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ticular value (solution) of a decision variable in a predefined
range. Each bit (a 1 or a 0) may be assumed an allele of a
gene denoted by its position. The previous solution has an
allele 1 in its first, second, and fifth genes. Because a string
represents a solution, its value with respect to the underlying
objective can be evaluated. The merit of a string is known as
the fitness in the parlance of GAs. GAs begin with a popula-
tion of such strings created at random. After the fitness is
evaluated for each string, GAs perform a series of operations
on this initial random population to create a new (and hope-
fully better) population of strings. In most GAs, three opera-
tions similar to three natural genetic operations are per-
formed. They are reproduction, crossover, and mutation.

The reproduction operator replaces worse solutions in the
population by making duplicates of the better solutions. Thus,
the reproduction operator acts like a sieve which allows only
better solutions in a population to qualify and worse solutions
to die. Although this operator improves the quality of the cur-
rent population, it cannot create any new solutions. The cre-GENETIC ALGORITHMS
ation of new solutions is achieved by using crossover and mu-
tation operators.Genetic algorithms (commonly known as GAs) are primarily

In the crossover operation, two solutions are chosen at ran-search and optimization algorithms which work on the basis
dom from the pool of good solutions obtained after the repro-of the processing of chromosomes in natural genetics. The
duction operation, and two new solutions are created by ex-chromosomal processing in natural genetics and the working
changing certain information with each other. In its simplestof GAs have at least one aspect in common. Many biologists
form, both strings are cut at an arbitrary place and the right-believe that the continuing evolution of better and fitter chro-
side portions of both strings are swapped among themselvesmosomes has taken place primarily to maximize the DNA
to create two new strings, as illustrated in the following:

survivability of a species (1). In GAs, better and better solu-
tions are artificially evolved to maximize an objective or goal
of the underlying search and optimization problem.

Parent 1 0 0 0 0 0 0 0 1 1 1 Child

Parent 2 1 1 1 1 1 1 1 0 0 0 Child
⇒

Although a number of classical search and optimization Although the choice of the cross-site is random, it is interest-
methods exist, and these methods have been used to solve ing to note that this operator can combine good features (al-
many scientific and engineering problems over many years, lelic combinations) of two different solutions in one string.
these methods have certain shortcomings. They usually do The mutation operator changes a bit to its complement
not work well in solving problems with multiple optimal solu- with a mutational probability. In its simplest form, every bit
tions or problems with discrete search space. Moreover, most is checked for mutation with a small mutational probability.
of them are specialized for solving a particular class of prob- If the bit is to be mutated, the bit is changed to its comple-
lems and do not work as well in solving other types of prob- ment. Otherwise it is left unaltered, as illustrated in the fol-
lems. GAs are flexible yet efficient and do not have most of lowing:
the difficulties of the classical methods. That is why GAs are

00000 ⇒ 000:
gaining popularity in solving search and optimization prob-

In this example, the fourth gene has changed its value,lems in various problem domains.
thereby creating a new solution. After reproduction, cross-GAs were developed in the early sixties by Professor John
over, and mutation are applied to the whole population, oneHolland of the University of Michigan. His book entitled Ad-
cycle of GAs (usually known as a generation) is completed.aptation in Natural and Artificial Systems was published by

Like other classical search and optimization methods (23–MIT Press in 1975 (2). Thereafter, a number of his students
25), GAs also work iteratively. The algorithm is terminatedand other researchers contributed to developing the field (3–
when a termination criterion is satisfied. The termination cri-8). To date, most of the GA studies are available through a
terion can be set in a number of different ways: a prespecifiednumber of books (9–12) and through many international con-
number of generations has elapsed, a satisfactory solutionference and workshop proceedings (13–22). Although GA-re-
has been found, or the population-best solution has notlated papers are now published in most reputed journals,
changed for a consecutive fixed number of generations.there are now at least two dedicated journals on the topic by

This description indicates that the working principle ofthe same name, Evolutionary Computation, published by MIT
GAs is very different from that of the classical search andPress and by IEEE.
optimization techniques. As outlined in (10), there are four
basic differences:

A BRIEF INTRODUCTION TO GENETIC ALGORITHMS
1. GAs do not use the problem variables. Instead they use

a coding of problem variables.The working principle of GAs is as follows. To simulate chro-
mosomal processing, GAs first represent problem or decision 2. GAs operate on a population of solutions and create an-
variables in a string coding, resembling a chromosome. For other population of solutions, instead of operating on

one solution and creating another solution.example, a five-bit binary coding 11001 may represent a par-
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3. GAs do not require that the objective function and con- value in the range (xmin, xmax). It is worthwhile to mention here
that with five bits in a string, there are only 25 or 32 differentstraints be differentiable or continuous, thereby broad-

ening their scope of application. strings possible because each bit-position takes a value 0 or
1. In practice, strings of one hundred or a few hundreds are4. GAs use probabilistic operators, instead of determinis-
common. Recently a coding with string size equal to 16,384tic operators.
was used (42). Thus, with an �-bit string to code the variable
x, the accuracy between two consecutive strings is roughlyThese flexibilities in the operation of GAs allow using them
(xmax � xmin)/2�. It is also noteworthy that, as the string lengthin a wide variety of problem domains. Moreover, they allow
increases, the minimum possible accuracy in the solution in-GAs to have a global search, which most classical methods
creases exponentially. We shall see later that the choice ofcannot achieve (23).
the string length affects the computational time required toAlthough the previous discussion may seem descriptive
solve the problem to a desired accuracy. With a known coding,and qualitative, mathematical analyses for a convergence
any string can be decoded to an x value, which can then beproof of GAs are now being attempted by many researchers
used to find the objective functional value. A string’s objective(26–30).
functional value f (x) is known as the string’s fitness.GAs have been largely applied in the search and optimiza-

The following is a pseudocode for a genetic algorithm:tion problems of science, engineering, and commerce. In the
field of electrical and electronics engineering, GAs have been
applied to VLSI circuit layout design problems (31), power
distribution systems (32), communication networking (33),
among others. In solving neural networks problems, GAs
have been used in two ways. The GA has been used as a
learning algorithm (instead of popular back propagation or
other algorithms) to find optimal weights (34). The GA has
also been used to find an optimal network (35). Some studies
exist where both problems of finding the optimal network and
finding optimal weights for the interconnections are tackled

begin
Initialize population;
Evaluate population;
repeat

Reproduction;
Crossover;
Mutation;
Evaluate population;

until (termination criteria);
end.

with GAs (36). GAs are also used in applications of fuzzy sets,
As mentioned earlier, GAs begin with a population ofthe performance of which depends on the proper definition

strings (or x values) created at random. Thereafter, eachof membership functions. GAs are used to find the optimal
string in the population is evaluated. Then the population ismembership functions (37–39). GAs have also been used as a
operated by three main operators, reproduction, crossover,rule discovery mechanism in machine learning applications
and mutation, hopefully, to create a better population. The(10).
population is further evaluated and tested for termination. IfIn many applications, it has been observed that the simple
the termination criteria are not met, the population is againGA previously described quickly converges to a near-optimal
operated on by the three operators and evaluated. This proce-solution. However, it takes a significant number of function
dure is continued until the termination criteria are met. Oneevaluations to converge to the true optimal solution. To allevi-
cycle of these operators and the evaluation procedure isate this problem of perfect convergence, researchers have sug-
known in GA terminology as a generation.gested using a hybrid GA, a combination of GA with a tradi-

Reproduction is usually the first operator applied on a pop-tional hill-climbing algorithm (40–44). A detailed discussion
ulation. Reproduction selects good strings in a population andof these techniques is given later. In the following, we present
forms a mating pool.A number of reproduction operators ex-a more detailed description of GAs used in function optimiza-
ists in the GA literature (45), but the essential idea is thattion problems.
above-average strings are picked from the current population
and duplicates of them are inserted in the mating pool. The

GAs AS FUNCTION OPTIMIZERS commonly used reproduction operator is the proportionate se-
lection operator, where a string in the current population is

We first discuss the procedure for using GAs in solving uncon- selected with a probability proportional to the string’s fitness.
strained, single-variable optimization problems and later dis- Thus, the ith string in the population is selected with a proba-
cuss the procedure for solving constrained, multivariable bility proportional to f i. Because the population size is usually
optimization problems. Let us consider the following uncon- fixed in a simple GA, the cumulative probability for all strings
strained optimization problem: in the population must be 1. Therefore, the probability for

selecting the ith string is f i/�
N
j�1 f j, where N is the population

size. One way to achieve proportionate selection is to use a
roulette wheel whose circumference is marked for each string

Maximize f (x)

Variable bound xmin ≤ x ≤ xmax
(1)

proportional to the string’s fitness. The roulette wheel is spun
N times, each time keeping an instance of the string, selectedTo use GAs to solve this problem, the variable x is typically
by the roulette-wheel pointer, in the mating pool. Because thecoded in finite-length binary strings. The length of the string
circumference of the wheel is marked according to a string’sis usually determined by the accuracy of the solution desired.
fitness, this roulette-wheel mechanism is expected to makeFor example, if five-bit binary strings are used to code the
f i/f copies of the ith string, where f is the average fitness ofvariable x, then the string (0 0 0 0 0) is decoded to the
the population. This version of roulette-wheel selection isvalue xmin, the string (1 1 1 1 1) is decoded to the value

xmax, and any other string is decoded uniquely to a particular somewhat noisy: other more stable versions exist in the litera-
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ture (10). As discussed later, the proportional selection new population. Even though the best 100(1 � pc)% of the
current population is copied deterministically to the new pop-scheme is inherently slow. One fix is to use a ranking selec-

tion scheme (45). All N strings in a population are first ulation, this is usually performed stochastically.
The crossover operator is mainly responsible for the searchranked according to the ascending order of string fitness.

Then each string is assigned a rank from 1 (worst) to N (best) aspect of genetic algorithms, even though the mutation opera-
tor is also used sparingly for this purpose. The mutation oper-and proportional selection is used with rank values. This

eliminates the functional dependency in the performance of ator changes a 1 to a 0 and vice versa with a small mutational
probability pm. Mutation is needed to maintain diversity inthe proportional selection. Recently, the tournament selection

scheme is becoming popular because of its simplicity and con- the population. For example, if all strings in the population
have a value 0 in a particular position along the string lengthtrolled takeover property (45). In its simplest form, two

strings are chosen at random for a tournament, and the better and a 1 is needed in that position to obtain the optimum solu-
tion, then neither the reproduction nor crossover operator de-of the two is selected according to the string’s fitness value. If

done systematically, the best string in a population gets ex- scribed previously can create a 1 in that position. The inclu-
sion of mutation introduces some probability of turning thatactly two copies in the mating pool.

The crossover operator is applied next to the strings of the 0 into a 1. Furthermore, mutation is useful for the local im-
provement of a solution.mating pool. Like the reproduction operator, a number of

crossover operators exist in the GA literature (46,47), but in These three operators are simple and straightforward. The
reproduction operator selects good strings and the crossoveralmost all crossover operators, two strings are picked from

the mating pool at random, and some portion of the strings is operator recombines good substrings from two good strings,
hopefully to form a better substring. The mutation operatorexchanged between the strings. A single-point crossover oper-

ator was described earlier. It is intuitive from the construc- alters a string locally to create a better string, hopefully. Even
though none of these claims are guaranteed and/or testedtion that good substrings from either parent string can be

combined to form a better child string if an appropriate site while creating a new population of strings, it is expected that,
if bad strings are created, they are eliminated by the repro-is chosen. Because the knowledge of an appropriate site is

usually not known, a random site is usually chosen. With a duction operator in the next generation, and, if good strings
are created, they are emphasized. Interestingly, biologicalrandom site, the children strings produced may or may not

have a combination of good substrings from parent strings and natural evolution are believed to be based on this princi-
ple. GAs are search algorithms designed to work along thisdepending on whether or not the crossing site falls in an ap-

propriate place. But we do not worry about this aspect too principle of natural evolution (1). Later, we discuss some intu-
itive reasoning as to why GAs with these simple operatorsmuch, because, if good strings are created by crossover, there

are more copies of them in the next mating pool generated by constitute potential search algorithms.
the reproduction operator. But if good strings are not created
by crossover, they do not survive beyond the next generation, A Simple Example
because reproduction usually does not select bad strings for

To illustrate the working of GA operators, we consider a sim-the next mating pool. In a two-point crossover operator, two
ple sinusoidal function which is to be maximized in a givenrandom sites are chosen and the contents bracketed by these
interval:sites are exchanged between two parents. This idea can be

extended to create a multi-point crossover operator, and the
extreme of this extension is what is known as a uniform cross-
over operator (47). In a uniform crossover for binary strings,

Maximize sin(x)

Variable bound 0 ≤ x ≤ π
(2)

each bit from either parent is selected with a probability of
0.5. It is worthwhile to note that the purpose of the crossover For illustrative purposes, we use 5-bit binary strings to repre-

sent the variable x, so that there are only 25 or 32 strings inoperator is two-fold. The main purpose of the crossover opera-
tor is to search the parameter space. The other aspect is that the search space. We use a linear mapping between the de-

coded value of any string s and the bounds on the variable x:the search needs to be performed to preserve maximally the
information stored in the parent strings, because these parent x � �/31 decode(s), where decode(s) is the decoded value of

the string, s. The decoded value of a string s of length � isstrings are instances of good strings selected by the reproduc-
tion operator. In the single-point crossover operator, the calculated as ���1

i�0 2isi, where si � (0,1) and the string s is
represented as (s��1s��2 . . . s2s1s0). For example, the five-bitsearch is not extensive, but the maximum information is pre-

served from parent to children. On the other hand, in the uni- string (0 1 0 1 1) has a decoded value equal to 20(1) �
21(1) � 22(0) � 23(1) � 24(0) or 11. Thus, with this mapping,form crossover, the search is very extensive but minimum in-

formation is preserved between parent and children strings. the string (0 0 0 0 0) represents the solution x � 0, and the
string (1 1 1 1 1) represents the solution x � �. Let us alsoEven though some studies to find an optimal crossover opera-

tor exist (46), considerable doubts prevail whether those re- assume that we use a population of size four, proportional
selection, single-point crossover with probability 1, and bit-sults can be generalized for all problems. Before any results

from theoretical studies are obtained, the choice of the cross- wise mutation with a probability 0.01. To start the GA simu-
lation, we create a random initial population, evaluate eachover operator is still a matter of personal preference. To pre-

serve some of the previously found good strings, not all string, and use three GA operators as shown in Table 1. All
strings are created at random. The first string has a decodedstrings in the population are entered into the crossover opera-

tion. If a crossover probability of pc is used, then 100pc% value equal to 9, and, after mapping this value in the variable
range, the following value of x � 0.912, which corresponds tostrings in the population are used in the crossover operation

and 100(1 � pc)% of the population is simply copied to the a functional value equal to sin(0.912) � 0.791. Similarly, the
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Table 1. One Generation of a GA Simulation on Function Sin(x)

Initial Population New Population

Mating
String DVa x f (x) fi/ f ACb Pool CSc String DV x f (x)

01001 9 0.912 0.791 1.39 1 01001 3 01000 8 0.811 0.725
10100 20 2.027 0.898 1.58 2 10100 3 10101 21 2.128 0.849
00001 1 0.101 0.101 0.18 0 10100 2 11100 28 2.838 0.299
11010 26 2.635 0.485 0.85 1 11010 2 10010 18 1.824 0.968

Average, f 0.569 Average, f 0.711

a DV stands for decoded value of the string.
b AC stands for actual count of strings in the population.
c CS stands for cross site.

other three strings are also evaluated. Because the propor- example, if three variables x1, x2, and x3 are coded in 3-, 5-,
and 4-bit substrings, a complete string is a (3 � 5 � 4) or 12-tional reproduction scheme assigns a number of copies ac-

cording to a string’s fitness, the expected number of copies for bit string as follows:
each string is calculated in the fifth column. When a roulette-
wheel selection scheme is actually implemented, the number
of copies allocated to the strings is shown in the sixth column.

011︸︷︷︸
x1

01001︸ ︷︷ ︸
x2

1001︸ ︷︷ ︸
x3

The seventh column shows the mating pool. It is noteworthy
Once such 12-bit strings are created at random in the initialthat the third string in the initial population has a very small
population, the corresponding values of x1, x2, and x3 are de-fitness compared with the average fitness of the population
termined by knowing the lower and upper bounds (xmin

i , xmax
i )and thus has been eliminated by the selection operator. On

and substring length (�i) of each variable i:the other hand, the second string, being a potential string,
made two copies in the mating pool. Crossover sites are cho-
sen at random, and the four new strings created after cross- xi = xmin

i + xmax
i − xmin

i

2�i − 1
decode(si)

over are shown in the ninth column. Because a small muta-
tional probability is considered, none of the bits are altered.

Now the string is evaluated by knowing the xi values. TheThus, the ninth column represents the new population.
reproduction operator works as usual. The crossover and mu-Thereafter, each of these stings is decoded, mapped, and eval-
tation operators are usually applied to the complete string.uated. This completes one cycle of GA simulation. The aver-
Although some studies exist where crossover is performed inage fitness of the new population is 0.711, an improvement
each substring separately, such a strategy may be too de-from that in the initial population. It is interesting to note
structive, resulting in a random search.that, even though string selection and all string operations

are performed using random numbers, the average perfor-
GAs for Constrained Optimizationmance of the population increases because of the application

of all three GA operators. This is not a magic. GA operators Genetic algorithms have also been used to solve constrained
are designed to have a directed search toward good regions optimization problems. Although different methods to handle
but with some randomness in their actions so as to make GAs constraints have been suggested, the penalty function method
flexible enough not to get stuck locally at best solutions. has been used mostly (10,23,48). In the penalty function

Every good optimization method needs to balance the ex- method, a penalty term corresponding to the constraint viola-
tent of exploration of the information obtained up to the cur- tion is added to the objective function. In most cases, a
rent time with the extent of exploitation of the search space bracket operator penalty term ��� (��, if � is negative; zero
required to obtain new and better point(s) (10,45). If the solu- otherwise) is used. In a constrained minimization nonlinear
tions obtained are exploited too much, premature convergence programming (NLP) problem
is expected. On the other hand, if too much stress is placed on
search, the information obtained thus far has not been used
properly. Therefore, the solution time may be enormous and
the search is similar to a random search method. Most tradi-
tional methods have fixed transition rules and hence have
fixed amounts of exploration and exploitation considerations.
In contrast, we see later that the exploitation and exploration

Minimize f (x)

subject to

g(x) ≥ 0, j = 1, 2, . . ., J;
hk(x) = 0, k = 1, 2, . . ., K;
x(L)

i
≤ xi ≤ x(U )

i
, i = 1, 2, . . ., N.




(3)

aspects of GAs are controlled almost independently. This pro-
vides enormous flexibility in applying GAs to solve optimiza-

the objective function f (x) is replaced by the unconstrainedtion problems.
penalized function:

GAs for Multivariable Optimization

To handle multiple variables, GAs use a string of concatenat-
ing multiple substrings, each coding a separate variable. For

P(x) = f (x) +
J∑

j=1

uj〈 gj (x)〉2 +
K∑

k=1

vk[hk(x)]2 (4)
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where uj and vk are penalty coefficients, which are usually occasional alteration of bits. It is surprising that, with any
such simple operators and mechanisms, any potential searchconstant throughout the GA simulation. In the traditional

penalty function method, the penalty parameters uj and vk are is possible. We present intuitive reasoning as to why GAs
work and remind the reader that a number of studies aregradually increased from small initial values. This is done to

avoid convergence to a suboptimal solution, a phenomenon currently underway to find a rigorous mathematical conver-
gence proof for GAs (18,20,28,30,49,50). Even though the op-which usually is caused by the formation of a distorted penal-

ized function as the penalty parameters increase (23). Be- erations are simple, GAs are highly nonlinear, massively mul-
tifaceted, stochastic, and complex. There have been somecause GAs handle distorted or multimodal functions better

than the traditional methods, a fixed value of penalty param- studies using Markov chain analysis that involves deriving
transitional probabilities from one state to another and ma-eters is usually adequate.

To illustrate the working of GAs on a two-variable con- nipulating them to find the convergence time and solution.
To investigate why GAs work, let us reconsider the one-strained optimization problem, we consider the following con-

strained problem: cycle GA application to the function sin(x). The string copying
and substring exchange are all very interesting and improve
the average performance of a population, but let us investi-Minimize f (x) = (x2

1 + x2 − 11)2 + (x1 + x2
2 − 7)2

gate what has been processed in one cycle of GA operators. It
subject to is interesting to observe from Table 1 that there are some

similarities in different string positions in the population of
multiple strings. By applying three GA operators, we observe
that the number of strings with such similarities has either

g1(x) = 26 − (x1 − 5)2 − x2
2 ≥ 0

x1, x2 ≥ 0
increased or decreased. These similarities are called schema
(schemata, in plural) in the GA literature. More specifically,With a population of 30 points, a crossover probability of 0.9
a schema represents a set of strings with similarities at cer-and a mutation probability of 0.01, we perform a GA simula-
tain string positions. To formalize the concept, a schema fortion for 30 generations with a penalty parameter u1 � 100.
binary codings is represented by a triplet (1, 0, and �). A �Figure 1 shows the initial population (empty boxes) and the
represents both 1 or 0. Thus a schema H1 � (1 0 � � �) rep-population at generation 30 (empty circles) on the contour
resents eight strings with a 1 in the first position and a 0 inplot of the NLP problem. The figure shows that initial popula-
the second position. From Table 1, we observe that there istion is fairly spread out on the search space. After 30 genera-
only one string contained in this schema in the initial popula-tions, the complete population is in the feasible region and is
tion and there are two strings contained in this schema in theplaced close to the true optimum point.
new population. On the other hand, even though there wasRecently, a number of other penalty and nonpenalty func-
one representative string of the schema H2 � (0 0 � � �) intion methods used in the context of GAs have been evaluated
the initial population, there is none in the new population.(48). Although many sophisticated methods have been pro-
There could be a number of other schemata that we may in-posed, it is concluded in that study that the previews simple
vestigate and conclude whether or not the number of stringsstrategy is most successful as a generic technique for han-
they represent is increased from the initial population to thedling constraints in GAs.
new population. But what do these schemata mean anyway?

Because a schema represents certain similar strings, aWhy GAs Work
schema can represent a certain region in the search space.

The working principle described previously is simple, and GA For the previous function, the schema H1 represents strings
operators involve string copying and substring exchange and with x values varying from 1.621 to 2.331 and with function

values varying from 0.999 to 0.725. On the other hand, the
schema H2 represents strings with x values varying from 0.0
to 0.709 and function values varying from 0.0 to 0.651. Be-
cause our objective is to maximize the function, we would like
to have more copies of strings representing schema H1 than
H2. This is what we have accomplished in Table 1 without
having to count all of these schema competitions, without the
knowledge of the complete search space, and by manipulating
only a few instances of the search space. The schema H1 for
the previous example has only two defined positions (the first
two bits), and both defined bits are tightly spaced (very close
to each other) and contain the possible near-optimal solution
[the string (1 0 0 0 0) is the optimal string in this prob-
lem]. The short and above-average schemata are known as
building blocks. Although GA operators are applied on a pop-
ulation of strings, a number of such building blocks in various
parts along the string (like H1 in the previous example) are
emphasized. Finally, such small building blocks are combined
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by the combined action of GA operators to form bigger and
better building blocks and finally converge to the optimal so-Figure 1. Initial population and the population after generation 30

shown on a contour plot of the NLP problem. lution. To avoid discussions on rigorous convergence proofs,
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this is what can be hypothesized as the reason for GA’s suc- or temporally. The temporal supply of building blocks de-
pends on the genetic operators and is discussed later (whencess. This hypothesis is largely known as the Building Block

Hypothesis. we discuss the growth and mixing issues). However, the ini-
tial supply is provided by choosing a statistically large initial
random population or by using a biased initial population.GA GUIDELINES
The former approach for building-block supply requires a
large initial population and is discussed in the next subsec-The building block hypothesis gives intuitive and qualitative
tion. The latter approach of building-block supply requires areasoning as to what makes GAs work. But it tells nothing
comparatively smaller initial population, but demands someabout what values of various GA parameters make GA work
knowledge of good regions in the search space. Because thereor not work. In this section, we present some guidelines for
is some intuitive knowledge of the locations of the optima insuccessfully applying GAs. It is important to note that the
many engineering optimization problems, this approach is of-key insight in Holland’s discovery of genetic algorithms is the
ten used in large-scale optimization problems. A 128 � 128processing of building blocks under genetic operators. It is an
binary optical filter design problem was solved with a smallestablished fact (albeit with some contradictions) that genetic
initial population size but with a population biased toward aalgorithms work by processing building blocks. Therefore, ad-
good region in the search space (42). A signal-to-noise (SNR)equate supply, growth, and mixing of building blocks are es-
ratio was used as a fitness measure of a filter. When a ran-sential features for a successful GA. Goldberg et al. (51) cate-
dom initial population was used, a population of 1,000 ran-gorized these factors as follows:
dom filters produced a filter with an SNR of 9.3 after 200
generations. Whereas, when a biased population of the same1. GAs process building blocks. Therefore, a clear under-
size was used, a filter with an SNR of 310.0 was created afterstanding of the underlying building blocks in any given
200 generations. Because the initial population containssearch and optimization problem is needed. The knowl-
many building blocks in the latter case, the GA is able to com-edge of building blocks in a problem assists in designing
bine the building blocks to form a near-optimal solution.proper coding for GA simulation.

2. Adequate supply of building blocks (either initially or Adequate Population Size
temporally) must be ensured.

Population size is an important parameter in the successful3. The population must be large enough to allow building
application of GAs. Although some empirical guidelines existblock competition to occur.
for choosing a population size (1.65 � 20.21�, where � is the

4. The reproduction operator must be designed to allow string length (54)), ideally the population size must depend
adequate growth of building blocks in successive gener- on the difficulty (nonlinearity, multimodality, and others) in-
ations. volved in the objective function. If a random initial population

5. The search operators (crossover, mutation, and others) is used, the population size must be adequate to allow GAs to
must be designed to allow proper mixing and combina- extract the required building blocks (of necessary size) to
tion of building blocks in successive generations. solve the problem. For example, if the maximum nonlinearity

exists with any k bits in an �-bit problem (that is, no more
Because these issues are important for understanding a GA, than k bits are related to each other in a nonlinear manner),
we discuss them in detail. the population size must be large enough to have all 2k combi-

nations of substrings in the initial random population. Be-
Building Block Processing cause the nonlinearity in the subproblems could be so severe

that best k-bit combination is difficult to generate by geneticIn most GA applications, the design or decision variables are
operations. To solve the problem, the best k-bit substringcoded in some string structures. Although binary-coded
must be in the initial population, and the initial populationstrings are used mostly, gray-coded strings and strings with
must have at least a few copies of each k-bit building block inalphabets of higher cardinality have also been used (52). In
the initial random population. Thinking along these lines andmultivariable optimization problems, the substrings corre-
keeping in mind the signal (d) to be detected in a problemsponding to each variable are joined to form a complete
with variance (�2), we have devised the following expressionstring. An obvious question arises in this coding: Which vari-
for population size for binary-coded genetic algorithms (51):ables should be coded contiguously? It turns out that, if a ran-

dom ordering of the variables is coded side-by-side, the action
of a single-point crossover destroys good building-block combi- n = 2c2k(m − 1)

σ 2

d2 (5)
nations. Thus, a coding that helps successful propagation of
the building blocks must be used (27). It is shown elsewhere where k is the order of nonlinearity in the problem and m is
(53) that when GAs are used to solve a problem with three the total number of necessary building blocks. The parameter
different codings, the best performance is observed for that c is a statistical parameter. The original study details how
coding which respects the building-block propagation the this sizing equation was developed and how this equation is
most. used to size populations (51). This sizing equation suggests

that, for problems of fixed degree of nonlinearity (k is fixed),
Adequate Supply of Building Blocks

the population size is proportional to the squared noise-to-
signal ratio (�2/d2) in building blocks, and in problems withIf there are insufficient building blocks in a population, GAs

do process them to finally form the true optimum solution. the number of necessary building blocks proportional to
string length, the population sizing is of the order O(�).The supply of building blocks is provided both initially and/
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To demonstrate the use of the equation for population siz- better building blocks. Recently, a control map was found for
values of the selection pressure s (the number of copies allo-ing, we discuss the results of one test problem. A 30-bit prob-

lem was constructed by concatenating five copies of a six-bit, cated to the best string in the population) versus the cross-
over probability pc (the extent of search) for bitwise linear22-peaked, difficult subfunction (55). The 30-bit function has

a total of 225 or 5,153,632 optima, of which 32 are global. The problems using a computational model that equates the de-
gree of the characteristic time of convergence of the selectionpurpose of this study was to find one of the 32 global optima.

This is a very difficult problem for any search and optimiza- and the crossover operators alone (56). The analysis showed
that for GAs to work even on simple bitwise linear problems,tion method. When the population was sized according to the

previous equation (by finding the signal and variance of the the following inequality among GA parameters must be satis-
fied:subfunction), it was found that a population of size 391 is

adequate for solving the problem to global optimality. Simula-
tion results of several GA runs suggest that GAs with a popu-
lation of size of 300 sometimes cannot find the global opti- pc ≥ e�/N

N log N
log s (6)

mum string (in those cases the GA got stuck to one of other
5,153,600 other suboptima), whereas a population size of 400 where N is the population size. The essence of this relation-
finds the global optimum in all runs. ship is that, if a selection operator with a large selection pres-

sure is used, a crossover operator with more search power
Adequate Growth of Building Blocks must be used. Simulation results on some test problems agree

with this theoretical prediction. Similar studies were also per-One of the necessary conditions for a successful GA run is
formed to find control maps for nonlinear problems (57).that, under genetic operators, building blocks must multiply

Proper understanding of these functionally decomposedin each iteration. Even though the initial population contains
models of GA dynamics provides better insights into thethe necessary building blocks, if a weak reproduction operator
working of complex processing of schemata under GA opera-is used, the building blocks do not grow adequately or, if a
tors. Knowing more about these pieces of the GA puzzle willweak recombination operator is used, the building blocks do
help users to properly choose GA parameters.not have the scope to combine before the population prema-

In the next section, we present some advanced GA tech-turely terminates to a suboptimal solution. The parameter re-
niques which are increasingly applied in many fields, particu-sponsible for faster growth of building blocks, called the selec-
larly in engineering.tion pressure, is loosely quantified as the number of copies the

best string gets during the reproduction operation (45). The
amount of selection pressure in a reproduction operator is an REAL-CODED GAs
inherent characteristic of the operator. If a reproduction oper-
ator with a small selection pressure is used, the growth of Because binary-coded GAs use a coding of variables, they
the building blocks is hampered. Thus, one of the criteria for work on discrete search spaces. In dealing with a continuous
choosing a reproduction operator is its selection pressure. In search space, a binary-coded GA converts it into a discrete
a study (45), the selection pressure for a number of selection set of points. Thus, to obtain the optimum point with desired
schemes was calculated (Table 2). The table shows that the accuracy, strings of sufficient length must be chosen. GAs
selection pressure in tournament and ranking selection are have also been developed to work directly with continuous
fixed at every generation and, therefore, controlled experi- variables (instead of discrete variables). In those GAs, binary
ment can be performed with these operators. The takeover strings are not used; instead, the variables are used directly.
time is a measure of how fast the best solution in the initial Once a population of a random set of solutions is created, a
population overpopulates the population with the reproduc- reproduction operator is used to select good strings in the pop-
tion operator alone. The table shows that ranking and tourna- ulation. To create new strings, however, the crossover and
ment selection have a better takeover property than that of mutation operators described earlier cannot be used effi-
the proportional selection. The comparison of the time com- ciently. Even though the simple single-point crossover is used
plexity of the three operators suggests that tournament selec- directly on the variable vector by forcing the cross-sites to fall
tion requires minimal computational time. only on the variable boundaries, the search is obviously not

adequate. With such a crossover operator, the success of the
Adequate Mixing of Building Blocks

search process mainly depends on the mutation operator.
This type of GA has been used in earlier studies (58). Re-As mentioned above, the choice of a selection operator de-

pends on the choice of the recombination operator. As the in- cently, new and efficient crossover operators have been de-
signed, so that a search on an individual variable vector isdividual building blocks are grown adequately by the selec-

tion operator, they also must combine to form bigger and also allowed. Let us consider that x( j)
i and x(k)

i are values of

Table 2. A Comparison of Three Selection Schemesa

Scheme Selection Pressure Take-Over Time Time Complexity

Proportionate fmax /favg O(n ln n) O(n ln n)
Linear ranking 2 (usually) O(ln n) O(n ln n)
Binary tournament 2 O(ln n) O(n)

a The parameter n is the population size.
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design variables xi in two parent strings j and k. The cross- flexible coding which codes integral or discrete variables by
binary strings and codes continuous variables directly. Al-over between these two values produces the following new

value: though the reproduction is used directly, crossover and muta-
tion operators are applied according to the variable type. If a
integral or discrete variable is to be crossed, a single-pointxnew

i = (1 − λ)x( j)
i + λx(k)

i , 0 ≤ λ ≤ 1 (7)
crossover is used. Otherwise the real-coded crossover pre-
viously discussed is used. On several mechanical engineeringThe parameter � is a random number between zero and one.
design problems, this combined algorithm outperformedThis equation calculates a new value bracketing x( j)

i and x(k)
i .

many traditional optimization algorithms (62).The calculation is performed for all variables in the vector.
This crossover has a uniform probability of creating a point
inside the region bounded by two parents. An extension to

HYBRID GAsthis crossover also creates points outside the range bounded
by the parents. Eshelman and Schaffer (59) have suggested a

The generic GA operators previously discussed sometimesblend crossover operator (BLX-�), in which a new point is cre-
take a large number of function evaluations to converge toated uniformly at random from a larger range extending an
the exact optimum solution. A hill-climbing strategy is oftenamount ��x(i)

j � x(k)
j � on either side of the region bounded by the

started from the solution found by GAs to improve the solu-two parents. The crossover operation depicted in Eq. (7) is
tion locally. The implementation of such a hybrid GA isalso used to perform BLX-� by varying � in the range (��,
achieved in two ways:1 � �). In a number of test problems, Eshelman and Schaffer

observed that � � 0.5 provides good results. One interesting
feature of this type of crossover operator is that the created 1. A GA is applied first beginning from an initial random
point depends on the location of both parents. If both parents population. Thereafter, a traditional search and optimi-
are close to each other, the new point is also close to the par- zation algorithm (a steepest descent method (23) or a
ents. On the other hand, if the parents are far from each heuristic method (40)) is used from the best solution
other, the search is more like a random search. The random found from the GA. The difficulty with traditional meth-
search feature of these crossover operators is relaxed by using ods is that their search depends on the initial solution.
a distribution other than the uniform distribution between In the case of complex, nonlinear, and multimodal prob-
the parents. A recent study shows that, using a polynomial lems, traditional methods often stick at a suboptimal
probability distribution with a bias towards near-parent solution. However, if the initial solution lies in the
points, performance is better than (BLX-0.5) in a number of global basin (a region where the problem is unimodal
test problems (60). Moreover, this crossover operator has a and the global optimal solution is the only optimum so-
search power (27) similar to that in a single-point crossover. lution), traditional methods are the quickest of all opti-
For two parent points, two children points (c( j)

i and c(k)
i ) are mization algorithms to converge to the optimal solution.

created using the following probability distribution: Because the GA is likely to find a near-optimal solution
even in multimodal problems, a traditional method be-
gins its search from a near-optimal solution and helps
converge to the true global solution quickly. Research-

P(β) =
{

0.5(η + 1)βη if 0 ≤ β ≤ 1
0.5(η + 1)/βη+2 if β > 1

(8)

ers have found such a hybrid algorithm useful in many
engineering design problems (41).The parameter � is a spread factor defined as

2. The GA previously described is modified by using some
problem-specific information. For example, instead of
beginning a GA from a random population, a biased ini-β =

∣∣∣∣∣ c( j)
i

− c(k)

i

x( j)
i

− x(k)

i

∣∣∣∣∣ (9)

tial population is used. If information about a good
search region is available, the initial population isThe previous distribution allows creating near-parent points
formed around that region. In a complex, binary opticalwith comparatively larger probability than points far away.
filter design problem (42), it was observed that the per-The parameter � is a distribution index that controls the ex-
formance of a binary-coded GA improves significantly iftent of search of the operator. The probability of creating a
the population is initialized by perturbing a binary ver-far-away point for a small � is comparatively larger than that
sion of the matched filter obtained with the fundamen-for a large �. This parameter is similar to the inverse of the
tal principles. Problem information is also used to mod-temperature parameter used in simulated annealing studies
ify the GA operators, so that feasible and good solutions(61). Ideally, a GA should be started with a small � so that
are always created. In a robot path planning problemalmost any point can be created in the search space, thereby
(43), the crossover operator is allowed only betweenspreading the search well. Once a good search region is found,
points closer to each other. In solving a traveling sales-larger values of � must be used to concentrate the search in
man problem using GAs (44), the distances between twothe region found. However, in most GA simulations a con-
cities are used to find suitable crossover points.stant � of 2 is found satisfactory. A real-coded mutation oper-

ator is also created on the basis of a similar principle.
Based on the success of binary-coded GAs and real-coded Although many other implementations exist, a hybrid

study, either a GA or a bit hill-climbing method chosen on theGAs, a combined optimization algorithm was recently pro-
posed for solving mixed-integral programming problems often fly depending on its success in previous iterations, is promis-

ing (63).encountered in engineering design (62). The algorithm uses
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EVOLUTION STRATEGY

Although genetic algorithms were developed mostly in the
United States, evolution strategy (ES) was independently de-
veloped in Germany. Because ES and GAs are both evolution-
ary algorithms, there are more similarities between them
than discrepancies. A population approach was not used in
early works of ES (64). The method [now known as (1 � 1)-
ES] begins from a point and creates a new neighboring point
using a Gaussian probability distribution with its mean at
the current point and a prespecified fixed variance. This oper-
ation is similar to a combined reproduction and mutation op-
eration. If the new point is better than the current point, the
new point is chosen, and the procedure is continued. In a later
version of this method, the variance is varied by the one-fifth
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rule, which states the following (65). If at least one better
Figure 2. A function with five maximum points. A population of 50point is created in n consecutive iterations, the variance is
points after 100 generations of a GA simulation with sharing func-reduced. Otherwise, if no new better point is created in n con-
tions shows that all optimum points are found.secutive iterations, the variance is increased. Otherwise, the

variance is kept unchanged. Realizing the advantage of work-
ing with a population of points instead of a single point, ES

tured simultaneously in the population. GAs have exploitedresearchers devised two different algorithms, (� � �)-ES and
this feature to find multiple optimal solutions simultaneously(�,�)-ES. In the former, the algorithm begins with � parent
in multimodal, function optimization problems (67,68). Con-points, and � children points are created using the mutation
sider the five-peaked function shown in Fig. 2. Because alloperator described earlier. Thereafter, the best � points from
five maximum points have equal function values, one may bea combined population of � parent and � children points are
interested in finding all five optimum points (or as many aschosen as the parent points for the next iteration. In the lat-
possible). The knowledge of multiple optimal points enablester method, � points are chosen only from � children points.
designers to adapt to different optimal solutions, as and whenES with this selection operator and with a naive crossover
required. The population in a GA simulation is adaptively di-operator and the previously mentioned adaptive mutation op-
vided into separate subpopulations corresponding to each op-erator, has successfully solved many numerical and engi-
timum point by using sharing functions (68). The procedureneering design problems (65).
is briefly described in the following.

For each solution (say, ith string) in the population, a dis-
GENETIC PROGRAMMING tance measure dij is computed with each other solution ( jth

string) in the population. Thereafter, a sharing function valueAn algorithm similar to a genetic algorithm is being used to
is computed with each dij value, as follows:find optimal LISP (a computer programming language) pro-

grams for solving different tasks (66). Genetic programming
(GP) begins with a population of random LISP programs to
solve a task. For each problem, a set of fundamental functions
(�, �, *, /, sine, cosine, exponential, etc.) and terminals (nu-

Sh(dij) =


1 −

(dij

σ

)α

if dij ≤ σ

0 otherwise
(10)

merics or variables) are chosen to create programs. Then each
program is tested with a number of prespecified input-output The parameter � indicates the maximum value of dij allowed
data. The fitness is measured as the number of test cases cor- to have a fitness sharing between two solutions. Guidelines
rectly solved by the LISP program. Based on these fitness val- are available to compute a reasonable � for single and multi-
ues, the proportional reproduction operator is used. The cross- variable problems (67). The parameter � is an exponent and
over operator is applied by exchanging certain meaningful is usually set at 1. For each string, all Sh(dij) values are added
portions of the program (chosen at random) between two pro- to compute the niche count: mi � �N

j�1 Sh(dij). The niche count
grams. The mutation operator is also applied by replacing a of a string roughly estimates the number of solutions around
function or a terminal with other suitable functions or termi- the string. Thereafter, the fitness of the ith string is modified
nals. Recent applications use a number of other meta-opera- by dividing the fitness by the niche count: f �i � f i/mi. Then the
tors which improve the performance of GP. The most interest- reproduction operator is performed with f �i as the fitness. Be-
ing aspect of GP is that the same algorithm is used to solve cause the fitness of a string is degraded by the number of
many different problems by just changing the function and solutions around it, the population maintains a stable sub-
terminal set (66). The problems include a Boolean multiplexor population of many optimum solutions. If, for some reasons,
problem, an artificial ant problem, symbolic differentiation one optimum contains many instances in the population, the
and integration, optimal control problems, and others. fitness of each of these solutions is largely degraded compared

with solutions in other optima, and a balance is restored. The
complexity of niche count computation is reduced by using aMULTIMODAL FUNCTION OPTIMIZATION
random set of individuals (of size � 	 N) instead of the com-
plete population. It is shown elsewhere (69) that � � 0.1N isOne advantage of a population-based search technique is

that, if required, a number of different solutions can be cap- adequate for solving many multimodal problems.
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Many researchers have used the sharing functions to solve
multimodal problems. Here we present an application of shar-
ing on a five-peaked function:

Maximize sin6
(5πx) 0 ≤ x ≤ 1

GAs with an initial population of 50 random points have con-
verged to a population shown in Fig. 2 after 100 generations,
finding all five optimum points simultaneously.

MULTIOBJECTIVE FUNCTIONAL OPTIMIZATION

Many engineering design problems involve simultaneous so-
lution of multiple objective functions. The most common prob-
lem which arises in engineering design is to minimize the
overall cost of manufacturing and simultaneously minimize
the associated accident rate (failures or rejections). Consider
Fig. 3, where a number of plausible solutions to a hypotheti-
cal design problem are shown. Solution A costs less but is
more accident-prone. Solution B, on the other hand, costs
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more, but is less prone to accidents. In their respective ways,
Figure 4. Population of 100 points at generation 100 shows thatboth solutions are useful, but solution C is not as good as
most of the Pareto-optimal solutions are found with NSGA.solution B in both objectives. It incurs more cost and more

accidents. Thus, in multiobjective optimization problems a
number of solutions exist (like solutions A, B, and D in the
figure) which are optimum in some sense. These solutions the same dummy fitness. The fronts from the first to last front
constitute a Pareto-optimal front shown by the thick dashed are assigned a dummy fitness in descending order of magni-
line in the figure. Because, any point on this front is an opti- tude. Finally, solutions in each front are shared, as described
mum point, it is desirable to find as many such points as pos- previously, to maintain a spread of solutions within the front.
sible. Recently, a number of extensions to simple GAs have The reproduction operator is performed with the dummy fit-
been tried to find many Pareto-optimal points simultaneously ness values. Crossover and mutation operators are used as
in various multiobjective optimization problems (69–71). usual.

In the nondominated sorting GA approach (NSGA) adopted Consider the following two objective functions for minimi-
by Srinivas and Deb (70), all population members are divided zation:
into different nondominated fronts. Each solution (say, ith so-
lution) in the population is compared with other solutions ac-
cording to all objectives. If one solution is found, which is su-

f1(x) = x2

f2(x) = (x − 2)2
perior to the ith solution in all objectives, then the ith
solution is tagged as a dominated solution. After all popula-

in the interval �1000 
 x 
 1000. The Pareto-optimal fronttion members are compared with each other, the solutions
for this problem is the complete region 0 
 x 
 2. With awithout a dominated tag are considered nondominated solu-
random initial population of 100 points in the range �1000 
tions and are assumed to be the members of the first nondom-
x 
 1000, the modified GA converges to the range 0 
 x 
 2inated front. Thereafter, these solutions are temporarily
with a population distribution shown in Fig. 4 (70). The modi-counted out for determining further fronts, and a similar pro-
fied GA has also been successfully applied to other test func-cedure is continued. After all population members are divided
tions and a truss-structure optimal design problem (69).into nondomination levels, each solution in a front is assigned

PARALLEL GAs

Many real-world engineering design problems require consid-
erable amounts of computational time for evaluating objective
functions. Because any search and optimization algorithm re-
quires comparison of several designs, the overall computa-
tional time required to find an optimal or a near-optimal solu-
tion is often large. One way to alleviate this problem is to
compute several designs or solutions in parallel. However,
traditional methods use a point-by-point approach where one
solution must first be evaluated before the next solution is
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determined. In other words, the traditional methods are se-
rial in nature. Thus, there is a limitation in using the tradi-Figure 3. A typical two-objective problem. Solutions A, B, and D are

Pareto-optimal solutions. tional methods on a parallel machine.
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GAs, on the other hand, are easily implemented on a paral- it only updates the strengths of initially chosen classifiers.
Genetic algorithms are used for this purpose. After a few iter-lel machine. Population members are allocated equally to

each processor and are evaluated simultaneously. If a tourna- ations of the bucket brigade algorithm (when large enough
iterations have passed to reach near the steady-statement selection operator is used, two solutions are sent to each

processor for comparison. Because the crossover operator re- strength), a generation of GA is applied to create a few new
classifiers. The GA used in GBML is similar to that describedquires only two solutions, it is also be performed in a distrib-

uted manner. Mutation requires modification in only one earlier, except for a few modifications. The reproduction oper-
ation is performed with the strength value of the classifiers.string at a time. Thus, GAs are ideal algorithms for use with

parallel architectures. Parallel GAs are also implemented The crossover and mutation operations are modified to apply
them on both the condition and action components of the clas-with a network model, in which a GA is run on each processor

individually. A communication network between the pro- sifier. In addition, each child classifier created by using the
tripartite GA used to replace a parent classifier which maxi-cessors is prespecified (72,73). While GAs are running on each

processor, occasional migration of the best few solutions from mally resembles the child classifier. This procedure and a few
variations have been used to solve many machine learningeach processor is made to other connecting processors. This

allows parallel processing of the search space to find the opti- problems (79–82).
mal solution. Researchers have reported better performance
(sometimes superlinear performance) with such implementa-
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