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sign parameter) and its cross-sectional area t (an independent
design variable or decision variable). In particular, then, the
capital cost is CLt, where C (a design parameter) is the cost
per unit volume of the material making up the line. Also, sup-
pose the operating cost is simply proportional to the power
loss, which is known to be proportional to both L and the line
resistivity R (a design parameter) as well as to the square of
the carried current I (a design parameter) while being in-
versely proportional to t. In particular, then, the operating
cost is DLRI2/t, where the proportionality constant D (a de-
sign parameter) is determined from the predicted lifetime of
the line as well as the present and future unit power costs
(via standard accounting procedures for expressing the sumGEOMETRIC PROGRAMMING
of all such costs as a present value determined by interest
rates). In summary, the problem is to find the cross-sectionalGeometric programming originated in 1961 with Zener’s dis-
area t � 0 that minimizes the total costcovery (1–5) of an ingenious method for designing equipment

at minimum total cost—a method that is applicable when the
component capital costs and operating costs can be expressed
in terms of the design variables via a certain type of general-

P(t) = c1t1 + c2t−1 for given coefficients c1 = CL

and c2 = DLRI2
(1)

ized polynomial (one whose exponents need not be positive
Such an optimal cross-sectional area t* exists, because theintegers). Unlike competing analytical methods, which re-
positivity of the coefficients c1 and c2 clearly implies that, forquire the solution of a system of nonlinear equations derived
t � 0, the continuous function P(t) � 0 and P(t) � �� asfrom the differential calculus, this method requires the solu-
either t � 0� or t � ��.tion of a system of linear equations derived from both the

differential calculus and certain ingenious transformations.
GENERALIZED POLYNOMIALSUnlike competing numerical methods, which minimize the to-

tal cost by either direct search or steepest descent or the New-
The objective function P(t) defined by Eq. (1) is an example ofton–Raphson method (or one of their numerous descendants),
a generalized polynomial P(t) � �n

i�1 Ti—namely, a sum ofthis method provides formulae that show how the minimum
terms Ti � ci�

m
j�1 tjaij, each of which is a given coefficient citotal cost and associated optimal design depend on the design

(usually determined by design parameters) multiplied into aparameters (such as unit material costs and power costs,
product �m

j�1 tjaij of the independent design variables tj raisedwhich are determined externally and hence cannot be set by
to appropriate powers aij, termed exponents. In the single-the designer).
variable generalized polynomial Eq. (1), the independent de-In 1962, Duffin (6,7) significantly enlarged the class of gen-
sign variable t is the scalar variable t1, while the exponentseralized polynomials that can be minimized with this method,
a11 � 1 and a21 � �1. In the multivariable generalized polyno-by introducing an ingenious analog of the dual variational
mial P(t) � c1t�1

1 t2
2 � c2 t�1/2

1 t�3
2 , the independent design vari-principles that characterize the network duality originating

able t is the vector variable (t1, t2), while the exponents a11 �from the two Kirchhoff laws and Ohm’s laws. In 1964, Duffin
�1, a12 � 2, a21 � ���, and a22 � �3. Since noninteger expo-and Peterson (8,9) extended this geometric programming du-
nents aij are mathematically permissible and are, in fact,ality and associated methodology to the minimization of gen-
needed in many applications, the natural domain of a general-eralized polynomials subject to inequality constraints on
ized polynomial P(t) is normally t � 0 (meaning that eachother generalized polynomials. In essence, that development
component tj of t is positive)—so that t�1/2

1 , for example, is de-provided a nonlinear generalization of linear programming
fined and real-valued.duality—one that is frequently applicable to the optimal de-

sign of sophisticated equipment and complicated systems
Posynomials and Signomials(such as motors, transformers, generators, heat exchangers,

power plants, and their associated systems). If each coefficient ci is positive, each term Ti � ci�
m
j�1taijj in

In 1967, Duffin et al. (10) published the first book on geo- P(t) is clearly positive, and hence so is each value P(t) � Ti.
metric programming, which included additional generaliza- Such generalized polynomials P(t), including Eq. (1), are
tions of the mathematical methodology as well as illustrative termed posynomials and are reasonably easy to minimize via
applications to a variety of realistic optimization problems in geometric programming. Generalized polynomials P(t) that
engineering design. In 1971, Zener (11) published a short in- can be expressed as the difference of two posynomials, such
troductory book to make geometric programming more acces- as our second example P(t) � c1t�1

1 t2
2 � c2t1/2

1 t�3
2 when c1 � 0

sible to design engineers. More recent developments and pub- but c2  0, are termed signomials and are usually more diffi-
lications are discussed in later sections. cult to minimize. Moreover, the maximization of either posy-

nomials or signomials is usually more difficult than the mini-
mization of posynomials.AN ELEMENTARY EXAMPLE: THE OPTIMAL

DESIGN OF A POWER LINE
Posymonomials and Modeling

Suppose the capital cost is simply proportional to the volume It is clear that most, if not all, equipment-component volumes
are posynomial or signomial functions of their various geo-of the line, namely the product of its desired length L (a de-
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metric dimensions—namely, some of the independent design multiply the nonlinear optimality condition Eq. (2) by the un-
known t � 0 to get the equivalent nonlinear optimality condi-variables tj. Moreover, many physical and economic relations

have been expressed in terms of single-term posynomials tion
called posymonomials. Such posymonomials arise either be-
cause of the relevant geometric, physical, or economic laws or c1t1 − c2t−1 = 0 (3)
because the logarithm of a posymonomial ci�

m
j�1 taijj is a linear

each of whose terms is the corresponding term of P(t)function log ci � �m
j�1 aij log tj of the logarithms, log tj, of its

multiplied by the exponent of t in that term [a result thatindependent design variables tj (and hence is relatively easy
holds for all generalized polynomials P(t), by virtue of the for-to use in analytically approximating empirically determined
mulae for differentiating and multiplying posymonomials].relations). Consequently, it is not surprising that many realis-

The linear way in which the terms of P reappear in thetic optimization problems can be modeled accurately with
transformed optimality condition Eq. (3) suggests that our fo-generalized polynomials of one type or another.
cus on finding the optimal t should shift to finding the optimal
terms

TRADITIONAL CALCULUS AND NUMERICAL APPROACHES

T1 = c1t1 and T2 = c2t−1 (4)
The differential-calculus approach to minimizing our power-
line example P(t), given by Eq. (1), is to solve the optimality which, according to the nonlinear optimality condition Eq. (3),
condition dP/dt � 0 for t; that is, solve must satisfy the linear optimality condition

c1 − c2t−2 = 0 (2) T1 − T2 = 0 (5)

The solution to this nonlinear equation, easily accomplished Since this condition is necessary but obviously not sufficient
analytically in this simple case, gives the optimal design (or in itself to determine the optimal terms, another optimality
‘‘optimal solution’’) condition is needed. The key to finding an appropriate linear

one is to use the defining equation P � T1 � T2 and the fact
t∗ = (c2/c1)1/2 = (DLRI2/CL)1/2 = I(DR/C)1/2

that the minimum P � 0 to infer that

which in turn provides the minimum total cost (or ‘‘minimum
value’’ or ‘‘optimal value’’)

T1

P
+ T2

P
= 1 (6)

Then the linear way in which the ratios T1/P and T2/P appear
in this optimality condition (6) suggests that our focus on

P∗ = P(t∗) = (c1c2)1/2 + (c1c2)1/2 = 2(c1c2)1/2

= 2(CLDLRI2)1/2 = 2LI(CDR)1/2

finding the optimal terms T1 and T2 should further shift to
finding the optimal ratiosHowever, more complicated posynomial minimization prob-

lems (with more terms Ti and/or more independent variables
tj) usually cannot be solved analytically by solving the appro- y1 = T1/P and y2 = T2/P (7)
priate optimality condition—namely, dP/dt � 0 in the single-

which are simply the fractional parts of the minimum objec-variable case, or its multivariable version �P � 0.
tive value P due to its optimal terms T1 and T2 respectively.Prior to the creation of geometric programming, such mini-
Needless to say, Eq. (5) divided by P � 0 and Eq. (6) showmization problems had to be solved numerically, either via a
that these optimal ratios y1 and y2 satisfy both the orthogonal-type of Newton–Raphson method applied to dP/dt � 0 (or
ity condition�P � 0), or via a direct-search or descent method applied di-

rectly to P(t). Since all such numerical methods require spe-
y1 − y2 = 0 (8)cific values for the posynomial coefficients ci, they provide

only a specific optimal solution t* and optimal value P*, which
and the normality conditionare optimal only for the specific coefficient values and hence a

very limited range of design-parameter values. Consequently,
y1 + y2 = 1 (9)resorting to such numerical approaches does not provide the

complete functional dependence of the optimal solution t* and
[It is worth noting here that the use of geometric conceptsthe optimal value P* on the design parameters—functional
such as the vector-space orthogonality Eq. (8) is part of thedependences that designers and other decisionmakers are
origin of the term ‘‘geometric programming.’’]normally very much interested in.

Now, the linear system consisting of the orthogonality and
normality conditions in Eqs. (8), (9) clearly has a unique solu-

THE GEOMETRIC PROGRAMMING APPROACH tion

We replace the nonlinear optimality condition dP/dt � 0 (or y∗
1 = y∗

2 = 1/2 (10)
�P � 0) by an equivalent nonlinear optimality condition that
can be transformed into an equivalent linear optimality con- which shows that an optimally designed power line always

produces capital and operating costs that are the same—dition (or system of linear optimality conditions in the multi-
variable case) whose solutions are easily obtainable via ele- invariant with respect to the coefficient vector c � (c1, c2) (and

hence the design parameters L, C, R, I, D). Other importantmentary linear algebra. To do so for our power-line example,
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interpretations of the optimal-ratio vector y* � (y*1 , y*2 ) will respectively, which shows that the overdetermined system
Eq. (16) does indeed have a solution—the same solution foundbecome transparent if we do not use its specific value (��, ��)

while solving for the optimal value P* and optimal solution via the traditional differential-calculus approach.
t* via the equations

Distinguishing Features
y∗

1 = c1t1/P and y∗
2 = c2t−1P (11) In the geometric-programming approach, y* is determined

first, then P*, and finally t*—all by elementary linear alge-
which result from combining Eqs. (4) and (7). bra. In contrast, this order is reversed in the traditional dif-

The nonlinear system Eq. (11) with the unknowns P and t ferential-calculus approach, in which t* is determined first
is actually a disguised version of an equivalent linear system and then P* � P(t*). This reversal of order generally requires
in the corresponding unknowns logarithm P and logarithm the solution of a nonlinear equation dP/dt � 0 (or, in the
t—one that can be obtained by taking the logarithm of both multivariable case, a system of nonlinear equations �P � 0)
sides of the Eq. (11), which produces the log-linear system to determine t*—because the geometric programming trans-

formations Eqs. (4), (7) leading to y are not used.
Analogous to duality in linear programming, y* is the opti-

mal solution to a dual of the primal problem being solved.

log P = log(c1/y∗
1) + log t

log P = log(c2/y∗
2) − log t

(12)

That dual for our power-line example Eq. (1) consists of max-
imizing (c1/y1)y1(c2/y2)y2 subject to the linear orthogonality con-This system is most easily solved by first solving for log P—
dition Eq. (8), the linear normality condition Eq. (9), and thesimply by multiplying both sides of its two equations by y*1
linear positivity conditions y1 � 0 and y2 � 0. Since this maxi-and y*2 respectively and then adding the results to get
mation problem has a unique dual feasible solution y � (��, ��)
and since a unique dual feasible solution y must, a fortiori,
be a dual optimal solution y*, the solution of this geometric

(y∗
1 + y∗

2) log P = y∗
1 log(c1/y∗

1) + y∗
2 log(c2/y∗

2) + (y∗
1 − y∗

2) log t
(13)

dual problem is relatively easy (involving only the linear
which reduces to algebra already done in finding y*). Moreover, the lack of a

geometric programming ‘‘duality gap’’ between the primal
minimum value P* and the dual maximum valuelog P = y∗

1 log(c1/y∗
1) + y∗

2 log(c2/y∗
2) (14)

(c1/y*1 )y*1 (c2/y*2 )y*2 is an immediate consequence of Eq. (15).
by virtue of the normality condition Eq. (9) and the orthogo- Geometric dual problems with a unique dual feasible solu-
nality condition Eq. (8). Exponentiation of both sides of this tion y are said to have zero degree of difficulty. In general,
equation shows that for geometric dual problems with at least one dual feasible

solution y, this degree of difficulty is simply the dimension of
the smallest linear manifold containing the dual feasible solu-P∗ = (c1/y∗

1)y∗
1 (c2/y∗

2)y∗
2 = 2(c1c2)1/2 = 2LI(CDR)1/2 (15)

tion set, namely, the dimension of the set of solutions to the
orthogonality and normality conditions. It can remain zero aswhich gives the minimum value P* prior to having an optimal
the problem size, determined primarily by both the number ofsolution t*. However, an optimal solution t* can now be ob-
posynomial terms and the number of independent variables,tained by substituting the formula Eq. (14) for log P back into
increases (as shown in the next section).the log-linear system Eq. (12) to get the log-linear reduced

The dual optimal solution y* provides other important in-system
formation that can be obtained by observing from the solution
Eq. (15) for P* thaty∗

1 log(c1/y∗
1) + y∗

2 log(c2/y∗
2) = log(c1/y∗

1) + log t

y∗
1 log(c1/y∗

1) + y∗
2 log(c2/y∗

2) = log(c2/y∗
2) − log t

(16)
∂ log P∗

∂ log ci
= y∗

i , i = 1,2 (19)
which is overdetermined, with individual solutions

by virtue of the invariance of y* with respect to changes in c.
log t = y∗

1 log(c1/y∗
1) + y∗

2 log(c2/y∗
2) − log(c1/y∗

1) (17a) In essence, y* provides a ‘‘postoptimal sensitivity analysis’’
analogous to that provided by the dual optimal solutions in

and linear programming. This sensitivity analysis becomes di-
rectly meaningful when the chain rule and the formulas (19)

log t = log(c2/y∗
2) − y∗

1 log(c1/y∗
1) − y∗

2 log(c2/y∗
2) (17b) are used to show that

respectively. Exponentiation of both sides of these equations
gives

∂P∗

∂ci
=
�

∂P∗

∂ log P∗

��
∂ log P∗

∂ log ci

��
∂ log ci

∂ci

�

= (P∗)(y∗
i )

�
1
ci

�
, i = 1, 2

(20)

t∗ = (c1/y∗
1)y∗

1 (c2/y∗
2)y∗

2 (y∗
1/c1) = (c2/c1)1/2 = I(DR/C)1/2

(18a)
which in turn implies via the multivariable chain rule that

and for any design parameter p,

t∗ = (c2/y∗
2)(y∗

1/c1)y∗
1 (y∗

2/c2)y∗
2 = (c2/c1)1/2 = I(DR/C)1/2

(18b)

∂P∗

∂ p
= P∗

[�
y∗

1

c1

��
∂c1

∂ p

�
+
�

y∗
2

c2

��
∂c2

∂ p

�]
(21)
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For example, identifying p in Eq. (21) with the various design Since the log function is monotone increasing with range R,
the other elementary properties of it and its inverse exp implyparameters L gives, via the formulas Eq. (15) for P, the for-

mula Eq. (10) for y*, and the formula Eq. (1) for c, the partial that the desired computation of P* and T* can be achieved
via the computation of bothderivative

p∗ = inf
z∈Rm

p(z) (25a)

and

Z∗ = {z ∈ Rm|p(z) = p∗} (25b)

∂P∗

∂L
= 2(c1c2)1/2

[�
1

2c1

�
(C) +

�
1

2c2

�
(DRI2)

]

= 2(CL2DRI2)1/2
[� 1

2CL

�
(C) +

� 1
2DLRI2

�
(DRI2)

]
= 2(CDRI2)1/2 = 2C1/2R1/2I

In particular,
UNCONSTRAINED POSYNOMIAL MINIMIZATION VIA

P∗ = exp( p∗) (26a)GEOMETRIC PROGRAMMING: THE GENERAL CASE

and
Given an n � 1 coefficient vector c � 0 and an n � m exponent
matrix A � (aij), consider the problem of minimizing the corre-
sponding posynomial

T∗ = {t ∈ Rm | t j = exp(z j ), j = 1, 2, . . ., m, for some z ∈ Z∗}
(26b)

Now, the defining formula Eq. (24b) for p(z) suggests making
P(t) =

n∑
i=1

ci

m∏
j=1

taij
j

(22a)

the additional transformation defined by the following change
over its natural domain of variables:

T = {t ∈ Rm | t > 0} (22b)
xi =

m∑
j=1

aij zj, i = 1,2, . . ., n (27a)

which is the feasible solution set for unconstrained posyno-
mial minimization. Since there need not be an optimal solu-

andtion t*, this minimization actually consists in finding the
problem infimum

g(x) = log

[
n∑

i=1

ci exp(xi)

]
= p(z) (27b)

P∗ = inf
t∈T

P(t) (23a)

Since x ranges over the vector spacewhich is used to define the optimal solution set

T∗ = {t ∈ T | P(t) = P∗} (23b) X = [column space of A = (aij)] (28)

Although T* contains a single point t* � (c2/c1)1/2 for our as z ranges over the vector space Rm, it is not hard to show
power-line example P(t) � c1t1 � c2t�1, it is clearly empty when that the computation of p* and Z* can be achieved via the
either P(t) � c1t1 or P(t) � c2t�1 (because of the restrictions computation of both
0  t  �, which are enforced in order to keep t within the
domain of log t, so that the geometric programming transfor- g∗ = inf

x∈X
g(x) (29a)

mations previously described are applicable). The detection
and treatment of degenerate posynomial minimization prob- and
lems in Eqs. (22), (23) for which T* is empty (because some
optimal t*j is 0 or �) is usually not needed (because well-posed X ∗ = {x ∈ X | g(x) = g∗} (29b)
realistic models normally do not imply extreme optimal de-

even when the linear transformation z � x � Az is not one-signs, namely those involving 0 or �), but is described in
to-one (i.e., when the exponent matrix A does not have fullRefs. 9 and 10.
column rank). In particular,

Transformations
p∗ = g∗ (30a)

The key roles played by log t and log P in the geometric pro-
gramming solution of our power-line example suggests mak- and
ing the transformation defined by the following change of
variables: Z∗ = {z ∈ Rm | Az = x for some x ∈ X ∗} (30b)

In summary, Eqs. (22) through (30) show that, when X isz j = log t j , j = 1, 2, . . ., m (24a)
the column space of the exponent matrix A for the posynom-
ial P(t) defined by Eqs. (22), the infimumand

g∗ = inf
x∈X

log

[
n∑
1

ci exp(xi )

]
(31a)p(z) = log

[
n∑

i=1

ci exp

�
m∑

j=1

aij zj

�]
= log P(t) (24b)



GEOMETRIC PROGRAMMING 329

and corresponding optimal solution set tains a unique x*), the vector y* with components

X ∗ =
{

x ∈ X
∣∣∣∣ log

[
n∑
1

ci exp(xi)

]
= g∗

}
(31b) y∗

i = ci exp(x∗
i )

n∑
i=1

[ci exp(x∗
i )]

, i = 1,2, . . ., n (36)

produce, for the posynomial minimization problem (22), (23),
satisfies the conditionsthe desired infimum

P∗ = exp(g∗) (32a)

and corresponding optimal solution set

n∑
i=1

aikyi = 0, k = 1, 2, . . ., m (orthogonality conditions)

n∑
i=1

yi = 1, (normality condition)

yi > 0, i = 1,2, . . ., n (positivity conditions)

(37a)

(37b)

(37c)

T∗ = {t ∈ Rm | t j = exp(z j ), j = 1, 2, . . ., m

for some z such that Az = x for some x ∈ X ∗}
(32b)

with the positivity conditions satisfied because each posyno-
Existence and Uniqueness of Optimal Solutions mial coefficient ci � 0 and each exp (x*i ) � 0. Conversely, Refs.

9 and 10 show that when the conditions (37) can be satisfiedThe preceding Eq. (32b) between the optimal solution sets
(a situation that can, in principle, be detected by elementaryT* and X* clearly implies that T* is nonempty if and only if
linear algebra or linear programming), T* is not empty andX* is nonempty. Moreover, the strict convexity of the func-
hence X* contains a unique x*, which produces via the Eq.tions ci exp (xi) in Eqs. (31) implies that X* contains at most
(36) a y* that is a solution, but not necessarily the only solu-a single x*. Consequently, the relation (32b) shows that T*
tion, to the linear system [Eq. (37)]. Moreover, Refs. 9 and 10contains at most a single t*, unless z � x � Az is not one-to-
also show that every nontrivial posynomial minimizationone (because A does not have full column rank), in which case
problem Eqs. (22), (23) can be reduced to an equivalent posy-T* has infinitely many t* when it has at least one t*. In any
nomial minimization problem whose dual constraints Eq. (37)case, if T* contains at least one t*, then X* contains a unique
can be satisfied. Consequently, posynomial minimizationx* from which all t* in T* can be computed as all those t � 0
problems whose dual constraints Eq. (37) can be satisfied arethat satisfy the log-linear system
termed canonical problems; and canonical problems, and only
canonical problems, have nonempty optimal solution sets T*,
Z*, and X*.

m∑
j=1

aij log t j = x∗
i , i = 1,2, . . ., n (33)

Degree of Difficulty
In particular then, all t* in T* can be computed from the

According to linear algebra, dual constraints Eq. (37)—inunique x* in X* via elementary linear algebra.
fact, just the orthogonality conditions (37a) and the normalityWhen T* is not empty [which is the case for our power-line
condition Eq. (37b)—can be satisfied only when the integerexample (1) and would normally be the case for a properly

modeled problem from the real world], Eq. (26b) implies that
Z* contains at least one z*. Moreover, since the defining for- d = n − (rank A + 1) (38)
mula Eq. (24b) for the objective function p(z) in the associated

is nonnegative. In fact, in the canonical case, if d � 0, linearminimization problem Eqs. (24b), (25) shows that p(z) is dif-
algebra implies that the dual constraints Eq. (37) have aferentiable on its feasible solution set Rm, we infer from the
unique solution—namely, the vector y* defined by Eq. (36).differential calculus that z* satisfies the optimality condition
Moreover, in the canonical case, if d � 0, linear algebra and�p(z) � 0; that is,
elementary topology imply that the dual constraints Eq. (37)
have a solution set whose dimension is d and hence have in-
finitely many solutions. Consequently, if d � 0 in the canoni-
cal case, the vector y* defined by Eq. (36) can be obtained only
via elementary linear algebra—as in our power-line example

{
n∑

i=1

[
ci exp

�
m∑

j=1

aijz
∗
j

�]}−1 {
n∑

i=1

[
ci exp

�
m∑

j=1

aijz
∗
j

�]
aik

}
= 0

k = 1, 2, . . ., m (34)
(1). On the other hand, if d � 0 in the canonical case, the
vector y* defined by Eq. (36) can not be obtained via only ele-In view of Eqs. (27a) and (30b), these optimality conditions
mentary linear algebra but can be obtained via a numericalEq. (34) for the problem formulation Eq. (24b), (25) imply that
solution of either the primal posynomial minimization prob-
lem Eq. (22, 23) or one of its equivalent reformulations Eq.
(24b, 25) or Eq. (27b, 28, 29)�or via a numerical solution of
their dual problem (which has been described for the power-
line example (1) but is not generally defined until a later sub-

�
n∑

i=1

ci exp(x∗
i )

�−1� n∑
i=1

ci exp(x∗
i )aik

�
= 0, k = 1, 2, . . ., m

(35)
section). Actually, posynomial minimization problem Eq. (22,
23) is normally not solved numerically when d � 0, because itwhich are the optimality conditions for the problem formula-

tion (27b), (28), (29)—the formulation with a unique x* in usually does not have the desirable property of being convex.
However, its equivalent reformulations and their dual areX*. Consequently, when T* is not empty (and hence X* con-
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convex, but choosing which of those three to solve numerically from which all t* in T* can be computed as all those t � 0
that satisfy the log-linear system Eq. (33).when d � 0 requires more information about the exponent

matrix A. Since Refs. 8–10 show that the dual problem is only Some real-world problems to which the preceding theory
can be applied originate with a need to solve a problem mod-linearly constrained (with appropriate orthogonality, normal-

ity and positivity conditions) even when nonlinear posynomial eled by the dual constraints Eq. (37) rather than by the pri-
mal posynomial minimization problem Eqs. (22), (23).constraints are present in the primal problem, the dual prob-

lem should normally be solved numerically when optimally
designing equipment subject to constraints. Since we have al- An Important Example: The Numerical
ready noted that d is the dimension of the dual feasible solu- Solution of Regular Markov Chains
tion set, d has been termed the degree of difficulty of the dual

A physical system whose state can change randomly duringproblem, as well as the degree of difficulty of the correspond-
each transition, but with a known probability distribution,ing primal posynomial problem Eq. (22, 23) and its equivalent
can be accurately modeled as a Markov process. For example,reformulations Eq. (24b, 25) and Eq. (27b, 28, 29).
the analysis and design of a complicated engineering system
(such as a large telephone network or computer network) fre-

The Determination of the Optimal Value quently requires the numerical solution of a Markov chain,
and All Optimal Solutions for which the known probability distribution depends only on

the system’s current state (rather than on its history of previ-Once y* is obtained (usually, but not always, via the dual
ous states). A Markov chain with only a finite number n ofproblem), the desired optimal value P* and all optimal solu-
discrete states i can be completely characterized by a singletions t* can easily be obtained from y*, by first noting that
n � n matrix P—the transition matrix whose element pij isEqs. (22a) and (33) imply that the Eq. (36) can be rewritten
the known probability of going from a current state i to stateas
j in one transition. In particular then, row i of P is a known
probability distribution for which

y∗
i = ci exp(x∗

i )

P∗ , i = 1, 2, . . ., n (39)

which shows that these components y*i of y* are simply the
fractional parts of the minimum objective value P* due to its

n∑
j=1

pij = 1,

pij ≥ 0, j = 1, 2, . . ., n


 i = 1, 2, . . ., n

(45a)

(45b)
optimal terms ci exp(x*i )] respectively—the same interpreta-
tion provided by the equations Eq. (7) for our power-line ex- Given a Markov chain that is regular, or ergodic, in that
ample Eq. (1). Now, take the logarithm of both sides of the Pq � 0 for some positive integer q (the case for many engi-
equations Eq. (39) to get neering systems), it is well known that the corresponding lin-

ear systemlog P∗ = log(ci/y∗
i ) + x∗

i , i = 1, 2, . . ., n (40)

and then multiply both sides of Eq. (40) by y*i , i � 1, 2, . . .,
n, respectively. Now, add the resulting equations to get

yP = y (46a)
n∑

i=1

yi = 1 (46b)

has a unique solution y* and that

�
n∑

i=1

y∗
i

�
log P∗ =

n∑
i=1

y∗
i log

ci

y∗
i

+
n∑

i=1

x∗
i y∗

i (41)

y∗ > 0 (46c)
which reduces to

Since it is also known that y*i gives the probability of the sys-
tem being in state i after a large number of transitions (re-
gardless of the system’s initial state i0), the computation of

log P∗ =
n∑

i=1

y∗
i log

ci

y∗
i

(42)

this equilibrium distribution y* is very important.
When the number n of system states i is extremely large,because y* satisfies the normality condition Eq. (37b) and be-

current computer limitations prevent the computation of y*cause x* and y* are orthogonal by virtue of the transformation
via the standard pivot operations of linear algebra applied toequations Eq. (27a) and the orthogonality conditions Eq.
the system Eq. (46a, b). In such cases, an iterative approach(37a). Needless to say, exponentiation of both sides of Eq. (42)
based on the preceding geometric programming theory cangives the desired optimal value
be successful.

This approach comes from observing that the linear system
Eq. (46) is equivalent to those dual constraints Eq. (37) whoseP∗ =

n∏
i=1

�
ci

y∗
i

�y∗
i

(43)
exponent matrix A has elements

and substituting the formula Eq. (42) for log P* back into the
Eq. (40) gives the optimal aij =

{
pij − 1 if i = j

pij if i �= j
(47)

Since these dual constraints have a unique solution, namely
y* � 0, the corresponding transformed posynomial minimiza-

x∗
i =

�
n∑

i=1

y∗
i log

ci

y∗
i

�
− log

ci

y∗
i

, i = 1, 2, . . ., n (44)
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tion problem Eqs. (24b), (25) has zero degree of difficulty and with the understanding that 00 � 1—so that U(y) is a continu-
ous function for y � 0.is canonical [as defined and discussed following the dual con-

straints Eq. (37)]; so the problem Eqs. (24b), (25) has an opti-
The Main Duality Theorem. If t is primal feasible [in thatmal solution z* as long as each coefficient ci � 0. Although

t satisfies the primal constraints t � 0 for the posynomialz* is not unique [because the column vectors of A sum to 0 by
minimization problem Eqs. (22), (23)] and if y is dual feasiblevirtue of Eqs. (45a) and (47)], each z* provides the desired
[in that y satisfies the constraints Eq. (49) for the correspond-equilibrium distribution y* via the formula
ing dual problem Eqs. (49), (50)], then

U (y) ≤ P(t) (51a)

with equality holding if, and only if,
y∗

i =
ci exp

�
n∑

j=1

aijz
∗
j

�

n∑
k=1

ck exp

�
n∑

j=1

akjz
∗
j

� , i = 1, 2, . . ., n (48)

which comes from combining Eqs. (30b) and (36).
If the coefficient vector c is chosen to be an a priori esti-

mate of y* (or the uniform distribution ci � 1/n when no such

yi =

[
ci

m∏
j=1

t
ai j
j

]
[ n∑

k=1

ck

m∏
j=1

t
ak j
j

] i = 1,2, . . ., n (51b)

estimate is available), differentiation of the objective function

in which case t and y are primal and dual optimal, respec-
tively and the primal problem Eqs. (22, 23) and its dual prob-
lem Eqs. (49, 50) are canonical. Duality inequality Eq. (51a)

log

[
n∑

i=1

ci exp

�
n∑

j=1

aijzj

�]
and the corresponding primal-dual optimality condition Eq.
(51b) can be established with the aid of the well-known Cau-for the minimization problem Eqs. (24b), (25) shows that 0
chy’s inequalityshould be the initial estimate of z*. In particular, the gradient

of this objective function evaluated at 0 can then serve as a
residual in the usual numerical linear-algebraic sense to help
determine an improved estimate of z* and hence an improved

n∏
i=1

uyi
i

≤
n∑

i=1

yiui (52)

estimate of y*. A discussion of strategies for producing rapid
convergence to z* and hence rapid convergence to y* lies at between the geometric mean �n

i�1 uyii and the arithmetic
mean �n

i�1 yiui of n numbers ui � 0, where n weights yi � 0the interface of numerical linear algebra and numerical con-
vex optimization—topics beyond the scope of this article. and �n

i�1 yi � 1. This geometric-mean arithmetic-mean in-
equality Eq. (52) becomes an equality if, and only if, there is
some u � 0 such that ui � u for i � 1, 2, . . ., n. To use theseThe Dual Problem
facts to establish the duality inequality (51a) and primal-dual

Like any optimization problem, the dual problem has both condition (51b), let
a feasible solution set, the dual feasible solution set, and an
objective function, the dual objective function. For the posy-
nomial minimization problem Eqs. (22), (23) [including its ui = Ti

yi
= ci

m∏
j=1

t jaij

yi
(53)

equivalent formulations Eqs. (24b), (25) and Eqs. (27b), (28),
(29)], the dual feasible solution set consists of all solutions to

and then employ both the primal constraints t � 0 and thethe dual constraints
dual constraints Eq. (49). A by-product is that the dual prob-
lem Eqs. (49), (50) has a unique optimal solution y* [deter-
mined via Eqs. (32b) and Eq. (36)] when the primal problem
Eqs. (22), (23) has at least one optimal solution t*—the situa-
tion for canonical problems. (It is worth noting here that this
use of the geometric mean �n

i�1 uyii in Cauchy’s inequality Eq.
(52) is partly the origin of the term geometric programming.)
Also, for canonical problems, the implicit function theorem
from multivariable calculus can be used to show that

n∑
i=1

aikyi = 0, k = 1, 2, . . ., m

the orthogonality conditions (49a)
n∑

i=1

yi = 1, the normality condition (49b)

yi ≥ 0, i = 1, 2, . . ., n the positivity conditions (49c)

which differ from the originally motivated dual constraints
∂ log P∗

∂ log ci
= y∗

i , i = 1, 2, . . ., n (54)
Eqs. (37) only in that the positivity condition Eq. (49c) is a
slightly relaxed version of the positivity condition Eq. which is the basis for postoptimal sensitivity analyses—as
(37c)—a relaxation that is needed to obtain the most complete previously illustrated in the power-line example Eq. (1).
duality theory for posynomial programming. The dual objec- Since the reformulations Eqs. (24b), (25) and Eqs. (27b),
tive function U, which is motivated by Eq. (43) and is to be (28), (29) of the primal posynomial minimization problem Eq.
maximized, has the formula (22), (23) have provided key insights into posynomial minimi-

zation, it should not be surprising to learn that certain re-
formulations of its dual problem Eqs. (49), (50) also provide
valuable insights into posynomial minimization.

U (y) =
n∏

i=1

�
ci

yi

�yi
(50)
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Dual Reformulations defining formulas Eq. (56) for V(r) and Kj. In essence, con-
structing the Kj [using only linear algebra on the exponent

The dual constraints Eq. (49) are linear; so the dual feasible
matrix A � (aij)] performs a dimensional analysis of the dual

solutions y can be characterized in various ways via linear
problem Eqs. (49), (50) [and hence the primal problem Eqs.

algebra and linear programming.
(22), (23) and its equivalents]—in that the formula Eq. (56a)
for V(r) and the duality equation V* � P* indicate that K0 has

Linear-Algebraic Reformulations. These reformulations
the dimensions of the posynomial P (dollars, in cost minimiza-

characterize the dual feasible solutions y in terms of the gen-
tion) while the other Kj, j � 1, 2, . . ., d, are dimensionless.

eral solutions y to the orthogonality and normality conditions
Moreover, for a fixed A � (aij) (typically fixed by the unchang-

Eq. (49a, b). In particular, for a dual problem Eqs. (49), (50)
ing laws of geometry, physical science, and economics), the

with degree of difficulty d [defined by Eq. (38)], such a charac-
normality and nullity vectors b(j) can be fixed independently

terization results from constructing basic vectors b(j) for j � 0,
of the coefficients ci (typically not fixed but determined by

1, . . ., d so that each dual feasible solution
changing design parameters, such as material prices and de-
sign specifications). The basic constants Kj are then functions
only of the coefficients ci; in fact, each log Kj is a linear func-
tion of the log ci’s, as indicated by taking the logarithm of

y = b(0) +
d∑

j=1

r jb
( j) (55)

each side of the defining Eq. (56b) for Kj. The resulting equa-
for values of the basic variables rj for which b(0) � �d

j�1 rjb(j) � tions
0. The vector b(0), which satisfies both the orthogonality and
normality conditions Eqs. (49a, b), is termed a normality vec-
tor. The vectors b(j) for j � 1, . . ., d, which are linearly inde-

n∑
i=1

b( j)
i log ci = log Kj , j = 0, 1, . . ., d (58)

pendent solutions to the homogeneous counterpart of the or-
thogonality and normality conditions Eqs. (49a, b), are called are satisfied by infinitely many coefficient vectors c for a given
nullity vectors. If d � 0, then b(0) is unique (and equal to y*) basic constant vector K (resulting from one particular choice
and the nullity vectors do not exist. If d � 0 (the case to be of c), because the number n � d � rank A � 1 of coefficients
treated in this subsection), the basic vectors b(j) are not unique ci [obtained from Eq. (38)] is clearly always greater than the
and can usually be chosen so that they have special meaning number d � 1 of basic constants Kj. Each solution c to the
for the special problem being treated. preceding linear system Eq. (58) determines a different pri-

In any event, the dual objective function U(y) [to be max- mal problem Eqs. (22), (23), but the corresponding reformu-
imized to determine U* and y* so that the desired P* and t* lated dual problems Eqs. (56), (57) are all the same; so the
can be determined via the duality equations Eqs. (43), (44), minimum value P* for each of these primal problem is the
(33)], written in terms of the basic variables rj, is same even though the primal optimal solutions t* are gener-

ally different. In summary, the solution of a specific problem
Eqs. (56), (57) (by the maximization of V(r) for a particular
K) solves infinitely many posynomial minimization problems
Eqs. (22), (23) (determined by all solutions c to the linear sys-
tem Eq. (58) for the particular K).

Maximizing V(r) can, of course, be achieved by maximizing

V (r) =

�
n∏

i=1

c
b(0 )

i
+ ∑

j=1

d
r j b( j )

i

i

��
n∏

i=1

yi(r)
−yi (r)

�

= K0

�
d∏

j=1

K
r j
j

��
n∏

i=1

yi(r)
−yi (r)

�
(56a)

where the basic constants are logV (r) = log K0 +
d∑

j=1

(log Kj )r j −
n∑

i=1

yi(r) log yi(r)

Since previously described theory (for canonical problems) as-Kj =
n∏

i=1

c
b( j )

i
i

, j = 0,1, . . ., d (56b)

serts the existence of an optimal y* � 0, there is a correspond-
ing optimal r* such that y(r*) � y*. The differentiability ofand where
log V(r) at such an r* implies that �(log V)/�rj (r*) � 0, j � 1,
2, . . ., d, which means that

yi(r) = b(0)

i +
d∑

j=1

r jb
( j)
i , i = 1, 2, . . ., n (56c)

log Kj −
n∑

i=1

(log y∗
i + 1)b( j)

i = 0, j = 1, 2, . . ., d

In summary, the dual problem Eqs. (49), (50) (and hence the
primal problem Eqs. (22), (23) and its equivalents Eqs. (24b),

and hence that(25) and Eqs. (27b), (28), (29)) can be solved by maximizing
the reformulated dual objective function V(r) defined by Eqs.
(56), subject to the reformulated positivity conditions log Kj =

n∑
i=1

b( j)
i log y∗

i , j = 1, 2, . . ., d

becauseb(0)

i +
d∑

j=1

b( j)
i r j ≥ 0, i = 1,2, . . ., n (57)

Prior to maximizing V(r), useful qualitative information
about optimal value V* (� U* � P*) can be obtained from the

n∑
i=1

b( j)
i = 0, j = 1,2, . . ., d
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Since log U is a concave function of y, the preceding computa- (in fact, exactly d zero components if, and only if, yk is nonde-
generate in the linear programming sense). Moreover, ac-tion actually shows that a dual feasible solution y � 0 is in

fact dual optimal if and only if cording to the resolution theorem (sometimes called the ‘‘de-
composition theorem’’ or ‘‘Weyl’s theorem’’ or ‘‘Goldman’s
theorem’’) for polytopes, each dual feasible solution y is a con-
vex combination of the basic dual feasible solutions yk; that

log Kj =
n∑

i=1

b( j)
i log yi, j = 1, 2, . . ., d (59a)

is,
in which case log U � log K0 � �n

i�1 b(0)
i log yi and hence

P∗ = K0

n∏
i=1

y
−b(0 )

i
i

(59b)
y =

p∑
k=1

δkyk

for appropriate weights δ for which δ ≥ 0 and
p∑

k=1

δk = 1 (60)
Note that the maximizing equations Eq. (59a) map each dual
feasible solution y � 0 into basic constants K in such a way

Moreover, for nontrivial canonical problems [those for whichthat the dual feasible solution y is actually the dual optimal
the (rank A) � 1], linear algebra and the simplex method cansolution y* for each of the infinitely many posynomial minimi-
be used to show that n/2 
 p 
 n!/d! (n � d)!.zation problems Eqs. (22), (23) with a coefficient vector c that

Since yk is orthogonal to each column of the exponent ma-satisfies the resulting linear system Eq. (58).
trix A [by virtue of the dual feasibility of yk and the orthogo-If the degree of difficulty d is only one, there is only one
nality condition Eq. (49a)], it is clear that the vector yk thatmaximizing Eq. (59a), one Kj � K1, and one rj � r1. In that

case, simply graphing the resulting maximizing equation results from deleting the zero components of yk is orthogonal
to each column of the matrix A that results from deleting the
corresponding rows of A. Moreover, since yk obviously inherits
normality and positivity from yk, it is a dual feasible solution

log K1 =
n∑

i=1

b(1)

i log(b(0)

i + b(1)

i r1)

for minimizing the posynomial Pk that results from deleting
the corresponding terms of P. In fact, minimizing Pk is a ca-treating r1 as the independent variable and log K1 as the de-
nonical problem because yk � 0; and it has zero degree of dif-pendent variable, essentially solves all posynomial minimiza-
ficulty, because the components of yk are uniquely determinedtion problems Eq. (22), (23) that have the exponent matrix A
by the zero values for the nonbasic variables relative to theused in constructing the normality and nullity vectors b(j). The
simplex tableau that determines yk as a basic feasible solutionreason is that, given a particular coefficient vector c, the de-
to the linear system Eq. (49). In essence, minimizing Pk is afining Eq. (58) for log Kj give a particular
meaningful approximation to minimizing the original posy-
nomial P—an approximation that is easy to solve because of
its zero degree of difficulty. Similar reasoning, combined withlog K1 =

n∑
i=1

b(1)

i log ci

Tucker’s positivity theorem concerning orthogonal comple-
mentary subspaces, shows that deleting even one additionalwhich determines, via the graph, the corresponding optimal
term from the posynomial Pk would produce a posynomialr*1 and hence the dual optimal solution y* � b(0) � b(1) r*1 , from
whose infimum was zero—indicating that its minimizationwhich the desired P* and t* can be determined via the duality
could not possibly be a meaningful approximation to minimiz-Eqs. (43), (44), (33). In retrospect, it is worth noting that the
ing the original posynomial P. In summary, for k � 1, 2, . . .,graph of log K1 versus r1: (1) always has range R, because the
p, the nonzero components of the basic dual feasible solutionrange of log K1 in the preceding displayed formula is clearly
yk constitute the dual optimal solution yk to a meaningfulalways R, and (2) is always one-to-one, because the dual opti-
(though not necessarily accurate) minimal-size, zero-degree-mal solution y* is unique, and hence so is r* (by virtue of the
of-difficulty, canonical approximation to the problem of min-linear independence of the b(j)).
imizing P—namely, the problem of minimizing the posy-If the degree of difficulty d is larger than one, the graph of
nomial Pk that results from deleting the terms of P thatthe maximizing equations is in at least a four-dimensional
correspond to the zero components of yk.space; so the preceding solution procedure generally requires

Since c0
i � 1 and since we have defined 00 � 1, the zeroa numerical solution technique (such as the Newton–Raphson

degree of difficulty in minimizing Pk along with the dualitymethod) to determine r* from a knowledge of log Kj.
inequality Eq. (50), (51) implies that

Linear Programming Reformulations. These reformulations
characterize the dual feasible solutions y in terms of the basic
dual feasible solutions yk, k � 1, 2, . . ., p, to the dual feasibil- P ∗

k = min P k =
n∏

i=1

�
ci

yk
i

�yk
i

< min P = P∗, k = 1,2, . . ., p
ity conditions Eq. (49). Unlike the normality and nullity vec-
tors b(j), j � 0, 1, . . ., d, the basic dual feasible solutions yk

where the strict inequality results from the fact that yk has atare unique and can be determined from the linear system Eq.
least one zero component and hence cannot be dual optimal(49) via phase I of the simplex method for linear program-
for minimizing P (which we know has a unique dual optimalming. Since the number of nonbasic variables relative to the
y* � 0). To improve on the resulting best extreme-point lowersimplex tableau that determines yk is n � (rank A � 1)
bound for P*, namely maxk �P*k �k � 1, 2, . . ., p�, use Eq. (60)[namely, the degree of difficulty d by virtue of Eq. (38)], each

basic dual feasible solution yk has at least d zero components to reformulate the dual objective function U(y) [defined by Eq.
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(50)] in terms of � as in probability theory) is that the best inference for unknown
probability distribution y from the given moment conditions
Eq. (62) and a priori distribution Eq. (63) is the optimal solu-
tion to the following optimization problem:W (δ) =

�
n∏

i=1

cyi (δ)

1

��
n∏

i=1

yi(δ)−yi (δ)

�

=
�

p∏
k=1

Lδk
k

��
n∏

i=1

yi(δ)−yi (δ)

�
Maximize the cross entropy H(y) =

n∑
i=1

yi log
nqi

yi

subject to the constraints (61) and (62)


 (64)

where
Since H(y) � log U(y) when ci � nqi [by virtue of Eq. (50)] and
since the condition Eq. (61b) makes the moment conditions
Eq. (62) equivalent to the orthogonality conditions

yi(δ) =
p∑

k=1

yk
i δk, i = 1, 2, . . ., n

and where the basic constants
n∑

i=1

(µ j − νij)yi = 0, j = 1, . . ., m (65)

the maximization problem Eq. (64) is essentially the dualLk =
n∏

i=1

cyk
i

i
= P ∗

k

n∏
i=1

(yk
i )yk

i , k = 1, 2, . . ., p

problem Eqs. (49), (50) when

Then, maximize W(�) subject to the reformulated dual con- ci = nqi and aij = µ j − νijstraints

Consequently, the corresponding primal problem [Eqs.
(24b, 25)] which we shall see is more suitable and relevantδ ≥ 0 and

p∑
k=1

δk = 1
than both its posynomial equivalent [Eqs. (22, 23)] and vector
space equivalent [Eqs. (27b, 28, 29)] is

Additional problems to which the preceding theory applies
originate with a need to solve a problem modeled by the dual
maximization problem Eqs. (49), (50) [rather than its corre-
sponding primal posynomial minimization problem Eqs. (22),
(23)].

Minimize G(z) = log

[
n∑

i=1

nqi exp

�
m∑

j=1

{µ j − νij}z j

�]

=
{

m∑
j=1

µ jz j + log

[
n∑

i=1

nqi exp

�
−

m∑
j=1

νij z j

�]}



(66)AN IMPORTANT EXAMPLE: ENTROPY OPTIMIZATION
IN INFORMATION THEORY, THERMODYNAMICS, Since n ��� m and hence the degree-of-difficulty d � n �
AND STATISTICAL MECHANICS (rank A � 1) ��� m, problem Eq. (66) is probably much easier

to solve numerically than problem Eq. (64). Moreover, the
Given a finite sample space �s1, s2, . . ., sn� with possible out- previously described canonicality theory for posynomial pro-
comes si (not necessarily numbers) a fundamental problem gramming implies that problem Eq. (66) has an optimal solu-
having to do with probability and statistics is to infer the as- tion z* if, and only if, constraints Eq. (61) and Eq. (62) have
sociated probability distribution a feasible solution y � 0. Since the sample space �s1, s2, . . .,

sn� can obviously be made smaller if there is no such feasible
distribution y � 0, we can assume, without loss of generality,
that problems Eq. (64) and Eq. (66) are canonical. Then, the
previously described posynomial programming theory implies

y ≥ 0 (61a)
n∑

i=1

yi = 1 (61b)

the following facts (many of which were first established via
geometric programming and reported in Ref. 14):from given moment conditions

(1) There is a unique optimal y* [the inferred distribu-
tion], and y* � 0.

n∑
i=1

νij yi = µ j, j = 1, . . ., m (62)

(2) There is an optimal z*; and z* is unique if, and only if,
the moment conditions Eq. (62) are linearly indepen-and a given a priori distribution
dent.

(3) The solution pairs (y*, z*) constitute the solution set
for the system consisting of the moment conditions Eq.
(62) and the ‘‘primal-dual optimality conditions’’

q ≥ 0 (63a)
n∑

i=1

qi = 1 (63b)

The moment conditions Eq. (62) typically result from statisti-
cally obtained expected values �j of known random variables
�ij; and the a priori distribution q is uniform (i.e., qi � 1/n)

yi =
[

qi exp

�
−

m∑
j=1

νijz j

�]/{
n∑

i=1

[
qi exp

�
−

m∑
j=1

νijz j

�]}
,

i = 1, 2, . . . , n (67)
when no other information is available about y.

The fundamental principle of information theory (which is which come from conditions Eqs. (24a, 51b, 65) and al-
gebraic simplification.derived in Refs. 12 and 13 from certain reasonable axioms
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(4) The solution pairs (y*, z*) also constitute the solution nated in Ref. 14. Other connections between geometric
programming, statistical mechanics and thermody-set for the system consisting of the probability-distri-

bution conditions Eq. (61), the moment conditions Eq. namics had previously been given in Refs. 18 and 19.
(62) and the ‘‘duality equation’’

Finally, the significance of the cross-entropy maximization
problem (64) in statistical theory and its applications is thor-H(y) = G(z) (68)
oughly described in Ref. 20, but the significance of the corre-

(5) If each �ij � 0 and each �j � 0, then the primal-dual sponding geometric programming problems (22, 23), (24b, 25)
optimality conditions Eq. (67) show that y* � q [by vir- and (27b, 28, 29) in statistical theory and its applications is
tue of the a priori probability-distribution condition Eq. yet to be determined.
(63b)]. This means that setting y � q maximizes the
cross-entropy H(y) when the only constraints on y are Constrained Algebraic Optimization
the probability-distribution conditions Eq. (61). It fol- Via Geometric Programming
lows then that:

References 8–10 show how essentially all of the theory and
(a) the inferred distribution y* is simply the a priori methodology described herein can be extended to the minimi-

distribution q when q satisfies the moment condi- zation of posynomials P(t) subject to ‘‘inequality constraints’’
tions Eq. (62), of the type Q(t) 
 q on other posynomials Q(t). Although such

(b) when q satisfies the moment conditions Eq. (62) minimization problems are generally ‘‘nonconvex,’’ the re-
and qi � 1/n, then y*i � 1/n (so the principle of formulations that result from extending the geometric pro-
maximum cross entropy generalizes ‘‘LaPlace’s gramming transformations described herein are ‘‘convex’’
principle of insufficient reason’’). when all constraints are of the ‘‘prototype form’’ Q(t) 
 q.

(6) Given that qi � 1/n and that m � 1 (with simplified These generalizations greatly enlarge the applicability of po-
notation z � z1, � � �1 and �i � �i1) and given that the synomial minimization to engineering design and other areas,
sample space �s1, s2, . . ., sn� consists of the possible as can be seen in many references (such as Refs. 10, 11, and
‘‘states’’ i of a ‘‘physical system’’ that has ‘‘energy’’ �i in 21–24). They also include the ‘‘chemical equilibrium problem’’
state i (with � being the system’s average energy or as an important example of the resulting geometric dual prob-
‘‘internal energy’’), then the primal-dual optimality lem, while including the extremely important ‘‘linear pro-
conditions Eq. (67) further simplify to gramming duality theory’’ as a special case of the resulting

geometric programming duality theory (as can be seen in Ref.
10). Moreover, Ref. 25 shows how to reformulate all well-
posed ‘‘algebraic optimization problems’’ (those with meaning-
ful algebraic objective and constraint functions and any type

yi = [exp(−νiz)]
/{

n∑
i=1

[exp(−viz)]

}
,

i = 1, 2, . . . , n (69) of constraint involving the relations 
, �, and �) as equiva-
lent posynomial minimization problems with posynomial con-

in which case straints of both the desired prototype Q(t) 
 q and the ‘‘re-
(a) the denominator in the primal-dual optimality con- versed type’’ R(t) � r. Moreover, Ref. 26 shows that this

ditions Eq. (69) is the system’s ‘‘partition function’’ reformulation taken to its logical conclusion results in objec-
Q, tive and constraint posynomials with at most two terms

(b) the system’s ‘‘absolute temperature’’ T � 1/�z* each—very close to the special linear programming case of
where � is ‘‘Boltzmann’s constant,’’ exactly one term each. Finally, Refs. 27–29 show how the

amazingly general posynomial minimization problems with(c) the primal-dual optimality conditions Eq. (69) and
reversed constraints R(t) � r can be ‘‘conservatively approxi-the internal-energy condition
mated’’ by those with only constraints of the desired proto-
type Q(t) 
 q.n∑

i=1

νiyi = µ (70)

Generalized Geometric Programming

along with the interpretation z* � 1/�T constitute Geometric programming is not just a special methodology for
the ‘‘fundamental law’’ (described in Ref. 15 and studying the extremely important class of algebraic optimiza-
elsewhere) relating statistical mechanics to ther- tion problems and their entropy-like dual problems. Its math-
modynamics—a law which, according to the geo- ematical origin is actually the prior use of certain ‘‘orthogonal
metric programming theory described herein, can complementary subspaces’’ and the ‘‘Legendre transforma-
also be expressed in terms of the ‘‘dual variational tion’’ in the study of electrical networks (in Ref. 30). Replacing
principles’’ provided by optimization problems Eqs. the orthogonal complementary subspaces with the more gen-
(22, 23), (24b, 25), (27b, 28, 29) and (49, 50). eral ‘‘dual convex cones’’ while replacing the Legendre trans-

formation with the more general ‘‘conjugate transformation’’The variational principle that connects the cross-en-
tropy maximization problem Eq. (64) with the funda- has produced an extremely general mathematical theory and

methodology for treating all linear and nonlinear optimiza-mental law Eqs. (69, 70) for statistical mechanics and
thermodynamics had previously been noted and peda- tion problems, as well as most (if not all) equilibrium prob-

lems. This generalized theory and methodology (developedgogically exploited in Refs. 16 and 17, but the alterna-
tive variational principles provided by problems Eqs. primarily in Refs. 31 and 32) is especially useful for studying

a large class of ‘‘separable problems.’’ Its practical significance(22, 23), (24b, 25) and (27b, 28, 29) seem to have origi-
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16. E. T. Jaynes, Information theory and statistical mechanics, Phys.is due mainly to the fact that many important (seemingly in-
Rev., 108, 1957.separable) problems can actually be reformulated as separa-

17. A. Katz, Principles of Statistical Mechanics—The Informationble generalized geometric programming problems—by fully
Theory Approach, San Francisco: Freeman, 1967.exploiting their linear-algebraic structure (which is fre-

18. R. J. Duffin and C. Zener, Geometric programming, chemicalquently hidden, as in the case of posynomial minimization).
equilibrium, and the anti-entropy function, Proc. Nat. Acad. Sci-Some examples are quadratic programming (which should be
ences, 63: 629, 1969.treated separately from the general algebraic case), discrete

19. R. J. Duffin and C. Zener, Geometric programming and the Dar-optimal control with linear dynamics (or dynamic program-
win-Fowler method in statistical mechanics, J. Phys. Chem., 74:ming with linear transition equations), economic equilibria
2419, 1970.(either in the context of relatively simple exchange models

20. S. Kullback, Information and Statistics, New York: Wiley, 1959.or in the more sophisticated context of spatial and temporal
21. M. Avriel, M. J. Rijckaert, and D. J. Wilde (eds.), Optimizationmodels), network analysis and operation (particularly ‘‘mono-

and Design, Englewood Cliffs, NJ: Prentice-Hall, 1973.tone networks’’ of electric or hydraulic type, and certain types
22. R. E. D. Woolsey and H. S. Swanson, Operations Research forof transportation networks and transshipment networks, in-

Immediate Application—A Quick and Dirty Manual, New York:cluding both single-commodity and multi-commodity cases, as
Harper & Row, 1975.well as traffic assignment), optimal location/allocation analy-

23. C. S. Beightler and D. T. Phillips, Applied Geometric Program-sis, regression analysis, structural analysis, and design, tomog-
ming, New York: Wiley, 1976.raphy, and nondestructive testing. The general theory of geo-

24. D. J. Wilde, Globally Optimal Design, New York: Wiley Intersci-metric programming includes (1) very strong existence,
ence, 1978.uniqueness, and characterization theorems, (2) useful para-

25. R. J. Duffin and E. L. Peterson, Geometric programming withmetric and post-optimality analyses, (3) illuminating decom-
signomials, J. Opt. Theory & Appl., 11: 3, 1973.position principles, and (4) powerful numerical solution tech-

26. R. J. Duffin and E. L. Peterson, The proximity of algebraic geo-niques.
metric programming to linear programming, J. Math. Program-A comprehensive survey of the whole field as it existed in
ming, 3: 250, 1972.1980 can be found in Ref. 33. Finally, Ref. 34 will provide a

27. R. J. Duffin, Linearizing geometric programs, SIAM Rev., 12:current state-of-the-art survey in 1999 (or shortly thereafter).
211, 1970.
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