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to check its correctness, while concurrency makes it difficult
and too many cases to consider for correctness. Furthermore,
ensuring correctness becomes even more difficult if the soft-
ware is used in applications that are subject to real-time con-
straints. ‘‘Correctness’’ means that the sequence of behaviors
allowed by the implementation is a subsequence of the behav-
iors permitted by the specification. Trivial implementations
that allow an empty sequence of behaviors can be ruled out
either by showing that at least one behavior is allowed by the
implementation, or by showing that the implementation is
equivalent to its specification with respect to behavior. There
are two main schools of thought in formal software and hard-
ware development:

• The transformational design methodology, which entails
beginning with a validated high-level specification of the
design and applying a sequence of correctness-preserving
transformations on the specification obtaining a correct
design.

• A method that entails obtaining a design independent of
the high-level specification and validating the design
with respect to the high-level specification.

The rest of this article is organized as follows. The section
entitled ‘‘Transformational Software Design’’ discusses soft-
ware development based on correctness-preserving transfor-
mations of formal specifications. In the section entitled ‘‘For-
mal Methods: Overview’’ we give an overview of formal
methods, followed by a discussion of the Prototype Verifica-
tion System (PVS) in the section entitled ‘‘PVS.’’ The difficulty
in developing a formal specification is discussed in the section
entitled ‘‘From Informal to Formal Specifications,’’ followed by
a brief discussion on abstraction in the section entitled ‘‘Ab-
straction.’’ In the section entitled ‘‘Formal Specification Lan-
guages’’ a variety of formal notations and specification formal-
isms are discussed. Finally some conclusions are presented in
the section entitled ‘‘Conclusions.’’

TRANSFORMATIONAL SOFTWARE DESIGN

There have been several efforts made with regard to the spec-
ification and verification of refinements used in program de-
velopment from high-level specifications. Most of the efforts
involve selecting a specification formalism and then devel-
oping a notion of correctness and an associated set of transfor-
mations based on the semantics of the formalism.

The refinement calculus (1) for specifications based on
Dijkstra’s guarded command language and weakest precondi-
tion semantics has been formalized in HOL (2). Transforma-
tions such as data refinement and superposition have been
verified to be correct. A formalization of incremental develop-
ment of programs from specifications for distributed real-time
systems has been worked out in PVS (3). In this formalism,FORMAL SPECIFICATION OF SOFTWARE
an assertional method based on a compositional framework of
classical Hoare triples is developed for stepwise refinement ofA tremendous increase in the variety of fields in which com-

puters are used has brought about an immense increase in specifications into programs.
The KIDS (4) system is a program derivation system.the size and concurrency in software and hardware designs

that form with a computing device. As the size and amount of High-level specifications written in a language called Refine
are transformed by data-type refinements and optimizationconcurrency increases, it becomes increasingly difficult to

raise the level of confidence in the correctness of the design. transformations (such as partial evaluation and finite differ-
encing) into a Refine program. The disadvantage of thisThe size of the design makes it tedious and time-consuming
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method is the quality of the design: size of code and perfor- PVS Verification Features
mance.

The PVS verifier (8) is used to determine if the desired prop-
erties hold in the specification of the model. The user inter-

FORMAL METHODS: OVERVIEW acts with the verifier by way of a small set of commands. The
verifier contains procedures for Boolean reasoning, arithme-

Formal methods could be divided into two main categories: tic, and (conditional) rewriting. In particular, model checking
property-oriented methods and model-oriented methods (5). (6) based on binary decision diagram (BDD) (14,15) simplifi-
In a property-oriented method, the system under consider- cation may be invoked for Boolean reasoning. It also features
ation is specified by asserting properties of the system, min- a variety of general induction schemes to tackle large-scale
imizing the details of how the system is constructed. In a verification. Moreover, different verification schemes can be
model-oriented method, the specification describes the con- combined into general-purpose strategies for similar classes
struction of the system from its components. An axiomatic of problems, such as verification of microprocessors (9,10).
approach is a property-oriented method. Typically, a small set A PVS specification is first parsed and type-checked. At
of properties, called axioms, are asserted to be true, while this stage, the type of every term in the specification is unam-
other properties, called theorems, are derived. biguously known. The verification is done in the following

In model-checking (6), a typical implementation specifica- style: We start with the property to be checked and repeatedly
tion is a state machine. The verification that the implementa- apply rules on the property. Every such rule application is
tion satisfies a property is carried out by reachability analy- meant to obtain another property that is simpler to check.
sis. The relationship that a model I satisfies a property S is The property holds if such a series of applications of rules
written as eventually leads to a property that is already known to hold.

Examples illustrating the specification and verification in
I � S PVS are described in the section entitled ‘‘Specification and

Verification Examples in PVS.’’
In generic theorem-proving, the specification could be of any
form belonging to the logical language of the theorem-prover

Notes on Specification Notation(a typical logical language is based on typed higher-order
logic). The verification of a property proceeds by a series of In PVS specifications (shown displayed in monospace font),
application of deduction rules such as induction. The relation- an object followed by a colon and a type indicates that the
ship whereby an implementation I satisfies a property speci- object is a constant belonging to that type. If the colon is fol-
fication S is written as lowed by the key word VAR and a type, then the object is a

variable belonging to that type. For example,
� I ⇒ S

x: integer
y: VAR integer

PVS
describes x as a constant of type integer and describes y as a
variable of type integer (in C, they would be declared as constThe Prototype Verification System (PVS) (7,8) is an environ-
int x; int y).ment for specifying entities such as hardware and software

Sets are denoted by �. . .�: They can be introduced by ex-models and algorithms and for verifying properties associated
plicitly defining the elements of the set, or implicitly by awith the entities. An entity is usually specified by asserting a
characteristic function. For example,small number of general properties that are known to be true.

These known properties are then used to derive other desired
{0, 1, 2}properties. The process of verification involves checking rela-
{x: integer � even(x) AND x /= 2}tionships that are supposed to hold among entities. The

checking is done by comparing the specified properties of the The symbol � is read as such that, and the symbol /= stands
entities. For example, one can compare if a register-transfer- for not equal to in general. Thus, the latter example above
level implementation of hardware satisfies the properties ex- should be read as ‘‘set of all integers x, such that x is an even
pressed by its high-level specification. number and x is not equal to 2.’’

PVS has been used for reasoning in many domains, such New types are introduced by a key word TYPE followed by
as in hardware verification (9,10), protocol verification, algo- its description as a set of values. If the key word TYPE is not
rithm verification (11,12), and multimedia (13). followed by any description, then it is taken as an uninterpre-

ted type.
PVS Specification Language Some illustrations are:

The specification language (7) features common programming even_time: TYPE = {x: natural� even(x)}
language constructs such as arrays, functions, and records. It unspecified_type: TYPE
has built-in types for reals, integers, naturals, and lists. A
type is interpreted as a set of values. One can introduce new One type that is used widely in this work is the record type.

A record type is like the struct type in the C programmingtypes by explicitly defining the set of values, or indicating the
set of values, by providing properties that have to be satisfied language. It is used to package objects of different types in

one type. We can then treat an object of such a type as oneby the values. The language also allows hierarchical structur-
ing of specifications. Besides other features, it permits over- single object externally, but with an internal structure corre-

sponding to the various fields in the record.loading of operators, as in some programming languages.
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The following operators have their corresponding is automatic by applying induction and rewriting. The proof
session is as follows:meanings:

closed_form :FORALL x: p(x)

means for every x, predicate p(x) is true (a predicate is a func- �-------
tion returning a Boolean type: �true, false�).

{1} (FORALL (n: nat): (sum(n) = (n � (n + 1)) /
2))EXISTS x: p(x)

means for at least a single x, predicate p(x) is true. Running step: (INDUCT ‘‘n’’)
We can impose constraints on the set of values for vari-

Inducting on n, this yields 2 subgoals:ables inside FORALL and EXISTS as in the following example:

closed_form.1 :FORALL x, (y� y = 3�x): p(x,y)

which should be read as for every x and y such that y is 3 times �-------
x, p(x, y) is true.

{1} sum(0) = (0 � (0 + 1)) / 2
A property that is already known to hold without checking

is labeled by a name followed by a colon and the keyword
Running step: (EXPAND ‘‘sum’’)AXIOM. A property that is checked using the rules available

in the verifier is labeled by a name followed by a colon and Expanding the definition of sum, this simplifies to:
the keyword THEOREM. The text followed by a % in any line is

closed_form.1 :a comment in PVS. We illustrate the syntax as follows:

ax1: AXIOM % This is a simple axiom �-------
FORALL (x:nat): even(x) = x divisible_by 2 {1} 0 = 0 / 2

th1: THEOREM % This is a simple theorem Rerunning step: (ASSERT)
FORALL (x:nat): prime(x) AND x /= 2 IMPLIES NOT

Invoking decision procedures, this completes the proof ofeven(x)
closed_form.1.

We also use the terms axiom and theorem in our own explana-
closed_form.2 :tion with the same meanings. A proof is a sequence of deduc-

tion steps that leads us from a set of axioms or theorems to
�-------a theorem.

{1} (FORALL (j: nat):
(sum(j) = (j � (j + 1)) / 2Specification and Verification Examples in PVS
IMPLIES sum(j + 1) = ((j + 1) � (j + 1 +

We illustrate here three examples from arithmetic. The first 1)) / 2))
two examples are taken from the tutorial (16). The last exam-
ple illustrates the use of a general purpose strategy to auto- Running step: (SKOLEM 1 (‘‘j!1’’))
matically prove a theorem of arithmetic. The first example is

For the top quantifier in 1, we introduce Skolem constants:the sum of natural numbers up to some arbitrary finite num-
( j!1), the simplifies to:ber n is equal to n*(n 	 1)/2. The specification is encapsulated

in the sum THEORY. Following introduction of n as a natural
closed_form.2:

number nat, sum(n) is defined as a recursive function with
a termination MEASURE as an identity function on n. Finally,

�-------the THEOREM labeled closed_form is stated to be proved.
{1} sum(j!1) = (j!1 � (j!1 + 1)) / 2
IMPLIES sum((j!1 + 1)) = ((j!1 + 1) � (jj!1 +sum: THEORY
1) + 1)) / 2BEGIN

Running step: (FLATTEN)n: VAR nat

Applying disjunctive simplification to flatten sequent, this
sum(n): RECURSIVE nat = simplifies to:
(IF n = 0 THEN 0 ELSE n + sum(n � 1) ENDIF)

closed_form.2 :MEASURE (LAMBDA n: n)

{�1} sum(j!1) = (j!1 � (j!1 + 1)) / 2closed_form: THEOREM sum(n) = (n � (n + 1))/2
�-------

{1} sum((j!1 + 1)) = ((j!1 + 1) � ((j!1 + 1) +
END sum

1)) / 2

The THEORY is first parsed and type checked, and then the
prover is invoked on the closed_form THEOREM. The proof Running step: (EXPAND ‘‘sum’’ +)
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Expanding the definition of sum, this simplifies to: Requirements State Machine Language

Requirements State Machine Language (RSML) (17) is basedclosed_form.2 :
on an underlying mealy machine and adopts some of the fea-
tures introduced in statecharts (18), including hierarchical[�1] sum(j!1) = (j!1 � (j!1 + 1)) / 2
abstraction into superstates and communicating parallel�-------
state machines. Components communicate only through{1} (j!1 + 1) + sum(j!1) = (j!1 � j!1 + 2 � j!1
point-to-point messages over defined channels. Messages are+ (j!1 + 2)) / 2
received asynchronously and queued upon arrival. Each com-
ponent contains a state hierarchy, transitions between states,Running step: (ASSERT)
a set of input and output interfaces, a set of variables and

Invoking decision procedures, this completes the proof of constants, and a set of events to order the transitions. Inter-
closed_form.2. nal events are broadcast only within a component. The inter-
Q.E.D. faces are connected to specific communication channels where

the receipt of a message on a channel can set variable valuesRun time = 8.09 s.
and trigger events. Each channel is connected to one inputReal time = 9.89 s.
interface and one output interface, and each interface is con-NIL
nected to exactly one channel. Each transition between states>
has a source, destination, trigger event, and events that it
triggers along with a guarding condition that must be true for
the transition to be taken. RSML provides a rich language forFROM INFORMAL TO FORMAL SPECIFICATIONS
guarding conditions: A guarding condition may be either a
simple Boolean true or false, and AND/OR table, or an exis-The most difficult and error-prone part in formal methods is
tential or universal quantifier of a variable over another con-developing a proper formal specification from informal speci-
dition. SVC (19) has been used to check RSML specificationsfications. Even though the informal specifications were well-
of an Air Traffic Alert and Collision Avoidance Systemdocumented, creating a formal specification requires express-
(TCAS II).ing informal ideas such as behavior and mutual exclusiveness

in mathematically precise terms.
ZOne of the first tasks that aids the specification process is

the choice of abstraction level: How much of the detail present The formal specification notation Z (20) (pronounced ‘‘zed’’) is
in the informal document should the specification represent? based on Zermelo–Fraenkel set theory and first order predi-
The choice could be based on how the formal specification has cate logic. Z has been developed primarily by the Program-
to be verified. ming Research Group (PRG) at the Oxford University Com-

Another important issue in developing a formal specifica- puting Laboratory (OUCL). A host of tools to check Z
tion from an informal document is deciding on data structures specifications have been developed. Z is mostly used as a for-
to represent entities specified informally. It is desirable to mal notation for specification rather than as a verification
have a formal specification that very closely resembles the framework.
informal document. This is essential to map a formal specifi-
cation back to its informal document. It is essential also for

B-Methodunderstanding a formal specification and for tracing errors
that have been found in the specification back to its informal The B-method (21) is a collection of mathematically based
representation. techniques for the specification, design, and implementation

of software components. Systems are modeled as a collection
of interdependent abstract machines, for which an object-ABSTRACTION
based approach is employed at all stages of development.

An abstract machine is described using the Abstract Ma-A typical design would be too large for current formal verifi-
chine Notation (AMN). A uniform notation is used at levels ofcation methods to efficiently validate the design. Therefore it
description, from specification, through design, to implemen-is necessary to remove details from the design description
tation. AMN is a state-based formal specification language inthat do not alter the property of the original concrete design.
the same school as VDM and Z. An abstract machine com-Such a process of removing portions of the design redundant
prises a state together with operations on that state. In afor verification is called abstraction. Abstraction is termed
specification and a design of an abstract machine the state isconservative if we can conclude that a property holds on the
modeled using notions like sets, relations, functions, se-original concrete design if the property holds on the ab-
quences, and so on. The operations are modeled using pre-stracted design.
and post-conditions using AMN.

In an implementation of an abstract machine the state is
again modeled using a set-theoretical model, but this time weFORMAL SPECIFICATION LANGUAGES
already have an implementation for the model. The opera-
tions are described using a pseudo-programming notationA number of methods have been developed to specify the re-

quirements that needs to be satisfied by a software design. In that is a subset of AMN.
The B-method prescribes how to check the specification forthis section we describe some of more often used notations

and methods. consistency (preservation of invariant) and how to check de-
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signs and implementations for correctness (correctness of checker has been applied to a couple of real-life Audio/Video
data refinement and correctness of algorithmic refinement). protocols (23) for the Audio/Video company Bang & Olufsen

The B-method further prescribes how to structure large de- (B&O). In the first application a 10-year-old error was lo-
sign and large developments, and it promotes the reuse of cated; B&O was aware of its existence, but had never been
specification models and software modules, with object orien- able to locate via normal testing. Both protocols were highly
tation central to specification construction and implementa- dependent on real time. UPPAAL is a tool suite for validation
tion design. and verification of a real-time system modeled as networks of

time automata extended with (arrays of) data variables. The
Protocol Verification Using SPIN tools in UPPAAL have WYSIWYG (what you see is what you

get) interfaces and feature: graphical editing, graphical sym-SPIN from Lucent Bell Labs supports the formal verification
bolic simulation, and symbolic verification of safety and live-of distributed systems. SPIN has been used to trace logical
ness properties.design errors in distributed systems design, such as operating

systems, data communications protocols, switching systems,
concurrent algorithms, railway signaling protocols, and so on. Other Notations
The tool checks the logical consistency of a specification. It

A notation (24) for specifying requirements in a very abstractreports on deadlocks, unspecified receptions, flags incom-
and succinct form. They have developed a scheme for check-pleteness, race conditions, and unwarranted assumptions
ing properties of NP specifications that exploits symmetry inabout the relative speeds of processes. SPIN works on-the-fly,
the mathematical structure of the property being checked. Awhich means that it avoids the need to construct of a global
tool called Nitpick has been built that works completely auto-state graph, as a prerequisite for the verification of any sys-
matically for analyzing specifications.tem properties. Correctness properties can be specified as sys-

Many different kinds of problem can be specified in NP, sotem or process invariants (using assertions) or as general lin-
Nitpick (25) can be used to analyze not only requirements,ear temporal logic (LTL) requirements, either directly in the
but also specifications and abstract designs. Using Nitpick/syntax of next-time free LTL requirements or indirectly as
NP, they found some interesting problems with the para-Bœ,A-œ (Bchi Automata). SPIN supports both rendezvous
graph style mechanism of Microsoft Word. They have also an-and buffered message passing, and communication through
alyzed an air-traffic control handoff protocol, a basic tele-shared memory. Mixed systems, using both synchronous and
phone switch, and, with Jeannette Wing and Dave Johnson,asynchronous communications, are also supported. Message
a mobile internet protocol.channel identifiers for both rendezvous and buffered channels

In reverse engineering, structural information is extractedcan be passed from one process to another in messages. SPIN
from large programs. A tool called Chopshop has been devel-supports random, interactive, and guided simulation and both
oped that calculates program slices for large C programs in aexhaustive and partial proof techniques. To optimize the veri-
modular fashion; and it can display the results not only asfication runs, the tool exploits efficient partial-order reduction
code highlighted in an editor buffer, but also as graphs show-techniques and efficient Boolean representation techniques.
ing the semantic relationships between procedures. Lackwit,A major experiment with the SPIN modelchecker has been
an improvement of Chopshop, produced information aboutused in the identification of five classical concurrency errors

in the operating system of NASA’s autonomy AI software of global use of data structures that was not easily obtainable
the Deep Space-1 spacecraft. This work demonstrates an ap- by any other method, and it exposed a variety of flaws such
plication of the finite-state model checker SPIN to formally as a storage leak in a loop.
verify a multithreaded plan execution programming lan- Another simple method of requirements specification is
guage. The plan execution language is one component of NA- based on tables (26) for specifying software. It supports the
SA’s New Millennium Remote Agent, an artificial-intelli- production of software documentation through an integrated
gence-based spacecraft control system architecture that is set of tools which manipulate multidimensional tabular ex-
scheduled to launch in October 1998 as part of the Deep pressions. This tabular representation of mathematical ex-
Space-1 mission to Mars. The language is concretely named pressions improves the readability of complex design docu-
ESL (Executive Support Language) and is basically a lan- mentation. The table cells may contain conventional logic
guage designed to support the construction of reactive control expressions, or even other tables.
mechanisms for autonomous robots and spacecrafts. It offers There has been a lot of work on verification of clock syn-
advanced control constructs for managing interacting parallel chronization algorithms in safety-critical fault-tolerant sys-
goal-and-event driven processes and is currently implemented tems (27). There have been mistakes found using formal
as an extension to a multithreaded Common Lisp. A total of methods in published clock synchronization algorithms (28).
five errors were identified. According to the Remote Agent
programming team the effort has had a major impact, locat-
ing errors that would probably not have been located other- CONCLUSIONS
wise and identifying a major design flaw not easily resolvable.

In this article we have presented a spectrum of formal meth-
UPPAAL ods for software development. Formal methods have matured

to a point where they can be applied to small industrial de-UPPAAL (22) is developed in collaboration between the De-
signs. However, further research in abstraction and efficientsign and Analysis of Embedded Systems group at Uppsala
software code generation from formal specifications is neededUniversity, Sweden and Basic Research in Computer Science

at Aalborg University, Sweden. UPPAAL real-time model- to apply formal methods on a large scale.
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