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tinguishing sequences, identifying sequences, characteriza-
tion sets, transition tours and UIO sequences, and finally aCONFORMANCE TESTING
randomized polynomial time algorithm. Finite-state machines
model well some software systems and control portions of pro-System reliability cannot be overemphasized in software engi-

neering because large and complex systems are being built to tocols. However, often in practice, systems contain variables
and their operations depend on variable values; finite-statefulfill complicated tasks. Consequently, testing is an indis-

pensable part of system design and implementation, yet it has machines are not powerful enough to model in a succinct way
such systems. Extended finite-state machines, which are fi-proved to be a formidable task for complex systems. Testing

software contains very wide fields with an extensive litera- nite-state machines extended with variables, have emerged
from the design and analysis of both circuits and communica-ture. See the articles in this volume. We discuss testing of

software systems that can be modeled by finite state ma- tion protocols as a more convenient model. We discuss confor-
mance testing of extended finite-state machines in the secondchines or their extensions to ensure that the implementation

conforms to the design. part of this article.
A finite-state machine contains a finite number of states

and produces outputs on state transitions after receiving in-
BACKGROUND

puts. Finite-state machines are widely used to model software
systems such as communication protocols. In a testing prob-

Finite-state systems can usually be modeled by Mealy ma-
lem we have a specification machine, which is a design of a

chines that produce outputs on their state transitions after
system, and an implementation machine, which is a ‘‘black

receiving inputs.
box’’ for which we can only observe its I/O behavior. The task
is to test whether the implementation conforms to the speci- Definition 1. A finite-state machine (FSM) M is a quintuple
fication. This is called the conformance testing or fault detec-

M � (I, O, S, �, �) where I, O, and S are finite and nonempty
tion problem. A test sequence that solves this problem is

sets of input symbols, output symbols, and states, respec-
called a checking sequence.

tively. �: S � I � S is the state transition function; and �:
Testing finite-state machines has been studied for a very

S � I � O is the output function. When the machine is in a
long time starting with Moore’s seminal 1956 paper on ‘‘ged-

current state s in S and receives an input a from I it moves
anken-experiments’’ (1), which introduced the basic frame-

to the next state specified by �(s, a) and produces an output
work for testing problems. Among other fundamental prob-

given by �(s, a).
lems, Moore posed the conformance testing problem, proposed
an approach, and asked for a better solution. A partial answer

There is a variant of the model in which outputs are associ-
was offered by Hennie in an influential paper (2) in 1964. He

ated with the states (instead of the transitions); the following
showed that if the specification machine has a distinguishing

theory and testing methods apply also to this model. An FSM
sequence of length L, then one can construct a checking se-

can be represented by a state transition diagram, a directed
quence of length polynomial in L and the size of the machine.

graph whose vertices correspond to the states of the machine
Unfortunately, not every machine has a distinguishing se-

and whose edges correspond to the state transitions; each
quence. Hennie also gave another nontrivial construction of

edge is labeled with the input and output associated with the
checking sequences in case a machine does not have a distin-

transition. For the FSM in Fig. 1, suppose that the machine
guishing sequence; in general, however, his checking se-

is currently in state s1. Upon input b, the machine moves to
quences are long. Several articles were published in the 1960s

state s2 and outputs 1. We denote the number of states, in-
on testing problems, motivated mainly by automata theory

puts, and outputs by n � �S�, p � �I�, and q � �O�, respectively.
and testing switching circuits. Kohavi’s book gives a good ex-

We extend the transition function � and output function �
position of the major results (3); see also Friedman and

from input symbols to strings as follows: for an initial state
Menon (4). During the late 1960s and early 1970s there were
a lot of activities in the Soviet literature, which are appar-
ently not well known in the West. An important article on
fault detection was by Vasilevskii (5), who proved polynomial
upper and lower bounds on the length of checking sequences.
However, the upper bound was obtained by an existence
proof, and he did not present an algorithm for constructing
efficiently checking sequences. For machines with a reliable
reset (i.e., at any moment the machine can be taken to an
initial state), Chow developed a method that constructs a
checking sequence in polynomial time (6). There was very lit-
tle activity subsequently until the late 1980s when the fault
detection problem was resurrected; this problem is now being
studied extensively anew due to its applications in testing
communications protocol software systems [see Lee and Yan-
nakakis (7) for a detailed survey and references].

After introducing some basic concepts of finite state ma-
chine, we discuss various techniques of conformance testing.

a/0

b/0b/1

b/1

a/1

s2 s3

s1

a/0
In the first part of this article, we describe several test gener-
ation methods based on status messages, reliable reset, dis- Figure 1. Transition diagram of a finite-state machine.
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s1, an input sequence x � a1, . . ., ak takes the machine Given a reduced FSM A with n states, a separating family
of sequences Zi for each state si, and an FSM B with the samesuccessively to states si�1 � �(si, ai), i � 1, . . ., k, with the

final state �(s1, x) � sk�1, and produces an output sequence input and output symbols, we say that a state qi of B is simi-
lar to a state si of A if it agrees (gives the same output) on all�(s1, x) � b1, . . ., bk, where bi � �(si, ai), i � 1, . . ., k. Sup-

pose that the machine in Fig. 1 is in state s1. Input sequence sequences in the separating set Zi of si. A key property is that
qi can be similiar to at most one state of A. Let us say that anabb takes the machine through states s1, s2, and s3, and out-

puts 011. FSM B is similar to A, if for each state si of A the machine B
has a corresponding state qi similar to it. Note that then allTwo states si and sj are equivalent if and only if for every

input sequence the machine will produce the same output se- the qi’s must be distinct. If we know that B has at most n
states, then there is a one-to-one correspondence betweenquence regardless of whether si or sj is the initial state; that

is for an arbitrary input sequence x, �(si, x) � �(sj, x). Other- similar states of A and B. For B to be equivalent to A, it needs
to be isomorphic (since A is reduced). That is, the ultimatewise, the two states are inequivalent, and there exists an in-

put sequence x such that �(si, x) � �(sj, x); in this case, such goal is to check if an implementation machine B is isomorphic
to a specification machine A. Often we first check their simi-an input sequence is called a separating sequence of the two

inequivalent states. For two states in different machines with larity and then isomorphism.
the same input and output sets, equivalence is defined simi-
larly. Two machines M and M� are equivalent if and only for SYSTEMS MODELED BY FINITE-STATE MACHINES
every state in M there is a corresponding equivalent state in
M�, and vice versa. Two machines are isomorphic if they are Given a complete description of a specification machine A, we
identical except for a renaming of states. Note that any two want to determine whether an implementation machine B,
isomorphic machines are equivalent, but not necessarily vice which is a ‘‘black box,’’ is isomorphic to A. Obviously, without
versa. Given a machine, we can ‘‘merge’’ equivalent states and any assumptions, the problem is impossible to solve; for any
construct a minimized (reduced) machine which is equivalent test sequence we can easily construct a machine B, which is
to the given machine and no two states are equivalent. The not equivalent to A but produces the same outputs as A for
minimized maschine is unique up to isomorphism. We can the given test sequence. There is a number of natural as-
construct in polynomial time a minimized machine and also sumptions that are usually made in the literature in order for
obtain separating sequences for each pair of states (3). the test to be at all possible. (1) Specification machine A is

We define now within a uniform framework some impor- strongly connected; that is, there is a path between every pair
tant types of sequences. A separating family of sequences for of states. Otherwise, during a test some states may not be
an FSM A is a collection of n sets Zi, i � 1, . . ., n, of se- reachable. (2) Machine A is reduced; otherwise, we can always
quences (one set for each state) such that for every pair of minimize it first. (3) Implementation machine B does not
states si, sj there is an input string � that separates them change during the experiment and has the same input alpha-
[i.e., �A(si, �) � �A(sj, �)], and � is a prefix of some sequence bet as A. (4) Machine B has no more states than A. Assump-
in Zi and some sequence in Zj. We call Zi the separating set of tion 4 deserves a comment. An upper bound must be placed
state si, and we call the elements of Zi its separating se- on the number of states of B; otherwise, no matter how long
quences. If a separating family has the same set Z for all the our test is, it is possible that it does not reach the ‘‘bad’’ part
states (i.e., Z � Zi for all i), then the set Z is called a charac- of B. The usual assumption made in the literature, and which
terizing set. Every reduced FSM has a characterizing set con- we will also adopt, is that the faults do not increase the num-
taining at most n � 1 sequences each of length no more than ber of states of the machine. In other words, under this as-
n � 1. The same is true for separating families, although they sumption, the faults are of two types: output faults (i.e., one
provide more flexibility (since one can use a different set for or more transitions may produce wrong outputs) and transfer
each state) and thus may have fewer and shorter sequences. faults (i.e., transitions may go to wrong next states). Under
If there is a characterizing set Z that contains only one se- these assumptions, we want to design an experiment that
quence x, then x is called a (preset) distinguishing sequence. tests whether B is isomorphic to A. From assumptions 2 and
Note that if we input the sequence x to the machine, then 4, B is isomorphic to A if and only if B is equivalent to A.
every state gives a different output; hence a distinguishing Suppose that the implementation machine B starts from
sequence allows us to identify the initial state of a machine. an unknown state and that we want to check whether it is
Unfortunately, not every reduced machine has a distinguish- isomorphic to A. We first apply a sequence that is supposed
ing sequence; furthermore, it is possible that there is such a to bring B (if it is correct) to a known state s1 that is the
sequence but only of exponential length, and it is a computa- initial state for the main part of the test; such a sequence is
tionally intractable problem to determine if a given machine called a homing sequence (3). Then we verify that B is isomor-
has a preset distinguishing sequence (8). A separating family phic to A using a checking sequence, which is to be defined in
in which all sets Zi are singletons (though possibly distinct the sequel. However, if B is not isomorphic to A, then the
for different states) forms what is called an adaptive distin- homing sequence may or may not bring B to s1; in either case,
guishing sequence; it provides a way for identifying the initial a checking sequence will detect faults: a discrepancy between
state of a machine using an adaptive test; that is, a test in the outputs from B and the expected outputs from A will be
which the input symbol that is applied at each step may de- observed. From now on we assume that a homing sequence
pend on the previously observed output symbols. Again, not has taken the implementation machine B to a supposedly ini-
every reduced machine has an adaptive distinguishing se- tial state s1 before we conduct a conformance test.
quence, but unlike the preset case we can determine effi-
ciently if there exists an adaptive distinguishing sequence, Definition 2. Let A be a specification FSM with n states and

initial state s1. A checking sequence for A is an input sequenceand, if so, we can construct one of polynomial length (8).
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x that distinguishes A from all other machines with n states; properly in the implementation machine B, that is, �B(si, r) �
s1 for all si; otherwise it is unreliable.that is, every (implementation) machine B with at most n

states that is not isomorphic to A produces on input x a differ- For machines with a reliable reset, there is a polynomial
time algorithm for constructing a checking sequence (5,6,11).ent output than that produced by A starting from s1.
Let Zi, i � 1, . . ., n be a family of separating sets; as a spe-
cial case the sets could all be identical (i.e., a characterizingAll the proposed methods for checking experiments have
set). We first construct a breadth-first-search tree (or anythe same basic structure. We want to make sure that every
spanning tree) of the transition diagram of the specificationtransition of the specification FSM A is correctly implemented
machine A and verify that B is similar to A; we check statesin FSM B; so for every transition of A, say from state si to
according to the breadth-first-search order and tree edgesstate sj on input a, we want to apply an input sequence that
(transitions) leading to the nodes (states) as follows. For everytransfers the machine to si, apply input a, and then verify
state si, we have a part of the checking sequence that doesthat the end state is sj by applying appropriate inputs. The
the following for every member of Zi: First it resets the ma-methods differ by the types of subsequences they use to verify
chine to s1 by input r, then it applies the input sequence (saythat the machine is in a right state. This can be accomplished
pi) corresponding to the path of the tree from the root s1 to siby status messages, separating family of sequences, charac-
and then applies a separating sequence in Zi. If the imple-terizing sequences, distinguishing sequences, UIO sequences,
mentation machine B passes this test for all members of Zi,and identifying sequences, depending on what types of se-
then we know that it has a state similar to si, namely thequences the given specification machine possesses.
state that is obtained by applying the input sequence pi start-
ing from the reset state s1. If B passes this test for all states

Status Messages si, then we know that B is similar to A. This portion of the
test also verifies all the transitions of the tree. Finally, weA status message tells us the current state of a machine. Con-
check nontree transitions as follows. For every transition, sayceptually, we can imagine that there is a special input status,
from state si to state sj on input a, we do the following forand upon receiving this input the machine outputs its current
every member of Zj: reset the machine, apply the input se-state and stays there. Such status messages do exist in prac-
quence pi taking it to the start node si of the transition alongtice. In protocol testing, one might be able to dump and ob-
tree edges, apply the input a of the transition, and then applyserve variable values which represent the states of a proto-
a separating sequence in Zj. If the implementation machine Bcol machine.
passes this test for all members of Zj, then we know that theWith a status message, the machine is highly observable
transition on input a of the state of B that is similar to siat any moment. We say that the status message is reliable if
gives the correct output and goes to the state that is similarit is guaranteed to work reliably in the implementation ma-
to state sj. If B passes the test for all the transitions, then wechine B; that is, it outputs the current state without changing
can conclude that it is isomorphic to A.it. Suppose the status message is relaible. Then a checking

For the machine in Fig. 1, a family of separating sets is:sequence can be easily obtained by simply constructing a cov-
Z1 � �a, b�, Z2 � �a�, and Z3 � �a, b�. A spanning tree is shownering path of the transition diagram of the specification ma-
in Fig. 2 with thick tree edges. Sequences ra and rb verifychine A and then applying the status message at each state
state s1. Sequence rba verifies state s2 and transition (s1, s2):visited (9,10). Since each state is checked with its status mes-
After resetting, input b verifies the tree edge transition fromsage, we verify whether B is similar to A. Furthermore, every
s1 to s2 and separating sequence a of Z2 verifies the end statetransition is tested because its output is observed explicitly,
s2. The following two sequences verify state s3 and the treeand its start and end state are verified by their status mes-
edge transition from s2 to s3: rbba and rbbb where the prefixsages; thus such a covering path provides a checking se-
rbb resets the machine to s1 and takes it to state s3 alongquence. If the status message is not reliable, then we can still

obtain a checking sequence by applying the status message
twice in a row for each state si at some point during the exper-
iment when the covering path visits si; we only need to have
this double application of the status message once for each
state and have a single application in the rest of the visits.
The double application of the status message ensures that it
works properly for every state.

For example, consider the specification machine A in Fig.
1, starting at state s1. We have a covering path from input
sequence x � ababab. Let s denote the status message. If it
is reliable, then we obtain the checking sequence sasbsasb-
sasbs. If it is unreliable, then we have the sequence ssasbssas-
bssasbs.

Reset

We say that machine A has a reset capability if there is an
initial state s1 and an input symbol r that takes the machine

a/0

b/0b/1

b/1

a/1

s2 s3

s1

a/0

Z2 = (a) Z3 = (a, b)

Z1 = (a, b)

from any state back to s1; that is, �A(si, r) � s1 for all states
si. We say that the reset is reliable if it is guaranteed to work Figure 2. A spanning tree of machine in Fig. 1.
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verified tree edges, and the two suffixes a and b are the sepa- lowing sequence tests for a transition from si to sj:
rating sequences of s3. Finally, we test nontree edges in the
same way. For instance, the self-loop at s2 is checked by the τ (tk, si−1)x0τ (ti−1, si )ax0 (2)
sequence rbaa.

With reliable reset the total cost is O(pn3) to construct a After this sequence the machine is in state tj. We repeat the
checking sequence of length O(pn3). This bound on the length same process for each state transition and obtain a checking
of the checking sequence is in general the best possible (up sequence. Observe that the length of the checking sequence is
to a constant factor); there are specification machines A with polynomial in the size of the machine A and the length of the
reliable reset such that any checking sequence requires distinguishing sequence x0.
�(pn3) (5). For machines with unreliable reset, only random- Recall that a distinguishing sequence for the machine in
ized polynomial time algorithms are known (12); we can con- Fig. 1 is x0 � ab. The transfer sequences are straightforward,
struct with high probability in randomized polynomial time a for example, �(s1, s2) � b. The sequence in Eq. (1) for checking
checking sequence of length O(pn3 � n4 log n). states is abababab. Suppose that the machine is in state s3.

Then the following sequence babbab tests for the transition
Distinguishing Sequences from s2 to s3: b takes the machine to state s1, ab definitely

takes the machine to state s2 if it produces outputs 01, whichFor specification machines with a distinguishing sequence
we have observed during state testing, and, finally, bab teststhere is a deterministic polynomial time algorithm to con-
the transition on input b and the end state s3. Other transi-struct a checking sequence (2,3) of length polynomial in the
tions can be tested similarly.length of the distinguishing sequence. A distinguishing se-

We can use adaptive distinguishing sequences to constructquence is similar to an unreliable status message in that it
a checking sequence. An adaptive distinguishing sequence isgives a different output for each state, except that it changes
not really a sequence but an adaptive experiment (i.e. a deci-the state. For example, for the machine in Fig. 1, ab is a dis-
sion tree) that specifies how to choose inputs adaptively basedtinguishing sequence, since �(s1, ab) � 01, �(s2, ab) � 11, and
on observed outputs to identify the initial state. An adaptive�(s3, ab) � 00.
distinguishing sequence corresponds to a separating family inGiven a distinguishing sequence x0, first check the similar-
which each state si has only one separating sequence xi in itsity of the implementation machine by examining the response
set; that is, Zi � �xi�. We can construct a checking sequenceof each state to the distinguishing sequence, then check each
using the same construction as above with the following dif-transition by exercising it and verifying the ending state, also
ference: At each step where we are supposed to apply the dis-using the distinguishing sequence. A transfer sequence �(si,
tinguishing sequence x0, we apply instead the separating se-sj) is a sequence that takes the machine from state si to sj.
quence xi for the current state si. An adaptive distinguishingSuch a sequence always exists for any two states since the
sequence has length O(n2), and, consequently, a checking se-machine is strongly connected. Obviously, it is not unique and
quence of length O(pn3) can be constructed in time O(pn3) (8).a shortest path (13,14) from si to sj in the transition diagram

is often preferable. Suppose that the machine is in state si

and that distinguishing sequence x0 takes the machine from Identifying Sequences
state si to ti; that is, ti � �(si, x0), i � 1, . . ., n. For the ma-

The previous three methods are based on knowing where wechine in the initial state s1, the following test sequence takes
are during the experiment, using status messages, reset, andthe machine through each of its states and displays each of
distinguishing sequences, respectively. However, these se-the n different responses to the distinguishing sequence:
quences may not exist in general. A method was proposed by
Hennie that works for general machines, although it mayx0τ (t1, s2)x0τ (t2, s3)x0 · · · x0τ (tn, s1)x0 (1)
yield exponentially long checking sequences. It is based on
certain sequences, called identifying sequences in Kohavi (3)Starting in state s1, x0 takes the machine to state t1 and then

�(t1, s2) transfers it to state s2 for its response to x0. At the end [locating sequences in Hennie (2)], that identify a state in the
middle of the execution. Identifying sequences always existthe machine responds to x0�(tn, s1). If it operates correctly, it

will be in state s1, and this is verified by its response to the and checking sequences can be derived from them (2,3).
Similar to checking sequences from distinguishing se-final x0. During the test we should observe n different re-

sponses to the distinguishing sequence x0 from n different quences, the main idea is to display the responses of each
state to its separating family of sequences instead of one dis-states, and this verifies that the implementation machine B

is similar to the specification machine A. tinguishing sequence. We use an example to explain the dis-
play technique. The checking sequence generation procedureWe then establish every state transition. Suppose that we

want to check transition from state si to sj with input/output is similar to that from the distinguishing sequences and we
omit the detail.a/o when the machine is currently in state tk. We would first

take the machine from tk to si, apply input a, observe output Consider machine A in Fig. 1. We want to display the re-
sponses of state s1 to separating sequences a and b. Supposeo, and verify the ending state sj. We cannot simply use �(tk,

si) to take the machine to state si, since faults may alter the that we first take the machine to s1 by a transfer sequence,
apply the first separating sequence a, and observe output 0.ending state. Instead, we apply the following input sequence:

�(tk, si�1)x0�(ti�1, si). The first transfer sequence is supposed to Due to faults, there is no guarantee that the implementation
machine was transferred to state s1 in the first place. Assumetake the machine to state si�1, which is verified by its response

to x0, and as has been verified by Eq. (1), x0�(ti�1, si) definitely instead that we transfer the machine (supposedly) to s1 and
then apply aaa which produces output 000. The transfer se-takes the machine to state si. We then test the transition by

input a and verify the ending state by x0. Therefore, the fol- quence takes the machine B to state q0 and then aaa takes it
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through states q1, q2, and q3, and produces outputs 000 (if not, Test 2. (Transitions)
then B must be faulty). The four states q0 to q3 cannot be For each transition of the specification FSM A, say �A(si,
distinct since B has at most three states. Note that if two a) � sj, do
states qi, qj are equal, then their respective following states Repeat the following kij times:
qi�1, qj�1 (and so on) are also equal because we apply the same Take the specification machine A from its current state
input a. Hence q3 must be one of the states q0, q1, or q2, and to state si;
thus we know that it will output 0 on input a; hence we do Flip a fair coin to decide whether to check the current
not need to apply a. Instead we apply input b and must ob- state or the transition;
serve output 1. Therefore, we have identified a state of B In the first case, choose (uniformly) at random a se-
(namely q3) that responds to the two separating sequences a quence from Zi and apply it;
and b by producing 0 and 1, respectively, and thus is similar In the second case, apply input a followed by a ran-
to state s1 of A. domly selected sequence from Zj.

The length of an identifying sequence in the above con-
struction grows exponentially with the number of separating

Let x be the random input string formed by running Testsequences of a state and the resulting checking sequence is of
2 with kij � O(max(zi, zj) log(pn)) for all i, j. It can be shownexponential length in general.
that, with high probability, every FSM B (with at most n
states) that is similar but not isomorphic to A produces a dif-

A Polynomial Time Randomized Algorithm ferent output than A on input x.
Combining the two tests, we obtain a checking sequenceWith status messages, reset, or short distinguishing se-

with a high probability (12). Specifically, given a specificationquences (of at most polynomial length), we can find in polyno-
machine A with n states and input alphabet of size p, themial time checking sequences of polynomial length. In the
randomized algorithm constructs with high probability ageneral case without such information, Hennie’s algorithm
checking sequence for A of length O(pn3 � p�n4 log n) whereconstructs an exponential length checking sequence. The rea-
p� � min(p, n).son of the exponential growth of the length of the test se-

In our exposition we have assumed that the specificationquence is that it deterministically displays the response of
is a completely specified FSM. Similar methods apply toeach state to its separating family of sequences. Randomiza-
partially specified machines, as long as the relevant se-tion can avoid this exponential ‘‘blow-up’’; we now describe a
quences exist. The methods can be also extended to the casepolynomial time randomized algorithm that constructs with
of faults that introduce additional states, although in thishigh probability a polynomial length checking sequence (12).
case the tests become inherently longer [see (7) for furtherThe probabilities are with respect to the random decisions of
discussion].the algorithm; we do not make any probabilistic assumptions

on the specification A or the implementation B. For a test
sequence to be considered ‘‘good’’ (a checking sequence), it Heuristic Procedures and Optimizations
must be able to uncover all faulty machines B. As usual, ‘‘high

Checking sequences guarantee a complete fault coverage butprobability’’ means that we can make the probability of error
sometimes could be too long for practical applications, andarbitrarily small by repeating the test enough times (doubling
heuristic procedures are used instead. For example, in circuitthe length of the test squares the probability that it is not a
testing, test sequences are generated based on fault modelschecking sequence).
that significantly limit the possible faults (14). Without faultWe break the checking experiment into two tests. The first
models, covering paths are often used in both circuit testingtest ensures with high probability that the implementation
(4,15) and protocol testing where a test sequence exercisesmachine B is similar to A. The second test ensures with high
each transition of the specification machine at least once. Aprobability that all the transitions are correct: they give the
short test sequence is always preferred and a shortest cov-correct output and go to the correct next state.
ering path is desirable, resulting in a Postman Tour
(9,10,16–18).

Test 1. (Similarity) A covering path is easy to generate yet may not have a
For i � 1 to n do high fault coverage. Additional checking is needed to increase

Repeat the following ki times: the fault coverage. For instance, suppose that each state has
Apply an input sequence that takes A from its current a UIO sequence (19). A UIO sequence for a state sj is an input
state to state si; sequence xj that distinguishes sj from any other states; that
Choose a separating sequence from Zi uniformly at ran- is, for any state sk � sj, �(sj, xj) � �(sk, xj). To increase the
dom and apply it. coverage we may test a transition from state si to sj by its

I/O behavior and then apply a UIO sequence of sj to verify
that we end up in the right state. Suppose that such a se-We assume that for every pair of states we have chosen a
quence takes the machine to state tj. Then a test of this tran-fixed transfer sequence from one state to the other. Assume
sition is represented by a test sequence, which takes the ma-that zi is the number of separating sequences in Zi for state
chine from si to tj. Imagine that all the edges of the transitionsi. Let x be the random input string formed by running Test
diagram have a white color. For each transition from si to sj,1 with ki � O(nzi min(p, zi) log n) for each i � 1, . . ., n. It
we add a red edge from si to tj due to the additional checkingcan be shown that, with high probability, every FSM B (with
of a UIO sequence of sj. A test that checks each transitionat most n states) that is not similar to A produces a different

output than A on input x. along with UIO sequence of its end state requires that we find
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a path that exercises each red edge at least once. It provides 5 Electronic Switching System) we extend finite state ma-
chines with variables as follows. We denote a finite set of vari-a better fault coverage than a simple covering path, although

such a path does not necessarily give a checking sequence ables by a vector: x� � (x1, . . ., xk). A predicate on variable
values P(x�) returns FALSE or TRUE; a set of variable values(11). We would like to find a shortest path that covers each

red edge at least once. This is a Rural Postman Tour (20), x� is valid for P if P(x�) � TRUE, and we denote the set of valid
variable values by XP � �x� : P(x�) � TRUE�. Given a functionand in general it is an NP-hard problem. However, practical

constraints are investigated and polynomial time algorithms A(x�), an action is an assignment: x� :� A(x�).
can be obtained for a class of communication protocols (16).

Sometimes, the system is too large to construct and we Definition 3. An extended finite state machine (EFSM) is a
cannot even afford a covering path. To save space and to avoid quintuple M � (I, O, S, x�, T), where I, O, S, x�, and T are finite
repeatedly testing the same portion of the system, a ‘‘random sets of input symbols, output symbols, states, variables, and
walk’’ could be used for test generation (21,22). Basically, we transitions, respectively. Each transition t in the set T is a 6-
only keep track of the current state and determine the next tuple: t � (st, qt, at, ot, Pt, At), where st, qt, at, and ot are the
input on-line; for all the possible inputs with the current start (current) state, end (next) state, input, and output, re-
state, we choose one at random. Note that a pure random spectively. Pt(x

�) is a predicate on the current variable values
walk may not work well in general; as is well known, a ran- and At(x

�) defines an action on variables values.
dom walk can easily get ‘‘trapped’’ in one part of the machine Initially, the machine is an initial state s0 � S with initial
and fail to visit other states if there are ‘‘narrow passages.’’ variable values: x�init. Suppose that the machine is at state st
Consequently, it may take exponential time for a test to reach with the current variable values x�. Upon input at, if x� is valid
and uncover faulty parts of an implementation machine for Pt (i.e., Pt(x

�) � TRUE), then the machine follows the tran-
through a pure random walk. Indeed, this is very likely to sition t, outputs ot, changes the current variable values by
happen for machines with low enough connectivity and few action x� :� At(x

�), and moves to state qt.
faults (single fault, for instance). To avoid such problms, a For each state s � S and input a � I, let all the transitions
guided random walk was proposed (21) for protocol testing with start state s and input a be: ti � (s, qi, a, oi, Pi, Ai), 1 	
where partial information of a history of the tested portion is i 	 r. We assume that the sets of valid variable values of
being recorded. Instead of a random selection of next input, these r predicates are mutually disjoint, that is XPi

� XPi
� 0�,

priorities based on the past history are enforced; on the other 1 	 i � j 	 r.
hand, we make a random choice within each class of inputs
of the same priority. Hence we call it a guided random walk;

Clearly, if the variable set is empty and all predicates P �it may take the machine out of the ‘‘traps’’ and increase the
TRUE, then an EFSM becomes an ordinary FSM. Each com-fault coverage.
bination of a state and variable values is called a configura-In the techniques discussed, a test sequence is formed by
tion. Given an EFSM, if each variable has a finite number ofcombining a number of subsequences, and often there is a lot
values (Boolean variables for instance), then there is a finiteof overlaps in the subsequences. There are several papers in
number of configurations, and hence there is an equivalentthe literature that propose heuristics for taking advantage of
(ordinary) FSM with configurations as states. Therefore, anoverlaps in order to reduce the total length of tests (23–25).
EFSM with finite variable domains is a compact representa-
tion of an FSM.

We now discuss testing of EFSMs, which has become anSYSTEMS MODELED BY EXTENDED FINITE STATE MACHINES
important topic recently, especially in the network protocol
area (27–29). An EFSM usually has an initial state s0 and allIn software applications, such as feature testing of communi-
the variables have an initial value x�init, which consists of thecation protocols, the pure finite-state machine model is not
initial configuration. A test sequence (or a scenario) is an in-powerful enough to model in a succinct way the actual sys-
put sequence that takes the machine from the initial configu-tems any more. Extended finite state machines, which are fi-
ration back to the initial state (possibly with different vari-nite-state machines extended with variables, are commonly
able values). We want to construct a set of test sequences ofused to specify such systems. For instance, IEEE 802.2 LLC
a desirable fault coverage, which ensures that the implemen-(26) is specified by 14 control states, a number of variables,
tation machine under test conforms to the specification.and a set of transitions (pp. 75–117). For example, a typical

The fault coverage is essential. However, it is often definedtransition is (p. 96):
differently from different models and/or practical needs. For
testing FSM’s we have discussed checking sequences, which
guarantee that the implementation machine is structurally
isomorphic to the specification machine. However, even for
medium size machines it is too long to be practical (12) while
for EFSMs hundreds of thousands of states (configurations)

current_state SETUP
input ACK_TIMER_EXPIRED
predicate S_FLAG � 1
output CONNECT_CONFIRM
action P_FLAG :� 0; REMOTE_BUSY :� 0
next_state NORMAL are typical and it is virtually impossible to apply a checking

sequence. A commonly used heuristic procedure in practice isIn state SETUP and upon input ACK_TIMER_EXPIRED, if vari-
to try to make sure that each transition in the specificationable S_FLAG has value 1, then the machine outputs
EFSM is executed at least once.CONNECT_CONFIRM, sets variables P_FLAG and REMOTE_BUSY

to 0, and moves to state NORMAL.
To model this and other protocols, including other ISO Definition 4. A complete test set for an EFSM is a set of test

sequences such that each transition is tested at least once.standards and complicated systems such as 5ESS (Lucent No.
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Given the succinct representation of EFSMs, one might is associated with a subset of colors from C. Each transition
in the EFSM corresponds to a distinct color in C and mayimagine that it is an easy problem. As a matter of fact, even

an apparently easier problem, the reachability problem, is have multiple appearances in G. We consider a more general
case here; each node and edge have a set of colors from C. Ahard where we want to determine if a control state is reach-

able from the initial state. Specifically, it is undecidable if the path from the source to sink is called a test.
We are interested in a set of tests that cover all the colors;variable domains are infinite and PSPACE-complete oth-

erwise. they are not necessarily the conventional covering paths that
cover all the edges. Formally, a complete test set covers allTo find a complete test set, we first construct a reachability

graph G, which consists of all the configurations and transi- the colors in C. The path (test) length makes little difference
and we are interested in minimizing the number of paths. Wetions that are reachable from the initial configuration. We ob-

tain a directed graph where the nodes and edges are the shrink each strongly connected component (13,14) into a node,
which contains all the colors of the nodes and edges in thereachable configurations and transitions, respectively. Obvi-

ously, a control state may have multiple appearances in the component. The problem then is reduced to that on a directed
acyclic graph (DAG) (14). From now on, unless otherwisenodes (along with different variable values) and each transi-

tion may appear many times as edges in the reachability stated, we assume that the graph G � �V, E� is a DAG. We
now describe different test generation techniques, which cor-graph. In this reachability graph, any path from the initial

node (configuration) corresponds to a feasible path (test se- respond to path construction problems on graphs. For details
see (28).quence) in the EFSM, since there are no predicate or action

restrictions anymore. Therefore, a set of such paths in G,
which exercises each transition at least once, provides a com- Minimal Complete Test Set
plete test set for the EFSM. We thus reduce the testing prob-

We need a complete test set—a set of paths from the initiallem to a graph path covering problem.
node to the sink node that cover all the colors. On the otherThe construction of the reachability graph is often a formi-
hand, in the feature testing of communication systems, set-dable task; it has the well-known state explosion problem due
ting up and running each test is time-consuming and eachto the large number of possible combinations of the control
test is costly to experiment. Consequently, we want to mini-states and variable values. One approach to this problem is
mize the number of tests. Therefore, our goal is: find a com-to apply an on-line minimization algorithm to construct an
plete test set of minimum cardinality. However, it turns outequivalent graph Gmin, which collapses all configurations of
that the problem is NP-hard. We discuss a greedy methodthe reachability graph that are equivalent in terms of the
test.transitions that they can perform. Such a minimized graph

can be constructed efficiently directly from the EFSM (30);
Maximal Color PathsGmin could be much smaller than G and can be used in its

place for generating test sequences. Furthermore, for the test- We need to restrict ourselves to approximation algorithms.
ing purpose, we do not need a complete reachability graph; Similar to the standard approximation algorithm for Set
we only need a subgraph that contains all the transitions so Cover (32,33), we use the following procedure. We first find a
that a set of covering paths still provides a complete test set path (test) that covers a maximum number of colors and de-
(31). We shall not digress to this topic further. From now on lete the covered colors from C. We then repeat the same pro-
we assume that we have a graph G that contains all the tran- cess until all the colors have been covered. Thus, we have the
sitions of a given EFSM and we want to construct a complete following problem: find a test that covers the maximum num-
test set of small size. For clarity, we assume that each path ber of colors. This problem is also NP-hard.
(test sequence) is from the initial node to a sink node, which In view of the NP-hardness of the problem, we have to con-
is a configuration with the initial control state. tent ourselves with approximation algorithms again. We now

To summarize, we have a directed graph with an initial describe some heuristic methods.
node and a sink node. The nodes are configurations, which
correspond to combinations of control states and variable val-

Longest Path
ues, and a state may appear in more than one node. The
edges correspond to transitions, and a same transition may Suppose that an edge (node) has c uncovered colors so far. We

assign a weight c to that edge (node), and we have a weightedappear many times in the graph as edges between different
configurations. We want to find a complete test set: a set of graph. Each path has an associated weight, which is the sum

of the weights of its edges and nodes. We find a longest (maxi-paths from the initial node to the sink node such that each
mum weight) path from the source to sink; it is possible sincetransition in the original EFSM is covered; specifically,
the graph is a DAG. This may not provide a maximal coloramong the multiple appearances of a transition, it is suffi-
test due to the multiple appearances of colors on a path. How-cient to cover any one of them. Therefore, the test generation
ever, if there are no multiple appearances of colors on theis reduced to covering path problems on graphs.
path, then it is indeed a maximal color test.

There are known efficient ways of finding a longest path inTest Sequence Generation
a DAG. We can first topologically sort the nodes and then

Formally, we have a directed graph G � �V, E� with n � �V� compute the longest paths from each node to the sink in the
nodes, m � �E� edges, a source node s of in-degree 0, and a reverse topological order (14). Specifically, suppose that we
sink node t of out-degree 0. All edges are reachable from the are processing node u and examine all its outgoing edges (u,
source node and the sink node is reachable from all edges. v), where v is a node of higher topological ordering and has

its longest path to the sink computed. Suppose that (u, v) hasThere is a set C of k � �C� distinct colors. Each node and edge
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weight wu,v and that a longest path from v to sink has weight mation within factor r for maximal color paths will yield a
test set of size at most N*r log k. Conversely, there are in-wv. Then a path from u to v and then following a longest path

from v to the sink has a weight wu,v � wv. We can easily com- stances in which even if we could find repeatedly paths that
cover the maximum number of colors, the resulting test setpare all the outgoing edges from u and choose a longest path

from u to the sink node. contains N* loge k test (where loge denotes the natural loga-
rithm).The time and space needed is O(m) where m is the number

of edges. How does this heuristic method compare with the Moreover, the negative results on the approximation of the
Set Cover problem (34) imply that we cannot do better thanoptimal solution? An obvious criterion is the coverage ratio:

the number of maximal number of colors on a path over the a logarithmic factor in polynomial time. That is, for any poly-
nomial time algorithm which constructs a complete test set ofnumber of colors covered by the algorithm. In the worst case

it can be k, the number of uncovered colors. cardinality N, there are cases such that N � �(N* log k).

Paths with a Constant Bound on the Number of Colors CoveredA Greedy Heuristic

In spite of the negative results in the worst case, the longestWe now discuss a greedy heuristic procedure. It takes linear
time and works well in practice. We again topologically sort path and greedy heuristic procedures were applied to real sys-

tems (28) and proved to be surprisingly efficient; a few teststhe nodes and compute a desired path from each node to the
sink in a reverse topological order as follows. Instead of keep- cover a large number of colors and, afterwards, each test cov-

ers a very small number of colors. A typical situation is thating the color sets of all the paths from a node to the sink, we
only keep the one with a supposedly ‘‘maximum number’’ of the first 20% tests cover more than 70% of the colors. After-

wards, 80% of the tests cover the remaining 30% of the colors,colors. Specifically, when we process a node u and consider all
the outgoing edges (u, v) where v has a higher topological or- and each test covers one to three colors. Consequently, the

costly part of the test generation is the second part. Underder and has been processed, we take the union of the colors
of node u, edge (u, v), and node v. We compare the resulting these circumstances, exact procedures for either maximal

color paths or minimal complete test sets are needed to re-color sets from all the outgoing edges from u and keep one
with the largest cardinality. This procedure is well-defined duce the number of tests as much as possible. The question

is: can we obtain more efficient algorithms if we know thatsince G is a DAG. However, it may not provide a maximum
color coverage test; when we choose the outgoing edge from there is a bound on the maximum number of colors on any

path that is a small constant c 
 k. We consider the follow-u, we do not incorporate information of the colors from the
source to u. ing problems.

Since we take unions of and compare color sets of no more
than k colors, the time and space complexity of this approach Suppose that a maximum color test covers no more than
is O(km), where k is the number of uncovered colors and m is c 
 k colors where c is a small constant. (1) Find a minimum
the number of edges. Although the second method seems to complete test set; and (2) Find a maximum color test.
be better in many cases, its worst-case coverage ratio is also
�(k). First, let us discuss Problem 1. We can find the different

color sets of all the source-to-sink paths, in time that depends
A Transitive Greedy Heuristic on the number of the color sets (instead of the potentially

much larger number of paths) by a bottom-up processing ofWe now discuss an improved procedure. This is similar to the
the DAG in reverse topological order. At each node we com-greedy heuristic, except that when we process a node u, we
pute a family Fu of the color sets of the paths that start at u.do not consider only its immediate successors but all its de-
At the source node we need to solve the Set Cover problem toscendants. Specifically, for each outgoing edge (u v) and de-
find a subset of minimum cardinality that covers all the kscendant v� of v (possibly v � v�), we take the union of the
colors. The complexity varies with the constant c. For c � 1,colors of node u, edge (u, v), and node v�. We compare the
the problem is trivial: Since a color set (path) contains at mostresulting color sets from all the outgoing edges from u and
one color, we can simply take k distinct color sets, which pro-descendants v� and keep one with the largest cardinality.
vides a minimum complete test set. On the other hand, atThe time complexity of this algorithm is O(knm), since we
each node we can use a bit map to record the color sets andmay examine on the order of n descendants when we process
it takes time O(k) to process each outgoing edge from a node.a node. The worst-case coverage ratio of this method is some-
Therefore, the total time and space complexity is O(km). Forwhat better: O(�k).
c � 2, problem 1 can still be solved in polynomial time using
graph matching techniques. For c � 3, the problem is NP-

More on Complexity of Test Generation
hard.

Problem 2 can be solved in time and space polynomial inWe now come back to the original minimum complete test set
problem. Suppose that we successfully find a maximum color the number of colors k and the size of the graph. The basic

ideas are as follows. If all we want to do is to find a path thattest repeatedly until we obtain a complete test set in N steps
while the minimum complete test sets contains N* tests. How covers c colors (rather than all paths), then in the bottom-up

computation we do not need to keep all the color sets but onlyfar is N from N*? Is there a better algorithm? It follows from
the results on the Set Cover problem that N � �(N* log k) a sufficient number of them. That is, at each node u, instead

of the complete family Fu of color sets of the paths starting at(32,33). That is, on the one hand, for any instance, if we can
find repeatedly maximum color tests, then the complete test u, we need keep only a subfamily Lu such that if the DAG

contains a path through u that covers c colors, then there isset will contain at most N* log k tests; moreover, an approxi-
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