
576 LOGIC PROGRAMMING AND LANGUAGES

LOGIC PROGRAMMING AND LANGUAGES

The connection between logic and language has been appar-
ent for long, and much has been written about the marvel and
wonder of human language, that intricate tool for communi-
cating thoughts, feelings, and emotions, for expressing human
nature and society, and for transmitting and clarifying knowl-
edge and belief. Unlike all other tools used by humankind, it
is also, in a very real sense, a living creature in constant
change.

Only since the development of logic as a programming lan-
guage circa 1972 (1), however, has the relationship between

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



LOGIC PROGRAMMING AND LANGUAGES 577

logic and language developed to the point at which we can dogs:
describe a grammar roughly in terms of logic, and let a hidden
theorem prover answer for us a variety of interesting ques-
tions about that language. Such questions include, for in-
stance Is sentence X in the language defined by the grammar?
What is the meaning representation of sentence X with re-
spect to a given grammar? What sentence can be obtained
from meaning representation Y with respect to a given gram-

likes(rover,mimi).
likes(rover,light).
likes(Y, X) : -mother of(X,Y).

mother of(rover,light).
mother of(mimi,night).

mar? What is the translation into German of the English sen-
Some conventions: variables are noted by identifiers start-tence X?

ing with a capital letter; constants are denoted by lower caseThe attraction of using logic programming for processing
identifiers; underscore is used for composite predicate names.language is threefold. In the first place, many of its features
Thus the above clauses express, from top to bottom, ‘‘Roverare naturally adapted to deal with natural language pro-
likes Mimi’’, ‘‘Rover likes Light’’, ‘‘For every X and every Y, Ycessing needs. Knowledge about language, in many linguistic
likes X if Y is the mother of X’’, ‘‘the mother of Rover is Light’’,frameworks, is expressed as some sort of deduction from gen-
and ‘‘the mother of Mimi is Night’’.eral principles which can be expressed as axioms. The aims

Queries have the formof conciseness and generality are also common to both modern
linguistics and logic programming, and the declarativeness

? = p1, . . ., pn.inherent in logic programming is also one of the aims of mod-
ern linguistics. In the second place, logic provides a natural where again, the pi are predicates, ‘‘,’’ stands for ‘‘and’’, and
underpinning for natural language semantics (meaning). ‘‘?-’’ is interpreted as a request to find values for the variables
Thirdly, different types of logics have played important roles in the query, if such exist, which make the conjunction p1 and
in linguistics and in natural language processing. By choosing . . . and pn true.
a logic-based formalism to process language, the implement- For instance, with respect to the above program, we can
ing means become closer to some of the presentations manip- query:
ulated in processing, thus minimizing the need for interfaces
by providing a uniform methodology, logic throughout, in one ?-likes(X,Y). (Who likes who?)
form or another. Formal characterizations of the logic pro-

to which Prolog will respond:gramming tools developed can also be done in terms of some
kind of logic.

In what follows, through logic programming, we provide an
intuitive explanation of many of the concepts and techniques
involved in natural language processing.

X = rover, Y = mimi;
X = rover, Y = light;
X = light, Y = rover;
X = night, Y = mimi;
no (no more answers)

LOGIC PROGRAMMING
Another sample query and answer follow:

Logic programming is the art of describing a problem domain
in terms of logic clauses plus some extralogical features (e.g.,
input/output, control) that render such a description execut-
able by a logic programming processor, e.g. Prolog. Execution

?-likes(X,rover),likes(rover, X). (Who likes and is liked by Rover?)

X = light;
no (no more answers)

is triggered by a query (representing a specific problem in the
problem domain described by the clauses). Automatic deduc- A predicate’s arguments are logic terms, that is, either

constants (e.g., light), variables (e.g., X), or functional expres-tion takes place from the query and the clauses defined,
sions of the form f (t1, . . ., tk), where the ti are in turn terms.through resolution-based theorem proving (2). In all that fol-
For instance, the third clause in our program above couldlows, we shall use Prolog notation because it is the most com-
have been expressed using a functional expressionmon programming language.
‘‘mother(X)’’ to represent the individual who is the motherClauses have the general form
of X:

p : p1, . . ., pn (likes(mother(X), X).

where p and the pi are predicates, all variables in the clause Whatever convention we choose (functional or relational
are assumed to be implicitly universally quantified, ‘‘,’’ stands notation to represent motherhood), we have to stick to it
for ‘‘and, and ‘‘:-’’ stands for ‘‘if ’’. Thus if the clause contains throughout our program. If we use functions as arguments, it
variables X1, . . ., Xn, it is read: ‘‘for all values of X1, . . . Xn, is important to take into account that functions in Prolog do
p is true if p1 and . . . and pn are all true. not evaluate: they take values through unification (the pro-

Conditionless clauses are called assertions and noted as cess by which variables get assigned values during reso-
p. lution).

Here is for instance a complete Prolog program for the Because our focus in the rest of this article is on a syntactic
variant of logic programming, namely, logic grammars, noproblem domain of family and liking relationships among



578 LOGIC PROGRAMMING AND LANGUAGES

more details of Prolog are given here. The interested reader and then query this grammar through a call to a predefined
Prolog binary predicate ‘‘transform’’ (easy for a Prolog pro-can consult one of the many Prolog textbooks in existence.
grammer to define, but the details of which shall not concern
us here), whose first argument is the initial symbol of the

LOGIC GRAMMARS grammar and whose second argument is the sentence to be
analyzed, written as a Prolog list (i.e., as a list of words sepa-

A grammar is a finite way of specifying a language which may rated by commas and enclosed in square brackets). Queries
consist of an infinite number of sentences. A logic grammar in Prolog are preceded by ‘‘?-’’. The query
(3) consists of what are called ‘‘rewrite rules,’’ which use logic
terms as symbols. A rewrite rule has the form ?-transform(sentence(P),[eve,loves,popocatepetl]).

a → b for instance, will produce the answer:

and expresses that a can be replaced by b. When we use logic P = loves(eve,popocatepetl).
terms as symbols, as in logic grammars, it expresses the more
powerful statement that something of the form a can be re- The rewritings and substitutions involved in Prolog (invisi-
placed by something of the form b. ‘‘Of the form’’ is interpreted bly) obtaining this answer are as follows:
as literally identical or as amenable to a literally identical form
by substituting terms for variables. For instance, the follow-
ing rewrite rule, which contains no variables,

name → [popocatepetl].

sentence(P) →name(X ), verb(X ,Y, P), name(Y )

→[eve], verb(eve,Y, P),name(Y )X = eve

→[eve,loves], name(Y ) → [eve,loves,popocatepetl]

P = loves(eve,Y ) Y = popocatepetl
expresses that if you have ‘‘name’’ you can replace it by ‘‘popo-

The same grammar can be used, of course, to analyze ‘‘popoca-catepetl’’ with no further ado. Notice that words in the lan-
tepetl loves eve’’. The answer in this case is P�loves(popoca-guage we are defining (e.g., ‘‘popocatepetl’’) are noted between
tepetl,eve).square brackets. Technically, they are called terminals.

Notice that the final value for P is obtained by compositionWords that denote grammatical components, such as ‘‘name’’,
of the various substitutions used (i.e., P�loves(eve,Y) and‘‘verb’’, and ‘‘adjective’’, are technically called nonterminals. In
Y�popocatepetl). Another interesting thing to notice is thatDefinite Clause Grammars, the Prolog most common embodi-
the meaning representation ‘‘loves(eve,popocatepetl)’’ is incre-ment of logic grammars, terminals never appear in a left-
mentally obtained. Initially, it is just a variable. The verb rulehand side. Variables are denoted by identifiers starting with
makes it further known as a ‘‘skeleton’’ of the form lovesa capital, whereas constants (proper names) start with lower
(X,Y), but because X has taken a value, upon applying thecase, by convention.
verb rule, it becomes further known as loves(eve,Y) until theThe rule
last call, name(Y), uncovers Y’s identity.

verb(X,Y, loves(X,Y)) → [loves].

SYNTAX VS SEMANTICS
on the other hand, expresses that if you have something ame-
nable to the form verb(X, Y, loves(X, Y)), you can replace it by It is useful to separate the notions of what form a sentence
‘‘loves’’. For instance, if you have has (e.g., a proper name followed by a verb followed by an-

other proper name) from what the sentence means. Matters
verb(eve,popocatepetl,P) relating to form are the domain of syntax. Those relating to

meaning are the domain of semantics. The value obtained for
this is amenable to the form in the left-hand-side of the rule P in the grammar of the previous section is called a meaning
simply by substituting X�eve, Y�popocatepetl, and P�loves representation or a semantic representation for the sentence.
(eve,popocatepetl). Notice that substitutions affect all occur- Many different semantic representations are possible. For in-
rences of a variable in the rule. For example, where P is re- stance, if we wanted to obtain a hyperbolic generalization of
placed by loves(X,Y), it becomes loves(eve,popocatepetl), be- the sentence ‘‘eve loves popocatepetl’’, for example,
cause X and Y are replaced, respectively, by ‘‘eve’’ and ‘‘adores(generic_woman, volcanoes)’’ as a meaning representa-
‘‘popocatepetl’’. tion, all we have to do is modify the rules of the grammar as

In this way, by using rewrite rules, we construct a com- follows:
plete grammar for a language, so that sentences in the lan-
guage are recognized as such, or even analyzed into some de-
sired representation, as a side effect of querying the complete
grammar given a Prolog processor. We can, for instance, com-
plete the rules above into the full grammar:

name(generic woman) → [eve].
name(volcanoes) → [popocatepetl].

verb(X ,Y, adores(X ,Y )) → [loves].

sentence(P) → name(X ),verb(X ,Y, P), name(Y ).

More generally, meaning representation formalisms other
than first-order logic form can be used (e.g., conceptual struc-
tures, semantic networks, scripts, situation semantics, Mon-
tague semantics, etc.).

name(eve) → [eve].
name(popocatepetl) → [popocatepetl].

verb(X,Y,loves(X,Y)) → [loves].

sentence(P) → name(X),verb(X,Y,P),name(Y),



LOGIC PROGRAMMING AND LANGUAGES 579

GRAMMAR REVERSIBILITY in natural languages. Linguistic theories offer useful but in-
complete organizing frameworks for dealing with this com-

In more complex grammars than this one, reversibility (i.e., plexity and by no means agree on all points. In addition, the
activity of computationally processing language often stressesusing the same grammar for generating as well as analyzing

sentences) is usually not possible because of practical con- aspects different from those stressed by linguists. Thus, lan-
guage processing problems, by necessity, are addressed with-cerns outside the scope of this article. It is interesting to note,

however, that for this grammar we can generate a sentence out clear guidance from formal linguistics. In adapting vari-
ous pure linguistic theories for computational use, interestingfrom its internal representation, and thus obtain reversibility,

simply by querying, for instance, mutual feedback between formal and computational linguis-
tics ensues.

Thus it is important to take into account the most general?-transform(sentence(loves(popocatepetl,eve),S).

analyses from linguistic theory in building natural language
The result obtained is processing systems, while also trying to adapt and combine

the different theories to our ends, given that no single one
can offer all-encompassing solutions.S = [popocatepetl,loves,eve].

The transformational of generative paradigm (4) provided
an initial step towards computationally usable linguistic mod-

LANGUAGE TRANSLATION els by viewing grammars as highly formalized entities. These
entities consisted of two components, a base component of

Translation grammars are also easily prototyped. If we context-free rewriting rules (i.e., like our rewriting rules mi-
merely add one more argument to the grammar symbols to nus the symbol arguments, i.e., minus unification as well),
keep track of the language we are in, we can produce the which described a ‘‘canonical’’ version of sentences (i.e., in the
following bilingual grammar: active voice, affimative form, etc.) and a transformational

component, which contained general rules to convert these ca-
nonical representations into other possible variants (passive
voice, interrogative or negative form, etc.).

Although the most formalized linguistic paradigm until
then, transfomational theory was not easily amenable to com-
putational treatments, mainly because of the myriads of spe-
cific rules engendered. New theories emerged, all with the ob-
jective of brevity of description in mind. Lexical Functional

name(eve,L) → [eve].

name(popocatepetl,L) → [popocatepetl].

verb(X ,Y, loves(X ,Y ), english) → [loves].
verb(X ,Y, loves(X ,Y ), french) → [aime].

sentence(P,L) → name(X , L),verb(X ,Y, P,L), name(Y, L).
Grammar (5) born under the explicit goals of computational
preciseness and psychological realism, replaces transforma-Because we do not have accent characters in the terminal,
tions by dealing with them in the lexicon. Generalized Phrasethe name rule for ‘‘eve’’ is the same in both languages (as it
Structure Grammars (6) aimed at succinctness by providingis for ‘‘popocatepetl’’, given that it is the same in both French
higher level grammars that could be mechanically convertedand English). This is indicated by leaving the language argu-
into context-free grammars. Categorial grammars analyzement as a variable (L), which attracts to it the proper value—
language expressions as the functional product of a functor‘‘english’’ or ‘‘french’’—according to the context. Context is
applied to a suitable set of simpler argument expressions (7).provided by the sentence rule, which requires that the same
The categorial grammar approach lends itself very nicely forvalue L be used for the subject name, the verb and the object
studying the relationship between the syntactic structuresverb to have a sentence in the language L.
and the semantics of language expressions. All of these lin-Notice that, for the meaning representation of an (English
guistic models strive in different ways for the same objectivesor French) word, we use an English mnemonic name (e.g.,
of principledness and succinctness and, in so doing, have de-‘‘loves’’ rather than ‘‘aime,’’ in the rule for ‘‘verb’’), because we
veloped similarities between themselves and also with logicneed the same meaning representation for both languages, so
programming. As an example, some notion of unification isthat we can go from one to the other through this internal
also present in most contemporary linguistic models, al-representation.
though less crucially than in logic programming.Now, we can query, for instance,

Despite considerable progress by modern linguistic theo-
ries toward formalized accounts of human language, their ad-
aptation for computational use remains difficult, for reasons

?-transform(sentence(P),[eve,loves,popocatepetl],english),
transform(P, S, french).

such as the following:
The first call to ‘‘transform’’ associates P with the value

‘‘loves(eve,popocatepetl),’’ and this value of P is input to the Modern linguistics stresses competence (the tacit knowl-
second call to ‘‘transform,’’ which then generates from it the edge that a speaker has of the structure of his/her lan-
sentence S� [eve,aime,popocatepetl]. guage) over performance (how language is processed in

real time, why speakers say what the say, how language
is used in various social groups, etc.), whereas the latterLINGUISTIC THEORY
considerations are more prominent in building natural
language systems.The examples we have seen so far are, of course, quite simpli-

Linguistic efforts to account for competence, particularlyfied to be clear to the uninitiated. ‘‘Real life’’ language pro-
cessing has to deal with all the formidable complexities found in the past, yielded mostly explanations of language



580 LOGIC SYNTHESIS

2. J. A. Robinson, A machine-oriented logic based on the resolutionsynthesis, whereas computational linguistics is often
principle, J. ACM, 12: 23–24, 1965.more interested in analyzing language than in synthe-

3. A. Colmerauer, Metamorphosis Grammars, in Lecture Notes insizing it. Although this is changing, because modern lin-
Computer Science, New York: Springer-Verlag, 1978.guistic theories are intent upon declarativeness and

4. N. Chomsky, Lectures on Government and Binding, Dordrecht,lack of bias towards one processing direction, the
Holland: Foris Publications, 1981.change is not as swift as would be desirable.

5. J. Bresnan, The Mental Representation of Grammatical Relations,Formalizations of linguistics to the point that it is conceiv-
Cambridge, MA: MIT Press, 1987.able to use them for automatic processing are relatively

6. G. Gazdar et al., Generalized Phrase Structure Grammar, Cam-recent and constantly evolving.
bridge, MA: Harvard University Press, 1985.

7. R. T. Oehrle, E. Bach, and D. Wheeler (eds.), Categorial Gram-
Thus, natural language processing is still an art, whose mars and Natural Language Structure, Dordrecht, The Nether-

intersection with logic programming is that of two highly lands: Reidel, 1988.
promising and complementary, but also rapidly changing sce- 8. S. Fong, Computational Properties of Principle-Based Grammati-
narios. Cross-fertilization with each other and with other cal Theories. Ph.D. Thesis, MIT Al Lab, 1991.
fields is only to be expected and is indeed happening. 9. T. Tanaka, Definite-Clause Set Grammars: A Formalism for

Problem Solving, Journal of Logic Programming 10 (1): 1–18,
1991.

APPLICATIONS 10. H. Abramson, Definite Clause Translation Grammars, Proc.
IEEE Logic Programming Symp., Atlantic City, NJ, 1984.

Some of the systems developed around specific applications
aim mainly to advance the state of knowledge, whereas others VERONICA DAHL
aim at carrying out practical natural language processing Simon Fraser University
tasks. For the former, elegance and theoretical basis are para-
mount, whereas the latter are mostly concerned with cover-
age and efficiency, although both types of systems, of course,

LOGIC, SUPERCONDUCTING. See SUPERCONDUCTINGexhibit both kinds of concerns to a certain extent.
ELECTRONICS.The theoretically oriented systems include those which

make extensive use of linguistic theory, such as Fong’s (8),
which correctly accounts for hundreds of different construc-
tions from an introductory linguistics textbook, and those
which develop new representational devices.

Many other specific applications have been explored. For
instance, logic grammar aided the following: learning of lexi-
cons; detecting grammatical mistakes of a student learning a
second language; assisted applying sentence compositions to
language interfaces; applications for communicating with
handicapped persons; machine translation for agricultural re-
ports; and reversible language processors (those which are
easily adapted both for analysis and for synthesis).

Let us also mention that some of the formalisms developed
with computational linguistics in mind have found applica-
tions outside it. For instance, DCSGs (9), a logic grammar
formalism for free word order languages in which grammar
rules are viewed as definitions for set conversions, also has
applications to general problem solving. And DCTGs, an ex-
tension of logic grammars, in which the construction of se-
mantic representation is modularized and semiautomated
(10), are used in software specification problems.

We find ourselves at the exciting historical point where the
advances of logic programming make it possible to address
the needs of growingly ambitious applications in natural lan-
guage processing with hopes of reasonable efficiency and
where theoretical linguistics are coincidentally developing in
directions more and more compatible with the needs of com-
putational linguistics.

BIBLIOGRAPHY

1. A. Colmerauer et al., Un Systeme de Communication Homme-Ma-
chine en Francais, TR, Groupe d’Intelligence Artificielle, Uni-
versite d’Aix-Marseille II, Marseille, 1973.


