be under-Each train’s state or status is controlled by the master facility
at any given time. The objects are not autonomous and the standable to noncomputer professionals, and he found the no-

tion of computation by simulation a metaphor that novice us-system resembles a top-down, functional decomposition ap-
proach to software development. ers easily understand. As a result, Smalltalk was developed

with Simula as its strongest influence. The Smalltalk lan-Another example that illustrates the change of mind-set
when comparing OO with traditional computations is the guage evolved through a number of iterations within Xerox

PARC in the 1970s and Smalltalk-80, the end product, wascomparison between making a peanut butter jelly sandwich
and running a luncheonette (16). Here, when addressing the presented to the world. In a widely read issue of Byte Maga-

zine in 1981 (2), Smalltalk-80 was showcased, and the soft-former, one would concentrate on the procedural (i.e., algo-
rithmic) aspect of the problem, namely, first take two slices of ware community (not the world just yet) took notice.

In almost the same time period but slightly later, Bjarnebread, then a jar of peanut butter, and then spread some pea-
nut butter on one slice, etc. This model of computation is con- Stroustrup at AT&T Bell Laboratory was working on an ex-

tension to the C programming language. Again, much likecerned very much with how to tell the computer what to do.
Now imagine running a luncheonette and the tasks involved. Smalltalk, the extension was heavily influenced by Simula 67.

This extension eventually evolved into the C�� program-Clearly, the emphasis here is on how the community of ob-
jects involved interacts, that is, what the responsibilities of ming language (20). But unlike Smalltalk, which is commonly

called a ‘‘pure’’ OO programming language, C�� is more com-the waiter, cook, manager, busboy, and so on, are and how
these objects collaborate. The details of how a cook may pre- monly called a hybrid language because C�� represents an

extension to C, that is C�� is basically a better C plus objectpare a dish, that is, the recipe, is only part of the overall sys-
tem of interacting objects. extensions. Thus a C�� program is program that is strictly

procedural if none of the OO features is used.In summary, a twist on a well-known quote, given here,
provides the essence of OO thinking: ‘‘Ask not what you can Because of the installed base of the C language, when

C�� first became available to the general public, it quicklydo to your data structures, but what your data structures can
do for you (17).’’ became a popular language, first as a better C and later as

64 OBJECT-ORIENTED PROGRAMMING

TVs, and computers, all linked together via a computer net-
work. To serve the need for an easily and reliably program-
mable system, Gosling and his team designed the program-
ming language Oak later called Java. The name Java is not
an acronym. It is for coffee, which is what the designers were
drinking when the name change was discussed. (Oak, named
after an Oak tree outside of Gosling’s office, has already been
used for an existing language.)

There were a number of design criteria on which Java
must be based for it to serve the embedded consumer elec-
tronic market. One very important criterion is that it must
be reliable. When a program written for a general-purpose
computer fails, one reboots the computer. That is ‘‘to be ex-
pected’’ in the world of computer systems. But one should not
expect a novice user of, say, a VCR, to have to reboot the VCR
again and again because of some program’s failure. Another
important consideration is the ability to run a program in aFigure 1. This issue of Business Week features OO technology as the
platform-independent manner. This permits swapping thecover story.
underlying chip/platform so that the program still runs under
the new environment. This ‘‘write once, run anywhere’’ char-
acteristic is now widely used as a marketing slogan for thean OO programming language. In fact, it has been reported

that there was a doubling of C�� programmers every seven Java language. Other characteristics describing Java include
simple, OO, network, secure, portable, high-performance,months during its initial years!

With the momentum generated from the Smalltalk and multithreaded, and dynamic. It is interesting to note that
when Gosling gave his keynote speech in the 1996 OOPSLAC�� projects, the OO industry was suddenly bombarded with

many new OO programming languages in the late 1980s, in- conference, he did not list OO as one of the characteristics.
When asked, the reason given is that to say Java is OO is likecluding Eiffel, Objective-C, Object Pascal, Actor, and Common

Lisp Object System (CLOS), to name a few. For better or saying here is a person and by the way, he/she also breathes.
Java as a language for embedded consumer electronics didworse, these languages came and went for the most part, and

the industry settled more or less on two major OO program- not succeed, but Java as a language for the web took the in-
dustry by storm. When the original idea fell apart, the Worldming languages, Smalltalk and C��. Smalltalk was able to

survive the OO programming language competition partly be- Wide Web was just around the corner for Gosling and his
team to regroup and retarget the language. The concept of ancause when non-C programmers (e.g., COBOL programmers)

jump on the OO bandwagon, they find that C�� is too cryptic applet, a program that is embedded inside a web page, was
devised and the rest is history.a language to learn and as a result, most flock to Smalltalk.

In fact, in a keynote speech in 1997, Alan Kay said ‘‘I was the The remainder of this article uses Java as the language of
illustration. For illustrations of concepts in other languages,one who coined the term (object-oriented), and C�� was not

what I had in mind!’’ consult the appropriate language manuals or textbooks.
A number of milestones were also set in the late 1980s

with respect to OO programming. One was the formation of
OO: THE FUNDAMENTALSthe Object-Oriented Programming: Systems, Languages, and

Applications (OOPSLA) international conference. The first
At the heart of OO systems is the notion of a class, fromconference was held in 1986, and it represents the one and
which objects are instantiated. Once a class, which is an anal-only forum that allows researchers and practitioners in the
ysis-time or design-time concept, has been developed, an ob-field to come together and share their research and experi-
ject, which is a run-time concept, can be created by instantiat-ence. Thousands of people attend the conference annually.
ing the class. This is why a class is often called an objectAnother milestone was the publication of a cover story
factory or a blueprint/template for object creation.entitled ‘‘Software Made Simple’’ in Business Week magazine,

A class allows modeling both the data and behavioral as-September 1991 (1) (see Fig. 1). (The sidebar says ‘‘It’s called
pects of an entity. Its attributes capture the data or the state,object-oriented programming—a way to make computers a lot
and its methods capture the behavior or services that theeasier to use. Here’s is what it can do for you.’’) This article
class provides. The code snippet (in Java) following illustratesdetailed the OO paradigm and explained how OO makes soft-
how a class may be defined, how objects may be instantiatedware development easier than the traditional approach. The
from the class, and how messages may be sent to the objectsarticle introduced object technology to the world (not just the
to request that certain services be performed.software community) and made OO recognizable to not only

the ‘‘geeks’’ or ‘‘techies’’ but also to upper management, a nec-
essary condition to succeed in adopting OO in an organi- 1. class Employee �

2. private String name;zation.
The evolution of OO programming continued with the in- 3. private int salary;

4. public void setName (String n) �troduction of Java in the early 1990s. James Gosling, a re-
searcher at Sun Microsystems, envisioned a world of con- 5. name � n;

6. �sumer electronic devices, such as VCRs, microwave ovens,

OBJECT-ORIENTED PROGRAMMING 65

7. public String getName () �
8. return name;
9. �

10. public void setSalary (int sal) �
11. if (sal 	� 0)
12. salary � sal;

namee1

salary

0

namee2

salary

0

13. else Figure 2. e1 and e2 are object references (or simply pointers in some
14. System.out.println(‘‘Salary must be nonnegative! languages). They point to memory locations that have been allocated

Salary not set.’’); for the objects. The objects take on default values initially.
15. �
16. public int getSalary () �
17. return salary; reference two Employee objects, as depicted in Fig. 2. Name
18. � defaults to empty string, and salary defaults to zero.
19. public int getAnnualSalary () � In lines 31 and 32, the attributes for the first employee
20. return salary * 12; object are set by sending setName() and setSalary() messages
21. � to e1, the object reference. Because the object understands
22. public void print () � these messages (it is instantiated from the Employee class

and the methods setName() and setSalary() are defined in the23. System.out.println(‘‘Name is’’�name);
class), the requests are honored. Following that, more mes-24. System.out.println(‘‘Salary is’’�salary);
sages are sent to the object to retrieve its name and annual25. �
salary. The retrieved data are concatenated together into one26. �
string and sent to the standard output stream.27. class TestEmployee �

Similarly, the messages setName() and setSalary() are28. public static void main (String argv[]) �
sent to e2 (lines 34 and 35). But because the salary argument29. Employee e1 � new Employee();
sent is negative, the method setSalary() rejects the request,30. Employee e2 � new Employee();
and the salary attribute is not set in this case. This illustrates31. e1.setName(‘‘Smith’’);
how a class designer can provide the necessary integrity32. e1.setSalary(5000);
checks to make sure that an object of the class carries only33. System.out.println(‘‘Annual sal of ’’�e1.getNa-
valid data. This topic is discussed further in the next section.me()�‘‘is’’�e1.getAnnualSalary());
Lastly, a message is sent to e2 to request that the object34. e2.setName(‘‘Adams’’);
prints itself. The output of the program is given below.35. e2.setSalary(�1000);

36. e2.print();
Annual salary of Smith is 6000037. �
Salary must be non-negative! Salary not set.38. �
Name is Adams
Salary is 0

Let us dissect the previous code. First, two classes are de-
fined, Employee and TestEmployee. The keyword class (in The new states of the objects are also depicted in Fig. 3.
lines 1 and 27) defines a class in Java. (All keywords are bold String is not a primitive data type in Java, and thus the dia-
in the program listing shown.) The Employee class models the gram shown is a simplification of what actually happens. The
real-world Employee entity. It contains two attributes (lines name attribute should be a reference to a String object.
2 and 3) to store the name and salary of an employee object.
The keyword private deals with the accessibility of the data,

OO DEFINING CHARACTERISTICS: THE PIEand it is covered in the next section. The class also contains
six methods (lines 4–25) to define the services of the class.

The defining characteristics of OO can be summarized simplyThe get() and set() methods are typically provided to get and
as PIE, polymorphism, inheritance, and encapsulation. Eachset each of the attributes defined for a class. They are some-
of the characteristics is presented following, in reverse order,times called the accessors of a class.
E, I, and then P because P relies on the notion of I.The TestEmployee class is a dummy class created merely

to test the functionality of the Employee class, that is it
serves as a client, using services provided by the Employee
class. (Java requires that all code be defined inside a class.
Thus, no stand-alone code can be created to test the function-
ality of Employee.) The main method represents the point of
entry for all Java applications. Java applets, on the other
hand, have a different entry point. The method init() repre-
sents the entry point for applets. Upon entering this method,
two employee objects are created (lines 29 and 30). This is

name
e1

salary

5000

Smith

name
e2

salary

0

Adams

done using the new operator. The statements can be read as
‘‘Declare an object reference of type Employee, call it e1 (for Figure 3. e1 and e2 references two objects that have their values set
line 29), and assign it the object that is created from the Em- via the set() methods. Set() methods are the well-defined protocol for

changing the contents of objects.ployee class using the new operator.’’ At this point e1 and e2

66 OBJECT-ORIENTED PROGRAMMING

Encapsulation

The term encapsulation means hiding the internal implemen-
tations of objects from their clients to abstract the underlying
complexities and details. To understand what encapsulation
is good for, all that you need to do is to imagine that a student
object representing you contains a GPA of �2.5 or an em-
ployee object representing you contains a salary of �$50,000.

The key idea here is that an object’s client should not be
allowed to access the object’s internal details directly. That is,
if a client attempts to execute the statement

anEmployee.salary � �50000

the attempt should fail. In fact, if the salary attribute of the
Employee class is declared private, a Java compiler will pro-
duce an error message that resembles ‘‘Variable salary in
class Employee not accessible from class TestEmployee.’’
Some OO programming languages (e.g., C��, Java) require
that you specify the accessibility of the attributes to get the

Student

gpa

Teacher

Salary

ComputeGpa () ComputeYrSalary ()

Person

Name

TA

desired effect (i.e., private, public, protected) whereas others
simply set all attributes to private (e.g., Smalltalk). On the Figure 4. Class hierarchy showing inheritance of classes.
other hand, if the attribute is public, then it is accessible by
all, and it can take on any value set by the client.

So, how does one access the attributes if they are inaccessi-
In languages, such as C��, a class may inherit from multipleble by the clients? This is accomplished by having the clients
classes. This notion is known as multiple inheritance.communicate with the object via a standard protocol, that is

the object interface. In the previous, the method setSalary(int Figure 4 shows a class hierarchy, illustrating the various
aSalary) is needed to request a change to the salary attribute. inheritance possibilities. The diagram uses a standard nota-
Then the method can perform any sort of constraint checking tion known as Unified Modeling Language (UML), described
against the parameter when a change is requested. This en- later in this article. Each box represents a class. The top pane
sures that the clients are prohibited from accessing the attri- of a box represents the class name, the middle pane shows
butes directly, and also are hidden from the implementation the attributes of the class, and the bottom pane models the
of the attributes. methods. The arrows represent inheritance relationships.

Communication by only public interfaces also means that When a class inherits from another class, the subclass in-
method implementations are hidden from the clients. Thus, herits all of the attributes and methods from the superclass.
an object’s client cannot rely on a certain implementation For example, when Student inherits from Person, it gets the
used in the method (e.g., linear search rather than binary name attribute. Thus, an object of the Student class has both
search) or on the attributes in terms of data structures (e.g., the name and gpa attributes and the method computeGpa().
array rather than list implementation). This permits better If multiple inheritance is supported, TA can inherit from both
program maintenance because the class designer can change the Student and Teacher classes. As a result, a TA object con-
the implementation details without affecting the client’s code. sists of name, gpa, and salary as attributes and computeGpa()

Encapsulation also allows building more complex systems and computerYrSalary() as methods. This behavior gives the
because much of the complexities of a system can be hidden desired effects because a TA is a Student and a Teacher. For
away from its clients via an appropriate interface. As long as this reason, inheritance is sometimes called an is-a relation-
the client and server understand the ‘‘contract’’ between ship and is-a is oftentimes used to test whether an inheri-
them, hence the notion of design by contract (21), the two par- tance relationship is appropriate.
ties can go about using one another’s services happily. This is The previous gives a rather simplistic view of inheritance
how class libraries have been developed to support OO sys- in general. Some languages support selective inheritance (e.g.,
tems development. Eiffel), that is a class can choose to inherit only a selective

set of attributes/methods from another class whereas others
Inheritance provide features, such as private inheritance (e.g., C��), to

hide inherited attributes/methods from the clients of the sub-In real life, inheriting an estate from one’s ancestor is typi-
class. In the previous example, will a TA object also get twocally considered a good thing. One gets something for nothing!
copies of the name attribute because each of Student andSimilarly, in OO software development, one can inherit free
Teacher gets one? The answer in C�� is ‘‘yes’’ unless virtualfrom others. Specifically, a class can inherit from one or more
inheritance is used. To learn more about the intricacies of in-classes depending on the OO programming language used. In
heritance in the respective languages, consult the appropriatelanguages, such as Smalltalk and Java, a class B may inherit
language manuals.only from another class A. This is called single inheritance.

With inheritance, the development time shortens, and alsoClass B is called the subclass, and class A is called the super-
the maintenance of programs is easier because if changes areclass. (In C��, the term derived class is used instead of sub-

class, and the term base class is used instead of superclass.) needed in certain classes, the subclasses get the changes au-

OBJECT-ORIENTED PROGRAMMING 67

as a change is frequent and it propagates to numerous other
segments of codes, the maintenance cost is prohibitive.

An alternate solution that is more dynamic and extensible
uses the concept of polymorphism. Consider the following seg-
ment of code.SquareCircle Triangle

Geometry

Figure 5. A hierarchy of geometric objects. for (int j�0; j�myGeoContainer.length; j��)�
myGeoContainer[j].print();

�
tomatically by virtue of inheritance. Thus, maintenance needs
to be made only at the appropriate places. Instead of writing a switch construct to handle the various

Other benefits of inheritance include rapid prototyping, types of objects, one needs simply to send a generic print mes-
consistency of interface, increased software reliability, and sage to the object being examined. Assuming that all the sub-
classification of objects. classes of Geometry implement their own print() methods

which can be ensured by making Geometry an abstract class
Polymorphism and print() an abstract method. This forces the subclasses to

implement the print() method or they cannot be instantiated.The term polymorphism means many forms. In the context of
Then the previous code iterates over the container, sends theOO, it means that a message sent to an object can be interpre-
print message to the first object, that is, a Circle object, thented in many forms depending on what the receiver object is.
to the second, a Square object, and lastly to a Triangle object.A message X when sent to object1 may invoke method1. Now
In each of the three cases, the print method from the appro-when the same message X is sent to object2, which is instanti-
priate class is invoked to handle the print request.ated from a different class, method2 may be invoked instead.

When a new object is added to the container (e.g., a Rect-As an example, consider the task of printing geometric ob-
angle object), the OO code presended previously need not bejects stored in a container. These objects may come from dif-
changed at all. This illustrates how polymorphism makes pro-ferent classes, for example, circle, square, and triangle (see
gram maintenance easier. In general, polymorphism allowsFig. 5).
writing more generic code and that increases the reusabilityGiven the above hierarchy shown, a container object may
of the software.be created as follows:

Geometry myGeoContainer [] � new Geometry [10]; OBJECT TECHNOLOGY: THE STATE OF THE ART
myGeoContainer [0] � new Circle();
myGeoContainer [1] � new Square(); Object technology has come a long way since the introduction

of Simula 67. It has evolved from a technology (primarily justmyGeoContainer [2] � new Triangle();
... the programming language component in the early years)

that targeted only simulation-related applications to one that
is used in major sectors of the economy—banking, defense,The notation [] represents arrays in Java. Thus, the previous

states that myGeoContainer is an array of object references, manufacturing, retail, to name a few. When used in these sec-
tors, the programming language component is merely a pieceand each is a reference to an object of a type of Geometry. It

is perfectly legal to assign a circle, square, or triangle object of a much larger set of complementary technologies (e.g., OO
modeling tools, rapid application development (OO RAD)to an element of myGeoContainer. Each array element ex-

pects a Geometry object and each of circle, square, or triangle tools, class libraries, components, and OO databases).
The advancement of object technology can be observed fur-is a Geometry object. (Recall the is-a relationship discussed

in the earlier section.) ther from looking at the standardization efforts surrounding
many facets of the technology. They include the standardiza-Now back to the task at hand. To print the objects in the

container myGeoContainer, one can use a code segment that tion of a number of OO programming languages, OO modeling
language, and OO databases. Each of these is briefly elabo-resembles the following:
rated following.

With respect to programming language standardization,for (int j�0; j�myGeoContainer.length; j��)�
switch(myGeoContainer[j].tag)� the C�� programming language has finally been approved

by the C�� Committee of the International Standards Orga-case CIRCLE: printCircle(myGeoContainer[j]); break;
case SQUARE: printSquare(myGeoContainer[j]); break; nization (ISO) after eight years of deliberation on the lan-

guage features. The standard covers both the C�� languagecase TRIANGLE: printTriangle(myGeoContainer[j]);
break; itself and its standard library. The final ratification by two

dozen countries was expected by March 1998. With respect todefault: error(); break;
� Java, Sun Microsystems Inc. has won ISO approval to become

a Publicly Approved Submitter of standards for the program-�
ming language. This means that Sun wins the control of the
Java trademark and the specification’s maintenance. TheseAlthough the previous code segment carries out the task, the

solution is not extensible. Consider the scenario that a new two events signify the shakeup and maturity of the tech-
nology.type of object, say, Rectangle, is to be added to the container.

Now, the switch construct shown previously must be changed All of the previous discussion deals with objects from an
OO programming perspective. But before implementing anto accommodate this new case, or an error results. When such

68 OBJECT-ORIENTED PROGRAMMING

OO system, one first needs to perform numerous activities in These architectures spell out the protocols of how an object
on one machine can communicate easily across machinethe system development life cycle (SDLC) including feasibility

study, requirements specification, analysis, and design of the boundaries to other objects. An object can invoke methods on
system. Collectively, the notations used to document the arti- remote objects almost as easily as a local object method invo-
facts of each of phase in the SDLC and the process that pre- cation. Many object visionaries are predicting that object in-
scribes how the various phases are to be carried out is called terfaces will become as ubiquitous as Web interfaces (24). If
a methodology. this happens, the dream of object enthusiasts to have ubiqui-

The state of OO methodology has evolved from panel dis- tous objects will be realized sooner than later.
cussions in past OOSPLA conferences that are entitled Another current trend in the OO community is realizing
‘‘Which Method Is Best? Shoot Out at the OO Corral’’ and the power of reuse and how object technology is very well
‘‘OO Methodology Standard: Help or Hindrance’’ to the ap- suited for reuse. The phenomenon occurs in many forms, one
proval of Unified Modeling Language (UML) as the standard of which is the study of patterns, specifically design patterns.
OO modeling language by the Object Management Group The idea is that like most complex structures, good computer
(OMG), a consortium of software technology companies. UML programs can (and should) mimic the structure of similar,
can be defined as a language for visualizing, specifying, con- proven effective, older programs. By imitating these older
structing, and documenting the artifacts of a software-inten- programs, one need not start the analysis and design efforts
sive system (22). This work is the collaboration of many from over again. One can reuse existing analysis and design solu-
the software industry led by Grady Booch, James Rumbaugh, tions. Thus, a design pattern is an attempt to capture and
and Ivar Jacobson (the ‘‘Three Amigos’’). The amigos had formalize the process of imitation (17).
their own methodologies before the consolidation of methodol- One of the first attempts to describe the concepts of design
ogies began in the mid-1990s. This, again, shows the maturity pattern is the work by Erich Gamma, Richard Helm, Ralph
of object technology. Johnson, and John Vlissides, commonly referred to as ‘‘The

Although the third leg of the three standardization efforts, Gang of Four’’ (25). Their work was heavily influenced by the
the OO database standard, is lagging in terms of overall ac- architect Christopher Alexander, who described the patterns
ceptance, it is a standard defined for object databases by the of building livable homes (26). Since then, numerous other
Object Database Management Group (ODMG), a subgroup of pattern-related projects have surfaced (27,28), and the soft-
OMG. ODMG is also working with American National Stan- ware community is again attempting to digest the voluminous
dards Institute (ANSI) and ISO to define the next standard amount of research on the topic.
for Structured Query Language (SQL), called SQL3, that in- The two technologies showcased previously represent some
cludes object extensions. of the advances in object technology in recent years. They con-

While the various database standards are being worked tinue to be topics of interest in terms of where objects are
on by the respective bodies, many tool vendors are already heading. Some of the other notable topics include objects for
capitalizing on object-to-relational mapping tools to leverage small-scale devices and objects for the large.
existing relational systems. This permits the users to keep Ironically, Java, now represents the hottest object technol-
their investments in their relational databases and yet take ogy and is being heavily used in embedded devices, such as
advantage of the power of objects. However, it has been TV set top boxes, cellular phones, and personal digital assis-
shown that this technique can quickly ‘‘hit the relational tants (PDAs). (Recall that Java’s birthplace was consumer
wall (23).’’ electronics.) Many software and electronics industry giants

In addition to the standardization work previously over- (e.g., Sun Microsystems, SONY, TCI) are collaborating to de-
viewed, there are many other efforts that show the advance- velop intelligent small devices using Java.
ment and continued growth of object technology. Two of these On the other end of the extreme in scale, companies like
efforts, distributed object computing and patterns, are dis- IBM are also capitalizing on the popularity of objects in their
cussed here. large-scale systems (e.g., IBM OS 390). IBM’s newest op-

With the advent of the Web, distributed object computing erating system, OS 390, which runs on mainframes, is touted
is receiving more and more attention from the software com- to be the superserver for its clients via the Web or the tradi-
munity. The idea is that in the era of network computing, tional means. With its Domino web server and Java for
where everyone is globally connected, inexpensively, to each OS390, now IBM mainframe users can take advantage of the
other, objects can be distributed and accessed across the net- power of objects and the Web that for many years have been
work easily because the framework for distribution is readily accessible only at the PC/workstation level.
available via the Web. This area of research has been active
for a number of years, ever since object technology became
popular in the mid to late 1980s. But without a distribution

BIBLIOGRAPHYchannel as economical and as popular as the Web, this re-
search area has not been fully explored by the software com-

1. Software made simple: Object-oriented programming, Businessmunity.
Week, September 30, 1991.

Now, as expected, when the potential for the distributed
2. Outlook ’92, Byte Magazine, October, 1991.object computing market is so enormous, there are bound to
3. Executive Summary, Object Mag., 2 (2): 1992.be a number of players in the field. Indeed, there are a few
4. M. Ellis and B. Stroustrup, The C�� Annotated Reference Man-major architectures available, including OMG’s Common Ob-

ual, Reading, MA: Addison-Wesley, 1990.ject Request Broker Architecture (CORBA)/Internet Inter-
ORB Protocol (IIOP), Microsoft’s Distributed Common Object 5. A. Goldberg and D. Robson, Smalltalk-80: The Language, Read-

ing, MA: Addison-Wesley, 1989.Model (DCOM), and Java’s Remote Method Invocation (RMI).

OBJECT-ORIENTED PROGRAMMING TRANSITION 69

6. J. Gosling, B. Joy, and G. Steele, The Java Language Specifica-
tion, Reading, MA: Addison-Wesley, 1996.

7. R. Cattell, Object Data Management: Object-Oriented and Ex-
tended Relational Database Systems, Reading, MA: Addison-Wes-
ley, 1991.

8. D. Maier and S. Zdonik, Readings in Object-Oriented Database
Systems, San Mateo, CA: Morgan-Kaufmann, 1990.

9. G. Booch, Object-Oriented Design with Applications, 2nd ed., Red-
wood City, CA: Benjamin-Cummings, 1994.

10. M. Fowler and K. Scott, UML Distilled, Reading, MA: Addison-
Wesley, 1997.

11. I. Jacobson et al., Object-Oriented Software Engineering: A Use
Case Driven Approach, Reading, MA: Addison-Wesley, 1992.

12. J. Rumbaugh et al., Object-Oriented Modeling and Design, Engle-
wood Cliffs, NJ: Prentice-Hall, 1991.

13. Interview with Barjne Stroustrup, in the videotape The World of
Objects, Borland International, 1991.

14. Proc. Int. Conf. Object-Oriented Programming: Syst., Languages,
and Applications, Portland, OR, October 1994.

15. E. Anderson, What the Hell is OOPS, Anyway? Harvard Business
School, 9: 192–104, 1992.

16. L. A. Stein, Interactive Programming in Java: A Non-Standard
Introduction, Tutorial #14, OOPSLA, Atlanta, GA, October 1997.

17. T. Budd, Understanding Object-Oriented Programming Using
Java, Reading, MA: Addison-Wesley, 1998.

18. O-J. Dahl and K. Nygaard, Simula, An algol-based simulation
language, Commun. ACM, 9 (9): 671–678, 1966.

19. K. Nygaard and O-J. Dahl, The development of the Simula lan-
guages, in R. Wexelblat, (ed.), History of Programming Language,
New York: Academic Press, 1981.

20. B. Stroustrup, The Design and Evolution of C��, Reading, MA:
Addison-Wesley, 1994.

21. B. Meyer, Object-Oriented Software Construction, Englewood
Cliffs, NJ: Prentice-Hall, 1988.

22. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language, OOPSLA Tutorial Notes, Rational Software Corp.,
1997.

23. M. Loomis, Hitting the relational wall, J. Object-Oriented Pro-
gramming, January, 1994.

24. D. Orchard, Java component and distributed object technologies,
Object Mag., 7 (11): 1988.

25. E. Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

26. C. Alexander et al., Pattern Language, New York: Oxford Univ.
Press, 1977.

27. J. Coplien and D. Schmidt, Pattern Languages of Program Design,
Reading, MA: Addison-Wesley, 1995.

28. M. Fowler, Analysis Patterns, Reading, MA: Addison-Wesley,
1997.

BILLY B. L. LIM

Illinois State University

