
CONTEXT-SENSITIVE LANGUAGES 239

CONTEXT-SENSITIVE LANGUAGES

The grammar of a natural language consists of rules for build-
ing sentences where some linguistic terms are used as inter-
mediate steps. For instance, the most general linguistic con-
cept �sentence� can be presented as

〈noun-phrase〉〈verb-phrase〉

or

〈noun-phrase〉〈verb〉〈direct-object-phrase〉

If we continue with the construction of a sentence, we have to
choose some �noun-phrase� and some �verb-phrase� in the for-
mer case (which we consider by reasons of simplicity). A
�noun-phrase� can be a �proper-noun� or a construct �deter-
miner��common-noun�, and a �verb-phrase� can be a �verb� or
a construct �verb��adverb�. If we follow the second possibility
in both cases, we obtain the structure

〈determiner〉〈common-noun〉〈verb〉〈adverb〉

for the sentence. Now we can replace any of these terms by a
corresponding word, for example, �determiner� by the, �com-
mon-noun� by person, �verb� by goes and �adverb� by slowly,
and we get the sentence

the person goes slowly

However, we can also choose a, book, writes, frequently, re-
spectively, yielding the sentence a book writes frequently,
which is syntactically correct but semantically nonsense.
Hence by such rules we can cover only the syntax of a lan-
guage. We see that the basic idea in the construction of a
sentence is the substitution of some linguistic construct by
one or more refined constructs or (finally) by words.

The same idea can be found in the theory of programming
languages. For example, in a manual for PASCAL, one can
find the well-known �if statement�

if 〈expression〉 then 〈statement〉

as a �conditional statement�. Now one has to replace �expressi-
on� and �statement� in a sequence of steps to get a PASCAL

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

240 CONTEXT-SENSITIVE LANGUAGES

program. For example, in some steps we can substitute �ex- sensitive languages yield context-sensitive languages again.
pression� and �statement� by x � 4 	 y � 3 and x :� y � 3, The answer is positive with respect to union, intersection,
respectively, which gives the program part complement, product, Kleene closure, and nonerasing morph-

isms whereas it is negative for erasing morphisms. In the fifth
section we study decidability problems. We give an algorithmif x + 4 ≤ y − 3 then x := y ∗ 3
which decides whether a given word is in the language gener-

To realize automatic translations of natural languages into ated by a given context-sensitive grammar. Furthermore, we
each other or automatic compilation of a high-level program- present three fundamental problems which cannot be solved
ming language into a machine language, it is necessary to algorithmically.
develop formal concepts, called formal grammars and lan- In the last section we summarize some results on context-
guages, and methods for such substitution processes describ- free and regular languages that form the most important sub-
ing features of grammars for natural languages and manuals classes of context-sensitive languages. Thus we present only
for programming languages. the most interesting and important results on context-sensi-

On one hand, the rules of the model cannot be too general tive languages, and mostly, we give only the basic ideas of the
because we have to be able to solve some problems within the proofs. For more detailed information, we refer to (1) [espe-
model. For example, there has to be an algorithm which cially to (2)], (3,4,5).
checks whether or not a given sentence is syntactically correct
within the model. If we do not restrict the form of the rules
(type-zero grammars), then one can show that such an algo- DEFINITIONS AND EXAMPLES
rithm does not exist. On the other hand, the rules cannot be
too simple. For instance, in the previous rules for the English The aim of this section is to present the definition of context-
language, we cannot choose the words for the �determiner� sensitive grammars and languages and to illustrate these
and the �common-noun� independently of each other. If we concepts by examples. To define a grammar, first we need two
choose person for the �common-noun�, then we can take the sets. The elements of one set correspond to lingistic constructs
or a for the �determiner� but not an. We have to take into or constructs of a programming language, such as �expressi-
consideration some context conditions. on�, �statement�. The elements of the second set represent the

The same holds for programming languages. For example, symbols occuring in the language or the program as digits,
variables used at the end of the program must be already characters, or special words (e.g., if, goto, etc.). Further we
declared in the program heading. Note that in the case of En- need some rules that describe the possible substitutions for
glish the context mentioned is local whereas it is global in transforming the constructs into programs or syntactically
PASCAL. In this article we consider context-sensitive gram- correct sentences. Further we need some element where the
mars as an approach satisfying these requirements. Such transformation process starts.
grammars use local contexts. However, they can simulate We begin with some basic notions on alphabets (which de-
global contexts by local contexts.

scribe the sets mentioned), words, and languages. An alpha-Now we give a further motivation for the study of context-
bet is a finite, nonempty set. The elements of an alphabet aresensitive languages. To ensure efficiency of computations, one
called letters or symbols. A finite sequence of letters of an al-is interested in computations that use only bounded re-
phabet V is a word over V. Words are represented by simplysources. Special attention is given to computations that are
writing one letter after another. The length of a word w de-limited in time and/or space (e.g., storage). If one considers
noted by �w� is defined as the number of occurrences of letterscomputations by Turing machines (which is the most general
in the word (each letter is counted as often as it occurs in themodel of computations), then context-sensitive languages
word). By � we denote the empty word which corresponds toform the class of problems solvable with the restriction that
the empty sequence and contains no letter. Obviously, ��� � 0.the space of the computation is bounded by a linear function
By V* we designate the set of all words over V (including �),in the size of the input. Therefore context-sensitive languages
and we set V� � V*����. Any subset L of V* is called a lan-form a very natural class of languages in the framework of
guage over the alphabet V.complexity theory.

We define the product w1w2 of two words w1 and w2 by sim-This article is organized as follows. In the first section we
ply writing w2 after w1. The word v is called a subword of wgive the formal definition of general phrase structure gram-
� V* if w � u1vu2 holds for some u1, u2 � V*. As an examplemars, specialize it to that of context-sensitive grammars, and
we consider the alphabet V consisting of the symbols a, b, c,illustrate the concepts by some examples. In the second sec-
and d, that is, V � �a, b, c, d�. Then w � abba, v � acdc, andtion we present another type of grammar called length-in-
u � bb � b2 are words over V. They have lengths 4, 4, and 2,creasing that also characterize exactly the family of context-
respectively. u is a subword of w. Furthermore, uv � bbacdc,sensitive languages. Moreover, we present a normal form
vu � acdcbb (note that uv � vu) and w2 � abbaabba �stating that any context-sensitive language can be generated
ab2a2b2a.by a context-sensitive grammar where the rules are of very

Now we give the formal definition of a general grammar asrestricted form. In the third section we introduce Turing ma-
a language generating device. Later we shall give a special-chines and linear-bounded automata and languages accepted
ization to context-sensitive grammars and languages. A (type-by these devices. We show that any context-sensitive lan-
zero or phrase structure) grammar is a quadruple G � (N, T,guage can be accepted by a linear-bounded automaton. More-
P, S) where N and T are disjoint alphabets, P is a finite subsetover, these automata accept only context-sensitive languages.
of (V*�T*) � V*, where V � N � T, and S is an elementThe fourth section contains a discussion of the question

whether or not the application of some operations to context- of N.

CONTEXT-SENSITIVE LANGUAGES 241

The elements of N and T are called nonterminals and ter- cause we perform the derivation
minals, respectively. The elements of P are called rules. For
a pair (�, �) in P, we shall write � � � in what follows be-
cause this expresses the intuition that a step of a derivation

anABBn−1cn−1 ⇒ anCBBn−1cn−1 ⇒ anCDBn−1cn−1

⇒ anBDBn−1cn−1 ⇒ anBABn−1cn−1
is a substitution. S is the axiom from which the derivation
process starts. Given a grammar G as above and two words

We apply these four rules again and again, thus moving A tow and v over V, we say that w directly derives v, written as
the right until anBnAcn�1 is obtained.w ⇒ v, if there are a rule � � � in P and a decomposition of

Now we can apply Ac � cc or Ac � A�cc. In the formerw � w1�w2 such that v � w1�w2. Intuitively, a derivation step
case we obtain anBncn. In the latter case we derive anBnA�cn,w ⇒ v, according to a rule � � �, is the substitution of an
and move A� to the left by iterated application of the fouroccurrence of � in w by �.

The language L(G) generated by G is defined as the set of rules of the third line of P2 until anA�Bncn is obtained from
all words z � T* such that S ⇒ z or there are an integer n � which we generate an�1ABn�1cn by applying aA� � aaAB, that
1 and words w1, w2, . . ., wn over V such that is, we have increased the exponents by one and can iterate

the derivation.
To terminate a derivation, we apply the rule B � b to anyS ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ z

occurrence of B and derive anbncn. If we apply this rule at an
Thus the language generated consists of all words z over the earlier step, then the shifting of A or A� is blocked, and we
terminal alphabet that can be obtained by a sequence of di- cannot terminate the derivation.
rect derivation steps from the axiom. A further example is given by the grammar G3 � (N3, T3,

A language L � T* is called a type-zero language if there P3, S3) with
is a type-zero grammar G � (N, T, P, S) such that L � L(G).
As a first example we consider the grammar G1 � (N1, T1, P1,
S1) with

N1 = {S1, S′
1}, T1 = {0, 1,2, 3, 4, 5,6, 7, 8,9}

N3 = {S3, S′
3, X ,Y, Z}, T3 = {a, b, c}

P3 = {S3 → abc, S3 → S′
3, S′

3 → aS′
3XY, S′

3 → aZX

YX → XY, ZX → bZ, ZY → cZ′
, Z′Y → cZ′

, Z′Y → cc}
(T1 is the set of digits) and

Using the first rule, we generate abc. If we apply the second
rule, then the third rule n times, n � 1, and then the fourthP1 = {S1 → xS′

1 : x ∈ T1\{0}} ∪ {S′
1 → xS′

1 : x ∈ T1} ∪ {S′
1 → λ}

rule, we obtain an�1ZX(XY)n. By the exchange rule YX � XY,
we order the letters and obtain an�1ZXn�1Yn. Using the ruleThen any derivation has the form
ZX � bZ (n � 1) times, the rule ZY � cZ� once, the rule
Z�Y � cZ� (n � 2) times, and finally Z�Y � cc, we move the
letters Z and Z�, respectively, to the right, replace any X by

S1 ⇒ x1S′
1 ⇒ x1x2S′

1 ⇒ x1x2x3S′
1 ⇒ · · ·

⇒ x1x2x3 . . . xnS′
1 ⇒ x1x2x3 . . . xn b, any Y by c, and finally Z�Y by cc, which yields an�1bn�1cn�1.

Besides the order in which the rules are used, it is easy to see
with x1 � �1, 2, . . ., 9� and xi � �0, 1, 2, . . ., 9� for 2 	 i 	 that this is the only way to generate a terminal word. Hence
n, that is, the generated word is a sequence of digits where L(G3) � �anbncn : n � 1�, too.
the first digit is different from 0. (By the rules for S1, we ex- We mention that the family of type-zero languages is the
clude zero and leading zeros.) Thus the generated language most general and universal family in the following sense. Any
L(G1) is the set of all positive integers in decimal representa- family of languages generated by some algorithmic device (as
tion. The grammar G2 � (N2, T2, P2, S2) with grammars, automata, domains of some computable functions,

etc.) is contained in or equal to the family of type-zero lan-
guages.

N2 = {S2, A,A′, B,C,C′, D, D′}
T2 = {a, b, c} Now we define context-sensitive grammars. A grammar

G � (N, T, P, S) is called context-sensitive or type-one if all
and rules of P are of the form uAv � uwv where u, v � V*, w �

V�, and A � N. By a rule uAv � uwv of a context-sensitive
grammar, only the nonterminal A is substituted by a non-
empty word w. This substitution, however, is allowed only if
the words u and v occur in the word before and after A, re-

P2 ={S2 → abc, S2 → aaABBc, Ac → A′cc, Ac → cc, aA′ → aaAB,

B → b, AB → CB, CB → CD, CD → BD, BD → BA

BA′ → C′A′,C′A′ → C′D′,C′D′ → A′D′, A′D′ → A′B}
spectively. The words u and v are the (left and right) contexts
of A. Note that the contexts can be an empty word. Thusgenerates the language
uA � uw, Av � wv, and A � w are context-sensitive rules
where one context or both contexts are empty.L(G2) = {anbncn : n ≥ 1}

A language L � T* is called context-sensitive if there is a
context-sensitive grammar G � (N, T, P, S) such that L �This can be seen as follows. If we use the first rule, we obtain
L(G). G1 is not context-sensitive because its set P1 of rulesabc. Let us assume that anABncn�1, n � 2, is already generated
contains the erasing rule S� � �, where the right-hand side(by the second rule we get such a word with n � 2). Besides
is not in V�. We note, however, that the language L(G1) of allB � b, we can apply only the four rules of the second line of

P2 in succession, which yields an exchange of B and A, be- positive integers in decimal representation is a context-sensi-

242 CONTEXT-SENSITIVE LANGUAGES

tive language because the grammar G�1 � (N1, T1, P�1, S1) with over, up to the order of the application of the rules, only such
derivations are possible in G�, which proves the converse in-
clusion L(G�) � L(G). Thus L(G�) � L(G).

The second step of the construction is the definition of a
P = {S1 → x : x ∈ T1\{0}} ∪ {S1 → xS′

1 : x ∈ T1\{0}}
∪ {S′

1 → xS′
1 : x ∈ T1} ∪ {S′

1 → x : x ∈ T1} context-sensitive grammar G� � (N�, T, P�, S) such that
L(G�) � L(G�) and therefore L(G�) � L(G) hold. The rulesis a context-sensitive grammar (all contexts are empty) and
Xa � a of P� already have the desired context-sensitive formgenerates all decimal representations of positive integers. G2 and are taken to P�. Therefore let q � A1A2 . . . Ar �is context-sensitive. G3 is not a context-sensitive grammar.
B1B2 . . . Bs be a length-increasing rule of P�. Obviously, 1 	For example, YX � XY does not have the form required for
r 	 s. If r � s � 1, q has a context-sensitive form and is takencontext-sensitive grammars.
to P�. Otherwise, we add the following rules associated withBy definition, context-sensitive grammars cannot generate
q to P�:an empty word. If one is interested in the generation of �,

then one can use the following modification of the definition.
We allow the exception S � � for the axiom S and require
that S does not occur in the right-hand side of a rule. Hence
the exception rule can be used only in the first step of a deri-
vation, that is it can be used only to add an empty word to
the language.

GRAMMATICAL CHARACTERIZATIONS

A1 →Yq,1 if r = 1 and A1 → Xq,1 if r ≥ 2

Xq,1A2 → Xq,1Xq,2, Xq,2A3 → Xq,2Xq,3, . . .,

Xq,r−2Ar−1 → Xq,r−2Xq,r−1, Xq,r−1Ar → Xq,r−1Xq,r,

Xq,1Xq,2 → B1Xq,2, B1Xq,2, Xq,2Xq,3 → B2Xq,3, . . .,

Xq,r−2Xq,r−1 → Br−2Xq,r−1, Xq,r−1Xq,r → Br−1Yq,r

Yq,r → BrYq,r+1, Yq,r+1 → Br+1Yq,r+2, . . .,

Yq,s−2 → Bs−2Yq,s−1, Yq,s−1 → Bs−1Bs

In this section we present another type of grammar that also
where the letters Xq,t and Yq,k are not in N, are pairwise differ-generates context-sensitive languages and give some normal
ent, and are added to the set of nonterminals. Obviously, allforms for context-sensitive grammars.
of these rules are context-sensitive. If we apply all of theseA phrase-structure grammar G � (N, T, P, S) is called
rules in succession to the word A1A2 . . . Ar, we derivelength-increasing if ��� 	 ��� holds for any rule � � � � P. For
B1B2 . . . Bs. Moreover, if we start with the first rule of suchthe grammars G1, G2, and G3 of the preceding section, we find
a group, then we have to apply all rules and thus to simulatethat G1 is not length-increasing and that G2 and G3 are
the application of q. Therefore we obtain L(G�) � L(G�) �length-increasing grammars. By w � V�, �uAv� 	 �uwv� holds
L(G) � L. This shows that L can be generated by a context-for any rule uAv � uwv of a context-sensitive grammar. Thus
sensitive grammar, that is that L is a context-sensitive lan-any context-sensitive grammar is also length-increasing.
guage. In summary, the following statement has been proved:Hence any context-sensitive language is also a length-increas-
A language is generated by a length-increasing grammar ifing language. Now we show by a simulation technique that
and only if it is context-sensitive.the converse statement is also true.

But the construction of the context-sensitive grammar pre-Let L be a length-increasing language. Then L � L(G)
viously given leads to a grammar with rules of a very specialholds for some length-increasing grammar G � (N, T, P, S).
type known as the Kuroda normal form. For any context-sensi-First we construct another length-increasing grammar G� �
tive language L over T, there is a context-sensitive grammar(N�, T, P�, S) in the following way. With any terminal a � T,
G � (N, T, P, S) such that any rule of P has one of the followingwe associate a new nonterminal Xa and set
forms:

N ′ = N ∪ {Xa : a ∈ T}
A → a, A → BC, AB → AC AB → CB with A,B,C ∈ N, a ∈ T

Further, for a rule p of P, we define p� as the rule obtained In the case of length-increasing grammars, we can combine
from p by replacing any occurrence of a terminal a in p by the last two types of rules into a rule of type AB � CD (which
Xa and set is not a context-sensitive rule). In the normal form presented,

there are rules with left context and rules with right context.P ′ = { p′ : p ∈ P} ∪ {Xa → a}
This can be improved to the following normal form which uses
no rules with (nonempty) left contexts (in our formulation, an

Then there is a derivation analogous statement without right contexts is also valid). For
a proof we refer to (6). For any context-sensitive language L

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ∈ T+
over T, there is a context-sensitive grammar G � (N, T, P, S)
such that any rule of P has one of the following forms:

in G if and only if there is a derivation

A → a, A → BC, AB → AC with A, B,C ∈ N, a ∈ T
S ⇒ w′

1 ⇒ w′
2 ⇒ · · · ⇒ w′

n

in G� where, for 1 	 i 	 n, the intermediate word w�i is ob- CHARACTERIZATION BY AUTOMATA
tained from wi by replacing any occurrence of a terminal a in
wi by Xa. Finally, we replace any occurrence of Xa in wn by a Whereas in the preceding section we discussed different types

of grammars generating context-sensitive languages, in thisaccording to the rules Xa � a which yields wn. Therefore any
word of L(G) also belongs to L(G�), that is L(G) � L(G�). More- section we define a special type of automata which accepts

CONTEXT-SENSITIVE LANGUAGES 243

the context-sensitive languages exactly. We start with an in- enters the cell that contains the first letter of w; the work
tape is completely filled with blank symbols; and the reg-formal definition of a more general type of automata intro-

duced in a slightly different form by Alan Turing in (7). For a ister contains the state z0;
completely formal definition of the automata we refer to (4) • changes of the work tape, of the head positions, and of
and (5). the register are done according to the instruction map-

A Turing machine consists of ping,
• the machine stops its computation if a final state z � F

• an infinite input tape divided into cells that can store is obtained.
symbols from the input alphabet X and the blank symbol
� (representing an empty cell); Note that M can perform some computations on a word

• a head that can read a symbol in a cell of the input tape because �(z, x, y) is a finite set, and hence some reactions to
and can move to the neighboring cells or stay in its posi- a given state and given symbols read at the input and work
tion; tape are possible. Hence this machine works nondeterministi-

• an infinite work tape divided into cells that can store cally.
symbols from the work alphabet Y and the blank sym- The language T(M) accepted by a Turing machine M is
bol �; defined as the set of words for which there is a computation

of the Turing machine M on w that stops after a finite num-• a head that can read a symbol in a cell of the work tape,
ber of steps. One can show that a language is accepted by acan write a symbol into a cell of the work tape, and can
Turing machine if and only if it can be generated by a type-move to the neighboring cells or stay in its position;
zero grammar.• a register storing a state of a finite set Z of states that

A Turing machine M is called a linear-bounded automatoncontain a special initial state z0 and a special subset F of
if there is a constant c such that, for any word w of length nfinal states; and
and any computation of M on w, the head of the work tape

• a control unit that realizes the following instruction map-
enters at most c � n different cells.ping:

For any context-sensitive language L, there is a linear-
bounded automaton which accepts L, and conversely, any lan-
guage accepted by a linear-bounded automaton is context-sensi-

δ : (Z\F) × (X ∪ {∗}) × (Y ∪ {∗})
→ P [Z × (Y ∪ {∗}) × {R, L, N} × {R, L, N}] tive. We prove only the first part of this statement. Let L be

an arbitrary context-sensitive language. Let G be a length-(z�, y�, m1, m2) � �(z, x, y) has the following meaning: if the
increasing grammar G � (N, T, P, S) in Kuroda normal formcurrent state of the register is z, the head reads x in the cell
with L(G) � L. Then we construct the Turing machine M withc of the input tape and the other head reads y in the cell c� of
the input alphabet T, the work alphabet N � T, and statesthe work tape, then the machine changes the contents of the
and instructions such that the following steps can be carriedregister to the state z�, writes y� into the cell c� of the work
out:tape, moves the head of the input tape from cell c to its right

neighbor if m1 � R, to its left neighbor if m1�L, and performs
1. M copies the contents w of the input tape to the workno move if m1 � N, and moves the head of the work tape from

tape.the cell c� according to m2 � �R, L, N�. A Turing machine is
2. M checks whether or not S is the content of the workillustrated by Fig. 1.

tape. If the answer is affermative, M enters a finalA computation of Turing machine M (given by the above
state, that M accepts the input word w.components) on a nonempty word w over X is done as follows:

3. M nondeterministically chooses a rule A � a or AB �
CD or A � CD of P (this can be done using states) and• initially the input tape contains a nonempty word w over
searches for a in some cell or CD in some neighboringX in some cells in succession and the remaining cells are
cells, respectively. If it does not find a or CD, respec-filled with the blank symbol; the head of the input tape
tively, then M enters a special state that preserves the
situation. Otherwise, M substitutes a by A or CD by
AB or A�, respectively, and in the latter case M shifts
the subword following the introduced � one cell to the
left.

Steps 2 and 3 are performed alternately as long as no final
state is entered.

By this construction, step 3 is the simulation of a deriva-
tion step in G. If v� ⇒ v holds in G, then M transforms v on
the work tape into v�. Thus we have a derivation

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn−1 ⇒ wn = w

in G if and only if the input word w on the work tape is trans-

*

Control unit
register

x1 x2 xn *x3 x4 …

* * y1 ym *y2 y3 …

Input tape

Work tape

Read head

Read/write head

formed by step 3 of M in succession into the words wn�1,
wn�2, . . ., w2, w1, S. Hence w � L(G) if and only if w is ac-Figure 1. Scheme of a Turing machine.

244 CONTEXT-SENSITIVE LANGUAGES

cepted by M . Therefore L � L(G) � T(M). Moreover, M en- the work (w is not in L1 and hence not in the intersec-
tion); if w is accepted by M 1, M deletes all symbols atters at most (n � 2) cells of the work tape. n cells are needed

for the copy of the input word. To recognize the beginning and the work tape;
ending of the word, one has to enter the cells before and after • Finally, M works as M 2 on w using at most d � n cells
the word. Step 2 does not change the length of the word on for some constant d and accepts if and only if M 2 accepts.
the work tape, and step 3 does not increase its length. Thus
M is a linear-bounded automaton. Obviously, M accepts w if and only if both M 1 and M 2 accept

By definition Turing machines and linear-bounded autom- w, that is if and only if w is contained in L1 and also in L2.
ata are nondeterministic because �(z, x, y) is a finite set. We Moreover, the computation uses at most max�c, d� � n cells of
obtain deterministic versions if we require that, for any z � the work tape.
Z�F, x � X and y � Y, �(z, x, y) contains exactly one element. The problem of whether T��L is context-sensitive for a con-

In the case of Turing machines we can show that the re- text-sensitive language was posed in the sixties and solved
striction to deterministic machines does not decrease the independently by N. Immerman (8) and R. Szelepcsenyi (9)
power. A language can be accepted by a (nondeterministic) in 1988. We omit the technically complicated proof for this
Turing machine if and only if it can be accepted by a deter- statement (for reasons of space) and refer to (2,8,9).
ministic Turing machine. Such a relationship is not known Now we define algebraic operations which are often used
for linear-bounded automata so far. Because the deterministic in the theory of formal languages. The product L1 � L2 of two
linear-bounded automata are special (nondeterministic) lin- languages is defined as
ear-bounded automata, the deterministic linear-bounded au-
tomata accept context-sensitive languages. It is an open prob- L1 · L2 = {w1w2 : w1 ∈ L1, w2 ∈ L2}
lem whether or not deterministic linear-bounded automata
can accept all context-sensitive languages. For a language L and an integer n � 1, we define Ln induc-

tively by
OPERATIONS ON CONTEXT-SENSITIVE LANGUAGES

L1 = L
In this section we consider again the question whether the

andapplication of an operation to context-sensitive languages
yields a context-sensitive language. We consider this problem

Li+1 = Li · L for i ≥ 1for the set-theoretic operations as union, intersection, comple-
ment and algebraic operations as product, Kleene closure and

and the Kleene closure L� byhomomorphisms.
The first statement shows that the family of context-sensi-

tive languages has positive properties with respect to the set- L+ =
�

i≥1

Li = {v1v2 . . . vi : i ≥ 1,vj ∈ L for 1 ≤ j ≤ i}
theoretic operations previously mentioned. Let L1 and L2 be
two arbitrary context-sensitive languages over an alphabet T.

With respect to these two operations we have the followingThen L1 � L2, L1 � L2 and T��L1 are also context-sensitive lan-
result. For any two context-sensitive languages L1 and L2, theirguages.
product L1 � L2 and the Kleene closure L�

1 are also context-sensi-To prove the statement for the union, we consider context-
tive languages. If G1 � (N1, T, P1, S1) and G2 � (N2, T, P2, S2)sensitive grammars G1 � (N1, T, P1, S1) and G2 � (N2, T, P2,
are two context-sensitive grammars in Kuroda normal formS2) with L(G1) � L1 and L(G2) � L2 and assume (without loss
with disjoint alphabets of nonterminals generating L1 andof generality) that N1 and N2 are disjoint sets (if necessary,
L2, respectively, thenwe rename the nonterminals). Then we construct the context-

sensitive grammar
G = (N1 ∪ N2 ∪ {S}, T, P1 ∪ P2 ∪ {S → S1S2}, S)

G = (N1 ∪ N2 ∪ {S}, T, P1 ∪ P2 ∪ {S → S1, S → S2}, S)

with S � N1 � N2 generates L1 � L2.
Let S ⇒ S1 ⇒ w1 ⇒ w2 ⇒ � � � ⇒ wn � w � T* be a derivation Furthermore, the grammar G� � (N1 � �S, S��, T, P�1, S)
in G. By construction, besides the first step we can apply only with
rules from P1, that is, S1 ⇒ w1 ⇒ w2 ⇒ � � � ⇒ wn � w is a
derivation in G1. Hence w � L(G1). Analogously, if we start
the derivation by applying S � S2, then we generate a word

P ′
1 = P1 ∪ {S → S1, S → S1S ′} ∪

�

a∈T

{aS ′ → aS1S′, aS ′ → aS1}

v � L(G2). Therefore L(G) � L(G1) � L(G2) � L1 � L2.
With respect to intersection we start with two linear- generates L�

1 because a typical derivation in G� is given by
bounded automata M 1 and M 2 with T(M 1) � L1 and T(M 2)
� L2 and construct the linear-bounded automaton M that
works as follows (we give only an informal description for rea-
sons of space):

• First M works as M 1 on the input w of length n using

S ⇒ S1S ′ ⇒ · · · ⇒ v1a1S ′ ⇒ v1a1S1S ′ ⇒ · · ·
⇒ v1a1v2a2S′ ⇒ v1a1v2a2S1S ′ ⇒ · · ·
⇒ v1a1 . . . vi−1ai−1S ′ ⇒ v1a1 . . . vi−1ai−1S1 ⇒ · · ·
⇒ v1a1 . . . vi−1ai−1v1ai

at most c � n cells of the work tape for some constant c;
• If w is not accepted by M 1, M enters a nonfinal state where, for 1 	 j 	 i, the derivations S1 ⇒ � � � ⇒ vjaj with

vj � T* and aj � T also hold in G1. Such a derivation gener-that cannot be changed by M , that is, M does not stop

CONTEXT-SENSITIVE LANGUAGES 245

ates v1a1v2a2 . . . viai � L�
1 , and up to the order of the applica- Besides this central problem we shall also discuss the follow-

ing problems:tions of rules we have only such derivations. Let X and Y be
two alphabets. A mapping h from X* to Y* is called a morph-
ism if the following conditions are satisfied: • Emptiness Problem. Given a grammar G, decide whether

or not L(G) is empty [i.e., L(G) contains no word].
• h(�) � �; • Finiteness Problem. Given a grammar G, decide whether

or not L(G) is a finite set.• For any x � X, h(x) is a word over Y;
• Equivalence Problem. Given two grammars G1 and G2,• For any two words w and v over X, h(wv) � h(w)h(v).

decide whether or not L(G1) � L(G2) holds (i.e., whether
both grammars generate the same language).By the third condition it is sufficient to give the image of

any letter x � X under h and to extend this by h(x1x2 . . . xn)
We discuss only the existence of algorithms which solve� h(x1)h(x2) . . . h(xn) to words. Moreover, we extend a morph-

the problems given previously for context-sensitive gram-ism h : X* � Y* to a language L over X by
mars. [By an algorithm we mean a sequence of commands
such that any command can be carried out without intelli-h(L) = {h(w) : w ∈ L}
gence, any command has a uniquely determined successor
command, there is a uniquely determined first command, andWe call a morphism nonerasing if, for any nonempty word w
the algorithm stops with a special command. For a more for-over X, h(w) � � holds. h is nonerasing iff h(x) � � holds for
mal definition of an algorithm, we refer to (11) and (12). Theany letter x � X. We call a morphism a weak coding if, for
most general formalization can be given by means of Turingany letter x of X, h(x) � Y or h(x) � � holds.
machines with an additional output tape; such machines in-For a context-sensitive grammar G � (N, T, P, S) in Kur-
duce functions which map the word on the input tape to theoda normal form, such that L(G) � L, and for a nonerasing
word on the output tape; a function is called algorithmicallymorphism h, let G� � (N, T, P�, S) be the grammar where P�
computable if it can be induced by a Turing machine; func-is obtained from P by substituting any rule A � a by A �
tions not defined on words can be handled by codings.]h(a). Then G� generates h[L(G)]. Thus the following state-

First, we note that, for any of the problems mentioned,ment is valid. If L is a context-sensitive language and h is a
there is no algorithm that solves the problem for type-zerononerasing morphism, then h(L) is also a context-sensitive lan-
grammars. With respect to context-sensitive grammars, theguage.
situation is slightly better. For context-sensitive grammars,If h is an erasing morphism, then the grammar G� con-
there is an algorithm that solves the membership problem, butstructed previously is not context-sensitive. Moreover, the
there are no algorithms that solve the emptiness, finiteness, andstatement is no longer true for erasing morphisms. This fol-
equivalence problems.lows from the fact that there are type-zero languages that are

We present an algorithm for the membership problem. Letnot context-sensitive and from the following consideration.
the context-sensitive (length-increasing) grammar G � (N,Let H � (N, T, P, S) be an arbitrary type-zero grammar.
T, P, S) and w � T� of length n be given, and let c and d beWe construct the length-increasing grammar H� � (N � �$�,
the cardinalities of the sets V � N � T and P, respectively.T � �§�, P�, S), where $ is an additional nonterminal and § is
Let us assume that there is a derivationan additional terminal, as follows: Let p � � � � be a rule

of P. If ��� 	 ���, then we incorporate p in P�, and if ��� � ���, S = w0 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wr = w
then we add � � �$������� to P. Moreover, we add to P� the rule
$ � § and all rules X$ � $X and $X � X$ with X � N � T. in G. If wi � wj holds for some integers i, j with 0 	 i � j 	
Note that all rules of P� are length-increasing. Obviously, H n, then there is also a derivation
and H� generate the same words up to occurrences of §. Hence
we obtain h[L(H�)] � L(H) for the weak coding h where
h(a) � a for a � T and h(§) � �.

S = w0 ⇒ w1 ⇒ · · · ⇒ wi ⇒ wj+1

⇒ wj+2 ⇒ · · · ⇒ wr = w
Formulated in terms of languages instead of grammars, we

obtain the following statement. For any type-zero language
in G. Therefore we can assume that there is a derivation forL, there are a context-sensitive language L� and a weak coding
w in G that contains any word at most once. Let z0 ⇒ z1 ⇒h such that L � h(L�).
z2 ⇒ � � � ⇒ zm be a derivation in G containing no word twice
and starting with z0 of length s. Because of the length in-
crease of the rules of G, �zi� 	 �zi�1� for i � 0. However, theDECISION PROBLEMS
equality of the lengths can hold at most cs steps because there
only exist cs different words of length s over V.One of the most important questions about a given program

Hence there is a derivation of w with at mostis whether or not the program is syntactically correct. For-
mally this means whether or not a word (program) w belongs
to a language L (a set of syntactically correct programs).
Therefore the previous question can be formulated as follows:

nX

s=1

cs = cn+1 − c
c − 1

≤ cn+1

steps. Since we can apply one of the d rules in any step, there• Membership Problem. Given a grammar G and a word w
over the terminal alphabet of G, decide whether or not are at most dcn�1

different derivations with cn�1 steps. We per-
form all these (finitely many) derivations. If w is generatedw � L(G) holds.

246 CONTEXT-SENSITIVE LANGUAGES

Table 1. Closure Properties with Respect to Operationsa

Union Intersection Complement Product Kleene Closure Morphism

Type-zero � � � � � �

Context-sensitive � � � � � �

Context-free � � � � � �

Regular � � � � � �

a � means that the application of the operation to context-free (regular, etc.) languages yields a context-free (regular, etc.)
language, again, whereas � means that there are context-free (regular, etc.) languages such that the application of the
operation yields a noncontext-free (nonregular, etc.) language.

by one of these derivations, then w � L(G) holds. Otherwise, can reduce the equivalence problem to the emptiness problem
which cannot be solved algorithmically.w � L(G). Obviously, the algorithm presented requires an

(super)exponential number of steps in the worst cases. We
note that no algorithm is known so far where the number of TWO SPECIAL CASES
steps is a polynomial in the length of word.

The proofs for the nonexistence of algorithms for the other As we have seen in the preceding section, the family of con-
three problems are given by reduction, that is we show that text-sensitive languages has some negative features with re-
the existence of an algorithm for one of these problems im- spect to the existence of algorithms for the most important
plies the existence of an algorithm for another problem for problems. Thus it is of interest to consider special cases with
which there is no algorithmic solution. better properties and with sufficient power for some applica-

First, let us assume that there is an algorithm for the emp- tions. We discuss here only context-free and regular lan-
tiness problem for context-sensitive (length-increasing) gram- guages. Moreover, we just present some definitions and re-
mars. Then we consider an arbitrary type-zero grammar G sults and omit justifications for which we refer to
and the context-sensitive grammar G� such that L(G) � (3,4,5,12–14).
h(L(G�) for some homomorphism h (see the preceding section). A grammar G � (N, T, P, S) is called context-free if any
Obviously, L(G) is empty if and only if L(G�) is empty because, rule of P has the form
by assumption, there is an algorithm that decides the empti-
ness of L(G�) and thus the emptiness of L(G). We have already A → w with A ∈ N and w ∈ (N ∪ T)∗
mentioned, however, that there is no algorithm for the empti-
ness problem for type-zero grammars. Therefore our assump- A grammar G � (N, T, P, S) is called regular if any rule of P
tion has to be false. has the form

Now let us assume that there is an algorithm for the fi-
niteness problem for context-sensitive grammars. Then we A → w or A → wB with A, B ∈ N and w ∈ T∗

consider an arbitrary context-sensitive grammar G and con-
A language L is called context-free (or regular) if there is astruct a context-sensitive grammar G� such that L(G�) �
context-free (or regular) grammar G such that L(G) � L. TheL(G) � T� (T� is generated by the grammar
grammar G1 for the decimal presentation of positive integers
presented in the first section is regular. Obviously, any regu-G ′′ = ({S},T, {S → aS : a ∈ T } ∪ {S → a : a ∈ T },S)

lar grammar is also context-free. Hence, any regular lan-
guages is also context-free. The converse relationship is notand for the product see the preceding section). If L(G) is not

empty, then L(G�) is infinite, and if L(G) is empty, then true. �anbn : n � 1� is a context-free language which is not
regular.L(G�) is empty (and finite), too. Therefore L(G�) is finite if and

only if L(G) is empty. Hence the existence of an algorithm Context-free and regular grammars allow erasing rules
A � � that are not context-sensitive (and not length-increas-deciding the finiteness of L(G�) implies the existence of an

algorithm deciding the emptiness of L(G) which does not ing). However, for any context-free grammar G, there is a con-
text-free grammar G� such that L(G�) � L(G)���� (i.e., besidesexist.

Now let us assume that there is algorithm for the equiva- the empty word, G� and G generate the same terminal words)
and G� has no erasing rules. Hence this grammar G� is con-lence problem for context-sensitive grammars. Because the

equality T� � T��L(G) holds if and only if L(G) is empty, we text-sensitive, and therefore up to the empty word any con-

Table 2. Decidability Propertiesa

Membership Emptyness Finiteness Equivalence
Problem Problem Problem Problem

Type-zero � � � �

Context-sensitive � � � �

Context-free � � � �

Regular � � � �

a � means the existence of an algorithm to solve the problem, and � means that there is no such algo-
rithm.

CONTINUING EDUCATION 247

text-free (and regular) language is context-sensitive. (We can CONTENT-BASED RETRIEVAL. See MULTIMEDIA INFOR-

also use the modification of the definition of a context-sensi- MATION SYSTEMS.
tive grammar with the exception erasing rule, as mentioned CONTINUATION METHODS. See HIGH DEFINITION
in the first section, which says directly that any context-free

TELEVISION; HOMOTOPY METHODS FOR COMPUTING DC OP-
or regular language is context-sensitive.) The language

ERATING POINTS.
�anbncn : n � 1� generated by the context-sensitive grammar
G2 in the first section is not a context-free language.

Tables 1 and 2 summarize the properties of regular and
context-free languages with respect to the operations dis-
cussed above and their decidability properties. For the sake
of completeness we add the results for context-sensitive and
type-zero languages in both tables.

As one can see from Table 2, context-free and regular lan-
guages have much better properties than context-sensitive
languages. On the other hand, there are a lot of grammatical
structures and constructs in programming languages that
cannot be covered by context-free grammars. Therefore there
are a large number of grammar types that are more powerful
than context-free grammars and behave better than context-
sensitive grammars. We refer to (15,16).

BIBLIOGRAPHY

1. G. Rozenberg and A. Salomaa, Handbook of Formal Languages,
Berlin: Springer-Verlag, 1997, vol. 1–3.

2. A. Mateescu and A. Salomaa, Aspects of classical formal lan-
guage theory, in (1), vol. 1, pp. 175–251.

3. A. Salomaa, Formal Languages, New York: Academic Press,
1973.

4. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation, Reading, MA: Addison-Wesley,
1979.

5. T. A. Sudkamp, Languages and Machines, Reading, MA: Addison-
Wesley, 1988.

6. M. Penttonen, One-sided and two-sided context in formal gram-
mars, Inf. Control, 25: 371–392, 1974.

7. A. Turing, On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math Soc., 42: 230–265,
1936. A correction, ibid., 43: 544–546, 1936.

8. N. Immerman, Nondeterministic space is closed under comple-
mentation, SIAM J. Comput., 17: 935–938, 1988.

9. R. Szelepcsenyi, The method of forced enumeration for nondeter-
ministic automata, Acta Informatica, 26: 279–284, 1988.

10. M. Davis, Computability and Unsolvability, New York: Dover,
1958 and 1982.

11. N. J. Cutland, Computability, Cambridge: Cambridge University
Press, 1980.

12. J.-M. Autebert, J. Berstel, and L. Boasson, Context-free lan-
guages and push-down automata, in (1), vol. 1, pp. 111–174.

13. Sh. Yu, Regular languages, in (1), vol. 1, pp. 41–110.

14. M. Harrison, Introduction to Formal Language Theory, Reading,
MA: Addison-Wesley, 1978.

15. J. Dassow and G. Paun, Regulated Rewriting in Formal Language
Theory, EATCS Monographs in Theoretical Computer Science,
Berlin: Springer-Verlag, 1989, Vol. 18.

16. J. Dassow, G. Paun, and A. Salomaa, Grammars with controlled
derivations, in (1), vol. 2, pp. 101–154.

JÜRGEN DASSOW

Otto-von-Guericke-Universität
Magdeburg

