
MICROPROGRAMMING uously powered to maintain its contents (i.e., ROM is nonvol-
atile memory). The contents of the ROM are fixed and do not

In 1951, Maurice Wilkes first described microprogramming as change. The system designer may also provide a reserved por-
tion of the Random Access Memory (RAM) on the system, toa design approach for managing the datapath used in the cen-

tral processing unit (CPU) found in computers (1). Micropro- store the control program upon system initialization (RAM is
volatile memory that will lose its contents when power is in-gramming can take on a number of meanings, although there

is an underlying theme that can be summed up in the follow- terrupted).
One feature of using RAM is that the contents of memorying definition: A microprogram is an algorithm or program

structure, used to control the sequencing of operations per- can be easily modified. The contents of the control storage can
be dynamically updated. This class of control storage is re-formed on a hardware device. The microprogrammed algo-

rithm may be as simple as comparing two bits of information ferred to as Writable Control Storage (WCS). Early IBM 360/
370 mainframes provided WCS (3). The advantages are thatto test for logical equivalence, or it may be as complex as com-

puting the arctangent of some angle. The programming level microprograms can be customized or modified without replac-
ing the ROM. The microprogram can also be stored on a diskused can vary from microprocessor microcode and assembly

code to high-level languages (e.g., C, C��, or Java). The device and loaded into ROM upon system initialization.
The individual microinstructions stored in the control stor-hardware-based device being controlled may be a tempera-

ture sensor, a servo-controller, or a microprocessor pipeline. age are accessed using a microsequencer. The microsequencer
is driven by the series of macroinstructions (machine instruc-The underlying theme is that microprogramming uses simple

steps (microinstructions or microoperations) to complete the tions) to be executed. Each macroinstruction is composed of a
set of microinstructions. The current microinstruction beingtask at hand.

Microprogramming provides a set of operations that can be executed is buffered in the microdecode register (uDR). Multi-
ple uDRs may be available to allow for the overlap of microin-used to control the functioning of a range of devices. These

simple steps, which we will refer to hereafter as microinstruc- structions (i.e., pipelining). The uDR is decoded to generate
the appropriate values on the control signals associated withtions, are purposely kept simple in order to allow the pro-

grammer to provide an efficient implementation of the desired the control unit. The sample datapath will be used to illus-
trate how different control signals are used to manage theoperation. Other terms that have been associated with micro-

programming include microcode, firmware, control programs, different CPU elements under control of the control unit, as
shown in Fig. 1.and software state machines. The most commonly discussed

use of microprogramming is for the purpose described by In our datapath, the control unit (which contains the mi-
croprogram) generates the control signals (which enable dataWilkes (i.e., controlling the internal state of the CPU). In

actuality, microprogramming has been used most commonly to flow between units). The control storage unit initiates a
sequence of control signal values when a new instruction im-to program simple controllers. Even though the application

may be different, the underlying concepts of using simple op- age is read into the IR (Instruction Register). Other elements
in our datapath include:erations remain the same. To discuss some of the issues re-

lated to microprogramming, a simple microprocessor example
will be developed. 1. MAR—Memory Address Register (this register holds

the address used to address data memory)A microprogrammed control unit contains a number of ele-
ments that allow for the storage, sequencing, and interpreta- 2. MDR—Memory Data Register (this register holds the
tion of the microprogram (2). The microprogram will control data to be fetched from, or stored to, memory)
sequencing of operations in the CPU datapath. In this article, 3. PC—Program Counter (this register holds the address
we will provide an example of how various elements might be of the next instruction to be fetched into the IR)
organized in a microprogrammed control unit and associated

4. Register File—(contains the 32 registers r0–r31)CPU datapath. The control storage maintains the micropro-
5. ALU—Arithmetic Logic Unit (used to perform arithme-gram image, generating the necessary control information to

tic and logical operations on data)complete the requested programming task. The current mi-
croinstruction being addressed in the control storage is de-

There are three main busses in our datapath:coded, generating a set of control signals used to manipulate
the datapath. The control storage addressing unit sequences

1. a-bus—transfers register and MDR data to the ALU, asthrough the microprogram, generating the address of the next
well as transfers register data to the MAR, MDR, andmicroinstruction to execute.
PC.

2. b-bus—transfers register data to the ALU
CONTROL STORAGE 3. c-bus—transfers ALU-generated data to the register

file
The set of microinstructions (i.e., the microprogram) is stored
in the control storage. Traditionally, Read Only Memory The MAR, MDR, PC, and IR interface to memory, facilitat-
(ROM) is used to maintain the contents of control storage. ing the loading of instructions and data from memory, and

the storing of data to memory. In Fig. 1, the Add block repre-ROM has the characteristic that it does not need to be contin-
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2 MICROPROGRAMMING

Table 1. Operation Code Definitions

Opcode Operation

000 move op1,op2
001 read from memory into MDR
010 write to memory from MDR
011 PC � PC � 4
100 PC � op1
101 load [PC], IR
110 program ALU, ALU op
111 branch op1

mat of a microinstruction in our example control unit is
shown in Fig. 2. There are 4 fields specified in this format:

1. Operation code field—3 bits wide
2. Operand 1 field—4 bits wide
3. Operand 2 field—4 bits wide
4. ALU operation code field—3 bits wide

MAR

ALU

Register

File
a-bus

Instruction and data memory

b-bus c-bus

PC

MUX

Add

4

MDR

IR

Unit

Control

The operation code field (i.e., opcode) identifies which typeFigure 1. Sample datapath.
of microoperation is being specified. In our example microin-
struction format, the 4-bit opcode field is defined in Table 1.

sents the Program Counter adder logic that increments the The 4-bit operand fields 1 and 2 (op1 and op2) are defined
PC to point at the next sequential instruction (i.e., PC � PC in Table 2. The 3-bit ALU operation code field is defined in
� 4). The multiplexor block (MUX) decides whether to point Table 3.
the PC to the next sequential instruction or load the PC with The operations defined in Table 1 specify either that the
the contents of a register (implementing a change in control contents of a register (i.e., r0–r31, PC, MAR, or MDR) are to
flow in datapath execution) from the a-bus. be transferred to a bus (i.e., bus-a, bus-b, or a memory bus)

or that the contents of a bus (i.e., bus-a, bus-b, bus-c, or a
memory bus) are to be transferred to a register (i.e., r0–r31,MICROINSTRUCTION DECODING
IR, or MDR). The enabling of register output to buses, and
the latching of registers is under control of the microcodedMicroinstructions contain encoded information, which is used
control program located in the control storage. Control signalsto generate the necessary signals that control the datapath of
are generated (see Fig. 1), which control execution in the da-the central processing unit. The level of encoding is dictated
tapath.by the constraints on the amount of control storage and the

Also notice that in Table 2 a number of operands are de-decoding performance requirements. The higher the degree of
fined by fields in the IR. This register holds the instructionencoding, the shorter the microinstruction format will be. But
image as fetched from memory. The fields as defined can holdmore encoding implies more decoding will have to be per-
an immediate value or a register number (r0–r31). The dataformed (i.e., decoding will take more time).
contained in these fields are used in a variety of ways to im-For purposes of example, we will assume that a single mi-
plement the macroinstructions.croinstruction has a fixed format, 14 bits in length. The for-

The purpose of providing such low-level detail is to explain
how macroinstructions are implemented using microprogram-
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Figure 2. Decoding of the �DR for the add r1, r2, r3 instruction.

Table 2. Operand Value Definitions

Operand Values Operands

0000 value in IR(6–18)
0001 value in IR(19–31)
0010 register in IR(6–10)
0011 register in IR(11–15)
0100 register in IR(16–20)
0101 a-bus
0110 b-bus
0111 c-bus
1000 memory
1001 MAR
1010 MDR
1011 IR
1100 uPC
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Control Transfer Operations

Control transfer operations include any that can cause in-
struction execution to follow a nonsequential execution path.
Control transfer instructions can be conditional (the resulting
control transfer outcome is dependent upon some current ma-
chine state) or unconditional (the resulting control transfer
will also cause a break to a nonsequential execution path).
Conditional branches allow the execution to make decisions
dynamically in the program. Examples of conditional
branches include jumps based on the result of an ALU opera-

Table 3. ALU Operation Code Definitions

Operand Code Values Meaning

000 bus-c � bus-a � bus-b
001 bus-c � bus-a � bus-b
010 bus-c � bus-a SHL bus-b bits
011 bus-c � bus-a XOR bus-b
100 bus-c � bus-a AND bus-b
101 bus-c � bus-a OR bus-b
110 bus-c � NOT bus-a
111 bus-c � bus-a

tion (e.g., jump if greater than, jump if equal to zero) and
loops based on a count register. Unconditional control trans-

ming. Each macroinstruction is defined by a sequence of mi- fers include those macroinstructions where there is no doubt
crocoded words. In our example datapath, each microcode whether we want the program to move to a new execution
word is 14 bits wide. A variable number of microinstructions stream. Examples of unconditional branches include subrou-
comprise a single macroinstruction. Next we will demonstrate tine calls and returns, interrupts, and direct/indirect jump in-
how particular macroinstructions would be implemented in structions.
microcode.

MICROINSTRUCTION SEQUENCING
MACROINSTRUCTIONS

Next, we look at how we sequence through a microprogram.
A macroinstruction is just another term used to describe the We do have many options. We will present the most funda-
fundamental instruction set associated with a CPU. The set mental, while suggesting alternative (more aggressive) imple-
of macroinstructions defined for a particular CPU is generally mentations.
referred to as an Instruction Set Architecture (ISA). Just as Because each macroinstruction is comprised of a number
a series of microinstructions is used to implement each mac- of microinstructions, we need a way to step through each mi-
roinstruction, a series of macroinstructions is used to imple- croprogram that represents the desired macroinstruction. We
ment assembly or high-level language (e.g., C or Fortran) pro- begin by considering the microprogram for a particular mac-
gramming statements. roinstruction, and then we will generalize the approach to

Macroinstructions can be grouped based on their function- consider a series of macroinstructions.
ality: In Table 4 we present the microprogram for the add r1, r2,

r3 instruction. This macroinstruction is read as follows: r3 �
1. Arithmetic and logical operations, r1 � r2. The microprogram needs to send the contents of reg-
2. Data transfer operations, and isters r1 and r2 to the inputs of the ALU along the a-bus and

b-bus, respectively; program the ALU to perform an add; and3. Control transfer operations.
then take the results from the c-bus and store it in r3.

These three groups cover the range of operations that a The program shown in Table 4 is stored in ROM and is
typical ISA provides. addressed using a microsequencer. Before explaining how ad-

dressing is implemented in the control unit, let us revisit how
ALU Operations the control signals, which manage the datapath, are gen-

erated.Arithmetic and logical operations generally involve opera-
The bit patterns (1s and 0s) shown in Table 4 are loadedtions on one or two operands. At a minimum, operations in-

sequentially into the uDR. The first microinstruction (moveclude addition and subtraction, along with the basic logical
r1, a-bus) translates to the bit pattern 00000000101xxx. Thisoperations (AND, OR, NOT, and EXCLUSIVE-OR). Other
value is loaded into the uDR. Figure 2 shows the bit patternfunctionality that may be provided in an ALU include shift-
in the uDR and the corresponding decoding logic used to gen-ing, signed-mathematical operations, increment/decrement,
erate the necessary control signals.and integer multiplication and division.

Again, notice that the IR comes into play here. The first
operand is identified by decoding bits 6–10 of IR. These bitsData Transfer Operations

Data transfer operations include any operations that load
data from, or store data to, memory. For pure Reduced In-
struction Set Computer (RISC) processors [e.g., DLX (Sailer)],
the ISA provides instructions that specifically perform loads
and stores, but it does not combine these operations with
arithmetic or control transfer instructions. In contrast, Com-
plex Instruction Set Computer (CISC) ISA’s (e.g., Intel’s
80X86, Motorola’s 680X0), data transfer operations can be
combined with ALU operations, allowing memory accesses
(both loads and stores) and arithmetic or logical operations to
be combined in a single macroinstruction.

Table 4. Microprogram Implementing Add r1, r2, r3,
Including Microinstructionsa

Operand Operand ALU
Microinstruction Opcode 1 2 Op

move r1,a-bus 000 0010 0101 xxx
move r2, b-bus 000 0011 0110 xxx
program ALU, add 110 xxxx xxxx 000
move c-bus, r3 000 0111 0100 xxx

a x’s denote don’t care values in the microinstruction.
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will contain an encoded value, indicating that register r1 is
the first operand associated with this add. The location and
definition of this bit pattern is defined by the ISA (designing
the format of macroinstructions is a separate topic, and is not
addressed in this article).

Now that we understand how a single microinstruction is
executed, we need to move on to the next instruction. To do

Table 5. Microinstruction Sequence for Updating the uPC
for a Nonbranch Instruction

Operand Operand ALU
Microinstruction Opcode 1 2 Op

PC � PC � 4 011 xxxx xxxx xxx
load [PC], IR 101 xxxx xxxx xxx
branch op1 111 1100 xxxx xxx

this, we need a microsequencer, which will step us through
the microprogram.

instruction. The MUX feeding the uPC is normally set to
MICROSEQUENCER allow the uPC � 1 value to be loaded.

One exception to the sequence shown in Table 5 is when
We will define a new register called the uPC. Like the macro- the current instruction is a branch instruction. In this case,
instruction PC, the uPC contains the address of the next mi- the microinstruction sequence would look something like the
croinstruction to execute. The uPC is modified when a new sequence shown in Table 6 for a register-based jump.
macroinstruction is loaded into the IR. After each microin- Note that we have only discussed here one form of ad-
struction is executed, the microsequencer increments the uPC dressing for the target of the jump instruction. Another seri-
to point to the next sequential address (in our simplistic de- ous consideration that needs to be made when designing a
sign here we will assume that our microprogram is explicitly microinstruction set is how to implement conditional
specified for each macroinstruction) by incrementing the uPC branches specified in the macroinstruction set. To discuss a
by 1. In Fig. 3 we show how the add instruction might be potential design, we first need to discuss the types of condi-
stored in control storage and suggest how the uPC is updated. tional branches the microinstruction set needs to support.
Updates to the uPC are controlled by a multiplexor. The mul-
tiplexor receives both the uPC � 1 and a decoded version of

CONDITIONAL BRANCHESthe opcode associated with the IR register. This multiplexor
will select the decoder output when a new instruction is to be

Let us assume that our ISA only supports branches with tar-loaded into the IR.
gets contained in registers (this would be a poor choice inAfter we execute each macroinstruction, we need to load
practice, but simplifies our example here significantly). Let usthe IR with the next instruction to be executed. This is accom-
also assume that the ALU in our datapath provides a flagsplished using the microprogram sequence specified in Table
register that records particular characteristics regarding the5. The first microinstruction increments the address in the
last ALU operation executed. The flags register contains thePC to the next sequential address. The second instruction
following fields:fetches the next instruction image from memory and places it

in the IR. The last microinstruction in this sequence tells the
1. Zero flag—set to 1 if the last operation generated a 0multiplexor controlling the input to the uPC to pass the de-

result.coded value of the new IR value in order to update the uPC
2. Negative flag—set to 1 if the last operation generated awith the starting address of the next sequence of microin-

negative result.structions. The uPC is latched at the beginning of each micro-
3. Equal flag—set to 1 if the last operation generated an

equal result.

We need to support the following conditional branch mac-
roinstructions:

1. jz—jump to the address specified in the register if the
previous ALU operation resulted in the zero flag being
set.

2. jlz—jump to the address specified in the register if the
previous ALU operation resulted in the negative flag be-
ing set.

Add uPC

1

MUX

Decoder

uDR

IR

0Control unit

100
101
102
103

00000100101000
00000110110000
11100000000000
00001000111000

Figure 3. Control storage layout and microsequencer logic.

Table 6. Microinstruction Sequence for Updating the uPC
for a Register-Based Direct Jumpa

Operand Operand ALU
Microinstruction Opcode 1 2 Op

mov op1, op2 000 0010 0101 xxx
PC � op1 100 0101 xxxx xxx
load [PC], IR 101 xxxx xxxx xxx
branch op1 111 1100 xxxx xxx

a The register value is stored in bits 6–10 of the macroinstruction.
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branch to. Table 8 shows the microinstruction sequence to im-
plement the conditional branch jz. Again, the branch target
address is stored in a register.

In this example, a conditional branch microinstruction is
executed at address 200 upon entry into the microroutine for
jz. If the zero flag is set, the uPC � uPC � 4 (a 4 is stored
in the Operand 3 field), causing a branch to microinstruction
address 204. If the zero flag is reset, then the sequential path
of microinstructions is followed (microinstructions 201–203).
At microinstruction address 202, we will load a new IR value,
and in microstruction 203 the uPC is updated with the start-
ing address of the next microinstruction sequence.

If the zero flag was set, the microsequencer would continue
execution from microinstruction address 204. At microin-
struction address 206, the macroinstruction IR is updated,
and in the next microinstruction, the uPC is updated to point
at the starting address of the next microinstruction sequence.
Notice that there is considerable commonality in these two

MUX

Add uPC

uDR

Conditional branch offset1

Flag register

Condition satisfied

Compare

IR

ALU

NZ E

Control
unit

sequences. This will be addressed when we discuss possible
optimizations.Figure 4. Additional control logic needed to implement conditional

branch macroinstructions.

PUTTING IT ALL TOGETHER

Now that we have covered the fundamentals of microinstruc-3. je—jump to the address specified in the register if the
tion sequencing while considering the necessary support for aprevious ALU operation resulted in the equal flag be-
general class of macroinstructions (including conditionaling set.
branches), we will see how multiple macroinstructions might
be processed. Let us consider the following snipit of high-level

The difficulty with handling conditional branch macroin- language (C) code:
structions is that we then must provide conditional branch

for (x = 0; x < 100; x++)microinstructions. We can implement these macroinstruc-
y = y + x;tions by using the circuitry suggested in Fig. 4. Here we see

that bits in the macroinstruction IR are compared against the The corresponding macroinstructions generated by a C com-
current status of the ALU flags. The multiplexor controlling piler for this code snipit might look like the sequence shown
the setting of the uPC is controlled by the comparison logic. in Table 9. The microinstruction sequences for the unique
This macroinstruction opcode currently in the IR provides in- macroinstructions used in Table 9 is shown in Table 10. No-
formation on the type of condition desired ( jz, jnz, jlz, je or tice that there are only five unique macroinstructions present
jne) and the multiplexor conditionally selects which next in our code snipit:
value to load in uPC. Additionally, we must supply the micro-
instruction target offset that will be branched to in the micro- 1. add rx, rx, rx (addresses 100 - 106)
program if this condition is satisfied. Table 7 modifies the

2. add IR(6-18), rx, rx (addresses 107 - 113)definition of the ALU operation field. As a result, rename this
3. sub rx, rx, rx (addresses 114-120)field the Operand 3 field. When the microinstruction opcode is
4. sub IR(6-18), rx, rx (addresses 121 - 127)a branch and the macroinstruction IR contains a conditional

branch, the Operand 3 field will contain the branch offset to 5. jz rx (addresses 128 - 135)

Within the five unique microinstruction sequences com-
prising 135 microinstructions, there are only 11 unique micro-
instructions in our code snipit:

1. move rx,a-bus
2. move rx, b-bus
3. program ALU, add
4. move c-bus, rx
5. PC � PC � 4
6. load[PC],IR
7. branch op1
8. move IR(6-18),a-bus
9. program ALU, sub

Table 7. Additional Operand Value Definitions to Implement
Conditional Branching

Opcode Operand 3 Meaning

110 000 bus-c � bus-a � bus-b
110 001 bus-c � bus-a � bus-b
110 010 bus-c � bus-a SHL bus-b bits
110 011 bus-c � bus-a XOR bus-b
110 100 bus-c � bus-a AND bus-b
110 101 bus-c � bus-a OR bus-b
110 110 bus-c � NOT bus-a
110 111 bus-c � bus-a
111 000 load new decode IR to uPC
111 000–111 uPC � uPC � Operand Value
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Table 8. Microinstruction Sequence for Conditionally Updating the uPC for a Register-Based
Direct Conditional Jumpa

Address Microinstruction Opcode Operand 1 Operand 2 Operand 3

200 cbranch op1, op3 111 1100 xxxx 100
201 PC � PC � 4 011 xxxx xxxx xxx
202 load[PC],IR 101 xxxx xxxx xxx
203 branch op1 111 1100 xxxx 000
204 mov op1, op2 000 0010 0101 xxx
205 PC � op1 100 0101 xxxx xxx
206 load [PC], IR 101 xxxx xxxx xxx
207 branch op1 111 1100 xxxx 000

a The register value is stored in bits 6–10 of the macroinstruction. The sequence implements the jz macroinstruction.

10. cbranch op1, op3 Encoding allows for the reduction in the length of a typical
microinstruction. Deeply encoded microinstructions are typi-11. PC � op1
cally referred to as vertical microcode. This will reduce the
amount of ROM needed to store the microprogram but mayIt should be evident from this example that there are several
introduce unwanted performance degradation. In many mi-opportunities to improve the utilization of the ROM space.
croprocessor designs, the generation of the control signalsNext we will explore the questions of speed of execution and
produced by the control unit are on the critical path in theof storage space, in the context of the control unit design and
design (the critical path refers to a timing path in a designthe accompanying microprogram.
where time requirements are an issue). Heavily encoded mi-
crocode can add multiple gate levels of delay to a timing path.

OPTIMIZATIONS This may limit our ability to speed up the oscillator clock used
to control the design.

To this point, we have not considered the practicality of im- So there is much room for compromise between horizontal
plementing the described control unit and accompanying mi- and vertical microcode. The implementation just presented is
crocode. We have only been concerned with presenting gen- basically a middle ground in encoding and complexity (al-
eral principles that would apply, independent of the eventual though it lacks a number of performance and storage space
implementation. Microprogram execution performance is a considerations, which will be clear shortly in this article). One
critical issue in the design of high-performance microproces- obvious advantage of using a wider (i.e., more horizontal) mi-
sors (actually most microprocessors today use hardwired con- crocode word is the ability to control multiple control signals
trol, even though all the concepts presented so far can be im- by performing encoding carefully (such that any two control
plemented in hardwired logic). One key issue related to the signals that must be generated on the same cycle will be en-
performance of microcode is directly related to the amount of coded in separate fields in the microinstruction). Even though
encoding that has been used in the microinstruction format. we have done a reasonable job of providing some parallelism

We could choose to perform as little encoding as possible, in the execution of the microprogram in our present imple-
providing a bit in the microinstruction word for each control mentation, further optimizations could easily be performed.
line bit and performing little or no decoding of the microin-
struction. Microinstructions designed using this principle are
generally referred to as horizontal microcode. The overhead TWO-LEVEL CONTROL STORE DESIGN
of using horizontal microcode is felt in the width of the ROM
used to store the microprogram. The width of each microin- As pointed out in our previous discussion of the microprogram
struction will be very wide (the number of control signals gen- shown in Table 9, there were a total of 135 microinstructions,
erated by the control unit is typically greater than 100 and but only 11 of these were unique. What if instead of storing
may be more than 200). the complete microcode sequence for each macroinstruction,

we stored only the unique microinstructions that are needed
to generate the same sequence of operations as found in the
full program in Table 9. We refer to such a design as a two-
level control store and refer to the microcode as a nano-
program.

Table 11 shows the 11 unique microinstructions stored in
our control storage. The only difference is that now a level of
indirection takes place. Each macroinstruction is imple-
mented by providing the sequence of control store addresses
associated with this macroinstruction. The main benefit of us-
ing a two-level control store is that we can reduce the amount
of duplication of in our microprogram. If we consider only the
number of bits needed to store the unique microinstructions,
we would wind up with 154 bits of storage (as opposed to the

Table 9. Macroinstruction Sequence Needed to Execute
Code snipet

Address Macroinstruction Description

100 sub r1, r1, r1 clears register r1, where x will be
stored

104 sbu r10, r10, r10 clears register r10, where the condi-
tional branch target will be stored

108 add r1, 99, r1 stores the loop counter in register r1
112 add r10, r10, r10 stores branch target
116 add r1, r2, r2 y is stored in r2, add x to y
120 sub r1, 1, r1 decrements the loop counter
124 jz r10 conditionally exits loop
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Table 10. Microinstruction Sequences for the Macroinstructions Shown in Table 9

Address Microinstruction Opcode Operand 1 Operand 2 Operand 3

100 move rx,a-bus 000 0010 0101 xxx
101 move rx, b-bus 000 0011 0110 xxx
102 program ALU, add 110 xxxx xxxx 000
103 move c-bus, rx 000 0111 0100 xxx
104 PC � PC � 4 011 xxxx xxxx xxx
105 load[PC],IR 101 xxxx xxxx xxx
106 branch op1 111 1100 xxxx 000
107 move IR(6–18),a-bus 000 0010 0101 xxx
108 move rx, b-bus 000 0011 0110 xxx
109 program ALU, add 110 xxxx xxxx 000
110 move c-bus, rx 000 0111 0100 xxx
111 PC � PC � 4 011 xxxx xxxx xxx
112 load[PC],IR 101 xxxx xxxx xxx
113 branch op1 111 1100 xxxx 000
114 move rx,a-bus 000 0010 0101 xxx
115 move rx, b-bus 000 0011 0110 xxx
116 program ALU, sub 110 xxxx xxxx 001
117 move c-bus, rx 000 0111 0100 xxx
118 PC � PC � 4 011 xxxx xxxx xxx
119 load[PC],IR 101 xxxx xxxx xxx
120 branch op1 111 1100 xxxx 000
121 move IR(6–18),a-bus 000 0000 0101 xxx
122 move rx, b-bus 000 0011 0110 xxx
123 program ALU, sub 110 xxxx xxxx 001
124 move c-bus, rx 000 0111 0100 xxx
125 PC � PC � 4 011 xxxx xxxx xxx
126 load[PC],IR 101 xxxx xxxx xxx
127 branch op1 111 1100 xxxx 000
128 cbranch op1, op3 111 1100 xxxx 100
129 PC � PC � 4 011 xxxx xxxx xxx
130 load[PC],IR 101 xxxx xxxx xxx
131 branch op1 111 1100 xxxx 000
132 mov rx, a-bus 000 0010 0101 xxx
133 PC � op1 100 0101 xxxx xxx
134 load [PC], IR 101 xxxx xxxx xxx
135 branch op1 111 1100 xxxx 000

1890 bits needed in the single-level control storage scheme). ble 12, we provide just such a table, completing the design of
the two-level control storage unit.But we have forgotten to consider how we plan to sequence

through these microinstructions. A simple alternative is to To make a fair assessment of the benefits of a two-level
control store, we need to consider the extra storage needed toprovide a 135-entry control program that contains only the

addresses of the microinstructions shown in Table 11. In Ta- store the 4-bit index stored in the second-level address field

Table 11. Unique Microinstructions Stored in our Two-Level Control Storage

Address Microinstruction Opcode Operand 1 Operand 2 Operand 3

000 move rx,a-bus 000 0010 0101 xxx
001 move rx, b-bus 000 0011 0110 xxx
002 program ALU, add 110 xxxx xxxx 000
003 move c-bus, rx 000 0111 0100 xxx
004 PC � PC � 4 011 xxxx xxxx xxx
005 load[PC],IR 101 xxxx xxxx xxx
006 branch op1 111 1100 xxxx 000
007 move IR(6–18),a-bus 000 0010 0101 xxx
008 program ALU, sub 110 xxxx xxxx 001
009 cbranch op1, op3 111 1100 xxxx 100
010 PC � op1 100 0101 xxxx xxx
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An issue that we failed to address so far is the extra hardware
cost of providing sequencing and addressing for two indepen-
dent storage units. This is an issue. There is also the issue of
performing two memory accesses to satisfy the execution of a
single microinstruction (this could make our design too
costly).

ADVANCED MICROPROGRAMMING CONCEPTS

One design alternative is to use a single-level control store
and allow each microinstruction to act as a conditional
branch, based on the opcode present in the macroinstruction
IR. If we know all possible sequences through the microcode,
then given the current microinstruction and the opcode of the
current macroinstruction being executed, we can compute the
offset of the next microinstruction that is to follow. What we
have created is a Finite State Machine (FSM), that given the
current input to the control unit (the macroinstruction opcode
present in the IR) and the current state stored in the control
unit (the in-flight microinstruction), we can determine the
next state for the controller and the associated control sig-
nals. This can be represented using Boolean logic, and a num-
ber of tools such as truth tables and Karnaugh maps can
quickly provide us with an optimized design (4).

Many control units built today do not use microcode, but
instead use hardwired control logic. The FSM described pre-
viously is simply a large decoder block that produces the de-
sired values on the output control signals on each micro-
sequencer clock tick. The value of the control signals is gated
into latches, and these are used to control the datapath. The
decoder logic can be efficiently realized using a standard com-
binational logic circuit call a Programmable Logic Array
(PLA). These arrays consist of an array of AND gates, fol-
lowed by an array of OR gates.

Another design alternative is to provide the capability of
executing multiple macroinstructions in a pipelined CPU (5).
This would require the addition of multiple uPCs, each han-

Table 12. Microinstruction Sequences for the
Macroinstructions Shown in Table 9

1st-Level 2nd-Level
Address Microinstruction Address

100 move rx,a-bus 0000
101 move rx, b-bus 0001
102 program ALU, add 0010
103 move c-bus, rx 0011
104 PC � PC � 4 0100
105 load[PC],IR 0101
106 branch op1 0110
107 move IR(6–18),a-bus 0111
108 move rx, b-bus 0001
109 program ALU, add 0010
110 move c-bus, rx 0011
111 PC � PC � 4 0100
112 load[PC],IR 0101
113 branch op1 0110
114 move rx,a-bus 0000
115 move rx, b-bus 0001
116 program ALU, sub 1000
117 move c-bus, rx 0011
118 PC � PC � 4 0100
119 load[PC],IR 0101
120 branch op1 0110
121 move IR(6–18),a-bus 0111
122 move rx, b-bus 0001
123 program ALU, sub 1000
124 move c-bus, rx 0011
125 PC � PC � 4 0100
126 load[PC],IR 0101
127 branch op1 0110
128 cbranch op1, op3 1001
129 PC � PC � 4 0100
130 load[PC],IR 0101
131 branch op1 0110
132 mov rx, a-bus 0000
133 PC � op1 1010
134 load [PC], IR 0101
135 branch op1 0110

dling the sequencing through the microprogram for an indi-
vidual active macroinstruction. We would also need to buffer
the IR contents for a number of cycles in order to allow the

in the first-level table. This adds up to 694 bits, versus 1890 next IR value to enter the control unit. One additional level
bits used in the single-level table design. Two points need to of complexity here is that we need to make sure that no two
be made here. First, we have implemented only a small frac- instructions attempt to manipulate the same control line dur-
tion of the total number of macroinstructions typically pres- ing the same clock cycle.
ent in an instruction set architecture. The difference in the Another issue we need to consider is how to realize a con-
amount of storage used grows dramatically because, as we trol unit that will manage a superscalar datapath implemen-
add additional microinstructions to our microcoded control tation (6). Superscalar pipelines allow multiple instructions
program, the amount of storage used in the two-level control to be active in the pipeline concurrently. We will need to be
store implementation will increase by 4 bits per microinstruc- able to handle the same basic operations already described
tion, whereas the corresponding single-level control store will (i.e., microinstruction storage, sequencing, decoding), but now
grow by a full 14 bits per microinstruction. In general, if a we need to consider doing this for multiple instructions con-
microprogram contains x unique microinstructions, the full currently. The complexity of these designs grows quickly. As
microprogram contains y microinstructions, and a single mi- a result, most superscalar control units are designed using
croinstruction is z bits wide; the total number of bits needed custom logic.
for a single-level store is given in Eq. (1),

SUMMARYNumber of bits = (y ∗ z) (1)

whereas the number of bits need for a two-level store is given Even though the beginnings of microprogramming date back
in Eq. (2). to the early 1950s, we still see extensive use of microprogram-

ming today. This article has given one complete example of
Number of bits = (y ∗ log2 x) + (x ∗ z) (2) how microprogramming is used to control a CPU datapath. In
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many CPUs developed today, microcode has been replaced
with hardwired control logic. Many of the same principles
apply to hardwired control, which are fundamental to the de-
sign of microprograms, because both are variations of a finite
state machine (one developed in hardware, another developed
in software and supporting control logic).

The major application of microprogramming is seen in the
microcontroller world. These simple CPUs are used to control
a variety of electrical and mechanical devices. Microprogram-
ming is used to control these devices. Other discussion of mi-
crocoding and microprogramming can be found in Refs. 7–10.
We refer the reader to these recognized textbooks for further
information on this topic.
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