
PREDICTING SOFTWARE WITH PARAMETER
EVALUATION

INTRODUCTION

Software reliability measurement and prediction are used
to evaluate model parameters in advance of applying the
model. Measurement involves collecting and analyzing
data about the observed reliability of software, from which
the parameters are estimated, for example, the occurrence
of failures during test. Prediction is using a model to fore-
cast future software reliability, for example, failure rate
during operation. Once the parameters are estimated, us-
ing the methodology we will demonstrate, we can rank the
software releases by their projected relative reliability in
order to rationally allocate resources to prediction and test-
ing activities.

In Reference 1, it is stated that there is no way, a pri-
ori, to determine whether software reliability model. A will
produce more accurate predictions than model B. They use
the prequential likelihood ratio (PLR) to determine, after
predictions are made, which model produced the more ac-
curate predictions. They do this by defining the PLR as
follows:

PDR =
n∏

i=1

(f i(A))/(f i(B))

where fi (A) are the probability density functions (pdfs) of
predictions for Model A and fi (B) are the pdfs of predictions
for Model B. If Model A is more accurate, the trend of PDR
would increase; conversely, if Model B is more accurate, the
trend would decrease.

Although the authors’ statement may be true about com-
paring model predictions, we have developed a methodol-
ogy for ranking, a priori, the relative reliability of releases
of a software system, using the failure rate parameters of a
given model. In addition, the ranking methodology allows
us to allocate critical resources, such as test time, to the
releases prior to making predictions.

SCHNEIDEWIND MODEL OBJECTIVES (2)

To demonstrate the prediction methodology, we must use a
software reliability model. As the Schneidewind model has
been used on the NASA Shuttle flight software for reliabil-
ity predictions (3), and we have a considerable amount of
Shuttle failure data, we use the model and data to demon-
strate our methodology however, it is important to note that
it is not the particular model that is important in this arti-
cle. Rather, it is the methodology that is key. The approach
articulated in this article could be applied using any one of
a number of other models (4).

The objectives of this model are to estimate or predict
the following software product attributes:

D(TL) Predicted failure count in the range [l,∞]; maximum
failures over the life of the software
D(T) Predicted failure count in the range [l,T]

MTTF Mean time to failure
p(t) Fraction of remaining failures predicted at time t
r(t) Remaining failures predicted at time t
TF(t) Time to next failure(s) predicted at time t
Ri Function of parameters α and β for allocating resources
to predicting and testing OI i

PARAMETERS USED IN THE PREDICTIONS (2)

α Failure rate at the beginning of interval s
β Negative of derivative of failure rate divided by failure
rate (i.e., relative failure rate)
s Starting interval for using observed failure data in pa-
rameter estimation
t Test time; interval of observed failure data; current inter-
val
T Future time of predicted reliability metrics
�t Increment of time between future time of predicted re-
liability metrics and test time = T − t

OBSERVED QUANTITIES (2)

Xs−1 Observed failure count in the range [1, s − 1]
Xs,t Observed failure count in the range [s,t]
Xt Observed failure count in the range [1,t]
Tj Time between failure j and j + 1
N(t) Cumulative failure count in the range (0,t)

DEFINITIONS

OI Operational increment: NASA Space Shuttle software
release. In another application, this could be any software
object such as a module, subsystem, etc.
i Operational increment identifier.

BASIC PHILOSOPHY (2)

The basic philosophy of this model is that, as testing pro-
ceeds with time, the failure detection process changes. Fur-
thermore, recent failure counts are usually of more use
than earlier counts in predicting the future. Suppose there
are t intervals of testing and fi failures were detected in
the ith interval, one of the following can be done:

– Ignore the failure counts completely from the first s −
1 time intervals (1 ≤ s ≤ t), and only use the data from
intervals s through m.

SCHNEIDEWIND MODEL RELIABILITY RANKING
APPLICATION

The purpose of this application is to rank reliability on the
basis of the parameters α and β, without making a pre-
diction. This is important because, with this ranking, we
can rationalize the allocation of time and effort to the pre-
diction and testing functions, resulting in two benefits: 1)
Prioritize prediction and testing activities based on need
(e.g.,. assign the highest priorities to the lowest reliability

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Predicting Software with Parameter Evaluation

software), and 2) conserve human and machine resources
by not wasting them on software that a priori is judged
to be high reliability. The parameters α and β are, respec-
tively, the initial value of the failure rate and the rate at
which the failure rate changes. It is desirable to have the
largest ratio of β to α for high reliability because this will
yield the fastest decrease in failure rate combined with the
smallest initial failure rate. Thus, after estimating α and
β, using a tool such as SMERFS (5) or CASRE (6), rank re-
liability without, or before, making predictions. This pro-
cedure is useful for doing an initial reliability screening
of projects to determine, for example, which projects might
meet reliability specifications and which require reliability
improvements.

We will use the ratio β/α in three ways: 1) Make several
reliability metric predictions and plots to see whether in-
creasing β/α corresponds to a decreasing reliability trend;
2) if this is the case in 1), use β/α to allocate a given amount
of test time to the OIs; and 3) see whether a fit can be made
to the plots in 1) to produce regression equations for pre-
dicting reliability metrics as a function of β/α.

In the analysis that follows, all failures are treated as
having equal severity. Although this is not strictly the case,
it is an appropriate assumption because the Shuttle de-
velopment process requires the correction of all faults no
matter how minor the failure caused by the fault.

Applying Ranking to Predicted Fraction Remaining
Failures (2)

First, staring to use β/α in the first way, compute a frac-
tion of remaining failures predicted to occur at time t in
equation (2):

p(t) = r(t)
D(TL)

(1)

The ranking obtained by using equation (3) is shown
in Fig. 1. According to the criterion of equation (8 see the
ranking equation below), OI2 would be allocated the most
test time t and OI5 would receive the least amount of test
time.

Applying Ranking to Predicted Remaining Failures (2)

First, compute remaining failures predicted to occur at
time t in equation (3):

r(t) = (α/β) − Xs,t (2)

Then, recognizing that it is wise to use more than one
type of prediction when doing the ranking in order to not
base the test time decision on a single result that could be
a statistical fluke, we produce Fig. 2. Happily, we find the
same ordering of ranks in Fig. 2 as were obtained in Fig.
1.

Applying Ranking to Predicted Total Failures (2)

A third example is obtained by predicting total failures over
the life of the software using equation (4):

D(TL) = α

β
+ Xs−1 (3)

With this prediction in hand, we produce Fig. 3 that,
again, has the same ranking as in the two preceding cases.
In addition to Fig. 3 providing a ranking, we demonstrate
the second way of applying the β/ α ratio. For example, we
obtained an accurate fit (e.g., R2 = .9316) with the actual
data. Equation (5) can be used for predicting total failures
for OIs not in the original data set. This is significant be-
cause, with equation (5), we can predict total failures with
no prior knowledge of model parameters other than α and
β.

D(TL) = 37.382 e−10.45(β/α) (4)

For example, we would predict D (TL) = 37.382
e10.45(0.079378) = 16.31 failures for OI8, which is not a member
of Fig. 4. The actual failure count = 15 or a relative error
of .0873.

Applying Ranking to Predicted failure count D(T) in the
range [1,T] and to MTTF

From Reference 2, we have equation (6):

D(T) = (α/β)[1 − e−β(T−s+1)] + Xs−1 (5)

Next we compute the MTTF for the OIs in order to rank
this metric of reliability. We compute MTTF by considering
the total number of failures that have occurred in the time
T = t + �t (see definitions). Thus, we have

MTTF = T/D(T) (6)

Again, in Fig. 4, we have confirmation that reliability
parameters—namely D (T) and MTTFr—can be accurately
ranked by the ratio β/α. We also note that, because decreas-
ing D (T) corresponds to increasing reliability and increas-
ing MTTF corresponds to increasing reliability, there is a
downward trend for D (T) and a upward trend for MTTF.

Ranking of Test Time Results

Now that we have confirmed the correct ranking by β/α,
we can develop the function for the inverse allocation of
resources to an OI as given by equation (8):

Ri = 1 − [(βi/αi)/
∑n

i=1(βi/αi)]∑n

i=1 1 − [(βi/αi)/
∑n

i=1(βi/αi)]
(7)

Then, in particular, to apply equation (8) to test time t,
we multiply equation (8) by t:

Rit

Figure 5 portrays the ranking achieved of test time t =
300 days for the Shuttle. This is just one example of many
rankings that could be done using equation (2). For exam-
ple, the labor time of testers could also be assigned with
this algorithm. We note the fact that OI2 has the worst re-
liability in Figs. 1–3 and one of the worst in Fig. 4. Thus, it
is assigned a relatively large amount of test time in Fig. 5.
Converesly, OI5 has the best reliability in Figs. 1–3 and is
assigned the least amount of test time in Fig. 5.

Table 1 summarizes the parameter evaluation results.
The reliability metric or error value that is the worst in
each row is bolded. In general, the worst OIs are 2, 6, and
7. These OIs would be given priority attention, for example,

Predicting Software with Parameter Evaluation 3

Figure 1. NASA Space Shuttle fraction of failures remaining p vs. parameter ratio (β/α) for OIs.

Table 1. Summary of Reliability Parameter and Metric Analysis Results

Parameter/Metric OI1 OI2 OI3 OI4 OI5 OI6 OI7 OI8
α 0.695865 0.922051 0.863540 0.316453 1.895283 1.000007 1.461051 0.530851
β 0.094273 0.034311 0.134070 0.020048 0.300182 0.000001 0.080146 0.042138
β/α 0.135475 0.037211 0.155256 0.063354 0.158384 0.000001 0.054855 0.079378
p(t) 0.254 0.814 0.059 0.683 0.043 could not obtain

a prediction
0.524 0.559

t 14 11 25 24 14 13 12 18
r(t) 2.38 21.87 0.44 10.78 0.31 could not obtain

a prediction
13.23 7.60

r(t) relative error 0.278 0.191 1.564 1.157 0.937 could not obtain
a predicdtion

2.307 2.799

T 103 25 36 45 17 17 28 81
D(T) 9.381 13.343 7.340 8.706 7.186 14.000 21.560 13.064
D(T) relative error 0.107 1.369 0.049 0.436 0.327 1.251 0.768 0.758
D(TL) 9.381 26.874 7.440 15.784 7.314 could not obtain

a prediction
25.230 13.598

D(TL) relative error 0.042 2.839 actual
failure
count
unknown

0.578 0.437 could not obtain
a prediction

0.768 0.700

TF (t) 88.833 1.364 18.576 4.494 4.494 could not obtain
a prediction

0.981 3.349

TF (t) relative error 0.869 0.892 0.615 0.791 0.791 could not obtain
a prediction

0.943 0.922

Ri t allocation of 300
days of test time

20.86 21.66 20.38 22.60 20.31 24.13 22.81 22.22

4 Predicting Software with Parameter Evaluation

Figure 2. NASA Space Shuttle remaining failures r (t) vs. parameter ratio (β/α) for OIs.

in allocating test time in Fig. 5. Conversely, in general, OI8
is the best in Table 1 and, correspondingly, receives the
least test time allocation in Fig. 5.

Definitions:
α: Failure rate at the beginning of interval s
β: Negative of derivative of failure rate divided by failure rate
p(t): Fraction of remaining failures predicted at time t
t: Test time; last interval of observed failure data; current interval
r(t): Remaining failures predicted at time t
T: Future time of predicted reliability metrics
D(T): Predicted failure count in the range [1,T]
D (TL): Predicted failure count in the range [1,∞]
TF (t) Time to next failure predicted at time t

SOFTWARE RELIABILITY TREND ANALYSIS

Another way, a priori, to gauge the nature of predictions
based on analyzing historical failure data are the Arith-
metic Mean Test and the Laplace Test described below.

Arithmetic Mean Test [SWA]

This test consists of computing the arithmetic mean τ (i)
of the observed interfailure times. An increasing sequence
indicates reliability growth and a decreasing sequence in-

dicates reliability decay.

τ(i) = 1
i

i∑
j=1

Tj (8)

Predicting Software with Parameter Evaluation 5

Figure 3. NASA Space Shuttle total failures D(TL) vs. parameter ratio (β/α) for OIs.

Laplace Test (7)

The Laplace test is superior from an optimality point of
view and is recommended for use when the nonhomoge-
neous Poisson process assumption is made (e.g., Schnei-
dewind model).

1(t) =
1

N(t)

∑N(t)
n=1

∑n

j=1 t j − t

2

t

√
1

12N(t)

(9)

The Laplace factor can be interpreted as follows:

– Negative values indicate a decreasing failure inten-
sity and, thus, reliability growth.

– Positive values indicate an increasing failure intensity
and, thus, a decrease in the reliability.

– Values between −2 and +2 indicate stable reliability.

To test whether there is reliability growth or reliability
decay, as produced by equations (10) and (11), we use the
empirical failure rate given by equation (12) to investigate
the trend:

Cumulative failure count/length of count interval

= f (t) = N(t)/t (10)

Figure 6 shows plots of the three equations for OI7 plot-
ted against the actual failure times T. We see that the cri-
teria for reliability growth of the arithmetic mean test and

the Laplace test are satisfied, and there is confirmatory
evidence of this situation because the failure rate trend is
decreasing, which is suggestive of reliability growth. This
analysis could be performed for all OIs to judge in advance
of detailed prediction and testing the priority of these activ-
ities (i.e., give high priority to OIs that do not meet the cri-
teria of reliability growth). However, it is important to note
that we performed the same analysis on OI6 that passed
the arithmetic means test and the Laplace test, but this OI
did not demonstrate reliability growth, as given by equa-
tion (12). Therefore, we conclude that using the parameter
ratio β/α is superior for ranking the relative reliability a
priori for a set of objects (e.g., OIs).

SUMMARY

A methodology has been presented for judging the relative
reliability of software in advance of performing detailed
predictions and testing. The reason for this methodology is
to conserve valuable human and machine resources dedi-
cated to the prediction and testing activities. Our desire is
to give priority to allocating resources to the software ob-
jects that need it the most—the lowest reliability software.
We found that model parameter ratio β/α can be used to do
an accurate job of ranking Space Shuttle operational incre-
ments. Various reliability metrics were shown to be highly
related to β/α (i.e., high values of β/α were correlated with
high reliability, and low values were correlated with low

6 Predicting Software with Parameter Evaluation

Figure 4. NASA Space Shuttle predicted total failures at time [T, D(T)], and MTTF vs. parameter ratio (β/α) for OIs.

reliability).
In addition, we used trend analysis, namely the arith-

metic means test and the Laplace test, to investigate the
trends in the historical failure data. The purpose was to
see whether the historical trends would be indicative of
reliability growth or reliability decay in the future reliabil-
ity of the software. These methods did not provide consis-
tent predictive results. Thus, we conclude that the param-
eter ratio method is superior for a priori software reliabil-
ity evaluation—at least for the Space Shuttle. We believe
that other reliability models, applied to other applications,
would produce similar results.

BIBLIOGRAPHY

1. Broklehurst, S.; Littlewood, B. In Handbook of Software Reli-
ability Engineering, Lyu, M. R., Ed., IEEE Computer Society
Press: New York, 1996, Ch. 4.

2. Schneidewind, N. F. Reliability Modeling for Safety Critical
Software. IEEE Trans. Reliability; 1997, 46,pp 88–98.

3. Keller, T.; Schneidewind, N. F. A Successful Application of Soft-
ware Reliability Engineering for the NASA Space Shuttle.
Software Reliability Engineering Case Studies, International
Symposium on Software Reliability Engineering, Albuquerque,
November 4, 1997, pp 71–82.

4. IEEE/AIAA P1633/Draft 5, Draft Standard for Software Reli-
ability Prediction, Prepared by the Software Reliability Engi-

neering Working Group of the Definitions and Standards Com-
mittee of the Reliability Society, November 2006.

5. Far, W. H.; Smith, O. D.Statistical Modeling and Estimation
of Reliability Functions for Software (SMERFS) Users Guide.
NAVSWC TR-84-373, Revision 2, Naval Surface Warfare Cen-
ter, Dahlgren, VA.

6. Nikora, A.CASRE, Open Channel Foundation.
http://www.openchannelfoundation.org/projects/CASRE 3.0.

7. Gokhaleand, S. S.;Trivedi, K. S. Log-Logistic Software Reliabil-
ity Growth Model. Proc. of the Third IEEE International High-
Assurance Systems Engineering Symposium, Washington, DC,
1998, pp 34–41.

NORMAN F. SCHNEIDEWIND

IEEE Congressional Fellow
2005 US Senate

Predicting Software with Parameter Evaluation 7

Figure 5. NASA Space Shuttle test time allocation Ri t vs. parameter ratio (β/α) for OIs.

8 Predicting Software with Parameter Evaluation

Figure 6. NASA Space Shuttle software failure trend analysis and failure rate vs. time of failure occurrence T for OI7.

