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MATHEMATICAL PROGRAMMING

Mathematical programming is an interdisciplinary branch of
mathematical science, computational science, and operations
research that seeks to answer the question, ‘‘What is best?,’’ for
problems in which the quality of any answer can be expressed
as a computable value. In the context of mathematical pro-
gramming, the term programming does not denote a particu-
lar type of computer programming, but is synonymous with
the word optimization contemporarily or optimal planning
originally. In the 1940s, the term programming was used to
describe the planning or scheduling of activities within some
large organization. Programmers found that they could repre-
sent the amount or level of each activity as a variable whose
value was to be determined. They then could mathematically
describe the restrictions inherent in the planning or schedul-
ing problem as a set of equations or inequalities involving the
variables. A solution to all of these constraints would be con-
sidered an acceptable or feasible plan or schedule.

It was soon found that modeling a complex operation sim-
ply by specifying constraints is hard. If there were too few
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constraints, many inferior solutions could satisfy them; if though the study of computational methods for solving non-
linear programs began in the 1960s, many effective algo-there were too many constraints, desirable solutions were

ruled out, or in the worst case no solutions were possible. The rithms that are able to solve problems with thousands of
variables have been developed.success of programming ultimately depends on a key insight

that provided a way around this difficulty. One could specify, The solution of a linear or nonlinear program can be frac-
tional. For some applications a fractional solution makes per-in additional to the constraints, a measure of performance or

objective that is a function of the variables or activities, such fect sense; a financial investment decision expressed as a frac-
tion of a large unit, say $1.3 million in portfolio selections isas cost or profit, that could be used to decide whether one

solution was better than another. Then, a best or an optimal such an example. There are applications, however, in which
fractional solutions do not make much sense. For example,solution is the one that gives the best possible value, that is

minimum or maximum value, of the objective function while the optimal solution of an airline scheduling model may be to
fly 1.3 airplanes from city A to city B, which, while mathemat-satisfying all constraints. The term mathematical program-

ming, which is interchangeable with mathematical optimiza- ically correct, is in reality utter nonsense. When we impose
the extra restriction on a linear or nonlinear program thattion, came to be used to describe the minimization or maximi-

zation of an objective function of many variables, subject to some or all variables must take on integral values, we obtain
a mixed or pure integer linear or nonlinear program that inconstraints on the variables.

Not much was known about this field before 1940. For one general is much harder to solve than its continuous counter-
part. Nevertheless, a combination of faster computer technol-thing, computers are necessary since applications usually re-

quire extensive numerical computation. However, there were ogy and more sophisticated methods has made large integer
programs increasingly tractable in recent years.some very early theoretical contributions; for instance, in the

last century Cauchy described the method of steepest ascent Mathematical programming has undergone rapid develop-
ment in recent years and grown into a subject of many(up a mountain) in connection with a system of equations (de-

rivatives equated to zero). The field began to flourish in the branches. This article aims at providing general background
information in mathematical programming and presenting1940s and 1950s with the introduction and development of

the very important branch of the subject known as linear pro- some basic notions and results in this subject. The emphases
are linear, nonlinear, and integer programs. We shall begingramming—the case where all the costs, requirements, and

other quantities of interest are terms strictly proportional to in the first section with the so-called diet problem, a classical
real-world optimization problem and discuss various ways tothe levels of the activities or sums of such terms. In mathe-

matical terminology, the objective function is a linear func- model this problem. The second section is concerned with the
classification of optimization problems and their standardtion, and the constraints are linear equations and inequali-

ties. Such a problem is called a linear program. The term forms. The section entitled ‘‘Applications and Practicalities’’
gives a brief discussion on some aspects of solving optimiza-linear programming is referred to as the process of setting up

a linear program and solving it. tion problems in practice and provides some information nec-
essary to those who want to use software to solve optimizationLinear programming is without doubt the most natural

mechanism for formulating a vast array of problems with problems. A brief overview of important, well-known, and
heavily used results in two typical classes of optimizationmodest effort and today a standard tool that has saved many

thousands or millions of dollars for most companies or busi- problems, the smooth nonlinear programming problem and
integer linear programming problem, is given in the sectionnesses of even moderate size in the various industrialized

countries of the world. Its huge success is partially due to titled ‘‘Basic Theory.’’ In the next section, key algorithms for
solving these two classes of problems are reviewed. Finally, inthe facts that the mathematics involved is simple and easy to

understand and that its first computational method, known the last section standard textbooks and references on further
reading in this subject are provided, including several infor-as the simplex method, has been extremely successful in prac-

tice. But it seems that the popularity of linear programming mative Internet resources related to this subject.
lies primarily with the formulation phase of analysis rather
than the solution phase. In fact, most existing optimization

THE DIET PROBLEM
applications can be categorized more or less as some sort of
optimal allocation of scarce resources in which a great num-

In this section we shall discuss the diet problem, a classical
ber of constraints and objectives that arise in the real world

real-world problem that falls into the category of optimal allo-
are indisputably linear, especially in the area of managerial

cation of scarce resources. In order to be solved by computer-
economics.

ized optimization algorithms, a real-world problem must be
In spite of the broad applicability of linear programming,

stated in a very rigid algebraic form. We shall analyze the
the linearity assumption is sometimes too unrealistic since

various characteristics of problem situations to formulate the
many physical and economic phenomena in the world sur-

diet problem in several different forms.
rounding us are nonlinear. For many real-world problems in
which functional relationships are nonlinear and that involve

Problem Definition
interactions between the problem variables, linear program-
ming models are not sufficient to describe the relevant prob- Suppose that prepared foods of the kinds shown in Table 1 at

the market are available at the prices per package indicated.lem complexities. If instead some nonlinear functions of the
variables are used in the objective or constraints, the problem These foods provide percentages, per package, of the mini-

mum daily requirements for vitamins A, B, and C for an aver-is then called a nonlinear program. Most optimization prob-
lems encountered in engineering are of this nature. Solving age individual, as displayed in Table 2. The diet problem is

to find the most economical combination of packages that willsuch problems is harder, but in practice often achievable. Al-
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Minimize 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS
Subject to

60xB + 40xF + 5xC + 70xM + 25xS ≥ 700

25xB + 45xF + 20xC + 29xM + 40xS ≥ 700

20xB + 40xF + 20xC + 30xM + 49xS ≥ 700

xB ≥ 0, xF ≥ 0, xC ≥ 0, xM ≥ 0, xS ≥ 0

(1)

Table 1. Food Prices Per Package

Identifier Food Price

B Beef $3.49
F Fish $2.99
C Cheese $1.49
M Meatloaf $1.99
S Spaghetti $2.49

Note that we have added lower bounds on the variables at
the end in order to have an adequate description of the prob-
lem since it does not make sense to purchase fewer than zeromeet the basic minimum nutritional requirements for good
packages of a food.health on a weekly basis—that is, at least 700% of the daily
Solving a linear program with less than thousands of vari-requirement for each nutrient. Such a problem might, for ex-

ables is considered rather trivial nowadays. The solution ofample, be faced by the dietician of a large army.
the above linear program is xB � 0, xF � 0, xC � 0, xM � 5.06,
xS � 13.83 with the total cost � $44.51, found in less than

Linear Programming Model 0.01 s on a personal computer (PC) using a commercial linear
programming software package. Thus the cost is minimizedThe diet problem can be formulated as a linear program. Let
by a diet of about 5.06 packages of meatloaf and 13.83 pack-us denote by xB the number of packages of beef to be pur-
ages of spaghetti. But this solution does not seem very muchchased, xF the number of packages of fish, and so forth. Then
balanced. You can check that it neatly provides about 700%the total cost of diet is
of the requirement for vitamins A and B, but about 830% for
vitamin C, a bit more than necessary.Total cost = 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS

Alternative Linear Programming Models
The total percentage of requirement of vitamin A is given by

One might guess that a solution for a more balanced dieta similar formula, except that xB, xF, and so forth are
would be generated by improving the model Eq. (1). There aremultiplied by the percentage instead of the cost per package:
at least two quick tricks. The first one is to limit the total
percentage of requirement of all vitamins, say, in the range
of 700% to 770%, which results in the following model with
additional upper bounds on the constraints:

Total percentage of vitamin A weekly requirement met

= 60xB + 40xF + 5xC + 70xM + 25xS

This amount needs to be greater than or equal to 700%. Simi-
lar formulas are needed for other vitamins, and each of these
is required to be greater than or equal to 700%. Putting these
all together, we have the following linear program for the diet
problem:

Minimize 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS
Subject to

770 ≥ 60xB + 40xF + 5xC + 70xM + 25xS ≥ 700

770 ≥ 25xB + 45xF + 20xC + 29xM + 40xS ≥ 700

770 ≥ 20xB + 40xF + 20xC + 30xM + 49xS ≥ 700

xB ≥ 0,xF ≥ 0, xC ≥ 0, xM ≥ 0, xS ≥ 0

(2)

The second is to require the amount of each vitamin to equal
700% exactly. The resultant model is simply to replace each
� sign with an � sign in the constraints of Eq. (1), that is,

Minimize total cost

Subject to

Total percentage of vitamin A weekly requirement met

≥ 700%

Total percentage of vitamin B weekly requirement met

≥ 700%

Total percentage of vitamin C weekly requirement met

≥ 700%

or in mathematical terms,

Minimize 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS
Subject to

60xB + 40xF + 5xC + 70xM + 25xS = 700

25xB + 45xF + 20xC + 29xM + 40xS = 700

20xB + 40xF + 20xC + 30xM + 49xS = 700

xB ≥ 0,xF ≥ 0, xC ≥ 0, xM ≥ 0, xS ≥ 0

(3)

Solving Eqs. (2) and (3), respectively, gives the following solu-
tions. For Eq. (2), the total cost � $45.32, and the solution
x � (xB � 0, xF � 4.30, xC � 0, xM � 4.08, xS � 9.71); for Eq.
(3), the total cost � $45.88, and the solution x � (xB � 0, xF �
9.35, xC � 0, xM � 2.92, xS � 4.87). The optimal solutions for
diet do become more balanced now as one can see the require-
ments for vitamins A, B, and C provided by the solution of
Eq. (2) are at the level of 700%, 700%, and 770%, respectively.
As for the solution of Eq. (3), it is in fact required by the

Table 2. Vitamin Requirements

A B C

Beef 60% 25% 20%
Fish 40% 45% 40%
Cheese 5% 20% 20%
Meatloaf 70% 29% 30%
Spaghetti 25% 40% 49%
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constraints to be an exactly balanced diet. One can check average individual is therefore also a random variable. So is
the total percentage of a vitamin weekly requirement met.that, however, since the constraints became more and more

restrictive, the total cost went up from $44.51 for model Eq. Then what does constraint satisfaction mean in this instance?
The constraints of linear programming formulation Eq. (1) in(1) to $45.32 for model Eq. (2) and further to $45.88 for model

Eq. (3). this context simply say that the means of the total percent-
ages of vitamin requirements met must be greater than or
equal to 700%, which, from a statistical point of view, is notInteger Programming Model
adequate. In what follows we will use this example to illus-

To be really rigorous, one might insist that solutions of the trate briefly how a branch of mathematical programming, so-
diet problem must be integer-valued as foods are sold in the called stochastic programming, can be utilized to deal with
unit of one package. A straightforward way to obtain integral the randomness involved in the problem data.
solutions is to round off the fractional variables of solutions We shall deal with the vitamin A nutrient content first.
obtained to their nearest integers. While this might be satis- Other nutrient contents can be treated in the same way. Let
factory in certain situations, a better alternative is to make pB, pF, pC, pM, and pS be random variables representing the
the use of integer programming technique. To this end, the percentages, per package, of the minimum weekly require-
problem must be formulated as an integer program. For the ments for vitamin A of foods beef, fish, cheese, meatloaf, and
diet program, this can be easily done by imposing one addi- spaghetti, respectively, for an average individual. Assume
tional constraint that all variables must be integer-valued. that they are normally distributed with means �B, �F, �C, �M,
The corresponding integer program for linear program Eq. (1) and �S and variances �2B, �2F, �2C, �2M, and �2S, respectively; fur-
looks like ther assume that they are independently distributed for the

sake of simplicity of discussion. Now let us denote by xB the
number of packages of beef to be purchased, and so forth, as
we did before. Then the total percentage of vitamin A weekly
requirement met, denoted by uA,x, is

uA,x(p) = pBxB + pFxF + pCxC + pMxM + pSxS

which is also a normal random variable with mean

Minimize 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS
Subject to

60xB + 40xF + 5xC + 70xM + 25xS ≥ 700

25xB + 45xF + 20xC + 29xM + 40xS ≥ 700

20xB + 40xF + 20xC + 30xM + 49xS ≥ 700

xB ≥ 0,xF ≥ 0, xC ≥ 0, xM ≥ 0, xS ≥ 0

xB, xF, xC, xM, xS are integers

(4)

αA,x = αBxB + αFxF + αCxC + αMxM + αSxS

Solving this integer program using an integer programming and variance
software yields the total cost � $44.81, and the solution is
x � (xB � 0, xF � 0, xC � 0, xM � 5, xS � 14). Note that this

σ 2A,x = σ 2Bx2B + σ 2Fx2F + σ 2Cx2C + σ 2Mx2M + σ 2Sx2Ssolution is exactly the result of rounding off the fractional
variables (recall that xM � 5.06, xS � 13.83) of the solution of

Obviously, it is too demanding to ask for a solution x toEq. (1) to the nearest integers.
satisfyThe solution for the integer program counterpart of linear

program Eq. (2) is the total cost � $45.32 and x � (xB � 0, uA,x ≥ 700 for all possible value of uA,xxF � 5, xC � 0, xM � 4, xS � 9). Note, however, that this solu-
tion cannot be obtained by rounding off the fractional vari-

In fact, this is impossible as uA,x is a normal distribution thatables of solution of Eq. (2) to the nearest integers.
ranges over all possible real values. However, one might soonIn continuing to solve the corresponding integer program
realize that what is really required practically is thatfor Eq. (3), we found that this time, however, our software

reported an infeasibility of the model, meaning there are no Pr(uA,x ≥ 700) ≈ 1
integer-valued variables that would satisfy all the con-
straints.

where Pr(uA,x � 700) denotes the probability of the event
(uA,x � 700). This is the basic idea behind what is called the

Probabilistic Model chance-constrained programming. In general, the chance-con-
strained approach is to require thatModeling many real-world problems is complicated by the fact

that the problem data cannot be known accurately for a vari-
ety of reasons. The simplest reason is due to measurement Pr(uA,x ≥ 700) ≥ lA, (5)
error. Other reasons could be that problem data are stochastic
in nature as in many engineering systems and that some data where lA is the desired probability that the nutrient con-

straint be satisfied and often called the acceptance level. Therepresent information about the uncertain future as in many
planning problems. Undoubtedly, the quality of solutions of a quantity lA is a parameter of the model chosen by the modeler

and reflects the modeler’s attitude towards how often the nu-model depends not only on the accuracy of functional relation-
ships involved but on the quality of the data in the model. As trient constraint should be satisfied. It should always be, of

course, less than 1. The value of 0.95 is often a reasonablean example let us revisit the diet problem. One might agree
that the amount of vitamin content in food is not a constant pick. It is essential to note that, from a computational point

of view, the uncertainty introduced by the randomness ofbut some sort of random variable. The percentage of the mini-
mum vitamin daily requirement per package of a food for an problem data is removed in the above formulation Eq. (5) pro-



MATHEMATICAL PROGRAMMING 423

vided that the distribution function of problem data is known The optimal solution turned out to consist of wheat flour, corn
and computable. meal, evaporated milk, peanut butter, lard, beef liver, cab-
Similarly, the chance constraints for vitamins B and C bage, potatoes, and spinach and does not seem to be tasty at

could be formulated as all. This is not surprising as taste is in fact not a concern in
the problem definition. It is not expected that people actually
choose their foods by solving this model. However, similar
models might be of practical use as a way for providing feed

Pr(uB,x ≥ 700) ≥ lB,

Pr(uC,x ≥ 700) ≥ lC,

for animals. More sophisticated and practical versions of the
diet problem taking into account color, taste, and variety asrespectively. Then based on the chance-constrained program-
well as the frequency of food consumption have been proposedming approach, a certainty or deterministic counterpart of the
by dieticians and nutritionists since the original diet problemearlier diet linear model Eq. (1) while the problem data have
was published.uncertainty involved is

CLASSIFICATION, MATHEMATICAL FORMULATIONS, AND
STRUCTURE OF OPTIMIZATION PROBLEMS

Although optimization problems arise in all areas of science
and engineering, at root they have a remarkably similar form.
In general, optimization problems are made up of three basic

Minimize 3.49xB + 2.99xF + 1.49xC + 1.99xM + 2.49xS
Subject to

Pr(uA,x ≥ 700) ≥ lA
Pr(uB,x ≥ 700) ≥ lB
Pr(uC,x ≥ 700) ≥ lC
xB ≥ 0, xF ≥ 0, xC ≥ 0, xM ≥ 0, xS ≥ 0

(6)

ingredients: an objective function that we want to minimize
or maximize; a set of decision variables that affect the valueIn general, an optimization model involving uncertainty
of the objective function; and a set of constraints that allowcan be converted to a deterministic nonlinear model, the ex-
the variables to take on certain values but exclude others. Inplicit algebraic form of which can sometimes be obtained
mathematical terms, the most general form of optimizationwithout much analytical effort. For instance, assume that the
problem may be expressed as follows [Mathematical programmeans and variances of the vitamin A contents of different
(MP)]:foods are given in Table 3.

Then with some analytical manipulation, the chance-con-
strained constraint for vitamin A

Pr(uA,x ≥ 700) ≥ lA

with acceptance level lA � 0.95 is equivalent to the following

Minimize f (x)

Subject to

hi(x) = 0, i = 1, . . ., p

gj (x) ≤ 0, j = 1, . . ., r

x ∈ D

(7)

nonlinear constraint:

where the decision variable x is a n-component vector x �
(x1, x2, . . ., xn); the objective function f , equation constraint

60xB + 40xF + 5xC + 70xM + 25xS − 1.645
(1.24x2B + 0.19x2F + 0.45x2C + 10.2x2M + 4.25x2S)

1/2 ≥ 700
functions hi and inequality constraint functions gj are real
functions; and D is the domain space where x can take values.Similar equivalent forms can be obtained for other vitamins.
A point x � D that satisfies all constraints is called a feasibleThus Eq. (6) can in fact be converted to a deterministic non-
point and the set consisting of all feasible points is called alinear program.
feasible set or feasible region. In the rest of the article, when
D is not specified it is always assumed that D � Rn, and inApplicability
such case the last inclusion x � D is omitted.

The diet problem is one of the first optimization problems The formulation [Eq. (7)] is a bit too general and further
studied back in the 1930s and 1940s and was first motivated classification is possible based on problem characteristics and
by the Army’s desire to meet the nutrient requirements while structure. The next section is an overview of classification of
minimizing the cost. The original diet problem is essentially optimization problems and their standard forms. The subse-
the same as the version given here and had 77 foods and 9 quent section is concerned with some classes of optimization
nutrients. It was first solved to optimality in the National Bu- problems that have special mathematical structure.
reau of Standards in 1947 using then the newly created sim-
plex method for the linear program. The solution process took

Classification and Formulationsnine clerks using hand-operated desk calculators 120 work
days although it can be solved now in a few seconds on a PC. Optimization problems are classified into subclasses based on

their intrinsic characteristics and the structure of problem
functions. Each subclass has its own standard form and has
been studied separately in order to develop the most effective
algorithms for solving this subclass of problems. Although
there is no unified taxonomy for optimization problems, the
following considerations seem to lead to a reasonable classifi-
cation scheme.

Table 3. Vitamin A Contents

Beef Fish Cheese Meatloaf Spaghetti

Mean 60% 40% 5% 70% 25%
Variance 1.24 0.19 0.45 10.2 4.25
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Constrainedness. Constrainedness means whether or not a Data Uncertainty. Most practical optimization models in-
clude some level of uncertainty about the data or functionalMP has constraints present. Unconstrained programs are
relationships involved. In many cases not much is lost by as-those without constraints and D � Rn. Constrained programs
suming that these ‘‘uncertain’’ quantities are deterministic ei-are those having at least one constraint.
ther because the level of uncertainty is low or because these
quantities play an insignificant role in the model. However,Nonlinearity. This features the nonlinearity of problem
there are cases where these uncertain quantities play a sub-functions. If any of the objective function f and constraints
stantial role in the analysis and cannot be ignored by thehi and gj of a MP is not linear, then it is said to be a nonlinear model builder. To deal with the uncertainty involved in opti-program. Otherwise, it is a linear program. A linear program
mization problems, stochastic programming has been devel-has to be constrained or it is trivial since in this case, either
oped. Stochastic programs are written in the forms of mathe-it has no solution or it has the whole domain Rn as its solu-
matical programs with the extension that the coefficients thattions. An unconstrained nonlinear program is referred to as
are not known with certainty are given a probabilistic repre-an unconstrained optimization program. Constrained nonlin-
sentation that could be a distribution function. To solve themear programs can be further classified according to their in-
with a computer, stochastic programs are in general con-

creasing nonlinearity as quadratic programs, bound-con- verted to some certainty equivalents. Much of the study of
strained programs, linearly constrained programs, and stochastic programs lies in the phase of uncertainty modeling
general nonlinear programs. and how to convert them to deterministic equivalents.

The considerations previously noted can be used to classifyDimensionality. Based on their dimensionality, optimiza-
optimization problems into subclasses and standard forms oftion problems are classified into one-dimensional and multidi-
these subclasses have been used to communicate the problemmensional problems. Unconstrained optimization problems in
structure to general optimization software packages. We shallwhich the decision variable x is a single-component vector are
list some of the standard forms as follows.called one-dimensional optimization problems and form the
A standard form of a linear program (LP) issimplest but nonetheless a very important subclass of optimi-

zation problems.

Integrality. Most discrete optimization problems impose in-
tegrality on decision variables. If the variables of a MP are
required to take integer values, it is called an integer pro-
gram. In such a case, we often write D � Zn, where Zn is the
set of integral n-dimensional vectors. If some of the variables
must be integers but the others can be real numbers, it is
called a mixed-integer program. In many models, the integer
variables are used to represent logical relationships and

Minimize c1x1 + c2x2 + · · · + cnxn

Subject to

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

(8)

therefore are constrained to equal either 0 or 1. Then we ob-
where the objective and all constraints are linear. In moretain a restricted 0-1 or binary integer program. In a binary
compact vector notation, this standard form becomesinteger program, we write D � Bn, where Bn is the set of n-

dimensional binary vectors. Although most integer programs
are NP-complete [see Nemhauser and Wolsey (1)], many of
them from the real world can be solved, at least close, to opti-
mality by exploiting problem-specific structures.

Minimize cT x

Subject to

Ax = b,

x ≥ 0

(9)

Size and Sparsity. The size of a MP is measured in terms of
Note that an inequality constraint such asthe number of variables (components) of x and the number of

constraints and is often, though not always, proportional to ai1x1 + ai2x2 + · · · + ainxn ≤ bi
the difficulty of solving the problem. Traditionally, mathemat-
ical programs are grouped into small-scale, intermediate- can be converted into an equivalent equality constraint below
scale, and large-scale problems. Today, with present comput- by introducing a slack variable xn�1

ing power small-scale, intermediate-scale, and large-scale lin-
ear programs usually mean having from a few to a thousand ai1x1 + ai2x2 + · · · + ainxn + xn+1 = bi, xn+1 ≥ 0

variables and constraints, a thousand to a few hundred thou-
Quadratic programs (QP) have linear constraints and qua-sands variables and constraints, and more than a million

dratic objective functions:variables and constraints, respectively. For the much harder
nonlinear programs, small scale, intermediate scale, and
large scale mean having from a few to a dozen variables and
constraints, a few hundred to a thousand variables and con-
straints, and more than a thousand to tens of thousands of
variables and constraints, respectively. Data sparsity is also
one of the measures of the problem complexity. For most real-

Minimize cT x + 1
2

xT Gx

Subject to

aT
i x = bi, i = 1, . . ., p

aT
j x ≤ bj, j = 1, . . ., r

(10)

world optimization problems, the sparsity increases as the
size gets large. where G is a symmetric matrix.
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The unconstrained optimization problem (UOP) is a nonlin- we shall always assume that the problem functions of interest
are continuous and smooth as most of them are in the realear program without constraints:
world. For problems involving nonsmooth functions, we sim-
ply comment that they do arise in practical situations and theMinimize f (x) (11)
study of them has in fact formed a branch of mathematical

When there are some simple bounds on the components of x, programming, called nonsmooth optimization [see Neittaan-
it is then called a bound-constrained problem (BCP) maki (2)]. In this subsection we shall present two classes of

optimization problems that have very desirable special struc-
ture, the convex program and least-square problem.

Convex Programs. Convexity is a very important structure

Minimize f (x)

Subject to

li ≤ x ≤ ui, i = 1, . . ., n
(12)

for mathematical programs. A set C in Rn is convex if the line
segment joining any two points in C is contained in C. A func-Problems with nonlinear objective and linear constraints
tion f defined over C is said to be a convex function if theare called linearly constrained nonlinear programs (LCNP)
following inequality holds for any two points x1 and x2 in C:

f (((λx1 + (1− λ)x2))) ≤ λ f (x1) + (1− λ) f (x2) for 0 ≤ λ ≤ 1

A function g defined over C is concave if and only if -g is con-
vex. A mathematical program is called a convex (concave) pro-

Minimize f (x)

Subject to

aT
i x = bi, i = 1, . . ., p

aT
j x ≤ bj, j = 1, . . ., r

(13)

gram if the feasible region is a convex set and the objective
function is a convex (concave) function. A fundamental prop-

If at least one of the constraints of a MP is nonlinear and erty of a convex program is that local solutions are also global
no specific structure can be detected, then it falls into the solutions. Note that a linear program is a convex program by
category of general nonlinear programs (NLPs), which has the definition. Detailed information on convexity can be found in
following form: Rockafellar (3).

Least-Square Problems. Least-square problems arise from
fitting mathematical models to data. Specifically, the assump-
tion is made that the functional relationship between the
variable x and function value y is

Minimize f (x)

Subject to

hi(x) = 0, i = 1, . . ., p

gj (x) ≤ 0, j = 1, , . . ., r

(14)

y = f (x, t)
These standard forms for continuous optimization prob-

lems readily extend to their corresponding integer programs where t � Rn is a vector of parameters that are to be deter-
by adding one additional constraint x � Zn for pure integer mined, and the form of f is known. Assume that data
programs, or x � Bn for binary integer programs, etc.
The general formulation of a stochastic program (SP) is as (xi, yi ), i = 1, . . ., m

follows:
have been collected, and we want to select the parameters t
in the model f (x, t) so that

f (xi, t) ∼= yi, i = 1, . . ., m

It makes sense to choose the ‘‘best’’ estimate of parameters t

Minimize E{ f (x, ξ )}
Subject to

E{hi(x, ξ )} = 0, i = 1, . . ., p

E{gj(x, ξ )} ≤ 0, j = 1, . . ., r

(15)

by solving
where � is a random vector and E is the expectation func-
tional. This model is rich enough to include a wide range of
applications, and in fact, has been further classified.

Minimize
t

m∑
i=1
[yi − f (xi, t)]2

The above taxonomy is not unique. For instance, a linear
program is also a quadratic program, which is also a nonlin- This unconstrained optimization problem is called a least-
ear program. In general, an optimization problem should be square problem. In some situations, it might be necessary for
put in the most restricted class for which it qualities. This the parameters t of a least-square problem to be subject to
helps in accurately communicating the problem structure to certain constraints. Least-square problems can be solved by
software used for solving the problem. specifically designed algorithms that take advantage of the

structure, namely, the objective is the sum of squares.
Structures of Optimization Problems

The mathematical structure of an optimization problem has APPLICATIONS AND PRACTICALITIES
implications for the existence and behavior of solutions, the
difficulty of solving the problem, and the speed of convergence The practical applications of mathematical programming are

incredibly vast, reaching into almost every activity in whichof algorithms. The basic mathematical properties of optimiza-
tion problems are continuity and smoothness. In this article numerical information is processed. To provide a comprehen-
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sive account of all the applications would therefore be impos- there is no universal applicable optimization software ex-
isting as of today, selecting the appropriate software that issible, but a selection of primary areas in engineering might

include the following. designed for solving the kind of problem in question is impor-
tant in this step. The book Optimization Software Guide by
Moré and Wright (9) published in 1993 provides information1. Operations management. Applications in this area are
on about 75 optimization software packages available thenoften related to allocation of scare resources to max-
covering many categories of optimization problems. The userimize some measure of profit, quality, efficiency, effec-
interface of most optimization software expects the user totiveness, etc. Other types of applications are the analy-
provide two kinds of information. The first kind is requiredsis and tuning of existing operations and development
and concerned with the problem description such as the alge-of production plans for multiproduct processes. Repre-
braic forms and coefficients of objective and constraint func-sentatives are airline crew scheduling problems [Hoff-
tions and the type of the problem. The second kind is usuallyman and Padberg (4)] and inventory control problems
optional and related to certain algorithmic controlling param-[Hillier and Lieberman (5)]. Applications of this sort are
eters that are associated with the implementation of the algo-often modeled by linear and integer programs. Planning
rithm. Since optimization algorithms involve many decisionsproblems concerning the future are usually handled by
that are inherently problem dependent, the controlling pa-the stochastic programming technique [Murray (6)].
rameters allow the user to tune the algorithm in order to2. Design of engineering systems. Applications in engi-
make it most effective for the problem being solved. To easeneering design range from the design of small systems
the use of software for the inexperienced or uninterested user,such as trusses [McCormick (7)] and oxygen supply sys-
optimization software tends to provide default settings fortems [Reklaitis, Ravindran, and Ragsdell (8)] to large
these parameters.systems such as aero-engine and bridges, from the de-
Step 3 consists of the validation of solutions found andsign of individual structural members to the design of

post-optimality analysis (often called sensitivity analysis [Fi-separate pieces of equipment to the preliminary design
acco (10)]). It is a fact of life that even a good optimizationof entire production facilities. Nonlinear programming
algorithm may claim that a solution is found when it is not.is often the choice of modeling device in engineering de-
One intrinsic reason is that most optimization algorithms aresign problems.
designed to find points that satisfy necessary conditions that3. Regression and data fitting. A common problem arising
do not guarantee optimality. What is worse is that the prob-in engineering model development is the need to deter-
lem model itself may be ill-posed. For ill-posed problem mod-mine the parameters of some semitheoretical model
els, numerical errors such as round-off errors might drive thegiven a set of experimental data. The regression and
computed solution far away from the real one, and in suchdata fitting problems can be transformed to nonlinear
case model modification and data refinement are necessary.optimization problems.
There have been some serious efforts to define standard

input formats (SIFs) for describing optimization problems ofIt should be noted that in considering the application of opti-
certain category, for example, the MPS format [see Nazarethmization methods in design and operations, the optimization
(11)] that has become the de facto input format for linear andstep is but one step in the overall process of arriving at a good
integer programs, the SMPS format proposed by Birge et al.design or an efficient operation. As a powerful tool, optimiza-
(12) as a standard input format for multiperiod stochastic lin-tion technique has to be well understood by the user in order
ear programs, the LANCELOT specification file developed byto be employed effectively.
Conn, Gould, and Toint (13), and the MINOS specification file

The process of implementing an optimization application used by MINOS [Murtagh and Saunders (14)] for general
generally consists of the following three major steps: nonlinear programs. These SIFs tend to be very specific and

lengthy and are easy to be understood by computer programs
1. Problem definition and model development. but hard to generate and costly to maintain by humans. To
2. Use of software to solve the model. get around this difficulty, algebraic modeling languages for
3. Assessment of the result. mathematical programming, for example, the powerful AMPL

developed by Fourer, Gay, and Kernighan (15), began to surge
in the recent years. They provide computer-readable equiva-These steps might have to be repeated several times until a
lents of notation such as xi � yi, �n

j�1 aijxj � bi, i � S, etc., thatdesirable result is obtained. In what follows, we shall com-
are commonly seen in algebra and calculus and allow the opti-ment on each of the three steps.
mization modeler to use traditional mathematical notation toIn step 1, several decisions have to be made, including de-
describe objective and constraint functions. These algebraicfining the decision variables, creation of a single criterion (or
forms of problem description will then be converted by com-objective) function, determination of the function forms and
puter to formats that are understood by optimization algo-constraints representing the underlying cause and effect rela-
rithms. The use of modeling language has made optimizationtionships among the variables, collection and quantification
model prototyping and development much easier and less er-of the data involved, etc.
ror-prone than before.In step 2, the appropriate optimization software needs to

be chosen, information about the problem must be communi-
cated to the software through its user interface, and the solu- BASIC THEORY
tion found needs to be interpreted and understood in the con-
text of the problem domain. Since most optimization packages The theory of mathematical programming is incredibly rich.

Specialized theories and algorithms have been developed forare developed for solving a particular problem category and
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all problem categories. In the subject of linear programming tions. For simplicity of presentation, we always assume in the
article that the problem functions in question have the neces-alone, there have been thousands of research papers pub-

lished and dozens of textbooks available. In this section we sary smoothness required in the context.
shall first give a brief overview of different types of optimal
solutions and a fundamental existence result. Since it is im- Optimality Conditions. As we can see from the definition of
possible to expose even the very basic theoretical results for optimal solutions, optimality of a local solution point is de-
all problem categories here, we have decided to focus on two fined by its relationship with other feasible points in contrast
important and heavily used problem categories, namely, the to, say, seeking a point where f (x) � 0. The verification of
smooth nonlinear programming problem and integer linear optimality directly by the definition cannot be carried out by
programming problem. computers since it would be necessary to evaluate infinitely
A general deterministic mathematical programming prob- many neighboring feasible points of a proposed local solution.

lem can be written in the following format [General mathe- Fortunately, if the problem functions are smooth enough, it is
matical program (GMP)]: possible to derive some practical optimality conditions that

can characterize local solutions and involve analytical infor-
mation only at a proposed solution point.
Optimality conditions have fundamental importance in op-

Minimize f (x)

Subject to x ∈ �
(16)

timization theory and algorithms since they are essential in
understanding solution behavior conceptually and optimiza-where f is a real function and � � Rn is the feasible region.
tion algorithms are often motivated by attempts to find pointsWe shall briefly introduce in rigorous terms what we mean
satisfying them. Optimality conditions are of two types: nec-by an optimal solution of Eq. 16, and then present an exis-
essary conditions, which must hold at a local solution, andtence result.
sufficient conditions, conditions that, if satisfied at a feasible
point, guarantee that point to be a local solution. To explainType of Solutions
these seemingly abstract conditions, we shall begin with a

In general, there are several kinds of optimal solutions to Eq. simple case.
16. A point x0 � � is said to be a strict local (optimal) solution
or a weak local (optimal) solution if there exists a neighbor-

Optimality Conditions in the Unconstrained Case. We shallhood N of x0 such that f (x0) � f (x) or f (x0) � f (x) for all x0 �
consider the unconstrained optimization problem:x � � � N. We say that x0 is a strict global (optimal) solution

if f (x0) � f (x) for all x0 � x � �, and a weak global (optimal) Minimize f (x)
solution if f (x0) � f (x) for all x0 � x � �. A global solution is
also a local solution by definition but not vice versa. For some

The key to the derivation of optimality conditions is to usemathematical programs with special structure, for example,
models that are simple and easy to manipulate to approxi-convex programs, a local solution is also a global solution. For
mate complicated ones. The mathematical ground of the ap-general nonlinear programs, however, a local solution might
proximation is the basic Taylor-series expansion of problemnot be a global solution, and finding a local solution is usually
functions at a point of interest. When f is once differentiablemuch easier than a global one.
at a point x0, it can be expanded in its Taylor series about x0
up to first-order, which gives

Existence of Solutions

A mathematical program may or may not have a global solu- f (x) = f (x0) + ∇f (x0)
T(x − x0) + o(‖x − x0‖)

tion. When there does not exist a global solution, it could be
due to the fact that the program is infeasible, that is, the and when f is twice differentiable, the Taylor series up to sec-
feasible set is empty, or that the program is unbounded, that ond-order is
is, the feasible set is not empty but the objective function
value is unbounded from below in the feasible set. A basic
result of a mathematical program is the well-known theorem
of Weierstrass, which states that if the objective function f is

f (x) = f (x0) + ∇f (x0)
T(x − x0) + 1

2
(x − x0)

T∇2f (x0)(x − x0)

+ o(‖x − x0‖2)
continuous and the feasible set � is nonempty and compact,
then a global solution exists. Another technique often used in the derivation of opti-
The rest of this section will be devoted to two typical mality conditions is to consider movement away from a pro-

classes of optimization problems, the smooth nonlinear pro- posed solution point in some given direction or curve that falls
gramming problems in next subsection and integer linear pro- in the feasible region and to examine the behavior of problem
gramming problems in the subsequent subsection. functions along this direction or curve. Given a direction d,

we say that it is a descent or ascent direction of f at x0 if
Smooth Nonlinear Programming Problems

∇f (x0)
Td < 0 or ∇f (x0)

Td > 0The emphasis of this subsection is the optimality conditions of
solutions of optimization problems. We shall confine ourselves

And we say that f has negative or positive curvature in d atmainly to the consideration of local solutions as they are sim-
x0 ifpler and more fundamental than global solutions. In fact, for

nonlinear optimization problems local solutions are often,
though not always, satisfactory enough in practical situa- dT∇2f (x0)d < 0 or dT∇2f (x0)d > 0
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Consider the following Taylor series of f along d at x0: Better approximations of � around x0 than F(x0) can be
obtained by using higher-order approximations to the prob-
lem functions. For example, by replacing the constraint func-
tions with their respective second-order approximations

f (x0 + td) = f (x0) + t∇f (x0)
Td + 1

2
t2dT∇2f (x0)d + o(t2)

yields a better one:
We can see that whether the sign of 	f (x0)Td is positive or
negative (or equivalently, whether d is a descent or ascent
direction) determines whether the value of f increases or de-
creases initially when x moves away from x0 along d. When
	f (x0)Td � 0, the curvature of f in d at x0, that is, dT	2f (x0)d,
governs the initial behavior of f at x0 along d. This observa-
tion leads to the following optimality conditions.

First-Order Necessary Conditions. If x0 is a local solution,

F2(x0) := {x ∈ Rn: hi(x0) + ∇hi(x0)
T(x − x0)

+ 1
2

(x − x0)
T∇2hi(x0)(x − x0) = 0, i = 1, . . ., p

gj (x0) + ∇gj (x0)
T(x − x0)

+ 1
2

(x − x0)
T∇2gj (x0)(x − x0) ≤ 0, j ∈ A(x0)}

(18)then 	f (x0)Td � 0 for all d, or equivalently, 	f (x0)� 0.
Second-Order Necessary Conditions. If x0 is a local solu- There are also ways to approximate the nonlinear program

tion, then Eq. (14) at x0. Two readily available approximations to Eq.
(14) making the use of the approximations F(x0) and F 2(x0) are1. 	f (x0) � 0 the following: First-Order Approximation to NLP

2. dT	2f (x0)d � 0 for all d, that is, 	2f (x0) is positive semi-
definite Minimize f 1(x) := f (x0) + ∇f (x0)

T (x − x0)

Subject to x ∈ F(x0)
(19)

Second-Order Sufficient Conditions. If a point x0 satisfies
	f (x0) � 0 and dT	2f (x0)d 
 0 for all d � 0, that is 	2f (x0) is and Second-Order Approximation to NLP
positive definite, then x0 is a local solution.

Approximations to the Feasible Region and Nonlinear Pro-
grams. Having derived the optimality conditions in the un-
constrained case, we now turn our attention to the con-
strained nonlinear program Eq. (14), where the feasible

Minimize f 2(x) := f (x0) + ∇f (x0)
T (x − x0)

+ 1
2

(x − x0)
T∇2 f (x0)(x − x0)

Subject to x ∈ F2(x0)

(20)

region � is defined by
Necessary Optimality Conditions of Nonlinear Programs. Intu-

itively, if a point x0 is a local location to Eq. (14), then along
any feasible smooth curve c(t): [0, 1] � Rn emanating from

� = {x ∈ Rn: hi(x) = 0, i = 1, . . ., p,

gj (x) ≤ 0, j = 1, . . ., r}
x0, that is, c(0) � x0 and c(t) � � for any t � [0, 1], the objec-
tive function f cannot decrease initially, which in mathemati-Note first that at a point x0 of interest there are two types of cal terms means thatinequality constrains: active constraints if gj(x0) � 0, inactive

constraints otherwise. For a continuous inactive inequality f ′
+(((c(0)))) ≥ 0 (21)

constraint gj, if gj(x0) � 0, then gj stays that way at least lo-
cally, that is, gj(x) � 0 for x near x0 by virtue of continuity. since otherwise it would contradict the assumption that x0 isTherefore, the inequality constraint gj(x) � 0 is always satis- a local solution. Without getting into detailed mathematics,
fied for x near x0 and so can be ignored locally. Thus it is of we simply say that Eq. (21) leads to the following.
some importance to know which inequality constraint is ac- First-Order Necessary Conditions. If x0 is a local solution totive and which is not at a point of interest. Let A(x) denote Eq. (14), and a constraint qualification holds at x0, then wethe index set of active constraints at x. have
Given a feasible point x0, it appears that linearizing the

constraint functions by replacing them with their respective ∇f (x0)
Td ≥ 0 for any d = (x − x0) such that x ∈ F(x0) (22)

first-order approximations would give a good approximation
to � around x0: These necessary conditions are intuitive, but inconvenient

to manipulate. Among the equivalents of Eq. (22), the follow-
ing system is important:F(x0) := {x ∈ Rn: hi(x0) + ∇hi(x0)

T(x − x0) = 0, i = 1, . . ., p

gj (x0) + ∇gj (x0)
T(x − x0) ≤ 0, j ∈ A(x0)}

(17) ∇L(x0, u,v) = ∇f (x0) +
p∑

i=1
ui∇hi(x0) +

r∑
j=1

vj∇gj (x0) = 0 (23)

where the inactive constraints are ignored, and hi(x0) � 0 for
hi(x0) = 0, i = 1, . . ., p (24)i � 1, . . ., p, and gj(x0) � 0 for j � A(x0) by the feasibility of

x0. However, this is not always true on account of the fact that gj (x0) ≤ 0, j = 1, . . ., r (25)
the boundary of the feasible region may be curved. To ensure
the geometry of � around x0 is adequately captured by F(x0), vjg j (x0) = 0, vj ≥ 0, j = 1, . . ., r (26)
a constraint qualification is required at x0. A standard con-
straint qualification requires that the set �	hi(x0), i � 1, . . ., where L(x, u, v) � f (x) � �p

i�1 uihi(x) � �r
j�1 vjgj(x) is the famous

Lagrange function, ui’s and vj’s are Lagrange multipliers, andp; 	gj(x0), j � A(x0)� be linearly independent.
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Eqs. (23)–(26) are called the Karush-Kuhn-Tucker (KKT) con- then x0 is a strict local solution. In such a case, we say that
(x0, u, v) satisfies the second-order sufficient conditions.ditions, which have a fundamental importance in optimiza-

tion theory. Note that Eqs. (24) and inequalities (25) are actu-
ally the feasibility requirement, and Eq. (26) is the so-called Integer Linear Programming Problems
complementarity condition. A triple (x, u, v) satisfying Eqs.

In this subsection we shall consider the pure integer linear(23)–(26) is sometimes referred to as a KKT point and x as a
programstationary point.

The complementarity condition Eq. (26) might look a bit
strange at the first glimpse. It states that both vj and gj(x0)
cannot be nonzero, or equivalently that inactive constraints

Minimize cT x

Subject to x ∈ S = {x ∈ Zn:Ax ≤ b, x ≥ 0} (29)

have a zero multiplier. Note that when gj is active, vj could be
Let P denote the polyhedron �x � Rn: Ax � b, x � 0� and zIPeither positive (in such a case gj is said to be strongly active)
the optimal value of Eq. (29). Then the feasible set can beor zero, the intermediate state between being strongly active
rewritten as S � P � Zn. For simplicity we shall always as-and inactive. If there is no such j that gj(x0) � vj � 0, then
sume P is bounded and thus S consists of finitely manystrict complementarity is said to hold, and in such a case,
points. The focus of this subsection is the relationship be-dropping all the inactive constraints and forcing all strongly
tween an integer program and its relaxations. The basic con-active constraints to equation constraints will not change the
cepts and results covered here are those, such as valid ine-behavior of the KKT system locally.
qualities and facets of polyhedron, that are concerned withSecond- or higher-order necessary conditions are also de-
using continuous objects to describe the discrete feasible setrivable by taking into account of second- or higher-order de-
S and how to generate them.rivative information when available and will not be presented
We should stress that for integer programs only global so-here as they are much less useful than the KKT conditions

lutions are of interest in general. The primary way of estab-in practice.
lishing the global optimality of a feasible solution x is to com-
pare cTx with zIP to check if cTx � zIP � 0 or more practicallySufficient Optimality Conditions for General Nonlinear Pro-
cTx � zIP � � for some small � 
 0. In the latter case, x is agrams. For convex programs, the first-order necessary condi-
near-optimal solution within the � threshold. One might won-tions Eq. (22) are also sufficient for optimality, but for general
der how the previous verification of optimality can be carriednonconvex nonlinear programs, a gap exists between the suf-
out numerically as zIP is usually unknown in the solution pro-ficiency and necessity of Eq. (22). Note that, however, suffi-
cess. The trick is to establish a close enough lower bound wcient conditions can be obtained by strengthening Eq. (22) by
on zIP since cTx � w � � would imply cTx � zIP � cTx � w � �.replacing � with 
.
A typical technique for finding a lower bound is to use relax-First-Order Sufficient Conditions. Assume x0 is a feasible
ation. The idea is to replace Eq. (29) by an easier problempoint for Eq. (14). If we have
that can be solved and whose optimal value is then used as a
lower bound. Frequently, it is necessary to refine these prob-∇ f (x0)

Td > 0 for any d = (x − x0) such that x ∈ F(x0) (27)
lems iteratively to obtain successively tighter bounds.

then x0 is a strict local solution.
Relaxation. A relaxation of Eq. (29) is any optimizationDenote F�(x0) � �x � x0: 	f (x0)T(x � x0) � 0�. Then, Eq. (27)

problemcan be formulated as F(x0) � F�(x0) � 0�. Unfortunately, first-
order sufficient conditions Eq. (27) are rather weak since in
general F(x0) � F�(x0) is not empty and in such a case first-
order derivative information is not sufficient to characterize

Minimize zRP(x)

Subject to x ∈ SRP
the optimality. To complement this, second-order sufficient
conditions have been developed that will be presented later. where the subscript RP stands for Relaxed Problem, with the
Assume that x0 is a stationary point and x � F 2(x0). Multi- following two properties:

plying the equations in Eq. (18) by ui and the inequalities in
Eq. (18) by vj and adding them to the objective function of Eq. 1. S � SRP

(20), we then obtain an interesting inequality 2. cTx � zRP(x) for x � S

If the above relaxation has a solution x* with optimal value
zRP, obviously we have zIP � zRP, that is, zRP is a lower bound
of zIP. Furthermore, if x* happens to be feasible for the origi-

f 2(x) ≥L(x0, u, v) + ∇L(x0, u, v)T (x − x0)

+ 1
2

(x − x0)
T∇2L(x0, u,v)(x − x0)

nal integer program, then it is also a solution of the original
Using the above inequality and the facts that f (x) � f 2(x) � integer program.
o(�x � x0�2) and that L(x0, u, v) � f (x0) and 	L(x0, u, v) � 0, we An obvious way to obtain a relaxation is to satisfy property
can conclude the following. 1 by dropping one or more of the constraints that define S

Second-Order Sufficient Conditions. Assume x0 is a station- and to satisfy property 2 by setting zRP(x) � cTx. The linear
ary point. If there exist Lagrange multipliers u and v such programming relaxation of Eq. (29) is obtained by deleting the
that for every x � F(x0) � F�(x0) we have integrality constraints x � Zn and thus is given by

(x − x0)
T∇2L(x0, u, v)(x − x0) > 0 (28) zLP = Minimize {cT x: x ∈ P}
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Solving this linear program results in a lower bound zLP of 1. Choose a nonnegative vector u � (u1, . . ., un) � 0, and
take a linear combination of the constraints withzIP. Unfortunately, this lower bound is usually not good

enough for difficult integer programs and successive improve- weights ui for all i and obtain the following valid in-
equalityment is often needed.

Since the solutions of a linear program lie on its vertices,
it is not hard to see that extending the feasible set S to its
convex hull will result in a relaxation that is equivalent to

∑
j∈N

(uaj )xj ≤ ub

Eq. (29),
2. Since x � 0 implies �j�N (uaj � uaj)xj � 0, subtracting
it from the left-hand side of the preceding inequality
yields the valid inequality

Minimize cT x

Subject to x ∈ conv(S)
(30)

where conv(S) is the convex hull of S, that is, the set of points
∑
j∈N

(	uaj

)
xj ≤ ub

that can be written as a convex combination of points in S,
that is, 3. Since x � Zn implies �j�N (uaj)xj is an integer, we in-

voke integrality to round down the right-hand side of
the above inequality and obtain the valid inequality∑

j∈N

(	uaj

)
xj ≤ 	ub
 (32)

conv(S) =
{

x: x =
∑
i=1

λix
i,

m∑
i=1

λi = 1, λi ≥ 0,

where x1, . . ., xm is any set of points in S

}

The valid inequality Eq. (32) can be added to Ax � b, and
then the procedure can be repeated by combining generatedThis observation, however, does not help us much since it is
inequalities and/or original ones. It can be proved that by re-in general expensive to find a linear inequality description of
peating the CG procedure a finite number of times, all of theconv(S). The focus has largely been on the representation and
valid inequalities for S can be generated.construction of a weaker relaxation
In fact, some of the maximal valid inequalities are neces-

sary in the description of conv(S) and others are not and thus
can be dropped. To find out which are necessary and which

Minimize cT x

Subject to x ∈ Q
(31)

are not, the following notion from the theory of polyhedra is
useful.where Q is a polyhedron satisfying conv(S) � Q � P such that

the linear program Eq. (31) gives an optimal or near-optimal
Facets of Polyhedron. If �Tx � �0 is a valid inequality forsolution to Eq. (29). To this end, the following concept is

the polyhedron conv(S) and F � �x � conv(S): �Tx � �0�, F isuseful.
called a face of conv(S), and we say that �Tx � �0 represents
F. If a face F � conv(S), then dim(F), the dimension of F,Valid Inequality. An inequality �Tx � �0, where � is a vector,
must be less than dim(conv(S)). A face F of conv(S) is a facetis valid for S, or equivalently conv(S), if it is satisfied by all
of conv(S) if dim(F) � dim(conv(S)) � 1.points in S. Given two valid inequalities �Tx � �0 and �Tx �
It can be shown that for each facet F of conv(S), one of the�0 that are not scalar multiples of each other, we say that inequalities representing F is necessary in the description of�Tx � �0 is stronger than or dominates �Tx � �0 if �x: �Tx �

conv(S). For this reason techniques for finding facets are im-�0, x � 0� � �x �Tx � �0, x � 0�. A maximal valid inequality of
portant in solving integer programs effectively. General meth-S is the one that is not dominated by any other valid inequal-
ods for generating all valid inequalities such as the CG proce-ity of S.
dure can be quite inefficient in obtaining facets. The best-Obviously the set of maximal valid inequalities for S de-
known technique for finding facet-defining inequalities of in-scribes conv(S). Thus it would be of considerable interest to
teger programs is to make the use of problem structure andknow how the valid inequalities, especially, maximal valid in-
is quite problem-specific. It is indeed more of an art than aequalities can be generated.
formal methodology. Considerable efforts have been devoted
to the determination of families of facet-defining inequalities

Generating Valid Inequalities. Note that conv(S) � P since or strong valid inequalities for specific problem classes, and
S � P � Zn � P, and in general conv(S) � P. So there might there are many interesting problems for which facet-defining
exist valid inequalities for S that are not valid for P. There- inequalities or strong valid inequalities have been obtained.
fore, the valid inequalities for S cannot be derived only from Interested readers may consult Nemhauser and Wolsey (1) for
information about P and have to be obtained using the addi- more information.
tional integrality constraint S � Zn. There are several general
methods for generating valid inequalities and the one we
shall present here is the so-called Chvatal-Gomory (GC) ALGORITHMS
rounding method. This approach is based on the simple prin-
ciple that if a is an integer and a � b, then a � b, where An algorithm is in our context a numerical procedure for

starting with given initial conditions and calculating a se-b is the largest integer less than or equal to b. For S � �x:
Ax � b, x � 0� � Zn, where A � (a1, a2, . . ., an) and N � (1, quence of steps or iterations until some stopping rule is satis-

fied. A variety of algorithms have been developed for each. . ., n), the method is a three-step procedure:
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class of optimization problems. Similar to what we did in the We shall first consider the unconstrained optimization
problem, which is central to the development of optimizationsection entitled ‘‘Basic Theory,’’ to give the reader a sense of

what optimization algorithms look like we shall mainly focus algorithm. Constrained optimization algorithms are often ex-
tensions of unconstrained ones.our attention on two typical classes of optimization problems

discussed in the previous section, the smooth nonlinear pro-
Newton’s Method. The underlying principle in most itera-gram and integer linear program, and discuss algorithms for

tive algorithms for smooth optimization is to build, at eachsolving these two problem classes. The following subsection
iteration, a local model of the problem that is valid near thecovers the Newton-type methods for solving smooth nonlinear
current solution estimate. The next, often improved, solutionprograms, while in the subsection thereafter, two general
estimate is obtained at least in part from solving this localmethods for solving integer programs, the branch-and-bound
model problem. At the current iteration, the basic Newtonmethod and cutting-plane method, will be presented.
method solves the local model that is obtained by replacing

Solving Smooth Nonlinear Programming Problems the original function with its quadratic approximation around
the current iterate xkAlmost all algorithms for smooth optimization are iterative in

the sense that they generate a series of points, each point
being calculated on the basis of the points preceding it. An Minimize

s
qk(s) := f (xk) + ∇f (xk )Ts + 1

2
sT∇2f (xk)s

iterative algorithm is initiated by specifying a starting point.
If an algorithm is guaranteed to generate a sequence of points where s � x � xk. When the Hessian matrix 	2f (xk) is positive
converging to a local solution for starting points that are suf- definite, qk has a unique minimizer that can be obtained by
ficiently close to the solution, then this algorithm is said to solving the linear system 	qk(s) � 0, that is,
be locally convergent. If the generated sequence of points is
guaranteed to converge to a local solution for arbitrary start- ∇f (xk) + ∇2f (xk)sk = 0 or sk = −∇2f (xk)−1∇f (xk)

ing points, the algorithm is then said to be globally conver-
The next iterate is then xk�1 � xk � sk. Convergence is guaran-gent. The focus of this subsection is Newton-type methods. We
teed if the starting point x0 is sufficiently close to a local solu-shall begin with the basic Newton method for solving uncon-
tion. The most notable feature of Newton’s method is that thestrained optimization problems, which is known to be only
rate of convergence is quadratic.locally convergent, and then briefly review how we can global-

ize Newton’s method so that it converges for any starting
Globalization of Newton’s Method. When the starting pointpoint. Finally, a generalization of the basic Newton method

x0 is far away from a local solution, the iterates generated byto constrained problems is presented. Interestingly enough, it
the basic Newton method may not even converge. A commonhas been noticed that almost all iterative algorithms for
approach is to use a line search to globalize the basic Newtonsmooth nonlinear programming that perform exceptionally
method so that it converges from any starting point.well in practice are some variants of Newton’s method.
Given a descent search direction dk, a line-search methodBefore introducing Newton’s method, we must stress that

generates the iterates by setting xk�1 � xk � �kdk, where �k isan algorithm being theoretically convergent does not mean it
chosen so that f (xk�1) � f (xk). A practical criterion for a suit-always converges to a solution in a practically allowed time
able �k is to require �k to satisfy the so-called sufficient de-period. The consensus in nonlinear optimization is that to be
crease conditionconsidered as practically convergent, an algorithm has to be

at least superlinearly convergent, a notion related to the
speed of convergence, which we shall briefly present next. f (xk + αkdk) ≤ f (xk ) + µαk∇f (xk)Tdk

where � is a constant with 0 � � � 1.Speed of Convergence. Assume that the sequence �xk� gen-
Most line-search versions of the basic Newton method gen-erated by an algorithm converges to x*. If we have

erate the search direction dk � sk � �	
2f (xk)�1	f (xk) by occa-

sionally replacing the Hessian matrix 	2f (xk) with 	2f (xk) �
Ek such that the resultant matrix is sufficiently positive defi-

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = β < 1

nite. This guarantees that the search direction sk defined by
the sequence is said to converge linearly to x* and the rate of Newton’s method is a descent direction since 	f (xk)Tsk �
convergence is linear. The case for which � � 0 is referred to �	f (xk)T[	2f (xk) � Ek]�1	f (xk) � 0.
as superlinear convergence. If

Constrained Optimization. Many techniques have been pro-
posed for solving the constrained nonlinear program Eq. (14).
One of them is the sequential quadratic programming (SQP)

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 = β > 0

method, which is a generalization of Newton’s method for un-
then the rate of convergence is quadratic. The algorithm is constrained optimization. At the current solution estimate,
said to be linear, superlinear, or quadratic, according to the this method uses a linearly constrained quadratic local model
convergence rate of the sequence it generates. It is easy to see to approximate the original problem. In its purest form, re-
that quadratic convergence is faster than superlinear conver- placing the objective function with its quadratic approxima-
gence, which is faster than linear convergence. A rich theory tion
on speed of convergence, or convergence rates, for measuring
the effectiveness of algorithms has been developed [see Or-
tega and Rheinboldt (16)].

qk(s) := f (xk) + ∇f (xk )Ts + 1
2

sT∇2L(xk, uk, vk)s
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and the constraint functions with their respective linear ap- solving integer programs do exist, though they often need to
be customized in order to be most effective. We shall presentproximations, SQP solves
two general methodologies for solving integer programs,
namely, the branch-and-bound method and cutting-plane
method. For simplicity, we shall confine ourselves to the inte-
ger linear programming problem.

Branch-and-Bound Method. The branch-and-bound method

Minimize qk(s)

Subject to

hi(xk) + ∇hi(xk)Ts = 0, i = 1, . . ., p

gj (xk) + ∇gj (xk)Ts ≤ 0, j = 1, . . ., r
solves an integer program by solving a series of related con-
tinuous programs in a systematic way. The basic idea behindwhere s � x � xk, and sets the new solution estimate xk�1 �
it is the familiar divide and conquer. In other words, if it isxk � sk. As a variant of Newton’s method, SQP inherits excel-
too hard to optimize over the feasible set S, perhaps the prob-lent local convergence property. Given a KKT point (x*, u*,
lem can be solved by optimizing over smaller sets and thenv*) satisfying the second-order sufficient conditions, when
putting the results together. More precisely, we can partitionSQP starts at a point x0 sufficiently close to x* and all the
the feasible set S into a set of subsets �Si: i � 1, . . ., k� suchLagrange multiplier estimates (uk, vk) remain sufficiently
that �k

i�1Si � S and Si � Sj � 0� for i, j � 1, . . ., k, i � j, andclose to (u*, v*), the sequence it generates converges to x* at
solve the problem over each of the subsets, i.e., solve (IPi)a quadratic rate. One complexity of SQP is that the Lagrange

multiplier estimates are needed to set up the second-order
term in qk and so must be updated from iteration to iteration.
A direct treatment is simply to use the optimal multipliers

Minimize cT x

Subject to x ∈ Si

for the quadratic local problem at the previous iteration. The
interested reader may consult Fletcher (17) for details. for i � 1, . . ., k. Assume their respective solutions are xi with
Similar to the basic Newton method for unconstrained op- optimal value zi

IP for i � 1, . . ., k. Then we can easily put the
timization, the SQP method in its pure form given earlier is results together since it is obvious that the optimal value of
not guaranteed to converge for a starting point that is far the original problem zIP � mini�1,...,k zi

IP. Let j be the one such
away from a local location. Again, a line search along the that zIP � zj

IP. Then xj is a solution of the original problem.
search direction sk can be used to globalize SQP. Of course, Note that this scheme can be applied recursively, that is, if a
we now want the next iterate not only to decrease the value particular subproblem IPi cannot be easily solved, the divide-
of the objective function but also to come closer to the feasible and-conquer process can be carried out for the subproblem
region. But often these two aims conflict and so it is necessary IPi, meaning the subset Si can be further partitioned and the
to weight their relative importance and consider their joint problem can be solved over the furthered partitioned subsets.
effect in reaching optimality. One commonly used technique In general, partitioning is done by imposing additional
to achieve this is to use a merit or penalty function to measure bounds on certain components of x. For instance, the original
the closeness of a point to optimality problem can be partitioned into two subproblems by

‘‘branching’’ on some component, say x1, yielding IP1

m(x; c) := f (x) +
p∑

i=1
ci|hi(x)| +

r∑
j=1

cp+ jmax (((gj (x),0)))
Minimize cT x

Subject to x ∈ S, x1 ≤ 10
where ck 
 0 are penalty parameters. Then a line search aim-
ing at achieving sufficient decrease of the merit function can and IP2
be used to choose an �k for xk�1 � xk � �kdk, where dk � sk.
The interested reader might consult Fletcher (17) for more in-
formation.

Minimize cT x

Subject to x ∈ S, x1 ≥ 10+ 1
Solving Integer Linear Programming Problems

It is possible to repeat the branching process on IP1 and IP2,
and again on the resulting problems. However, the total num-In the section titled ‘‘Integer Linear Programming Problems’’

we have addressed some basic properties of integer programs ber of resultant subproblems increases exponentially with the
number of levels of branching done, and it is unrealistic toand discussed the relationship between an integer program

and its relaxations and how to generate valid inequalities to solve all these subproblems when the total gets too high. The
branch-and-bound method takes advantage of the fact thatimprove the relaxations. In general, integer programs are

much more complicated and expensive to solve than their con- many of these subproblems can actually be ‘‘pruned’’ based on
information about bounds on the optimal value. Specifically,tinuous relaxations on account of the discrete nature of the

variables. A simple-minded way to deal with an integer pro- since the subproblems are solved sequentially, at any stage
we can keep track of the best feasible solution obtained so fargram is to form its corresponding continuous relaxation by

dropping the integrality constraint, and then to solve the re- and its objective function value, which we denote by xIP and
zIP, respectively. Assume IPi is the current subproblem we arelaxation and round off the solution to its nearby integers in

certain manner. In fact, this is how many integer programs dealing with. We form a continuous relaxation RPi of IPi,
solve it, and obtain its global solution xi

R with optimal valueare handled in practice. It is important to realize that there
is no guarantee that a good solution can be obtained in this zi

R. Now if xi
R is feasible for IPi, it is then a solution of IPi and

so IPi is already solved and can be pruned. If zi
R � zIP, xi

R isway, even by examining all integer points in some neighbor-
hood of the solution of a relaxation. General techniques for then a better feasible solution than xIP. Thus, xIP and zIP
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should be updated by setting xIP � xi
R and zIP � zi

R. Otherwise, following: Dantzig (20) in linear programming; Bazaraa, Jar-
xi
R is not better than xIP and so can be ignored. If xi

R is not vis, and Sherali (21) in linear programs and network flows;
feasible for IPi, we also compare zi

R with zIP. If zi
R � zIP, we Luenberger (22) in linear and nonlinear programming;

then conclude that there is no hope of finding a better solution McCormick (7) and Fletcher (17) in nonlinear programming;
than xIP by solving subproblem IPi. The reason is that zi

R is a Fiacco (10) in sensitivity analysis; Gill, Murray, and Wright
lower bound of the optimal value of IPi due to the fact that (23) in numerical methods and implementation; Rosen (24)
RPi is a relaxation of IPi and zIP is already as good as zi

R. Thus, in large-scale optimization; Fiacco and McCormick (25) and
in such a case IPi can be pruned. However, in the case for Megiddo (26) in interior point and related methods; Nem-
which zi

R � zIP, we cannot rule out the possibility that IPi could hauser and Wolsey (1) and Schrijver (27) in integer program-
have a solution that is better than zIP, and so the branching ming; Ahuja, Magnanti, and Orlin (28) in network flows; Hall
process needs to be carried out further on IPi. and Wallace (29) in stochastic programming; Neittaanmaki
Many strategies are known in the implementation of the (2) in nonsmooth optimization; Anandalingam (30) in multi-

branch-and-bound method with respect to how to branch a level programming; Sawaragi, Nakayama and Tanino (31) in
subproblem, how to pick the next subproblem to consider multiobjective optimization; Moré and Wright (9) in evalua-
when the current subproblem is pruned, etc. For the inter- tion and comparison of optimization software packages; Hock-
ested reader, Nemhauser and Wolsey (1) is a good book for ing (32) in optimal control. The introductory books in opera-
details. It is easy to see that the quality of produced bounds tions research by Hillier and Lieberman (5), Winston (33) and
(zIP and zi

R) is crucial in pruning out subproblems effectively Winston and Albright (34) also cover many branches of math-
and in fact the primary factor in the efficiency of a branch- ematical programming. TheMathematical Programming Soci-
and-bound algorithm. ety has published several volumes of selective tutorial lec-

tures given by leading experts covering many branches of
mathematical programming at its triennial internationalCutting-Plane Algorithm. The cutting-plane algorithm

works with a sequence of successively tighter continuous re- symposiums, and the latest ones are the volume ‘‘Mathemati-
laxations of the integer program Eq. (29) until, hopefully, an cal Programming: State of the Art 1994’’ (35) edited by Birge
integer optimal solution is found. The basic idea is simple. and Murty and the special issue ‘‘Lectures on Mathematical
Assume that at the current iteration a solution x* to the cur- Programming, ISMP97’’ (36) edited by Liebling and Werra.
rent continuous relaxation is found. If x* is an integer solu- Many journals contain articles in mathematical program-
tion, then it is a solution to the integer program and the prob- ming. The ones devoted to this subject are Mathematical Pro-
lem is solved. Otherwise, we try to find a valid inequality for gramming, Optimization, Journal of Optimization Theory and
S that is not satisfied by x* by solving, often approximately, Applications, SIAM Journal on Optimization, and Journal of
a so-called separation problem. Since this valid inequality Global Optimization. Some of the most relevant ones are
cuts off x* from S, or more appropriately from conv(S), we Mathematics of Operations Research, SIAM Journal on Control
then add it to the current relaxation to form a tighter relax- and Optimization, Operations Research, Management Science,
ation and proceed to the next iteration. In order to have a The European Journal of Operational Research, and Opera-
sufficiently tighter relaxation, it is desirable to generate a tions Research Letters.
facet-defining inequality that cuts of x* from conv(S). Gener- There is also a tremendous amount of information relevant
ating good cuts is often problem specific and details can be to the subject on the Internet. The Operations Research Page
found in Nemhauser and Wolsey (1). (http://mat.gsia.cmu.edu) of Professor Michael Trick at Car-
Recently, the cutting-plane algorithm has been incorpo- negie Mellon University is a page for pointers to all aspects

rated into the general branch-and-bound scheme for solving of Operations Research. The Optimization Technology Center
subproblems or at least improving the bounds. The combined founded jointly by Argonne National Laboratory and North-
method, called the branch-and-cut method, has proved to be western University has a home page (http://
quite effective in solving some hard integer programs [see www.mcs.anl.gov/home/otc) that has a lot information on op-
Hoffman and Padberg (4)]. timization techniques and also implements the so-called net-

work-enabled optimization system designed for solving opti-
mization problems remotely over the Internet. TheFURTHER READING
Mathematical Programming Glossary page (http://www-
math.cudenver.edu/�hgreenbe/glossary/glossary.html) main-In the previous sections we have sketched some basic results
tained by Professor Harvey Greenberg at University of Colo-in the subject of mathematical programming, which is now on
rado at Denver contains many technical terms and links spe-its way to maturity. There exists a vast literature on this sub-
cific to mathematical programming.ject. In fact, all topics mentioned in the paper have been ex-

plored in great detail in the past several decades. In what
follows, we shall suggest some general references based on
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