
LOGIC PROGRAMMING 569

lection of logical axioms of an unambiguous logical language
containing information from this description which is rele-
vant to the problem (or problems) at hand. Such a collection
of axioms can be viewed as a declarative program. Programs
whose axioms are ‘‘logical rules’’, that is, statements of the
form A if B1 and . . . and Bn where 0 � n, are called logic
programs. The language of relational databases and various
functional languages also have substantial declarative compo-
nents which allow only more restrictive forms of axioms. A
logic program can be executed by providing it with a problem,
formalized as a logical statement to be proved, called a goal
statement (or a query). The execution is an attempt to solve
a problem, that is, to prove the goal statement, given the
axioms of the logic program. The proof provided by a program
should be constructive. This means that if the goal statement
is existentially quantified, that is, it states that there is some
object satisfying some property, then the proof provides iden-
tity of this unknown object. In summary: a logic program is a
collection of axioms; computation is a constructive proof of a
goal statement from the program.

SYNTAX OF PURE PROLOG

These ideas can be illustrated by writing a program in a logic
programming language called Pure Prolog. We start with de-
scribing syntax of our language suitable for formalization of
a particular domain. The syntax will contain constants, that
will be used to name objects of the domain, functions and re-
lations between these objects, and names for variables over
the objects. A collection of these symbols is called a signature.
Names of relations of a signature � are often called predicate
symbols. In what follows, constants will be denoted by strings
of letters and digits that start with a lower-case letter. Se-
quences of the same type that start with capital letters denote
variables. The underscore is also used to make the names
more readable. To define sentences of a language L over sig-
nature � an auxiliary notion of term, is needed, defined as
follows:

1. Constants and variables of � are terms;LOGIC PROGRAMMING
2. If f is a function symbol and t1, . . ., tn are terms, then

f (t1, . . ., tn) is a term.To design an entity (a machine or a program) capable of be-
3. Nothing else is a term.having intelligently in some environment, it is necessary to

supply this entity with sufficient knowledge about this envi-
Terms not containing variables are called ground. They areronment. To achieve this, computer scientists have developed
used to name objects of the program domain. If t1, . . ., tn area collection of programming languages that serve as means of
ground terms and p is a predicate symbol, then a string p(t1,communication with the machines. It is customary to distin-
. . ., tn) is read as ‘‘objects denoted by t1, . . ., tn satisfy prop-guish between two types of knowledge: (1) procedural (‘‘know-
erty p’’ and is called an atom.ing how’’) and (2) declarative (‘‘knowing that’’). This difference

The above vocabulary provides the basis for constructionled to classifying paradigms for programming languages into
of all logic programming languages. A particular logic pro-two distinct types, imperative and declarative. The imperative
gramming language can be characterized by the type of state-languages, like Pascal and C, specify how a computation is
ments which can serve as axioms of its programs. Pure Prologperformed by sequences of changes to the computer’s store.
allows two types of such statements: facts and rules. FactsThe declarative languages are more concerned with specifying
are atoms. Rules are statements of the form:what is to be computed. Logic programming belongs to the

declarative programming paradigm, which strives to reduce a
1. p0 :- p1, . . ., pnsubstantial part of a programming process to the description

of objects comprising the domain of interest and relations be-
tween these objects. where p0, . . ., pn are atoms. The sequence p1, . . ., pn is

called the body of the rule and p0 is called its head. In whatThe software development process in this paradigm starts
with a natural language description of the domain, that, after follows we identify atoms with rules with the empty bodies.

The symbol ‘‘:-’’ in rule (1) can be viewed as a form of implica-a necessary analysis and elaboration, is translated into a col-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

570 LOGIC PROGRAMMING

tion, ‘‘,’’ stands for the logical conjunction ∧, and variables are Thanks to this assumption we have a powerful language
which does not contain negation. Later we show how Pureassumed to be universally quantified over the objects of the

program domain. If X1, . . ., Xm are variables occurring in rule Prolog can be extended to deal with incomplete information.
The queries we have asked so far did not contain variables.(1) then the rule (1) is read declaratively as ‘‘Any X1, . . .,

Xm satisfying conditions p1, . . ., pn satisfy condition p0.’’ In For programs consisting entirely of facts, such queries are an-
swered by a simple table lookup. The situation becomes moreaddition to the declarative reading of rule (1), it can also be

read as follows: to solve (execute) p0, solve (execute) p1 and complicated for queries with variables. Suppose we want to
find out which of the professors is teaching cs1. To do that wep2 and . . . pn. This procedural reading of rules, first formu-

lated by Kowalski (1), serves as the basis of proof procedure need to use a variable. The corresponding query
implemented in Prolog interpreters and compilers. Now a
logic program can be defined in Pure Prolog (with some un- ? teaches(X,cs1)
derlying signature �) simply as a collection of rules. A set of
rules of a program whose heads are atoms formed by the is a request to constructively prove the statement

�Xteaches(X,cs1). Procedurally, it can be read as ‘‘Find X suchsame relation r is sometimes called a definition of r. So a pro-
gram can be viewed as a collection of definitions of relations that teaches(X,cs1) is true’’. The query will be answered by
between the objects of the program domain. For simplicity it
can be assumed that queries in Pure Prolog are atoms. (More X � smith
complex queries are allowed in practice.)

Now assume that it is necessary to construct a logic pro- If we want to find out which class is taught by Jones we issue
a query:gram containing information about a small computer science

department. Assume that the department has three profes-
sors, Smith, Jones, and Domingez; that this summer it offers ? teaches(jones,X)
classes in Prolog (cs1), Pascal (cs2), and Data Structures (cs3),
taught by Smith, Jones, and Domingez, respectively. This in- which will be answered by
formation can be expressed by the following atomic sentences
of Pure Prolog: X � cs2

In these examples the answer is obtained by matching our1a. course(cs1,prolog).
1b. course(cs2,pascal). queries against the facts of the program. The matching pro-

cess attempts to make the query identical to a fact by a pro-1c. course(cs3,data_structures).
2a. is_prof (smith,cs). cess of substituting terms of the language for variables in the

corresponding sentences. In our simple case such a substitu-2b. is_prof (jones,cs).
2c. is_prof (domingez,cs). tion is easily found and reported as answer to a query. In

general, however, the situation is much more complex. The3a. teaches(smith,cs1).
3b. teaches(jones,cs2). matching is performed by nontrivial unification algorithm

(3,4) which we describe shortly. Meanwhile, let us go back3c. teaches(domingez,cs3).
to the teaching mode and communicate to the program more
knowledge about the department. Suppose we are interestedSo far, communication with the program occurred in the

‘‘teaching’’ mode, that is, the above facts were simply stored in the relation subject_taught(S,P), which is true iff subject S
is taught by a professor P. To define this relation for a com-in a file. To query the program we need to switch into the

‘‘querying’’ mode. The Prolog interpreter will load the pro- puter we may use a rule:
gram and respond by prompting us with a ?, indicating that

4a. subject_taught(S,P) :-
it is ready for questioning. We start with a simple query

teaches(P,C),
course(C,S)

? teaches(smith,cs1)
Now if we want our program to tell who is teaching a class in
Pascal we can ask a queryinterpreted as ‘‘Does Smith teaches cs1 ?’’. The program will

answer ‘‘Yes’’ and prompt us for the next question. Asked
? subject_taught(pascal,P)

? teaches(jones,cs1)
which will be answered by

the program will answer ‘‘No.’’ The answer can be interpreted
in two different ways. It may mean ‘‘No, I have not been able P � jones
to prove that Jones teaches cs1.’’ It may also mean ‘‘No, Jones
does not teach cs1.’’ The second interpretation is valid only if The Prolog interpreter will answer this query by: finding the

rule (4a) whose head matches the query by substituting pas-our summer schedule is complete. In this case, inability to
prove that Jones teaches cs1 is equivalent to this statement cal for S; asking query teaches(P,C) and answering it with

P � smith and C � cs1; asking query course(cs1,pascal) andbeing false. The assumption of completeness of information
about the program domain encoded by axioms of the program answering it with ‘‘No’’; backtracking to the query

teaches(P,C) and answering it with a new answer P � jonesis called the closed world assumption (2). This assumption
has been proven useful for formalization of various domains and C � cs2; checking that course(cs2,pascal) is true, suc-

ceeding, and returning P � jones. This is, of course, the onlyand, as a result, is embodied in the semantics of Pure Prolog.

LOGIC PROGRAMMING 571

answer to the query which can be obtained from our program. interpretation of Prolog rules: to answer the above query the
interpreter will need to answer the query ‘‘? belongs_to(X,Z),’’So if we ask the interpreter to find another answer (which, on

most systems can be done by simply typing a ‘‘;’’), the inter- which is essentially the same as q and hence causes the inter-
preter to loop. (Recall that both queries are read as ‘‘find apreter will respond with ‘‘No.’’ In general, however, a query q

with variables may allow more than one answer. If the set of pair of objects satisfying relation ‘‘belongs_to.’’)
It is also worth noticing that transitivity of the relationanswers to q is finite we can ask for and get all the answers.

In case of infinite collection of answers we can get one answer part_of has not been explicitly stated in its informal descrip-
tion. It is rather a ‘‘commonsensical’’ property of the relation,at a time. We hope that this example gives the reader a flavor

of programming in logic. something ‘‘everyone knows.’’ Discovering such properties of
various relations and giving them to a program constitutes anBefore we go to more precise mathematical treatment of

Pure Prolog and to extensions of this language we would like important part of the art of declarative programming. Here is
another such rule, undoubtedly understandable to humansto demonstrate one more interesting feature common to all

logic programming language—the ability to define relations but not yet known to the program.
recursively. Suppose we want to inform our program that the

2d. is_prof(X,P) :-CS department in question belongs to the engineering college
part_of(Q,P)of the small university known as ‘‘the school.’’ This can be
is_prof(X,Q)done by giving the program the following rules:

The rule [and the new definition of the relation ‘‘is_prof,’’ con-5a. belongs_to(cs,engr)
sisting of rules (2a)–(2d)] is obviously recursive. Going back5b. belongs_to(engr,the_school)
to the querying mode we can ask a program if ‘‘the school’’

This, however, will not allow us to conclude that our CS de- has a professor called Jones. The corresponding query will
partment belongs to (or is part of) the school. This informa- have a form
tion is, of course, implicit in the informal description of the

? is_prof(jones,the_school)domain and should therefore be made known to the program.
To achieve this we could simply add belongs_to(cs,the_school) and will be answered by ‘‘Yes.’’ Notice that this answer re-
but this solution obviously would not be sufficiently general. quires more reasoning then previous ones. We will reason, for
It will not be, for instance, feasible for large hierarchies. In- instance, that using rules (5) and (6) one can show that the
stead, we will define a new relation ‘‘part_of(X,Y)’’ defined as CS department is a part of the school; that by fact (2b) Jones
the transitive closure of ‘‘belongs_to.’’ This can be done by ex- is a professor in this department and, therefore, by rule (2d),
panding the program by the rules: Jones is the professor in the school. In general, it may be

difficult to write logic programs without a good understanding6a. part-of(X,Y) :-
of the semantics and the inference mechanism used by a par-belongs_to(X,Y)
ticular language. Now we give a mathematical treatment of6b. part_of(X,Y) :-
the semantics and the underlying inference mechanism ofbelongs_to(X,Z)
Pure Prolog.part_of(Z,Y)

Notice that the last rule has occurrences of the same predi-
cate symbol in the head and in the body. Rules satisfying this INFERENCE IN PURE PROLOG
property are called recursive; such rules are needed to define
transitive closures and other useful relations and, to a large By pure logic programs we mean programs of Pure Prolog

with some underlying signature �. By ground(�) we denotedegree, are responsible for the great expressive power of Pure
Prolog. It can be formally shown that neither a standard rela- the set of all rules obtained from program � by replacing vari-

ables in the rules by the ground terms of �. To give the se-tional database query language SQL nor the first-order logical
languages commonly used for formalization of knowledge in mantics of pure logic programs we define what ground atoms

of � are ‘‘consequences’’ rules of the program. In doing thatartificial intelligence are capable of expressing a notion of
transitive closure of a binary relation. As always, there is a we treat atomic sentences of a program as axioms and its non-

atomic rules as the inference rules. This suggests the follow-trade-off between expressivity and efficiency of the language,
and recursive rules can be a source of inefficiency and even ing definitions:

Let � be a ground program, that is, a program not con-nontermination of logic programs. The attentive reader prob-
ably noticed that we did not really give a good justification for taining variables. We say that a set of ground atoms S is

closed under � if for every rule (1) in �, p0 � S wheneverthe introduction of the relation ‘‘part_of ’’ in the language of
our program. The same information could have been commu- �p1, . . ., pn� � S. The set of consequences of � is the smallest

set of ground atoms of � closed under the rules of �. It isnicated by simply adding a rule:
not difficult to show that such a set always exists. The set of

belongs_to(X,Y) :-
consequences of a pure logic program � which contain vari-

belongs_to(X,Z)
ables is defined as the set of consequences of ground(�). We

belongs_to(Z,Y)
denote this set by Cn(�) and write � X q if q � Cn(�). A
conjunction q1 ∧ . . . ∧ qn of ground atoms is true in a set ofEven though this rule can be used in some logic programming

systems (5) it is unacceptable in Prolog. The reason is that, atoms if all the q’s are true in this set. It is false otherwise.
A query of Pure Prolog is a conjunction of atoms. Let Q bein the presence of this rule, the Prolog interpreter may not

terminate on some simple queries, such as, q � ‘‘? such a query with variables X1, . . ., Xn. A sequence t1, . . .,
tn of ground terms is an answer to query Q if Q(t1, . . ., tn) isbelongs_to(X,Y).’’ This, of course, follows from the procedural

572 LOGIC PROGRAMMING

true in Cn(�). [If n � 0 and Q is true in Cn(�) then the an- to see that Q is a consequence of C iff the set C � ¬Q (where
¬Q � �¬l1, . . ., ¬ln�) is unsatisfiable. (Here and below weswer to Q is ‘‘Yes’’]. If no such sequence exists then the an-

swer to Q is ‘‘No’’. All the answers returned to our queries by identify ¬¬p with p.) The resolution proof system uses this
observation to reduce the question of derivability of a querythe example program above are indeed the answers according

to this definition. Q from C to the question of unsatisfiability of C � ¬Q. It is
based on the unification algorithm performing matching be-The consequence relation of Pure Prolog has several nice

properties. It is monotone, that is, if �1 � �2 then Cn(�1) � tween atoms of the language. To describe the algorithm we
need some preliminary definitions.Cn(�2). It is compact, that is, every consequence of � is a

consequence of a finite subset of �. Cn(�) can be character- Let E be a finite set of equations of the form X1 � t1, . . .,
Xn � tn where X’s are distinct variables, t’s are terms and forized as the least fixpoint of the function T� defined on the sets

of ground atoms of � such that T�(S) is the set of heads of the any i, Xi is different from ti. By an expression we mean a
term, a literal or a set of literals. A substitution � (defined byrules of ground(�) whose bodies are subsets of S. Thus T�(S)

is the set of ground atoms which can be derived from S ‘‘in E) is a mapping that maps an expression e into the expres-
sion �E(e) obtained by simultaneously replacing each occur-one step’’ using the rules of ground(�). Obviously, T� is mono-

tone and hence, according to the general fixpoint theory, has rence of X1, . . ., Xn in e by the corresponding term. � is called
a unifier of expressions p, q if �(p) � �(q). � is called a mostthe least fixpoint. Moreover, this fixpoint is equal to Cn(�)

(6). By the same theory, the union of the sets obtained by general unifier (mgu) of p and q if:
iterating T� on the empty set 0� is a subset of the least fixpoint
of T�. For this particular function, the union happens to be 1. �(p) � �(q).
equal to this fixpoint, that is, 2. For any unifier � of p and q there is a unifier � such

that for every expression e, �(e) � �[�(e)].
Cn(�) = ∪n≥0Tn

�(∅)

The substitution X � g(Z), Y � b, U � a is an mgu of atoms
This observation suggests the method of bottom-up evalua- p[f (X, Y), a] and p(f(g(Z), b), U). Atoms p(f(X)) and p(a) are
tion of logic program which is sometimes used for answering not unifiable. We sketch an algorithm which for any two
queries in Datalog—a logic programming query language atoms A and B produces their mgu if they are unifiable and
which can be viewed as Pure Prolog without function symbols otherwise reports nonexistence of a unifier. The particular
and a finite collection of constants. These two conditions guar- version of the algorithm presented below is due to Martelli
antee that every Datalog query has a finite set of answers. In and Montanari (8).
database applications we are usually interested in obtaining If A and B are formed by different predicate symbols then
all the answers to a query which makes this property espe- stop with failure. Otherwise replace atoms p(t1, . . ., tn) and
cially important. In its simplest form the method consists in p(s1, . . ., sn) by the set of equations S0 � �t1 � s1, . . . tn �
grounding � and applying T� operator until it reaches the sn�, nondeterministically choose an equation from S0 and per-
fixpoint. Various optimization techniques (7) allow us to use form the action from the corresponding entry in the table
the goal or the class of goals to avoid the grounding of com- below.
plete programs, to speed up the evaluation of recursive que-
ries, and so forth. A detailed description of these methods can Equation Action
be found in (7). In the next section we describe a more general

(1) f (t1, . . ., tn) � f (s1, . . ., sn) Replace by t1 � s1, . . ., tn � sninference mechanism which is implemented in Prolog inter-
(2) f (t1, . . ., tn) � g(s1, . . ., Stop with failurepreters and compilers. It is based on the resolution-style proof

sm)of Robinson (4) and is based on a body of work in mathemati-
(3) X � X Delete the equationcal logic and automated theorem proving which can be traced
(4) t � X where t is not a Replace by X � tback to Herbrand’s work in the 1930s (3). Resolution-style

variableproof systems are defined for logical languages whose expres-
(5) X � t where X is different If X occurs in t then stop withsive power substantially exceeds that of Pure Prolog. We de-

from t and X has another oc- failure, else replace occur-fine this system for so called clausal theories—collections of
currence in the set of equa- rences of X by t in everyuniversally quantified formulas of the form
tions other equation

2. l1 ∨ . . . ∨ ln
The algorithm stops with failure or returns a collection of equations

of the form X1 � t1, . . ., Xn � tn which define an mgu of A andwhere l’s are literals, that is, atoms and their negations and
B. To complete definition of resolution we need more terminology.∨ is a logical or. (Negation of atom p will be denoted by ¬p.)
Two clauses C1 and C2 are called complementary if there ex-It is convenient to identify formula of the form (2) with a set
ist atoms p1 and p2 such thatof literals �l1, . . ., ln�. Let S be a set of ground atoms. Ground

atom p is true in S if p � S; ground literal ¬p is true in S if
1. p1 � C1p � S; a ground clause C is true in S if at least one literal of
2. ¬p2 � C2C is true in S. Let C be a clausal theory. A set S of ground

atoms is called a model of C if all clauses of C are true in S; 3. p1 and p2 are unifiable
C is called unsatisfiable if it has no model. Notice that the
empty clause, normally denoted by �, has no model and hence Literals p1 and ¬p2 are called resolving literals. Let C1 and

C2 be two clauses and let C be the result of replacing variablesany theory containing � is unsatisfiable. We say that a con-
junction Q of literals is a consequence of a clausal theory C if of C1 by new variables not occurring in C2. If C1 and C2 are

complementary with resolving literals l1 and l2 and a corre-Q is true in all models of C . Let Q � l1 ∧ . . . ∧ ln. It is easy

LOGIC PROGRAMMING 573

sponding mgu � then the clause C � �((C��l1�) � (C2��l2�)) is refutation of C . It can be shown, though, that for � and G
defined as above � � G is unsatisfiable iff there is a linearcalled a resolvent of C1 and C2.

If a clause C contains literals l1 and ln unifiable by an mgu refutation of � � G which starts with G. To complete the
description of the Prolog inference engine we need to specify� then the clause �(C��l1�) is called a factor of C.

A sequence C1, . . ., Cn of clauses is called a resolution deri- how to select a clause Bi from � and the resolving literal l
from Ci. The latter can be done by ordering literals in Ci andvation of Cn from a set of clauses C (C � Cn) if for every i �

[1..n] Ci � C or Ci is a resolvent or a factor of some previous defining a selection rule which chooses l. Natural order of lit-
erals is given by the form of rules in �. The selection ruleelements of the sequence.
used in most implementations of Prolog is to always resolve

Theorem. A set of clauses C is unsatisfiable iff there is a on the first, that is, the leftmost, literal in Ci. The resulting
resolution derivation of the empty clause from C (4). clause Ci�1 preserves the order of literals in Ci and Bi with the

former positioned to the left of the latter. We call this SLD-
This implies that to check if a query Q is a consequence of resolution. This restriction preserves soundness and com-

clausal theory C it suffices to check if there is a resolution pleteness of linear resolution. Completeness is, however, lost
derivation of � from C � �¬Q�. The following algorithm re- in the process of selecting a clause Bi from � to resolve with
turns answer ‘‘true’’ for any unsatisfiable set of clauses C . If Ci. Prolog normally does that by selecting the first clause in
C is satisfiable the algorithm returns ‘‘false’’ or goes into in- � which is possible, in some cases causing the inference en-
finite loop. In what follows by R(V) we denote V united with gine going into the loop. Consider, for instance, a program
the set of all resolvents and factors of clauses from V.

p :- p
pfunction simple_resolution(C : clausal_theory) : boolean

var W, V : clausal_theory and a query p. According to the above strategy, the inference
W :� C engine will use the first rule forever and never get to the sec-
repeat ond one. A similar thing happens with our recursive definition

V :� W of relation belongs_to in the first example. As mentioned be-
W :� R(V) fore, there are several logic programming systems that use

until (� � W) ∨ (V � W) better strategies. Still, fully avoiding these types of problems
if (� � W) then return(true) else return(false) remains the responsibility of the programmer.

At least two aspects of this proof procedure can be substan-
tially improved. First we can modify the procedure to expand

REPRESENTING INCOMPLETE INFORMATIONthe class of causal theories on which it terminates. It is
known, however, that the consequence relation in clausal the-

Recall that, since the semantics of Pure Prolog adopts theories is undecidable, that is, there is no algorithm which ter-
closed world assumption, no negation was allowed in its syn-minates on any clausal theory C and query Q and returns
tax. We introduce two extensions of Pure Prolog that allowtrue iff Q is a consequence of C . This means that the above
negative statement and are more suitable for reasoning withprocedure is bound to go into infinite loop on some inputs.
incomplete information. Consider the following example: as-Second, the efficiency of the procedure can be substantially
sume that the schedule of our CS department is representedimproved by the goal-dependent selection of resolvents and
by the tableother refinements. Now we briefly describe how resolution

method is used in Prolog.
Professor CourseFirst, we map a rule (1) of Pure Prolog into a clause �p0,

¬p1, . . ., ¬pn�. A program � of Pure Prolog then becomes a smith cs1
collection of clauses C (�). It is possible to show that a query jones cs2
Q is a consequence of � iff it is a consequence of C (�). Prolog staff cs3
interpreter answers the query Q � q1 ∧ . . . ∧ qn by con-
verting it into a clause G � �¬q1, . . ., ¬qn� and asking if C (�)

Here staff is a so called null value (a vaguely defined data-� G is unsatisfiable. To answer this question the interpreter
bases term) which stands for an unknown professor (possiblywill use a special form of resolution called linear resolution. A
different from Smith and Jones). A person looking at this ta-linear resolution proof of a clause C from a clausal theory C
ble will conclude that Smith teaches cs1 and does not teachis a sequence of pairs �C0, B0�, . . ., �Cn, Bn�, such that C �
cs2, but, since the identity of ‘‘staff ’’ is not known, will not beCn and
able to tell if Smith teaches cs3. It is easy to see that the Pure
Prolog program1. C0 � C and each Bi is element of C or equals some Cj

with j � i.
(f1) teaches(smith,cs1)

2. Each Ci�1, i � n, is a resolvent of Ci and Bi. (f2) teaches(jones,cs2)
(f3) teaches(staff,cs3)

A linear derivation of � from C is called a linear refutation
of C . does not capture this reasoning. Indeed, the program answers

‘‘No’’ to both queries: teaches(smith,cs2) and teachesThe Prolog inference engine checks if � � G is unsatisfi-
able by looking for linear refutation of � � G with C0 � G. In (smith,cs3). We need to answer the first one by ‘‘No’’ and the

second one by ‘‘Unknown’’. To deal with the problem we ex-general, linear resolution is incomplete, that is, a set of
clauses C may be unsatisfiable but there may be no linear pand the language of Pure Prolog by allowing rules of the

574 LOGIC PROGRAMMING

form: (f1); attempt to prove ¬q1 leads to a new query not q1 (read as
‘‘cannot prove q1’’), which fails. Hence, the answer to q1 is
‘‘Yes’’. Suppose now that q2 � teaches(smith, cs2). The pro-3. l0 :- l1, . . ., ln

gram attempts to prove q2 and fails. Attempts to prove ¬q2

leads to a query not q2; q2 fails and, hence, not q2 succeeds;where l’s are literals over some signature � and 0 � n. The
Similarly, for ab(r1, smith, cs2); hence the answer to q2 issemantics of the new language, called Basic Prolog, is similar
‘‘No.’’ Finally, consider q3 � teaches(smith, cs3). It is easy toto that of Pure Prolog. The set of consequences of a program
see that the program can prove ab(r1, smith, cs3). Hence, nei-� of Basic Prolog is defined as the smallest set S of ground
ther q3 nor ¬q3 can be proven and the answer to q3 is ‘‘Un-literals of � which satisfies two conditions:
known.’’

Originally negation as failure not was introduced in logic1. S is closed under the rules of ground(�).
programming as a purely procedural device. The first declara-2. If S contains an atom p and its negation ¬p, then S
tive semantics of not was given in the pioneering work ofcontains all ground literals of the language.
Clark (9). Some difficulties with this semantics led research-
ers to the development of several alternative semantics forThe second condition corresponds to the rule of classical logic
negation as failure (10–13). We give a precise definition ofwhich allows any formula to be entailed from a contradiction.
answer set semantics for programs with negation as failureEvery program � has a unique set of consequences. As before,
(14). A survey of different approaches to semantics of nega-we denote this set by Cn(�). A ground conjunction Q � l1 ∧
tion as failure can be found in (15). Let us introduce an exten-. . . ∧ ln is true in a set S of literals if li � S for every 1 � i
sion of Basic Prolog called A-Prolog. Programs of A-Prolog are� n; Q is false in S if for some i, ¬li � S; Q is unknown in
collections of rules of the formS otherwise.

A query of Basic Prolog is a conjunction of literals. Let Q
6. l0 : �l1, . . ., ln, not ln�1, . . ., not lmbe such a query with variables X1, . . ., Xn. A sequence t1,

. . ., tn of ground terms is an answer to a query Q if Q(t1, where l’s are literals over some signature � and 0 � n. A

. . ., tn) is true in Cn(�); if for any such sequence Q(t1, . . ., program � of A-Prolog can be viewed as a specification given
tn) is false in Cn(�), then the answer to Q is ‘‘No’’; otherwise to a rational agent for constructing beliefs about possible
the answer is unknown. Information from the table above can states of the world. Technically these beliefs are captured by
be represented by the program consisting of positive facts the notion of answer set of a program �.
(f1)–(f3) and negative facts Let � be a program of A-Prolog without variables. For any

set S of literals, let �S be the program obtained from � by de-
(f4) ¬teaches(smith,cs2) leting
(f5) ¬teaches(jones,cs1)

• Each rule that has an occurrence of not l in its body with
Observe that the program properly answers our queries. It l � S
does, however, require an explicit representation of negative

• All occurrences of not l in the bodies of the remaining
facts which make this method of representation impractical rules
for large databases. This problem is solved by using another
logic programming connective, not, called negation as failure Clearly, �S doesn’t contain not and hence can be viewed as a
or default negation. program of Basic Prolog with the set of consequences Cn(�S).

We say that S is an answer set of � if

NEGATION AS FAILURE
7. S � Cn(�S)

Intuitively, not l is an ‘‘epistemic’’ connective read as ‘‘there Let S be an answer set of �. As before, literal l is true in S if
is no reason to believe that l is true.’’ Procedurally, a query l � S; false in S if ¬l � S. This is expanded to conjunctions
not l succeeds if l is ground and all the attempts to prove l and disjunctions of literals (and possibly other formulas) in a
finitely fail. We give a precise semantics of not shortly, but standard way. We say that formula Q is entailed by a pro-
first let us see how it can help with our example. Consider a gram � (� X Q) if Q is true in all answer sets of �. Let query
program consisting of the facts (f1)–(f3) and rules Q be a conjunction l1 ∧ . . . ∧ ln of ground literals. �’s answer

to Q is ‘‘Yes’’ if � X Q; ‘‘No’’ if � X ¬Q (¬Q � ¬l1 ∨ . . . ∨
(r1) ¬teaches(P,C) :- ¬ln); ‘‘Unknown’’ otherwise.

not teaches(P,C) Here are some examples. Assume that signature � con-
not ab(r1,P,C) tains two object constants a and b. The program �1 consisting

(r2) ab(r1,P,C) :- of the rules
teaches(staff ,C)

¬p(X) : �not q(X)
The first rule allows us to conclude by default that a given q(a)
professor P does not teach a given class C. A symbol r1 is
used to name this rule; the symbol ab stands for ‘‘abnor- has the unique answer set S � �q(a), ¬p(b)�. The program
mal’’—a relation used for expressing exceptional status of ob- �2:
jects to which the corresponding default is not applicable.
Given a query, say, q1 � teaches(smith,cs1), the program will p(a) : �not p(b)

p(b) : �not p(a)attempt to prove q1 and ¬q1; q1 is proven by matching with

LOGIC PROGRAMMING 575

has two answer sets, �p(a)� and �p(b)�. The program �3 the correct behavior of the interpreter greatly facilitates the
process of writing programs that avoid floundering. (Because
of efficiency considerations actual implementations of SLDNFp(a) : �not p(a)
frequently do not contain the check for floundering, which
makes the use of modes even more important.) The above in-has no answer sets.

Programs which have a consistent answer set are called ference is sound, with respect to the stable model semantics,
but is, of course, incomplete.consistent. It can be shown that if program is consistent then

so are all of its answer sets. Acyclic programs form another interesting subclass of gen-
eral logic programs. A program � is called acyclic if there isIt is easy to see that programs of A-Prolog are nonmono-

tonic, that is, addition of new facts or rules may force the a function f from ground atoms of the language of � into nat-
ural numbers such that for any rule r � ground(�) of theprogram to withdraw its previous conclusion. This happens,

for instance, if we expand the program �1 above by a new form (6), f (l0) � f (li) for any 1 � i � n. A theorem from (22)
guarantees that an acyclic program has a unique recursivefact q(b). The new program does not entail ¬p(b) while �1

does. Nonmonotonicity of its entailment relation makes A- stable model; that this model determines semantics of the
program which coincides with all the semantics for negationProlog and other logic programming formalisms which in-

clude negation as failure suitable for formalization of com- as failure mentioned above; and that for nonfloundering que-
ries SLDNF resolution is sound and complete with respect tomonsense reasoning which is inherently nonmonotonic: new

information constantly forces us to withdraw previous conclu- all these semantics. Another interesting area of research is
related to complexity and expressibility of logic programs.sions. This contrasts sharply with classical logic which for-

malizes mathematical reasoning: a theorem remains proven Consider, for instance, a decision problem formulated as fol-
lows: given a finite propositional general logic program � andeven if the original set of axioms of the correspond mathemat-

ical theory is expanded by new axioms. To learn more about a ground literal l, determine whether l is a consequence of �.
It can be shown (23) that for stratified programs this problemrelevance of nonmonotonic reasoning to artificial intelligence

and about advances in the development of mathematical the- is O(���). (Here ��� stands for the number of rules in �.) For
programs of A-Prolog not containing ¬ the problem is co-NPory of nonmonotonic logics, the reader can consult Refs. 16

and 17. complete (24).
In the case of finite general logic program with variablesPrograms of A-Prolog not containing the connective ¬ are

called general logic programs; answer sets of a general logic over signature � (sometimes called finite predicate logic pro-
gram) it is natural to attempt to characterize classes of setsprogram � are called stable models (13) of �. This class of

programs and its subclasses were extensively studied in the of ground terms which can be defined by such programs.
Among other results the authors in (25,26) show that a set oflast decade. We mention two of such subclasses: stratified and

acyclic programs. Stratified programs are general logic pro- natural numbers is �1
1 definable iff it is definable by a predi-

cate logic program under the stable model semantics. Ref. 27grams which do not contain recursion through negation. To
give a precise definition we need a notion of the dependency shows that a set of natural numbers is definable by a stra-

tified logic program iff it is definable by a first-order formula.graph G� of a program �. Vertices of G� correspond to the
predicate symbols of �. If pi is a predicate symbol occurring A survey of recent results can be found in Ref. 28.
in the head of a rule r from � and pj is a predicate symbol
occurring in the body of r, then G� has an edge from pi to pj.
This edge is labeled by � if there is an occurrence of pj in r HISTORY
which belongs to the scope of not. If there is an occurrence of
pi in r which does not belong to the scope of not then the We conclude by a short historical overview. The use of logic

based languages for representing declarative knowledge wascorresponding edge is labeled by �. (Notice that an edge in
G� can have two labels � and �.) A cycle in G� is called nega- proposed by McCarthy (29). Early application of this idea was

tried by Green (30), who combined it with advances in auto-tive if it contains at least one edge which has a negative label.
A program is called stratified if its dependency graph has no matic theorem proving, in particular, Robinson’s resolution. A

view of computation as controlled deduction was advocated bynegative cycles (18). As follows from (13,18), a stratified pro-
gram has exactly one stable model. Stratified programs play Hayes (31). Credit for founding a field of logic programming

is usually given to Kowalski and Colmerauer, whose early workan especially important role in deductive databases where
they are used as the basis for a query language called Stra- on the subject was done in the mid-1970s (1,32,33). Kowalski

formulated the procedural interpretation of Horn clauses andtified Datalog. A modification of the bottom-up evaluation
procedure described above can be naturally adopted to answer a view of logic programming expressed by his famous equa-

tion Algorithm � Logic � Control. Later van Emden and Ko-queries in this language (7). A top-down query answering
method based on SLD resolution has also been adopted to walski developed a formal semantics of logic programming

and showed that operational, model-theoretic and fix-point se-work for general logic programs. The resulting inference en-
gine is called SLDNF resolution. [For a detailed description, mantics are the same. Colmerauer and his group designed

the first Prolog interpreter and applied Prolog to solutions ofsee (19,20)]. When an interpreter, implementing this engine,
reaches a goal of the form not q, it checks if q contains unin- nontrivial problems in natural language processing. This

work was influenced by the developments in theorem proving,stantiated variables. If it does then the interpreter flounders.
In this case, no reasonable answer can be given to the original as well as in compiler construction. Warren and his colleagues

developed the first efficient implementation of Prolog. Prologquery. Otherwise the interpreter starts an attempt to prove
q. If the attempt (finitely) fails then the goal not q succeeds. is still the most widely used logic programming language. Its

users number in the hundreds of thousands. It is used as aOtherwise, it fails. A notion of mode (21) which indicates what
parameters of a relation should be instantiated to guarantee rapid-prototyping language and for symbol-manipulation

576 LOGIC PROGRAMMING AND LANGUAGES

20. V. Lifschitz, Foundations of declarative logic programming, in G.tasks, such as writing compilers, natural language processing
Brewka, (ed.), Principles of Knowledge Representation, Stanford,systems, knowledge intensive applications of various types,
CA: CSLI Publications, 1996, pp. 69–128.expert systems, and so forth. There are parallel logic pro-

21. P. Dembinski and J. Maluszynski, And-parallelism with intelli-gramming systems that exploit natural parallelism of Prolog.
gent backtracking for annotated logic programs, in V. SaraswatConstraint Logic Programming systems (34) extend ‘‘classi-
and K. Ueda (eds.), Proc. Int. Symp. Logic Programming, 1985,cal’’ logic programming by allowing additional conditions on
pp. 25–38.terms. These conditions are expressed by constraints, that is,

22. K. Apt and M. Bezem, Acyclic programs, in D. Warren and P.equations, inequations, and so forth. Constraint logic pro-
Szeredi (eds.), Logic Programming: Proc. Seventh Int. Conf., Jeru-gramming combines resolution with special purpose con- salem, 1990, pp. 617–633.

straint solving algorithms. Disjunctive and abductive logic
23. W. F. Dowling and J. H. Gallier, Linear time algorithms for test-programming (35,36) attempt to expand the types of reason- ing the satisfiability of propositional horn formulae, J. Log. Pro-

ing allowed in programming languages. Finally, Inductive gram., 1: 267–284, 1984.
Logic Programming combines ideas from logic programming 24. W. Marek and M. Truszczynski, Autoepistemic logic, J. ACM, 3
and machine learning (37). (38): 588–619, 1991.

25. J. Schlipf, The expressive power of the logic programming seman-
tics, in Proc. 9th Symp. Principles of Database Systems, Nashville,

BIBLIOGRAPHY 1990, pp. 196–204.
26. W. Marek, A. Nerod, and J. Remmel, How complicated is the set

1. R. Kowalski, Predicate logic as a programming language, Proc. of stable models of a recursive logic program?, Ann. Pure and
Stockholm, Sweden IFIP-74 Congr., Elsevier, 1974, pp. 569–574. Appl. Logic, 56: 119–135, 1992.

2. R. Reiter, On closed world data bases, in H. Gallaire and J. 27. K. Apt and H. Blair, Arithmetic classification of perfect models of
Minker (eds.), Logic and Data Bases, New York: Plenum, 1978, stratified programs, Fundamenta Informatica, 13 (1): 1–18, 1990.
pp. 119–140.

28. P. Dantsin et al., Complexity and expressive power of logic pro-
3. J. Herbrand, Logical Writings, Dordrecht, Holland: Reidel, 1971. gramming, Proc. 12th IEEE Conf. Computational Complexity,
4. J. A. Robinson, A machine oriented logic based on the resolution Ulm, Germany, 1997, pp. 1–20.

principle, J. ACM, 12: 23–41, 1965. 29. J. McCarthy, Programs with common sense, Proc. Teddington
5. W. Chen, T. Swift, and D. Warren, Efficient top-down computa- Conf. Mechanization Thought Processes, London: Her Majesty’s

tion of queries under the well-founded semantics, J. Log. Pro- Stationery Office, 1959, pp. 75–91.
gram., 24 (3): 161–201, 1995. 30. C. Green, Theorem-proving by resolution as a basis for question-

answering system, Mach. Intelligence, 4: 183–205, 1969.6. M. van Emden and R. Kowalski, The semantics of predicate logic
as a programming language, J. ACM, 23 (4): 733–742, 1976. 31. P. Hayes, Computation and deduction, Proc. 2nd MFCS Symp.,

Strßske Pleso, Czechoslovakia, 1973, pp. 105–118.7. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,
Reading, MA: Addison-Wesley, 1998. 32. R. A. Kowalski, Logic for Problem Solving, New York: Elsevier

North Holland, 1979.8. A. Martelli and U. Montanari, An efficient unification algorithm,
ACM Trans. Program. Lang. Syst., 4 (2): 258–282, 1982. 33. A. Colmerauer et al., Un systeme de communication homme-ma-

chine en francais, Technical report, Groupe de Intelligence Ar-9. K. Clark, Negation as failure, in H. Gallaire and J. Minker (eds.),
tificielle Universitae de Aix-Marseille, 1973.Logic and Data Bases, New York: Plenum, 1978, pp. 293–322.

34. J. Jaffar and M. Maher, Constraint logic programming: A survey.10. M. Fitting, A kripke-kleene semantics for logic programs, J. Log.
J. Log. Program., 12: 503–583, 1994.Program., 2 (4): 295–312, 1985.

35. J. Lobo, J. Minker, and A. Rajasekar, Foundations of Disjunctive11. K. Kunen, Negation in logic programming, J. Log. Program., 4
Logic Programming, Cambridge, MA: MIT Press, 1992.(4): 289–308, 1987.

36. A. C. Kakas, R. A. Kowalski, and F. Toni, Abductive logic pro-12. A. Van Gelder, K. Ross, and J. Schlipf, The well-founded seman-
gramming, J. Logic and Computation, 2 (6): 719–771, 1993.tics for general logic programs, J. ACM, 38 (3): 620–650, 1991.

37. F. Bergadano and D. Gunetti, Inductive Logic Programming,13. M. Gelfond and V. Lifschitz, The stable model semantics for logic
Cambridge, MA: MIT Press, 1996.programming, in R. Kowalski and K. Bowen (eds.), Logic Pro-

gramming: Proc. Fifth Int. Conf. and Symp., Seattle, WA, 1988,
MICHAEL GELFONDpp. 1070–1080.
University of Texas at El Paso

14. M. Gelfond and V. Lifschitz, Classical negation in logic programs
and disjunctive databases, New Gener. Comput., 9 (3–4): 365–
385, 1991.

15. K. Apt and R. Bol, Logic programming and negation: A survey,
J. Log. Program., 12: 9–71, 1994.

16. V. W. Marek and M. Truszczynski, Nonmonotonic Logics: Context-
Dependent Reasoning, Berlin: Springer-Verlag, 1993.

17. C. Baral and M. Gelfond, Logic programming and knowledge rep-
resentation, J. Log. Program., 12: 1–80, 1994.

18. K. Apt, H. Blair, and A. Walker, Towards a theory of declarative
knowledge, in Jack Minker (ed.), Foundations of Deductive Data-
bases and Logic Programming, San Mateo, CA: Morgan Kauf-
mann, 1988, pp. 89–148.

19. J. Lloyd, Foundations of Logic Programming, 2nd ext. ed., Berlin:
Springer-Verlag, 1987.

