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INPUT-OUTPUT PROGRAMS

INTRODUCTION

Individual processor speeds are increasing at a very high rate
both in the commercial and scientific arenas of the computing
worlds and are consumed by highly demanding large-scale ap-
plications. These large-scale applications also store, retrieve,
and process huge quantities of data, which in turn emphasize
the need for a powerful input/output (I/O) subsystem. Unfor-
tunately, advances in I/O subsystem technology have not kept
pace with those of the processors, leading to poor overall per-
formance of I/O-intensive applications. Database processing,
climate prediction, computational chemistry codes, and com-
putational physics codes all perform I/O intensive operations
and make optimizations and tuning to the I/O subsystem a
necessity. Metacomputing is a fast emerging area where het-
erogeneous platforms process and feed data into one another;
usage of resources scattered over the Internet, and using su-
percomputers located in different geographical locations but
connected through high-speed networks to solve the same ap-
plication are some examples of this environment. In addition
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to requiring high-speed networks, most of such applications cessor has its own locally attached disk space. This disk sub-
also need a high-performance I/O subsystem. High-perfor- system architecture is very similar to that of a network of
mance visualization systems and multimedia applications re- workstations with local disks. The disadvantage of this archi-
quire archival storage on the order of terabytes and high tecture is that the only way to share the disk resident data is
bandwidths in their I/O subsystems. In addition to scientific through explicit communication. This means that the data
applications that have high I/O requirements, legacy codes will be first read by the owner processor (source) and then
used in the commercial sector have surging storage and band- will be communicated to the requesting processor (destina-
width requirements. Data mining and data warehousing are tion) over the interconnection network. The obvious advan-
fast becoming important commercial sector application areas. tage is that the I/O accesses to local disk(s) are relatively fast.
Along with the current changes in Web technology and accom- The architecture shown in Fig. 1(b), however, contains ded-
panying development of programming languages like Java, icated nodes to perform I/O. Essentially the disk space is
the commercial sector is pushing the limits of performance of shared across all compute nodes, resulting in the possibility
I/O subsystems. Small-scale parallel machines such as sym- of sharing data over the disk subsystem without any commu-
metric multiprocessors (SMPs) built with a small number of nication. The problematic issues, such as keeping the shared
commercial off-the-shelf microprocessors are permeating the data consistent across processors and preventing contention
commercial market, thereby making parallel processing a fea- on the hot spots in the disk area, are the main drawbacks.
sible alternative. Lessons learned and progress made in Modern parallel systems like those of Intel Paragon and
bridging the gap between the processor and I/O performance IBM SP-2 generally have hybrid I/O architectures that are
can benefit all these areas. some type of combination of Figs. 1(a) and 1(b).

It is well known that different types of programs have dif- It is known from Amdahl’s law that the performance of a
ferent I/O requirements. Although in recent decades both computer system is determined by the slowest part of it. The
storage capacity and speed of I/O hardware have increased rate of increase in the speed of processors and memory compo-
considerably, these enhancements still lag far behind the cen-

nents is much higher than that of I/O subsystems. For exam-tral processing unit (CPU) and memory system performance.
ple, over the past 20 years disk-related factors such as accessSo it is imperative that software systems aimed at optimizing
times and rotational latencies have improved only minimally.I/O behavior of applications be developed. After giving a brief
Despite this fact, to address the problems with slow mechani-overview of I/O architectures, in this article we present an
cal parts, several new mechanisms, such as arrays of disks,overview of approaches with which to handle I/O from within
disk caches, and intelligent network interfaces, are being in-programs. Due to the size of the applications considered, we
troduced. Although these improvements eventually are re-will concentrate on parallel architectures and parallel soft-
flected in the execution times of applications, we believe thatware rather than sequential machines.
there is much more to be done for the I/O problem from the
software side. In the next section we concentrate on softwareI/O HARDWARE
that is related to I/O in some ways. This includes I/O-inten-
sive applications as well as system software to overcome theSequential machines have simple I/O architectures: an I/O
I/O bottleneck.device connected to the CPU via a controller. For parallel ar-

chitectures, however, the I/O subsystem can be more sophisti-
cated. We present two representative examples for the I/O

SOFTWARE ISSUESsubsystem. In the architecture shown in Fig. 1(a) each pro-

Throughout the years, software designers encountered and
handled the I/O problem in several levels, including but not
limited to applications, file systems and operating systems,
runtime libraries, languages and compilers, multimedia, and
databases. Following subsections present information about
these areas.

I/O-Conscious Application Programming

Many high-performance applications have huge I/O demands
as well as substantial computational requirements. The term
grand challenge (1) is used to characterize an important sub-
set of these applications whose storage requirements cur-
rently reach up to 100 Tbytes. These I/O requirements are
bound to increase with the onset of faster processor architec-
tures and I/O hardware as well as new applications. It is not
hard to predict that within a reasonable period of time, the
I/O requirements of a typical high-performance application
will reach the range of a few petabytes. Examples of such
applications include programs from computational physics,
computational biology, high-performance simulation, climate
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modeling, data assimilation, and computational fluid dy-
namics.Figure 1. Two storage subsystems.



INPUT-OUTPUT PROGRAMS 235

1e-06
0 100 200 300 400 500

Execution time (s)

Read duration distribution

600 700 800 900 0 100 200 300 400 500
Execution time (s)

Write duration distribution

600 700 800 900

1e-05

0.0001

0.001

0.01

0.1

1
R

e
a

d
 d

u
ra

tio
n

 (
s)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

W
ri

te
 d

u
ra

tio
n

 (
s)

Figure 2. Read and write operation durations of the HF application.

As a point in case, a quantum chemistry application based used for execution of the current application only, persis-
on the Hartree-Fock (HF) method (2) performs I/O in the or- tent data are ‘‘alive’’ across different executions. The
der of up to several hundred gigabytes per processor (3). In main data structures used by the HF application men-
fact, N being the number of the basis functions, the I/O per- tioned earlier, for example, fall under the temporary data
formed by this application is on the order of �(N 4). Moreover, category. Additionally, the data accessed by an applica-
the type of I/O access varies across different phases of the tion can be local or remote. The data resident on the local
applications. Figure 2 shows the read and write duration dis- I/O subsystem are considered local, whereas the data ac-
tribution of the application across the execution time for cesses to a remote location over an interconnection net-
N � 118. Table 1 presents the I/O summary of the applica- work are said to be remote.
tion, whereas Table 2 shows the read and write size distribu- Out-of-core data also fall into this category. Out-of-
tions for the same input. Three different phases can easily be core applications have data structures that are so large
identified from Fig. 2. Initially (first 50 s) there are small that they cannot fit entirely in the aggregate memory of
reads and writes for the purpose of initialization of some da- even the parallel machines. Consequently, data should
tabase files as well as application parameters. The second be staged into memory in smaller chunks called data
phase (between 50 and 300 s) consists mainly of large write tiles. As will be explained later, there is some work from
operations to data files on the disk. Following this, the third the software community on optimizing specifically out-of-
and last phase consists of large read operations and itself core applications.
comprises of several subphases, corresponding to the itera-

• Checkpointing. Since many applications take severaltions in the program. Also in this phase a few write opera-
hours or even days for completion, they need to storetions to runtime database files are performed. Since the sec-
some information on disk and/or tape to recover in caseond and third phases constitute the main bottleneck for the
of system or program failure. Although this process canprogram, the programmers use application-level memory
increase the execution time of the application and put anbuffering to perform I/O operations in large chunks instead
additional burden on the I/O subsystem, in many casesof many small reads/writes. In general, the reason that an
it is proven to be useful and practical. As an example,application performs I/O can be a combination of the fol-
an iterative astrophysical hydrodynamics application (4)lowing:
performs I/O for checkpointing and restarting. In this ap-
plication, up to six arrays over twenty thousand itera-• Data Storing/Retrieval. Many high-performance pro-
tions are written in the checkpointing stage and readgrams store/retrieve large amounts of data to/from disk
during the restarting stage. Overall data transfer fromsubsystem and/or archival storage. These data may be

temporary or persistent. While the temporary data are the disk subsystem is on the order of several gigabytes.

Table 1. I/O Summary of the HF Application

Operation I/O Time I/O Volume Percentage of Percentage of
Operation Count (Seconds) (Bytes) I/O Time Execution Time

Open 19 3.13 0.20 0.08
Read 14,521 1489.07 909,301,536 93.76 39.28
Seek 1,018 17.0 1.07 0.45
Write 2,442 78.01 57,477,540 4.91 2.06
Flush 50 0.44 0.03 0.01
Close 14 0.52 0.03 0.01
All I/O 18,064 1,588.17 966,779,076 100.0 41.9
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Table 2. Read and Write Size Distribution of the HF Application

Operation Size � 4K 4K � Size � 64K 64K � Size � 256K 256K �� Size

Read 646 3 13,872 0
Write 1,572 3 867 0

• Monitoring/Visualization. Applications dealing with is bypassed, as is the client-side memory mapped file support
used by default in the UFS file systems. Instead, fast pathreal-time planetary data, for example, can transmit huge

quantities of data that need to be rendered at a rate re- reads data directly from the disks to the user’s buffer and
writes from the user’s buffer directly to the disks. Also, thequiring up to 200 megabytes per frame (5). Since that

amount of data far exceeds the I/O capacity of current file system performs block coalescing on large read and write
operations, which reduces the number of required disk ac-machines, intelligent programming approaches to opti-

mize the real-time I/O are extremely important. cesses when blocks of the file are contiguous on the disk.
The Paragon PFS provides a set of file access modes (Fig.

3) for coordinating simultaneous access to a file from multipleIn general, all I/O-bound applications may need to make use
application processes running on multiple nodes. Theseof a combination of secondary (disk) and archival storage.
modes are essentially hints provided by the application to the
file system that indicate the type of access. These hints allowFile Systems
the file system to optimize the I/O accesses based on the de-

Traditionally, file systems present the user with a high-level sired file layout, the degree of parallelism, and the level of
interface to access low-level and architecture-dependent I/O data integrity required. The I/O mode can be set when a file is
routines. At the point where the size of data exceeds the size opened, and the application can also set/modify the I/O mode
of virtual address space of the machine, file systems are during the course of reading or writing the file.
needed to facilitate the interaction between the I/O hardware The various I/O modes are as follows:
and application software.

While the traditional file systems for serial machines have,
• M_UNIX is the default mode for sharing files and con-in general, simple and easy-to-use interfaces, they are ori-

forms to the standard UNIX file sharing semantics forented toward specific sequential access patterns. The work-
different processes accessing the same file. Each nodeload studies for IBM mainframes, Unix workstations, and
that shares the file maintains its own file pointer, andsome grand challenge applications as well as other scientific
there is no synchronization between the nodes. Theapplications show that sequential access patterns are highly
nodes access variable-length and unordered records.regular in terms of both granularity and strides.

• In the M_LOG mode, all nodes that share a file use theAnother area of work is distributed file systems, where the
same file pointer. The node accesses are not synchro-file services are generally provided by ‘‘file servers,’’ which are
nized. The nodes can access variable-length and unor-processes that run on dedicated machines. The main issues in
dered records.a distributed file system design are access control and autho-

• In the M_SYNC mode, all the nodes sharing a file use therization, transparency, file naming, and file sharing.
same file pointer and the node accesses are synchronized.Recently there has been more work on parallel file systems
The node accesses are always satisfied in the node order.(PFSs), which show that simple extensions of Unix-like inter-
Node ordering is used to synchronize the node accesses.faces for parallel architectures and parallel I/O subsystems

are often inadequate and may result in inferior performance. • In the M_RECORD mode, all the nodes that share the file
Throughout the years several commercial parallel file systems have unique file pointers and the nodes are not synchro-
have been designed and implemented. In the following, we nized. Nodes access fixed-length records, and files cre-
present somewhat detailed information on one example paral- ated in this mode resemble files created in the M_SYNC
lel file system.

The PFS (6) is designed to provide the high bandwidth nec-
essary for parallel applications on Intel Paragon. This is ac-
complished by striping the files across a group of regular Unix
file systems (UFSs) that are located on distinct storage de-
vices and by optimizing accesses to these file systems for large
transfers. Any number of PFS file systems may be mounted
in the system, each with different default data striping attri-
butes and buffering strategies. Stripe attributes describe how
the file is to be laid out via parameters such as the stripe unit
size (unit of data interleaving) and the stripe group (the I/O
node disk partitions across which a PFS file is interleaved).
Currently supported buffering strategies allow data buffering
on the I/O nodes to be enabled or disabled.

When buffering is disabled, a technique called fast path
Different data

M_LOG
(mode 1)

Same data
M_GLOBAL

(mode 4)

No atomicity
M_ASYNC
(mode 5)

Atomicity
M_UNIX
(mode 0)

No atomicity
M_ASYNC
(mode 5)

Unordered Not synchronized

Shared file pointer

PFS input/output modes

Unique file pointer

Synchronized
(node order)

M_SYNC
(mode 2)

I/O is used to avoid data caching and copying on large trans-
fers. The file system buffer cache on the Paragon OS server Figure 3. Paragon parallel file system I/O modes.



INPUT-OUTPUT PROGRAMS 237

36.0
35.0
34.0
33.0
32.0
31.0
30.0
29.0
28.0
27.0
26.0
25.0
24.0
23.0
22.0
21.0
20.0
19.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0

9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

1024960896832768704640576512
Request size (KB)

44838432025619212864

File system read performance
(8 compute nodes, 81/O nodes)

64K PFS M_UNIX mode
64K PFS M_LOG mode

64K PFS M_SYNC Mode
64K PFS M_Record mode
64K PFS M_ASYNC mode

64K PFS Seperate files

T
h

ro
u

g
h

p
u

t 
(m

e
g

a
b

yt
e

s/
s)

Figure 4. Read performance of the PFS I/O modes.

mode (that is, the data appear in node order). However, presented for comparison with the I/O mode data; in this case
each compute node accesses a unique file rather than openingthis is a highly parallel mode that can allow multiple
a shared file.readers and multiple writers because all the nodes read/

M_RECORD mode read performance is better than those ofwrite from/to distinct parts of the file. Since all the nodes
M_UNIX, M_LOG, and M_SYNC modes. All the nodes in thecan access the file in parallel, it offers better performance
M_RECORD mode access the file using unique file pointersthan M_UNIX, M_LOG, and M_SYNC modes (6).
since they always access separate areas in the shared file.• In the M_GLOBAL mode, all the nodes that share the file
Even though M_ASYNC has the highest performance of all thehave the same file pointer and all the nodes access the
I/O modes, this mode does not guarantee I/O operations tosame data. Instead of accessing the disk individually for
be atomic.each request, this mode coalesces the multiple identical

Other parallel file systems also have similar file accessI/O requests to the same file into a single request and
modes. The most recent ones, like PIOFS [], which runs onincreases the throughput for the user.
IBM SP machines, provide the user with logical views (parti-

• The M_ASYNC mode is very similar to the M_UNIX mode, tioning) of the data in files and support a limited class of col-
except that multiple readers and multiple writers are al- lective I/O operations.
lowed, which implies that standard UNIX file sharing se- A study conducted by Cormen and Kotz (7) has shown that
mantics for different processes accessing the same file existing parallel file systems have limited functionality. To
are not preserved. I/O operations are not guaranteed to name a few, some of them cannot give the user access to disk
be atomic. blocks independently; some of them do not offer control over

data declustering and stripe attributes; and apparently none
Figure 4 displays the read performance of most of the vari- of them support user-level different types of data distribu-

ous PFS I/O modes supported by the PFS. These results were tions and access patterns. The experiments conducted by
obtained on a Paragon with eight compute nodes and eight Nieuwejaar and Kotz (8) demonstrated that many parallel ap-
I/O nodes, with all compute nodes reading a single shared plications exhibit highly regular but nonconsecutive I/O ac-
file. Each I/O node was configured with a single SCSI-8 cesses patterns. Since commercial parallel file systems cannot
(Small Computer Systems Interface) card and RAID array; it capture those types of accesses effectively, they proposed
should be noted that SCSI-16 hardware is also available that some extensions to the standard file system interfaces. The
effectively quadruples the bandwidth available on each I/O proposed extensions support strided, nested-strided, and

nested-batch I/O access requests.node. In the graph, data for the ‘‘Separate Files’’ case are also
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In general, a file system fulfills one of the main functional- Asynchronous or nonblocking I/O calls supported by several
file systems provide this capability. Data prefetching isities of the operating system. Among the other responsibilities

of operating systems is transfer of data between protection achieved by issuing an asynchronous I/O read request for the
next data set immediately after the current data set has beendomains. Unfortunately, many operating systems are ineffi-

cient in transferring large amounts of data across different read. In parallel machines, it may also be possible to overlap
communication, computation, and I/O. Notice that in compar-domains. The main problem is that they introduce unneces-

sary copy operations, which in turn degrade the performance ison with data reuse, prefetching does not eliminate or reduce
I/O latency, but rather hides it. Figure 5 shows how the I/O(in many cases significantly). Container shipping (9) is a new

technique for efficient data transfer between domains and in- reads are eliminated if prefetching is used for the HF applica-
tion mentioned earlier.volves no physical copying.

Current Projects. PASSION (Parallel and Scalable Soft-Runtime Systems and I/O Libraries
ware for Input-Output) (10), SOLAR (Scalable Out-of-Core

In general, file systems are difficult to use as they are bound Linear Algebra Computation Library) (11), Jovian (12), and
to several I/O parameters that are dependent on the underly- PANDA (13) are runtime libraries that have been developed
ing architecture. In comparison, runtime libraries are attrac- for out-of-core and/or I/O-intensive applications. They provide
tive development environments for both users and compiler software support for performing I/O accesses from the user
writers as they offer a level of insulation from the operating program with a high-level interface using the native file sys-
system and file system software. tem calls of the parallel machine. Most of the libraries provide

There is some work on developing runtime libraries that support for some subset of major optimizations, such as pre-
provide a number of functionalities to perform I/O in sequen- fetching, overlapping, reuse, data sieving, collective I/O, disk-
tial as well as parallel applications. In particular, recently directed I/O (14), two-phase I/O (10), and buffering.
there have been a number of projects on parallel runtime li- Disk-directed I/O (14) allows the disk servers to determine
braries and systems. First we mention some of the optimiza- the flow of data for maximum performance. The simulation
tions performed by these libraries and then we present an results show that impressive performance gains are possible.
overview of some of the current projects. The PASSION library (10) performs collective I/O using a

two-phase method. In this method, I/O is performed in two
Collective I/O. Data parallel programs, where all pro- phases. In the first phase, processors cooperate to read data

cessors perform similar operations on different data sets, con- in large contiguous chunks, whereas in the second phase data
stitute an important class of programs in the scientific com- are redistributed among processors using the interprocessor
munity. If all processors perform I/O independently, the communication network available. Two main advantages of
result may be a large number of low granularity requests that the two phase method are high-granularity data transfers
may arrive from different processors in any order. Instead, and use of innerconnection networks instead of the I/O net-
processors can cooperate in reading and writing data in an work, which, in general, has much lower interconnectivity.
efficient manner. This process is known as collective I/O. PASSION supports the notion of abstract storage models

and it classifies it into two types—namely, the local place-
Data Reuse. It has been observed that in many applica- ment model (LPM) and the global placement model (GPM).

tions, a portion of the current data set fetched from the disk Each processing node is connected to a separate disk system
is also needed for computation on the next data set. Instead in the LPM, and data are shared between processors only by
of reading the data again, they can be reused by caching the communication. Individual processors read or write data
data in either the client or server side. from/to the disk through the in-core local array data struc-

ture. On the other hand, the GPM supports a global file view
where all the processors share a single file that can be ac-Prefetching. The time taken by a program can be reduced if

it is possible to overlap computation and I/O in some fashion. cessed by all the processors, called the global array file. The
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Figure 5. Read and write operation durations of the HF application with prefetching.
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I/O routines that are used by the various PASSION library the file with different file types. Unlike the file systems’ I/O
modes, multiple patterns can be used simultaneously on thecalls are implemented using the native parallel file system’s

I/O calls. PASSION also performs I/O optimizations such as same file and highly out-of-order, flexible, and portable pat-
terns can be optimized for using the MPI-IO interface. MPI-prefetching, data sieving, data reuse, overlapping, different

array layouts, and collective communication for optimizing IO interface also provides global and individual file pointers
and asynchronous I/O accesses. It can allow for overlap ofthe total time spent in I/O. Data sieving results in large grain

and parallel I/O transfers that are preferable in I/O systems. communication or computation with I/O. It provides commu-
nicator groups for global data accesses where the accesses areData reuse promotes the reuse of data that are already pres-

ent in memory and fetching only the absent data. Prefetching done in a collective fashion.
uses the asynchronous I/O support of the parallel file system
to overlap computation with I/O. Language Support and Compilers

SOLAR (11) is primarily designed to handle out-of-core
Despite the fact that the parallel file systems and runtimedense matrix computations providing out-of-core functionality
libraries for out-of-core computations provide considerablesimilar to the in-core BLAS and LAPACK for shared memory
I/O performance, they require a considerable effort from themachines and the in-core ScaLAPACK for distributed mem-
user as well. As a result, the user-optimized parallel I/O-in-ory machines. A MIOS (matrix input output subroutine) is
tensive applications consume the precious time of the pro-associated with each matrix created and it identifies a ‘‘pri-
grammer, who instead should focus on higher aspects of themary block’’—aligned accesses that yield parallel reads/
program, and are not portable across a wide variety of paral-writes to the disks and achieve the best possible I/O band-
lel machines.width. Two-phase I/O and disk-directed I/O are used by the

In this subsection, we concentrate on compiler techniquesMIOS routines to perform efficient I/O accesses. Multiple lay-
to optimize the I/O performance of scientific applications. Inouts and pipelined accesses are supported.
other words, we give the responsibility of keeping track ofCollective I/O is the emphasis of Jovian (12), where all the
data transfers between disk subsystems and memory to theI/O nodes cooperate and coordinate to perform the I/O ac-
compiler. The main rationale behind this approach is the factcesses to access the disk with fewer coalesced accesses. The
that the compiler is sometimes in a position to examine theresearchers (12) define ‘‘coalescing processes’’ that are respon-
overall access pattern of the application and can perform I/Osible for distinct parts of the global data structure that is
optimizations that conform to application’s behavior. More-stored in the I/O system and are analogical to the server pro-
over, a compiler can establish a coordination with the under-cesses in database management systems. The I/O accesses
lying architecture, native parallel file system of the machine,create one-to-one or many-to-one mapping between the appli-
and I/O libraries so that the optimizations can obtain goodcation processes and coalescing processes. The researchers
speedups and execution times. An important challenge for thepresent two different views for the collective I/O model—
compiler approach to I/O on parallel machines is that the disknamely, the global view and the distributed view. In the
use, parallelism, and communication (synchronization) needglobal view, the global subset of the out-of-core data structure
to be considered together to obtain a satisfying I/O perfor-distributed across the disks is copied to or from the global
mance. A compiler-based approach to the I/O problem shouldsubset of in-core data structure, which is distributed across
be able to restructure the disk resident data and computa-the processors by the I/O library. In the distributed view the
tions, insert calls to the parallel file systems and/or libraries,application process must convert the local in-core data struc-
and perform some low-level I/O optimizations.tures into global out-of-core indices before making I/O library

As compared with the compilation techniques designed tocalls, which increases the load on the application process.
optimize memory performance, designing compiler techniquesThe PANDA library (13) uses ‘‘server directed I/O’’ that
to optimize I/O performance is more difficult. To elaborateperforms large sequential I/O accesses. The compute node cli-
more on the difficulty of designing efficient compiler optimiza-ents perform I/O through the server I/O nodes by sending the
tions, let us consider an I/O-intensive data parallel programappropriate I/O access requests. Once the I/O requests are
running on a distributed memory parallel machine. The pri-received by the server I/O nodes, they are performed collec-
mary data sets of the program will be accessed from filestively with all I/O nodes cooperating with each other.
stored on disks. Assume that the files will be striped acrossIn addition to work in I/O libraries and runtime systems,
several disks. We can define four different working spaces (16)there has been a significant effort both from the academic and
in which this I/O-intensive parallel program operates: a pro-vendor communities to standardize the I/O library calls. Each
gram space, which consists of all the data declared in the pro-parallel machine has its own native I/O library and parallel
gram; a processor space, which consists of all the data belong-file system that prohibits portable applications. The MPI-IO
ing to a processor; a file space, which consists of all the datastandard (15) addresses portability and efficiency in devel-
belonging to a local file of a processor; and a disk space, whichoping applications that perform I/O and provides a high-level
contains some subset of striping units belonging to a local file.interface to the application programmer hiding the underly-
An important challenge before compiler writers for I/O-inten-ing complicated details of the parallel machine. Similar to file
sive applications is to maintain the maximum degree of local-systems that optimize the underlying disk accesses for vari-
ity across those spaces. During the execution of I/O-intensiveous patterns of I/O accesses, MPI-IO allows expression of
programs, data need to be fetched from external storage intodata partitioning across the processors using MPI file types.
memory. Consequently, the performance of such a programThese are patterns in a file that are replicated in the entire
depends mainly on the time required to access data. Tofile and are used to tile the file data. File types are built from
achieve reasonable speedups, the compiler or user needs tosome basic data types, and they could contain holes or blanks

as part of them that can enable multiple processors to share minimize the number of I/O accesses. One way to achieve this
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goal is to transform the program and data sets such that the cache memory, and main memory, optimizing spatial locality
in files to minimize the number as well as volume of the I/Olocalities between those spaces are maintained. This problem

is similar to that of finding appropriate compiler optimiza- transfers is extremely important.
Although for many applications transformation based ontions to enhance the locality characteristics of in-core pro-

grams; but due to the irregular interaction between working reordering computations is quite successful, for some applica-
tions in order to obtain the best I/O performance, data in filesspaces, it is more difficult. To improve the I/O performance,

any application should access as much consecutive data as should also be redistributed (21). Unfortunately, while the
computation transformations can benefit from the work thatpossible from disks. In other words, the program locality

should be translated into spatial locality in disk space. Since has been done for cache memories, there has not been much
interest on data transformations until recently. This is espe-maintaining the locality in disk space is very difficult in gen-

eral, compiler optimizations attempt to maintain the locality cially true for disk resident data consumed by parallel pro-
cessors. The main issue here is to reach a balance betweenin the file space instead.

Early work on optimizing the performance of I/O subsys- optimizing locality and maintaining a decent level of parallel-
ism. More advanced techniques requiring unified data andtems by compilation techniques came from researchers deal-

ing with virtual memory issues. The most notable work is computation transformations are necessary if future compil-
ers for I/O-intensive applications are to be successful.from Abu-Sufah et al. (17), which deals with optimizations to

enhance the locality properties of programs in a virtual mem- Of course, all the compiler transformations performed to
optimize disk performance of I/O-intensive programs shouldory environment. Among the program transformations used

are loop fusion, loop distribution, and tiling (page indexing). be followed by techniques for optimizing the accesses to data
tiles currently residing in memory. Fortunately there are lotsMore recent work has concentrated on compilation of out-

of-core computations using techniques based on explicit file of efforts in academia for optimizing the main memory and
cache performance (22,23).I/O. The main difficulty is that neither sequential nor data

parallel languages like High-Performance Fortran (HPF) pro- To see the effect of the transformations, let us consider Fig.
6, which is obtained on different numbers of processors onvide the appropriate framework for programming I/O inten-

sive applications. Work in the language arena offered some Intel Paragon for a simple program that uses 128 megabyte
arrays. Slab ratio corresponds to the ratio of size of the localparallel I/O directives (18) to give hints to the compiler and

runtime system about the intended use of the disk resident memory to the total size of the out-of-core local arrays. Each
figure shows four bars for each slab ratio. The bars corre-data. Since implementation of these language directives

strongly depends on the underlying system, there has been spond to the normalized execution time of the unoptimized
version, two optimized versions with computation transfor-no consensus on what kinds of primitives should be supported

and how. There are generally two feasible ways to give com- mations only (assuming column-major and row-major file lay-
outs), and an optimized version that uses both data and com-piler support to I/O intensive programs: (1) using parallel file

systems, and (2) using parallel runtime libraries. The re- putation transformations, respectively. As can be seen from
the figure, although optimizations based on computationsearch has generally concentrated on using runtime libraries

from a compilation framework (18). transformations improve the execution time, the impact of the
unified approach is impressive.An I/O-intensive program can be optimized in two ways:

• Computation transformations (19,20) I/O in Multimedia
• Data transformations (21)

Multimedia systems operate with a combination of informa-
tion, such as video, voice, audio, animation, and graphics. InThe techniques based on computation transformations at-
addition to requiring large processing power, applicationstempt to choreograph I/O, given the high-level compiler direc-
running on these systems also require large storage capabil-tives mentioned previously. The computation transformations
ity, fast access rates, low latency, and high network band-used by compilers for handling disk resident arrays can
widths. Also, continuous video and audio transfers that occurroughly be divided into two categories: (1) approaches based
in real time require constant data transfer rates. Multimediaon tiling, and (2) approaches based on loop permutations. Un-
applications include teleconferencing, group working, multi-like in-core computation, where main data structures can be
media electronic mail, and playback applications. The I/O re-kept in memory, in I/O-intensive applications tiling is a ne-
quirements of these applications can be classified into twocessity. The compiler should stage the data into memory in
types: (1) Conferencing applications require very small laten-small granules called data tiles. The computation can only be
cies in delivery, and (2) playback applications need constantperformed on data tiles currently residing in memory. The
real-time I/O throughput.computation required for other data tiles should be deferred

A request in a multimedia server undergoes threeuntil they are brought into memory (19). By using the infor-
phases—namely, disk, processor-I/O bus, and processor. Themation given by directives, the compiler statically analyzes
first two phases fall under the purview of the I/O subsystem.the program and performs an appropriate tiling. After tiling,
When I/O accesses from the application go through the SCSIthe compiler has to insert the necessary I/O statements (if
bus to the disk with deadlines, the disk employs variousany) into program. Another important issue is to optimize the
scheduling algorithms to order the requests for service. Dead-spatial locality in files as much as possible. This can basically
line is the total time taken to release a request and the periodbe performed by permuting the tiling loops in the nest. Alter-
of the request. EDF (Earliest Deadline First) is a traditionalnatively, permutation can be applied before the tiling trans-
scheduling algorithm that serves disk accesses based on theirformations are performed. Given the fact that the accesses to

the disk are much slower than accesses to processor registers, deadlines. This could result in high seek times and low disk
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Figure 6. Normalized I/O times for a simple program with 128 megabyte arrays on Intel
Paragon.

utilization. This algorithm also assumes that disks are pre- the bus system affect the overall performance of the multime-
dia application and need a lot of further investigation.emptable (current disks are not). To serve aperiodic or bursty

requests, some number of such requests are given special pri-
ority to avoid starvation and thereby provide reasonable real-
time responses. CScan (Circular Scan) service requests in the CONCLUSIONS
scanning direction of the disk head. If the disk is moving from
the outermost track to the innermost track, it services all the In this article we present some of the key software activities

to improve the performance of the I/O subsystems (specifi-requests on its way. The outcome of this policy is seek optimi-
zation, but there is no concept of deadlines. Scan-EDF offers cally the secondary storage). It is emphasized that the I/O

bottleneck can be handled in different layers of software. Ap-the benefits of both EDF and CScan policies. The general pol-
icy is to serve requests in the EDF order, and when the re- plication programmers try to optimize the I/O performance of

their programs by a combination of I/O-conscious program-quests have the same deadlines, CScan policy is used to give
seek-time optimization. Thus the technique can be made more ming techniques and low-level optimizations such as buff-

ering and caching. File systems and runtime systems presentefficient by giving several requests the same deadline. Aperi-
odic requests are served as in the EDF policy. In Ref. 24 a similar functionalities to the user and/or compiler. There are

several tradeoffs here concerning ease of use and efficiency.comparison of the forementioned scheduling policies for an
IBM 3.5 inch 2-gigabyte cat disk was performed. The authors We argue that a compiler for I/O-intensive programs may, in

some cases, have a global view of the I/O behavior of the pro-found that CScan supports the most number of streams and
supports real-time requests better than aperiodic requests grams and restructure it so that a good coordination between

I/O hardware and system software is established.due to its predictable seek-time optimization, but that EDF
supports the least number of streams as it gives higher prior- We hope that ongoing research will give us more informa-

tion regarding the demands placed by a specific program onity to aperiodic requests. SCan-EDF supported almost as
many streams as the CSan method and at the same time gave I/O subsystems, so that software designers can decide where

to place a functionality. This will lead to a better defined coor-good response times to aperiodic requests as the EDF policy.
Also of importance is the contention on the SCSI bus, and this dination between application programs and systems software,

which in turn improves the I/O performance of the appli-can reduce the streams supported by a disk by a factor of 3.
Buffering, file system block size, scheduling algorithm, and cation.
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