
FUNCTIONAL PROGRAMMING 25

FUNCTIONAL PROGRAMMING

Functional programming languages support the functional
programming style. This style emphasizes the computation of
values of expressions, and the definition and application of
functions as first-class data values. Construction of a program
involves composition of individual functions. In contrast to
the functional languages, imperative languages, which are
the most widely used languages, emphasize the evaluation of
statements and have little support for manipulating functions
as first-class values. Programs are constructed from individ-
ual statements with complex interactions between the state-
ments.

Functional languages are the subject of ongoing research
in extending semantics and in implementation. Research into
implementations is directed to improving sequential execu-
tion and achieving (semi)automatic parallel execution. Se-
quential implementations have improved dramatically in
recent years to the point where performance rivals compara-
ble C programs.

The first section, entitled ‘‘Programming with Functions,’’
describes the advantages of functional programming. The
next section describes the theory underlying functional pro-
gramming. The section entitled ‘‘History’’ describes three of
the most widely used functional programming languages.
Next, strategies and issues in implementing high-perfor-
mance functional languages are described. Finally, the sec-
tion entitled ‘‘Incorporating State’’ describes methods for re-
storing state to functional languages.

PROGRAMMING WITH FUNCTIONS

While many functional programming languages provide facili-
ties for performing assignments and programming as if in an
imperative language, much can be gained by programming
with functions alone. These advantages are described in the
subsections that follow.

Ease of Reasoning

In the presence of assignment statements, variables can
change value during execution, reducing the ability of pro-
grammers to reason algebraically about their programs. In

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

26 FUNCTIONAL PROGRAMMING

contrast, functional programs contain equalities which are inductively over list length. The proof will be described in de-
tail, because it can serve as a prototype for other correctnesstrue for all time. Consider the following program [written in

the Haskell language (1)] for finding the roots of a quadratic proofs of recursive functions.
expression, ax2 � bx � c:

BASIS CASE: Consider the summation of an empty listquadroot a b c =
(whose length is 0). The sum function is defined to be 0, whichlet d = 2�a
is the sum of the elements of an empty list.s = sqrt(b�b � 4�a�c) in

((�b + s)/d, (�b � s)/d)
INDUCTION HYPOTHESIS: Suppose that for every list

To prove that this program conforms to the usual formula for l� � [x2, . . ., xn], sum l� � x2 � � � � � xn.
computing quadratic roots, substitute the definitions for d
and s into the final expression of the quadroot function. This INDUCTIVE CASE: Consider a list l � [x1, x2, . . ., xn] �
substitutibility property is referred to as referential trans- x1 : l�. Then:
parency.

Automatic Memory Management
sum x1 : l ′ = x1 + sum l ′

= x1 + (x2 + · · · + xn)

In functional programming, memory allocation and reclama-
tion is performed exclusively by the run-time support system Note that the recursive structure of the proof reflects the re-
of the language. For example, evaluation of the expression cursive structure of the primary data type lists. The proof also
[1,2,3] in Haskell creates a list with three elements, prints relied heavily on referential transparency: the ability to sub-
the contents of the list, and then because there are no other stitute expressions of the programming notation (e.g., sum l�)
references to this list, the memory used by the list is re- for expressions of the problem domain (e.g., x2 � � � � � xn).
claimed and made available for other lists. By contrast, in
imperative languages, when programmers use pointers to al- Partially Applied Functions
located data, they must ensure the following issues are re-

In functional languages, functions that are defined on multi-solved.
ple parameters can be applied to a single argument at a time.
When a function of multiple arguments is redefined in this1. Adequate space for the data must be allocated, and a
way, it is said to be curried. At each argument application, apointer must be set to this space.
new function is returned. As an example, consider the follow-2. The pointer can only be dereferenced after the data
ing addition function:have been allocated.
add x y = x + y3. When the data are no longer needed, the data should

be deallocated and returned to a free memory pool. The result of the application add 1 is a new function of a
4. Pointers to deallocated data should not be dereferenced. single argument that always adds 1 to its argument.

The absence of pointers eliminates these concerns. Automatic Higher-Order Functions
memory management has become recognized as a vital secu-

Frequently, functions perform similar operations that can berity mechanism in Java (2) and other languages for the In-
abstracted to a more general function, parameterized withternet.
functional arguments. For example, a general reduction func-
tion would be defined as follows:Recursion

red f i [] = iWithout assignment statements, looping through numeric
red f i (x:l) = red f (f i x) lvalues or through elements of a data structure is achieved

with recursion. For example, the following program (again in The red function takes three arguments: a binary function,
Haskell) computes the sum of a list of numbers: an identity element, and a list. The binary function is to be

applied to all elements of the list. Application of red to ansum [] = 0
empty list results in the identity element.sum (x:l) = x + (sum l)

Now, the sum function can be redefined to use the red
The alternate cases for the sum function are presented on two higher-order function as follows:
separate lines. When sum is applied to an empty list (whose

sum = red add 0pattern is []), the function yields a value 0. Otherwise, sum
is applied to a nonempty list whose first element is x, and the Here, summation is defined as applying the add function ‘‘be-
remaining elements are in sub-list l. The matching pattern tween’’ all elements of a list. When applied to an empty list,
for this case is x:l. Function sum is called recursively on the identity element (0) is returned.
sub-list l. When the sum of sub-list l is added to the first A function that computes the product of all elements of a
element of the list (x), the result is the sum of the entire list list can be defined in a similar manner, taking advantage of
x:l. a similar computational pattern.

To prove that this program is correct, it will be necessary
to show that for every list l � [x1, . . ., xn] and number s, product = red mul 1

mul x y = x � ysum_aux s l � s � x1 � � � � � xn. The proof can be conducted

FUNCTIONAL PROGRAMMING 27

Modularity is specified with the following grammar:

When creating large software systems, it is often vital to di-
vide the system into smaller discrete modules. The success of
this division depends on independence of each module from
others, insulating one module from changes in other modules.
Independence is achieved in three dimensions: (1) indepen-
dence in the order in which modules are evaluated; (2) inde-
pendence in the choice of data structures; (3) independence in

v ∈ Variables

e ∈ Expressions

e :: = v (variable)

λv.e1 (abstraction)

e1 e2 (application)
the implementation of data structures. Functional languages
enhance programmers’ ability to achieve these forms of inde-

While (numeric) constants and primitive operators can bependence.
added to this language to improve its readability, this gram-Imperative programming languages enforce a specific or-
mar is satisfactory for a discussion of the foundations of theder of evaluation from the statement level to the level of mod-
lambda calculus.ules. Communication between modules is often performed

A free variable in the lambda expression is a variable thatthrough construction of, and assignments to, global data
occurs outside the scope of any �-binding. More formally, astructures. Consequently, modules must maintain a rigid
variable v is free within lambda expression e in the followingtime ordering, otherwise, globals will not be correctly initial-
cases, based on the form of e:ized by the time they are used. In contrast, functional lan-

guages require only that input arguments must be created
before a function is invoked. Temporal constraints are relaxed • When e � v.
with lazy evaluation, which suspend functions until argu-

• When e � �w.e1, w � v, and v is free within e1.ments are sufficiently elaborated. Languages that support
• When e � e1 e2, and either v is free in e1 or v is free incurried functions also remove temporal constraints, permit-

e2.ting arguments to functions to be applied incrementally.
Higher-order functions provide both procedural and data

abstraction. Procedurally, common activities or patterns can A closed lambda expression has no free variables, and it rep-
be encapsulated within a single function. For example, a func- resents a value, even if the value is a function. A lambda ex-
tion that evaluates one of a list of other functions depending pression with free variables represents a range of values, once
on a numeric selector may be presented as follows: all of its free variables are assigned values. The assignment

of values is recorded in an environment, which maps syntacticselect :: Int -> [a->b] -> (a->b)
variables to semantic values. If v is a variable and � an envi-select 0 f:l = f
ronment, �(v) represents the value assigned to variable v inselect (n+1) (f:l) = select n l
environment �. If, in addition, x is a value, �[v � x] represents

To abstract this example in the direction of data, lists can the new environment that satisfies the following property:
be viewed as functions, which return a value stored at a par-
ticular numeric index. Consequently, the select function can
be abstracted further to have the type select:: Int ->
(Int->a) -> a.

ρ[v ← x](w) =
{

x if v = w
ρ(w) otherwise

Finally, functional languages support modular indepen-
dence by providing separation of implementations of data

The semantic interpretation of a lambda expression e in anstructures from their external interface. These facilities have
environment � is given by a meaning function M (e, �), speci-been provided by some of the earliest functional languages.
fied by examining the form of e.Goguen, Thatcher and Wagner (3) realized the relationship

between abstract data types, algebras, and equational lan-
guages, which are similar to functional languages without • If e is a variable, M (e, �) � �(e).
higher-order functions.

• If e � �v.e1 is an abstraction, M (e, �) is a function f such
A function that computes the product of all elements of a that f (x) � M (e1, �[v � x]).

list can be defined in a similar manner:
• If e � e1 e2 is an application expression, M (e, �) � M (e1,

product = red mul 1 �)(M (e2, �)).
mul x y = x * y

With the meaning of lambda expressions given by meaning
CONCEPTUAL BACKGROUND function M , computation with lambda expressions is given by

a calculus. Soundness and (partial) completeness properties
Lambda Calculus tie the semantics to the calculus. The lambda calculus speci-

fies rules for reducing lambda expressions. The reductionFunctional programming languages are all based on a much
rules rely on a rigorous definition of substitution which re-simpler foundation, called lambda calculus (4). The simplicity
spects lambda-bound variables. Given expressions e1 and e2of lambda calculus and its computational rules accounts for
and variable v, e1[v/e2] denotes substitution of all free occur-the simplicity of functional programming languages, which in
rences of v in e1 with e2 so that no free variables in e2 areturn makes programming far less error-prone. All computable

functions can be stated in lambda notation. Lambda notation bound by abstractions in e1. The rules for performing substitu-

28 FUNCTIONAL PROGRAMMING

tion are the following: Since e1 and e2 are normal forms, e1 � e�1 and e2 � e�2, and e1 �
e� � e2, contradicting the assumption that e1 and e2 are dis-
tinct normal forms.

The location within an expression at which a reduction
takes place is called a redex. Even though the choice of redex
does not affect equality (according to the Church–Rosser The-
orem), a poor choice of redexes may not result in a normal
form. Two rules for locating redexes are commonly used:

Normal Order: The leftmost-outermost redex is always re-
duced first. When an argument is applied to a function, the
function is always evaluated first.

v′[v/e] =
{

e if v = v′

v′ otherwise

(e1 e2)[v/e] = e1[v/e] e2[v/e]

(λw.e1)[v/e] =




λw.e1 if v = w

λw.e1[v/e] if v �= w, and w not
free in e

λw.(e1[w/w′])[v/e] if v �= w, w′ is a new
variable, and w is free in e

Applicative Order: The rightmost redex is always reduced
first. When an argument is applied to a function, the argu-As a consequence of these rules, renaming of variable x occurs
ment is always evaluated first.in the substitution (�x.y)[y/(x � 1)] prior to replacement, re-

sulting in �x�.(x � 1), and avoiding capture of the free vari-
To illustrate the problem with applicable order, reduction ofable x within x � 1 by the lambda abstraction.
the following expression will not terminate:The lambda calculus is used to determine equality of

lambda expressions through reduction. Reduction of an ex- (λy.(λz.z))((λx.x x)(λx.x x))
pression e1 to an expression e2, denoted e1 � e2, is specified
with the following two rules: In normal order evaluation, the normal form is �z.z, while in

applicative order, there is no normal form because each re-
� Rule: (�v.e1) e2 � e1[v/e2]. duction step results in an expression identical to the original.

Theorem 2 (Church–Rosser II) The normal order reduc-� Rule: �v.e � e whenever e contains no free occurrences
tion sequence will always obtain the normal form of a lambdaof v.
expression (if one exists).

Rewriting sequences can be composed: e1 �* e2 if either e1 � Despite normal order’s obvious advantage over applicative or-
e2 or there exists an expression e� such that e1 � e� and e� �* der in reaching a normal form, when applicative order is able
e2 (�* is the reflexive, transitive closure of the � relation). to find a normal form, the number of applicative order reduc-

In addition to the reduction rules, equality of lambda ex- tion steps is usually less than the number of steps required
pressions is determined, modulo renaming of lambda-bound by a normal order reduction sequence.
variables. As for conventional programming languages, the
choice of variable names does not impact the meaning of pro-

HISTORYgrams. Equality in the lambda calculus realizes this property
by enhancing equality with an �-conversion rule as follows:

The four languages described in this section—Lisp, Scheme,
ML, and Haskell—represent significant developments in
functional programming languages. They are all widely ac-
cepted; and at the same time, they synthesize many ideas cur-
rent at the time of their development.

e ≡ e

λv.e ≡ λw.e[v/w]

λv.e ≡ λv.e′, if e ≡ e′

e1 e2 ≡ e′
1 e′

2, if e1 ≡ e′
1 and e2 ≡ e′

2
Lisp

The following theorem guarantees that the order of reduc- The earliest functional language was Lisp, developed by J.
tions does not affect the determination of equality. McCarthy at the end of the 1950s and the beginning of the

1960s at MIT (5). Many of the attributes of Lisp are still pres-
Theorem 1 (Church–Rosser I) If e1 �* e2, then there exist ent in modern functional languages.
expressions e�1 and e�2, where e�1 � e�2 and such that e1 �* e�1 Lisp introduced a language that had simple textual forma-
and e2 �* e�2. tion rules, automatic memory management, and the concept

of a list data structure. Lisp was widely adopted in the Artifi-
A normal form of an expression e is an expression e� such that cial Intelligence community. Its acceptance was due to several
e �* e� and e� cannot be reduced further. As a corollary to the features of the language. First, Lisp makes creation and com-
Church–Rosser Theorem, if an expression has a normal form, parison of symbols very easy. For example, the value of an
it is unique (modulo variable renaming). For suppose e1 and object’s color property may be the Lisp symbol blue. In con-
e2 are normal forms for an expression e, and e1 � e2. Then, trast to imperative languages, colors do not need to be en-
according to the Church–Rosser Theorem, there exist expres- coded as integers. All storage allocation and reclamation is
sions e�1, e�2, and e� such that: performed by the run-time system, so that storage for symbols

is managed automatically.
• e1 �* e�1, e �* e�, and e�1 � e� The primary data structure of Lisp is the list, which can

have arbitrary form and can therefore represent complicated• e2 �* e�2, e �* e�, and e�2 � e�

FUNCTIONAL PROGRAMMING 29

relationships between objects. For example, the Lisp list ogy of Haskell, a function is tail-recursive if all equations
defining the function are tail-recursive. An equation is tail-’(cat isa feline) represents an ‘‘isa’’ relationship be-

tween animal species. Again, storage management by the recursive if, whenever the right-hand-side expression is re-
cursive, the recursive call is at the outermost position. TheLisp run-time system makes it easier to use lists in Lisp than

it is to define record structures and explicitly allocate and sum_aux noted earlier in this article is tail-recursive, and
achieves this property by introducing an accumulator. The sumdeallocate storage in imperative languages.

Lisp’s facility to use functions as expressions has been re- function could be written without tail-recursion as follows:
tained in modern functional languages. In Lisp, a function is

sum l = sum_aux 0 lcreated with a three-element list:
sum_aux s [] = s
sum_aux s (x:l) = sum_aux (s + x) l• The first element of the list is the symbol lambda, denot-

ing a function-valued expression. Each recursive call of a function that is not tail-recursive will
• The second element is a list of parameter symbols. require an additional activation stack frame to be added to

the run-time stack to store the function’s current state. By• The final element is the expression that will be evaluated
contrast, tail-recursive functions can be compiled into itera-when the function is applied to arguments.
tive loops. As a result, only one run-time activation stack re-
cord will be needed for the function call.For example, the following expression contains a two-element

When functions are not originally tail-recursive, they needlist, consisting of two functions—one that increments its ar-
to be transformed into tail-recursive form. Two transforma-gument, and the other that decrements its argument:
tions are generally performed.

’((lambda (x) (+ x 1)) (lambda (x) (� x 1))) Accumulator Parameters. In the first transformation the
programmer creates ‘‘accumulator parameters’’ to store inter-Lisp/s functions can used like any other value: They can be
mediate results. For example, in the sum_aux function notedstored within lists, as in the example above, and can be
earlier in this article, the first parameter holds the accumu-passed as arguments to other functions. It is for this reason
lated sum.that Lisp’s functions are said to be ‘‘first-class’’ values. This

Continuations. Compilers can automatically transform pro-facility is well-used within the Artificial Intelligence commu-
grams to tail-recursive form by introducing ‘‘continuations’’nity. For example, an object’s behavior could be dictated dur-
(7). A continuation suspends the entire computation of theing program execution by assigning a particular set of func-
recursive function until the base case is reached. Consider thetions to the object.
following Haskell function definition for appending one list toThough Lisp has a number of aspects that make it a less-
the beginning of another.than-ideal functional programming language, many of its fea-

tures have found their way into later functional languages.
append [] l2 = l2
append (x:l1) l2 = (x:(append l1 l2))Scheme
Function append is not tail-recursive. A continuation param-Following the dissemination of Lisp, the Scheme language (6)
eter can be introduced to produce an equivalent (tail-re-was produced to resolve a number of difficulties inherent with
cursive) function definition. Continuations are functions.Lisp. Scheme solved Lisp’s problem of ‘‘dynamic scoping’’ and
Lisp’s functional form (lambda (x) e) is expressed in Has-optimized evaluation of tail-recursive functions. Scheme has
kell with
x->e.roughly the same syntax as Lisp (based on ‘‘S-expressions’’),

The tail-recursive form of the append function is the fol-but can be evaluated more efficiently. There are two funda-
lowing:mental reasons for Scheme’s improved efficiency. First, in

Lisp, values of nonlocal variables must be searched for on the appendc l1 l2 = appendcc l1 l2 (
l->l)
run-time stack (later versions of compiled Lisp require decla- appendcc [] l2 c = l2
rations of global variables to eliminate searches). Searching appendcc (x:l1) l2 c = appendcc l1 l2 (
l->(c
for nonlocal variables requires that symbolic names of vari- (x:l)))
ables need to be stored on the stack, and accesses to those
variables will be slow. The following program displays how In both equations for appendcc, the continuation parameter
dynamic scoping works: (c) is a function of a single argument. This argument is as-

sumed to be the result of appending the list arguments to ap-
(set f (lambda (x) (g)))

pendcc. In the first equation defining appendcc, the result of
(set g (lambda () (+ x 1)))

appending the empty list [] to l2 is l2, so c is applied to l2.
This result must be applied to the continuation so that sus-When function f is called, it pushes its parameter, x, onto the

run-time stack. This parameter is available to function g pended computations within the continuation can be invoked.
In the second equation defining appendcc, a new continuationwhen g computes 1 + x.

By contrast, Scheme uses static scoping for variables. is created. Its single argument is the assumed result of ap-
pending lists l1 and l2. The first element of x:l1, which is x,Whenever a variable is accessed, its position in the stack can

be determined by static analysis of the program. The Scheme is added onto list l to produce the result of appending x:l1 to
l2. As in the first equation, this result is applied to the continu-compiler will report a syntax error on the program above.

The second reason for Scheme’s potential performance ad- ation in order to invoke suspended computations.
One problem with continuations is that data structuresvantage over Lisp is that Scheme requires all recursive func-

tions to be tail-recursive. Roughly speaking, in the terminol- supporting the new continuation functions need to be stored

30 FUNCTIONAL PROGRAMMING

on the run-time stack. Continuations make heavy use of static natural to provide for functions to be used in general contexts.
Consider the map function presented above. This function ap-scoping, and they can only be used with great care in Lisp.
plies its argument to every element of a list. The function is
equally valid when it is applied to lists of integers, characters,ML
and so on. ML provides a notation in its type system for de-

Following the development of Lisp by over a decade, ML be- scribing such polymorphic functions. Function map has the
came a functional language for a broader user community (8). following type denotation:
ML provides type inference, polymorphism, and pattern-

map :: (a -> b) -> [a] 0> [b]matching. These features are present in most later functional
programming languages. In the early 1990s, the specification

Within this type expression, a and b stand for unique univer-
of ML was standardized, resulting in the new language, SML

sally quantified variables spanning the domain of all (vari-
(9). SML has a wide variety of implementations, compiling

able-free) type denotations. Type expressions [a] and [b]
either to bytecodes or directly to machine language. In this

stand for lists containing elements of types a and b, respec-
section, all examples will be written in Haskell’s syntax to

tively.
maintain uniformity of notation. Translation of Haskell to ML
is a straightforward detail.

HaskellWithin imperative programming languages, types are as-
signed to variables primarily to allocate storage. Types do not Haskell was developed by a committee of researchers in an
mandate a range of values for variables because variables are effort to standardize lazy functional languages. Haskell has
assigned to memory locations, and memory can be altered many similarities with Miranda (10). The Hope language (11)
with arbitrary values. By contrast, in functional languages, preceded Miranda, but originally only performed lazy evalua-
every variable and function can be assigned a fixed domain, tion on constructors. Both Lisp and ML are strict functional
which is a countable, partially ordered set of possible values. languages: When applying an argument to a function, the ar-
The ML language compiler is able to infer denotations of the gument is fully evaluated before the function’s code is evalu-
domains of all variables and functions at compile time. The ated. This argument-passing mechanism is called call-by-
simple structure of the language makes the inference rules value, and it realizes applicative-order evaluation. It is used
relatively simple to specify. Type inference is able to catch in a number of conventional programming languages. How-
semantic programming errors and at the same time ease the ever, there are several reasons why this mechanism is some-
programming task. what undesirable.

As an example of type inference, consider the following
function definition: 1. When a parameter’s value is not used within a function,

computation of its value is unnecessary.inc x = x + 1
2. When a parameter’s value is not used within a function,

The definition above declares a function, inc, of a single pa- and computation of its value causes an error condition
rameter, x. Function inc will correctly compute a result only to occur, unnecessary error conditions may arise.
if it is applied to a number. Furthermore, the only nonerror

3. The presence of call-by-value in a programming lan-results are numeric. These observations are inferred by the
guage causes increased complexity in the language’sML compilation system, which issues the following type of
definition, because conditionals and streams (un-judgment:
bounded-length lists) must be defined to be part of the
language.inc :: Int -> Int

ML also provides pattern-matching within function defini-
Haskell and other lazy functional languages evaluate expres-tions. As an example, consider the following function defi-
sions only when they are needed. Furthermore, because everynition:
expression has only one value throughout the entire execution
of a program, once an argument is evaluated, its value over-map f [] = []
writes the expression.map f (x:l) = (f x):(map f l)

Lazy evaluation in Haskell resolves the three problems
The map function in this definition applies a function f to identified above:
every element of a list. When map f is applied to an empty
list (denoted with []), the empty list is returned. When map

1. Given the following Haskell function definition, evalua-
f is applied to a nonempty list, the second definition of map

tion of f -1 x will not evaluate x.applies. Variable x will then be bound to the head of the list,
and variable l will be bound to the remaining elements of the

f i x = if i < 0 then 0 else xlist. Following these bindings of values to variables, the right-
hand-side expression will be evaluated, creating a list whose

2. Had the expression f -1 (1/0) been evaluated withfirst element is the result of applying x to function f and
the function definition above, an error would not be re-whose remaining elements are formed from recursively
ported because the second argument is not needed.applying the map function to f and list l. Notice that the op-

erator in the pattern x:l is identical to the list construction 3. Lazy evaluation is able to supplant a number of seem-
ingly essential features found in strict functional lan-operator ‘‘:’’ in the expression’s right-hand side.

The final innovation introduced by ML is provision for guages. For example, the conditional expression (if
...then ...else) can be defined in Haskell itself (al-polymorphic functions within the type inference system. Since

ML can use functions as arguments to other functions, it is beit with less syntactic clarity).

FUNCTIONAL PROGRAMMING 31

cond True t f = t
cond False t f = f

More complicated control structures can also be created with-
out adding additional facilities to the language.

ML has a stream extension that is already a natural part
of Haskell. In Haskell, the components of a data structure are
only evaluated if the components’ values are demanded. As a
result, the computation of infinite lists and other data struc-
tures can be specified, while only evaluating a finite portion.
In addition, if a function is applied to all elements of a data /y–>x*ymap /y–>x*ymap

x*1

1

1

:

:

:

structure, the function will only be computed on those ele-
Figure 1. Evaluation of powers x with full laziness.ments that are actually demanded.

Programming with streams enables programmers to use
lists as tables of functions. For example, the following func-
tion produces a list of (non-negative, integral) powers of a pression is reduced to a value, the value overwrites the ex-

pression. In the preceding steps, subexpression powers xnumber x.
will be rewritten in two steps as depicted in Fig. 1. In this

powers x = 1 : (map (
t->x�y) (powers x))
figure, the nodes labeled : construct lists. The nodes la-
beled apply arguments to functions. Depiction of full lazi-If the first three elements of the powers x stream are de-

manded, evaluation proceeds in the following steps: ness shows that results of computations are reused.
Haskell exploits lazy evaluation in a number of useful

ways. Lists can be specified as a generator and filter with the
list comprehension syntax. for example, the stream of powers
of a number x can be specified as the expression [x̂n � n <-
[0..]]. This generator is a lazy stream producer, equivalent
to the Haskell expression nats 0, where nats is defined as
follows

nats n = n : nats (n+1)

In addition, lazy evaluation implements a form of ‘‘memoiza-
tion.’’ In essence a table is maintained that maps expressions
to previously computed values. When a new value is to be
computed (powers x, for example), any previously computed
value is returned.

IMPLEMENTATIONS

McCarthy’s paper describing Lisp contained an interpreter
written in Lisp (5). Its implementation calls for provision of
the primitive list-handling and arithmetic functions and could
serve as the specification of a Lisp interpreter, written in an-
other language.

Common to all implementations of functional languages,
representations are needed for expressions whose evaluation
has been suspended. Lisp’s dynamic binding removes the
need for special representations. Some implementations rep-
resent expressions as graphs, as portrayed in Fig. 1. Other
statically scoped functional languages require creation of spe-
cial data structures (12).

powers x
-> 1 : (map (
y->x�y) (powers x))
-> 1 : (map (
y->x�y) (1 : (map (
y->x�y)

(powers x))))
-> 1 : ((
y->x�y) 1) : (map (
y->x�y)

(map (
y->x�y)
(powers x)))

-> 1 : x�1 : (map (
y->x�y)
(map (
y->x�y) (powers x)))

-> 1 : x�1 : (map (
y->x�y)
(map (
y->x�y)

(1 : (map (
y->x�y)
(powers x)))))

-> 1 : x�1 : (map (
y->x�y)
((
y->x�y) 1) : (map (
y->x�y)

(map (
y->x�y)
(powers x))))

-> 1 : x�1 : (map (
y->x�y)
(x�1 : (map (
y->x�y)

(map (
y->x�y)
(powers x)))))

-> 1 : x�1 : ((
y->x�y) x�1) : (map (
y->x�y)
(map (
y->x�y)
(map (
y->x�y)
(powers x)))))

-> 1 : x�1 : x�x�1 : (map (
y->x�y)
(map (
y->x�y)

(map (
y->x�y)
(powers x))))

...
Closures

Execution of strict functional languages requires creation ofThe first three members of this stream contain the values of
x0, x1, and x2. The evaluation steps displayed above were data structures representing partially applied functions,

which can be passed as arguments to other functions. A clo-chosen using normal-order evaluation. This reduction rule is
guaranteed to find a normal form if one exists. sure is a pointer to a function’s code, along with a list of acti-

vation stack frames binding nonlocal variables to values.One problem that is evident in the reduction steps dis-
played above is that values of the expression powers x are Each binding of a value v to a variable x will be expressed as

x � v. A closure whose function is f �
y-�e with bindingscontinually recomputed. Since Haskell disallows the side ef-
fects present in imperative programs, powers x will be un- � � [x1 � v1, . . ., xn � vn] will be expressed as ��f , ���.

To see how closures are created, consider the followingchanged whenever it is invoked. To save the computed values
of a function, Haskell implements full laziness: When an ex- function definitions:

32 FUNCTIONAL PROGRAMMING

add x y = x + y structures without outstanding references are placed in a free
area for later reuse.inc = add 1

The instruction set of the machine consists of the follow-
When evaluating the expression add 1, the closure �y->

ing instructions.
x+y,[x �1]� will be created. This closure can be assigned
to a symbol with the definition noted earlier in this article.

const(n): Loads a number n onto the stack.When the inc function is applied to a value, say 5, a new
vari(i): Loads the ith item in the environment onto thebinding for y will be pushed onto the closure’s activation

stack.stack. The resulting activation stack will have the following
add: Adds the top two stack elements and pushes the re-bindings: [{y � 5}, {x � 1}]. Within this environment,

sult onto the stack. In an actual implementation therethe expression x+y will be evaluated, returning the value 6.
would be additional primitive operations.

Thunks lambda(c): Creates a closure out of the new code list c and
the current environment and then pushes this structureLazy functional languages delay evaluation of expressions un-
onto the stack.til they are demanded. When demanded, delayed expressions

apply: The stack must consist of a value x and a closureneed to be evaluated under bindings for variables that were
��c, e��. The code list c is evaluated in environment e,in place at the time they were originally delayed. A thunk is
after its extension with x. Before evaluation of code lista data structure containing an expression and an activation
c, the dump is extended with a triple consisting of thestack. The thunk suspending expression e under binding list
current stack, the current environment, and the re-� will be expressed as �e, ��.
mainder of the code list.In the powers function noted in the previous section, the

following data structure is constructed on evaluation of the
When the machine reaches the end of a code list, if the dumpexpression powers 2:
is empty, the machine stops, with the result of the computa-

1 : �map(
y->x am y)(powers x), {[x � w]}� tion at the top of the stack. Otherwise, the dump is popped
and its topmost triple used to restart the computation thatThe thunk carries enough information to determine the value
was suspended by a previous apply instruction.of x when the lambda expression
y->x � y and the applica-

Compilation of a simple functional language into instruc-tion expression powers x are ultimately used.
tions of the SECD machine will be described next. The func-Creation of closures and thunks constitute serious chal-
tional language’s grammar is described as follows:lenges to obtaining performance comparable to conventional

programming languages. To maximize performance of func-
tional programs, various compilation strategies have been
proposed. These strategies usually assume the target ma-
chine executes an instruction set tailored to functional lan-
guages. Realization of the compiler is usually performed in
two steps. First, the functional program is compiled into the
idealized target language. Next, the target language is either
(a) interpreted or (b) translated further to the target language
of an actual computer. Several target functional instruction
sets have been proposed. Of these, the SECD and CAML in-
struction sets will be described in more detail.

n ∈ Numeric constants

v ∈ Variables

e ∈ Expressions

e :: = n (constant)
v (variable)
e1 + e2 (primitive operation)
\v− > e1 (abstraction)
e1 e2 (application)

A compilation function C is defined to map each expressionSECD
and a description of the environment to a code list. The compi-

The SECD machine is one of the earliest abstract functional lation rules are described as follows:
programming language engines. It was described by Landin
in 1964 (13). The machine has four sections:

Stack: holds intermediate results during expression evalu-
ation.

Environment: holds the current list of bindings of vari-
ables to values.

C(n, ρ) = [const(n)]
C(vi, [v1, . . . , vi, . . . , vn]) = [var(i)]
C(e1 + e2, ρ) = C(e1, ρ) ++ C(e2, ρ) ++ [add]
C(\v− > e, ρ) = [lambda(C(e, (x : ρ))]
C(e1 e2, ρ) = C(e1, ρ) ++ C(e2, ρ) ++ [apply]

Code: holds a list of SECD machine instructions to exe-
In the rules listed above, the �� operator joins lists of ele-cute.
ments. For example, in the rule for compiling addition expres-

Dump: stores environments that are unneeded when mak- sions of the form e1 � e2, three lists are concatenated:
ing function calls.

1. The result of compiling e1: C(e1, �).Each of these four sections is represented as a list. Occasion-
2. The result of compiling e2: C(e2, �).ally, closures will be created and stored on the stack. Ele-
3. The add instruction: [add].ments of the dump are triples, each consisting of a stack, en-

vironment, and code list. Implicitly, there is a storage area
for lists, closures, and triples, called the heap. Data structures As an example of the SECD machine, consider compilation of

the function application (
x->x + 1) 5. The compilationstored in the heap have reference tags. Memory allocated to

FUNCTIONAL PROGRAMMING 33

steps are the following: an argument y by forming a pair (x, y). These axioms are the
axioms of ‘‘weak categorical combinatory logic’’ and are listed
in Table 1.

To convert lambda expressions to expressions involving the
categorical combinators, the expressions are first converted to
De Bruijn notation. Every lambda expression
v-�e is replaced
by the De Bruijn expression �(e�), where every occurrence of

C((\x− > x + 1) 5, [])
= C(\x− > x + 1, []) ++ C(5, []) ++ [apply]
= [lambda(C(x + 1, [x]))] ++ [const(5), apply]
= [lambda(C(x, [x]) ++ C(1, [x]) ++ [add]), const(5), apply]
= [lambda([var(1), const(1), add]), const(5), apply]

variable v in e is replaced by a variable marker of the form
Letting c � [var(1), const(1), add], execution of the #i, with i denoting the nesting depth of v in the environment.
code list derived above proceeds in the following steps. Each With expressions in De Bruijn notation, a compilation func-
step describes a state of the SECD machine, with each of its tion C is defined as follows:
parts specified as a list.

Constants: C(c) � �c
S E C D

Built-ins: C(�) � �(� 	 Snd)
[] [] [lambda(c) [] Variables: C(#i) � Snd 	 Fsti

const
Pairs: C((e1, e2)) � �C(e1), C(e2)�(5),
Application: C(e1 e2) � App 	 �C(e1), C(e2)�apply]

[��c, []��] [] [const(5), [] Lambda: C(�(e)) � �(C(e))
apply]

[5, ��c, []��] [] [apply] [] For example, the lambda expression (
x-�x � 1) 5, which in-
[] [5] c [([5, ��c, []��], [], crements 5, is expressed in De Bruijn notation as �(�(#0, 1))

[])[5. The De Bruijn expression compiles to the following combi-
[5] [5] [const(1), [([5, ��c, []��], [], nator expression:

add] [])[
[1, 5] [5] [add] [([5, ��c, []��], [], App ◦〈�(App ◦〈�(+ ◦Snd), 〈Snd, ′1〉〉), ′5〉 (1)

[])[
[6] [5] [] [([5, ��c, []��], [],

To create a reduction sequence, the combinator expression is[] [])[
applied to the empty environment, denoted (). A strict reduc-[6, 5, ��c, []��] [] []
tion sequence proceeds as follows:

The complexity of the SECD machine, along with the com-
plexity of function application and return, has led researchers
to explore simpler architectures. For example, the FPM ma-
chine, (Ref. 10, Chap. 15) consists of a single stack (and an
implicit heap).

CAM

The Categorical Abstract Machine (CAM) (14) combines the
implementation ideas of the graph reduction machines and
the SECD machine (and its successors). In the CAM, pro-
grams are transformed to combinator expressions. A combina-
tor is lambda expression without free (unbound) variables. In
the CAM, each of the fixed set of combinators is evaluated
when all arguments are supplied. Each combinator then acts
as a rule that transforms the order of its arguments. For ex-
ample, the S combinator is defined by the following rewrite
rule:

S x y z = x z (y z)

App ◦〈�(App ◦〈�(+ ◦ Snd), 〈Snd, ′1〉〉), ′5〉()
assoc−→ App(〈�(App ◦〈�(+ ◦ Snd), 〈Snd,′ 1〉〉),′ 5〉())

depair−→ App(�(App ◦〈�(+ ◦ Snd), 〈Snd, ′1〉〉)(), ′5())

quote−→ App(�(App ◦〈�(+ ◦ Snd), 〈Snd, ′1〉〉)(), 5)

ac−→ App ◦〈�(+ ◦ Snd), 〈Snd, ′1〉〉((), 5)

assoc−→ App(〈�(+ ◦ Snd), 〈Snd, ′1〉〉((), 5))

depair−→ App(�(+ ◦ Snd((), 5), 〈Snd, ′1〉((), 5))

depair−→ App(�(+ ◦ Snd)((), 5), (Snd((), 5), ′1((), 5))

snd,
quote−→ App(�(+ ◦ Snd)((), 5), (5, 1))

ac−→ + ◦ Snd(((), 5), (5, 1))

assoc−→ +(Snd(((), 5), (5, 1))

snd−→ +(5, 1)

−→ 6As a lambda expression, S would be defined as follows:

S = \x− > \y− > \z− > x z (y z)

The advantage of retaining combinator expressions in the
combinator form is that simple rewriting rules can be
attached to each combinator.

A set of categorical combinators are first defined axiomati-
cally. In the axioms, environments represent bindings of vari-
ables to values. Environments are extended when arguments
are applied to functions. An environment x is extended with

Table 1. Axioms of Weak Categorical Combinatory Logic

quote: �cx � c
fst: Fst(x, y) � x

snd: Snd(x, y) � y
depair: � f, g� x � (fx, gx)

ac: App(�(f)x, y) � f (x, y)
assoc: (f 	 g) x � f (gx)

34 FUNCTIONAL PROGRAMMING

The axioms of the categorical combinators could be directly in a functional program is associated with a dataflow instruc-
tion, which consists of the following fields:implemented by an interpreter, or a graph-reduction ma-

chine. The CAM goes further, by breaking each axiom into
Operation Code: This field is filled in by the compiler,smaller steps. The CAM comprises three sections:

and it may consist of a primitive arithmetic function, or
one of a collection of dataflow operators such as merge,Term: a pair describing the environment.
apply, and switch.Code: a list of instructions to execute.

Inputs: This field is an array of slots that are filled duringStack: intermediate results held for temporary storage.
execution with the inputs to the operation.

Destination: This field is filled in by the compiler; and itCAM instructions are defined for each combinator symbol.
contains the address of the instruction, and slot in itsThe CAM instructions are defined below:
input list, that will hold the result of the current oper-
ation.fst: This instruction is produced from the Fst combinator.

If the term is a pair (x, y), term x is pushed onto the
Dataflow machines (in both hardware and software realiza-stack.
tions) have an execution queue, which holds all instructionssnd: This instruction is produced from the Snd combina-
that have sufficient operands to be executed. Execution of antor. If the term is a pair (x, y), term y is pushed onto the
instruction proceeds in the following steps:stack.

push: This instruction is produced from the � element of 1. Get an instruction from the execution queue.
the pairing combinator. The term is pushed onto the 2. Evaluate the instruction, obtaining result r to be sent
stack. to instruction i at input slot s.

swap: This instruction is produced from the intermediate 3. Copy r into slot s of instruction i.
(,) element of the pairing combinator. The term and top

4. If sufficient slots of s have been filled, add i to the execu-of stock are swapped.
tion queue.

cons: If the current term is y and the top of stack is x, the
new term is (x, y), and the stack is popped. Dataflow programs are usually depicted in dataflow dia-

curry(c): This instruction is produced from the combinator grams, which are directed graphs with nodes representing in-
expression �(c). If x is the current term, the new term structions. Dataflow diagrams are interpreted like Petri nets.
will be closure ��c, x��. Each edge may pass a token, representing the result of an

instruction to a slot of another instruction. For example, theapp: This instruction is produced from the App combina-
quadroot program can be represented as the dataflow dia-tor. The current term must be the pair (��c, x��, y). In-
gram of Fig. 2.struction sequence c will be executed with new term (x,

While all instructions of the program perform according toy).
the execution outline presented above, all instructions havequote(x): The new term will be x.
unique behavior. Below is a list of the instructions appearingadd: If the current term is (x, y), the new term will be x
in the quadroot program, as well as others needed to sup-� y.
port conditionals, and function calls.

In creating an instruction sequence from an expression e1 	 copy: This instruction propagates the value at its input to
e2, the sequence for e1 will be appended to the end of the se- multiple outputs.
quence for e2. The combinator expression [Eq. (1)] produces

constant: This instruction sends a single constant valuethe following three code sequences, with execution proceeding
to its output without waiting for inputs.from s0:

pair: This instruction forms a data structure in ‘‘I-struc-
ture’’ memory consisting of both input values, and it re-s0: push; curry(s1); swap; quote(5); cons; app;
turns a pointer to the new structure.s1: push; curry(s2); swap; push; snd; swap; quote(1); cons;

switch: This instruction implements conditionals. The in-cons; app;
struction sends the input at its second input slot to itss2: snd; add
output if the value on its first input is the Boolean T;
otherwise, the input at its third input slot is passed to

While the set of combinators in the CAM are fixed, another the output.
approach is to define a set of combinators ‘‘on-the-fly,’’ de-

apply: This instruction applies arguments to a functionpending on the expressions present in a program. The re-
pointer.sulting rewriting sequences are often shorter than the se-

quences produced by the CAM.
The pair instruction creates a structure in a section of mem-
ory called the I-structure memory. I-structures have behavior

Dataflow
similar to the idea of lazy evaluation. When applied to an I-
structure pair, selectors fst and snd do not return valuesDue to referential transparency, every expression (without

free variables) in a functional program represents a single until the appropriate slots in the I-structure receive values.
In effect, each slot of an I-structure has a queue of pending re-value. This property suggests a unique method of execution,

called dataflow (15). In the dataflow model every expression quests.

FUNCTIONAL PROGRAMMING 35

Figure 2. Dataflow diagram for

copy

copycopy

copy

copy

–

–

pair

/ /

+ –

* *

*

*4

2

sqrt

s

d

b c a

quadroot.

The apply instruction creates a new instance of a func- written in a divide-and-conquer style, to achieve logarithmic-
time performance. In contrast with dataflow programs, paral-tion’s code, and it sends the arguments to apply to the in-

stantiated function. To perform function instantiation effi- lelism is under the control of the programmer. But the pro-
grammer is not responsible for explicitly creating and control-ciently, instructions are tagged with an invocation number

when they are added to the execution queue. When a value is ling parallel processes.
computed by an instruction, the value is copied to the input
slot of the destination instruction with the identical invoca-

INCORPORATING STATEtion number.
In data-driven evaluation, many opportunities for parallel-

The state of a program is an encapsulation of its inputs, out-ism exist. So much parallelism is present that applications
puts, and memory. The computation of a conventional lan-require strategies to pursue parallel execution in only the
guage program depends critically on the state. Due to referen-most critical instructions, rejecting other less critical opportu-
tial transparency, however, evaluation of a functionalnities. In several large-scale applications, execution of pro-
program is invariant with respect to the state. Without state,grams written in the dataflow language SISAL compares fa-
though, functional languages must explicitly pass all inputsvorably with execution of Fortran programs (16).
to functions, and cannot update variables ‘‘in place.’’Other proposals for massively-parallel evaluation of func-

As an example of the inefficiency introduced without in-tional programming languages have also been advanced. Par-
place update, consider the incall function defined below,allel graph reduction performs the kind of graph evaluation
which increments all values of a list.described in Fig. 1 at multiple points of a graph simultane-

ously (17). The Nesl language (18) contains arrays as a fun- incall [] = []
damental data type so that element accesses can be per- incall (n:l) = (n+1):(incall l)
formed in a ‘‘data-parallel’’ manner in constant time. Various
parallel primitive operations, and the higher-order parallel A naive implementation essentially copies the entire list as it

traverses down to its end. If the list is a component of anothermap operation are applied to arrays. Programs tend to be

36 FUNCTIONAL PROGRAMMING

data structure, copying will avoid the side effect of changing pend (inclist l) (inclist l)) [0..10]. The analysis
will find the parameter of inclist to be multithreaded, sincethe value of the data structure. However, if the list is con-

tained in no other data structure, copying is an unnecessary l occurs twice in the calling expression. Therefore, the result
of inclist is multithreaded, and append is multithreaded.expense.

Two approaches have been advanced to make it possible
Monadsfor functional programming languages to recognize situations

where in-place update can be performed. The first approach Monads have been introduced to incorporate a notion of state
requires program analysis to recognize situations where val- within functional languages. Monads can be thought of as ab-
ues are referenced from a single point in the program. The stract data types that are internally single-threaded.
second approach has programmers employ abstract data While monads are usually treated as a concept of category
types that can be updated in place while retaining functional theory, Wadler (20) described them as a generalization of the
semantics. ‘‘list comprehension,’’ which is present within the Haskell lan-

guage. A functional language implementation of state trans-
Single Threadedness formers can perform destructive assignments without vio-

lating referential transparency.A data structure is single-threaded if it is referred to directly
One important use of monads has been to implement in-from at most one other data structure (19). If a functional

put-output in version 1.4 of the Haskell language. Input-out-language compiler can determine that all data structure argu-
put operations typically produce side-effects. For example,ments to a function call are single-threaded, a variant of the
reading from a file returns the next object in the file, but alsofunction performing destructive updates can be called. A data
advances the file’s position so that the next read gets the nextstructure is multithreaded if it is not single-threaded.
object. In Haskell monads encapsulate the side-effects of in-To determine if a variable always holds single-threaded
put-output, so that functions using the special IO monad arevalues, the compiler infers which parameters to each function
not exposed to side-effects.are definitely single-threaded. Because the problem of decid-

ing whether a variable is single-threaded is undecidable, a
conservative inference procedure must be employed. For each SUMMARY
function with n parameters, the inference procedure outlined
below will deduce an n-tuple of Boolean values, where the Functional languages ensure referential transparency, where
ith value is T if the ith parameter is judged to be single- every expression describes a single value (once free variables
threaded. The procedure will also deduce if a function returns are bound to values). Functional languages can be described
single-threaded results. denotationally, without use of a store. In addition, they can

be defined axiomatically with Cartesian closed categories. As
1. Initially, for every function defined in the program, all a result, reasoning can be conducted equationally directly in

arguments are assumed to be single-threaded, so each the notation of the language.
function is assigned an n-tuple consisting only of T val- The earliest functional language, Lisp, gave way to a vari-
ues. ant, Scheme, which relies on static scoping. ML provides more

2. Suppose the body of a function f contains a variable x. conventional syntax, and more easily supports currying.
If x is a formal parameter of the function and is multi- While ML (and Scheme) employ strict evaluation, Haskell
threaded (the corresponding element of f ’s tuple is F), evaluates function arguments with lazy evaluation. As a re-
all uses of x will be multithreaded. Also, if there are sult, it is possible to program with streams of unbounded
multiple occurrences of x within f , all uses will be multi- length and make use of other unbounded data structures.
threaded. If x is the ith parameter to a function g and Functional languages have been used primarily in Artifi-
the use of x is multithreaded, the ith element of g’s cial Intelligence applications, due to the heavy use of recur-
tuple is set to F. The analysis is continued on g. sively defined data structures. Reasoning about types has also

been extremely important in these applications, and its in-3. Suppose the body of function f contains multiple occur-
fluence has been felt in other areas of programming lan-rences of a single-threaded parameter, or at least one
guage design.occurrence of a multithreaded parameter. Then the

While functional languages have been criticized for poorfunction returns multithreaded results.
performance, due mainly to the absence of side effects, several4. Suppose the body of a function contains a call to a func-
proposals have been advanced to incorporate side effectstion f whose ith argument is gx. If g returns a result
within the evaluation system, retaining referential transpar-that is multithreaded, the ith parameter of f is multi-
ency at the language level.threaded (the ith element in f ’s n-tuple will be F). The

analysis is continued on f .
BIBLIOGRAPHY

The analysis outlined above will eventually terminate be-
cause, in the worst case, all functions will be associated with 1. P. Hudak et al., Report on the functional programming language
n-tuples of values that are entirely F, and once an element is Haskell, Version 1.2, ACM SIGPLAN Notices, 27 (5): 1992.
set to F it cannot be revised. 2. J. Gosling, B. Joy, and G. Steele, The Java� Language Specifica-

In the previous example, if function inclist is invoked tion, Reading, MA: Addison-Wesley, 1996.
with the expression inclist (inclist [0..10]), in- 3. J. A. Goguen, J. W. Thatcher, and E. G. Wagner, An Initial Alge-
clist will be inferred to be single-threaded. On the other bra Approach to the Specification, Correctness, and Implementa-

tion of Abstract Data Types, Current Trends in Programminghand, inclist is multithreaded in the expression (
l->ap-

FUNCTION APPROXIMATION 37

Methodology (Yeh, ed.), Chap. 5, Englewood Cliffs, NJ: Prentice-
Hall, 1978.

4. D. Scott, Denotational Semantics: The Scott–Strachey Approach
to Programming Language Theory, Cambridge, MA: MIT Press,
1977.

5. J. McCarthy, Recursive functions of symbolic expressions and
their computation by machine, Commun. ACM, 3(4), 184–195,
1960.

6. G. J. Sussman and G. L. Steele, Jr., Scheme: An interpreter for
an extended lambda calculus, MIT AI Memo No. 349, 1975.

7. O. Danvy and A. Filinski, Abstracting control, 1990 ACM Conf.
Lisp Funct. Program., 1990, pp. 151–160.

8. M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh
LCF, Lect. Notes Comput. Sci., 78: 1979.

9. R. Milner, M. Tofte, and R. Harper, The Definition of Standard
ML, Cambridge, MA: MIT Press, 1989.

10. D. Turner, An overview of Miranda, ACM SIGPLAN Notices, 21
(12): 158–166, 1986.

11. A. J. Field and P. G. Harrison, Functional Programming, Read-
ing, MA: Addison-Wesley, 1988.

12. S. N. Kamin, Programming Languages: An Interpreter-Based Ap-
proach, Reading MA: Addison-Wesley, 1990.

13. P. J. Landin, The mechanical evaluation of expressions, Comput.
J., 6: 308–320, 1964.

14. M. Mauny and A. Suarez, Implementing functional languages in
the categorical abstract machine, 1986 ACM Conf. Lisp Funct.
Program., 1986.

15. Arvind and R.S. Nikhil, Executing a program on the MIT tagged-
token dataflow architecture, 1987 SEAS Spring Meet., 1987, pp.
1–29.

16. J. T. Feo, D. C. Cann, and R. R. Oldehoeft, A report on the Sisal
language project, J. Parallel Distrib. Comput., 10: 349–366, 1990.

17. S. L. Peyton Jones, Parallel implementations of functional pro-
gramming languages, Comp. J. 32 (2): 175–186, 1989.

18. G. E. Blelloch et al., Implementation of a portable nested data-
parallel language, J. Parallel Distrib. Comput., 21: 4–14, 1994.

19. P. Hudak, A semantic model of reference counting and its ab-
straction, 1990 ACM Conf. Lisp Funct. Program., 1986, pp.
351–363.

20. P. Wadler, Comprehending monads, 1990 ACM Conf. Lisp Funct.
Program., 1990, pp. 61–78.

CLIFFORD WALINSKY

The Portland Group, Inc.

FUNCTIONAL MATERIALS. See FUNCTIONAL AND

SMART MATERIALS.

