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COMPUTER COMMUNICATIONS SOFTWARE

Computer communications software is becoming increasingly
important as a result of the increasing deployment and use of
computer networks. Stringent requirements of real-time pro-
cessing, efficiency, reliability, and interoperability make de-
sign and development of such software extremely challenging.
The development typically starts by identifying the services to
be provided. A service is defined by its functionality and its
interface. The functionality may range from low-level tasks, Network hardware
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such as retransmission of lost messages, to high-level applica-
Figure 1. Illustration of message flow in a layered system.tions, such as electronic mail. The interface describes the sup-

ported operations and their parameters. The development
continues with the design of a protocol, which describes the
messages that will be exchanged in an implementation of the pushed onto the header stack by layer i in the sender’s proto-

col stack are popped off the header stack by layer i in theservice; the protocol specifies message format (e.g., message
length, division into fields, and data encoding), timing (e.g., receiver’s protocol stack.

The diversity of network hardware and of the require-minimum and maximum intervals between messages in cer-
tain situations), and semantics (i.e., the meaning of each mes- ments on communication software for different applications

has led to the development of a plethora of communicationsage). Finally, an implementation of the service is con-
structed. Service definitions are often sufficiently flexible to services and protocols, both public and proprietary. It is help-

ful to classify them according to the following fundamentalallow many different implementations of the service using the
same protocol. This allows each computer in a network to use characteristics. Some of these characteristics apply to individ-

ual operations in a service rather than an entire service; dif-an implementation optimized for its particular architecture.
Since the implementations all follow the same protocol, they ferent operations in a service may have different character-

istics.interact correctly to provide the service.
Communication is possible only when all participants fol-

low the same protocol, so standards are essential. A protocol Symmetry. Symmetric services provide communication be-
tween peers. For example, message delivery services are sym-architecture is a collection of protocols designed to be used

together. The International Organization for Standardization metric, that is, they allow any process to send a message to
any other process. In asymmetric services, the communicating(ISO) issued a standard for an influential—though not widely

used—protocol architecture, called the Open Systems Inter- parties have different roles. For example, services that sup-
port interaction between a client (such as a user process) andconnection (OSI) Reference Model (1). The Internet Activities

Board issues standards for the protocols used on the Internet; a server (such as a file server) are typically asymmetric. Sym-
metry of a service is determined primarily by the intrinsiccollectively these form the Internet Architecture or TCP/IP

Architecture. nature of the service.
Both of the standards just mentioned (and most other pro-

tocol standards) incorporate layering, a classic design tech- Synchrony. In a synchronous (or blocking) service, invoking
an operation causes the caller to block until the requestednique. To help manage the complexity of writing, testing, and

maintaining such software, the overall functionality is di- communication (and associated processing) is completed. For
example, a remote procedure call (RPC) typically causes thevided into several services, and the software is divided into

layers, each implementing one or more services. Figure 1 il- caller to block until a result is received from the remote site;
in this case, the RPC operation is synchronous. In an asyn-lustrates the layered structure. A collection of layers is called

a protocol stack (or stack, for short). The basic principle is that chronous (or nonblocking) service, the caller is able to con-
tinue with other tasks processing while the request is actuallya message mi sent by layer i in the sender’s stack is delivered

to layer i in the receiver’s stack (2). A layer may modify the performed. For example, a request to send a message might
allow the sender to continue before the message is actuallybody of the message; for example, layer i in the sender’s stack

encrypts the body for secrecy, and layer i in the receiver’s transmitted on the network. Synchrony is determined partly
by the nature of the service but partly by other considera-stack decrypts it. A layer may also insert information into

the message header; for example, layer i in the sender’s stack tions. For example, although RPC operations are typically
synchronous (and might seem inherently so), asynchronouscreates a header field containing a sequence number, and

layer i in the receiver’s stack uses this information to detect RPC operations are possible: the caller continues immediately
with other tasks and is notified later when the result (returnmissing messages. Since each layer can add its own header

fields to a message, the headers also form a stack. Headers value) of the RPC is available. Typically, such notifications
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are provided via up-calls. An up-call is when a service calls a does not guarantee this, because the sender might crash after
routine in the application; in contrast, a down-call is when an some of the sends.
application invokes an operation (such as asynchronous RPC)
provided by the service. For example, in the down-call invok-

Quality of Service. Quality of service (QoS) refers to the per-ing an asynchronous RPC, the application supplies the name
formance guarantees provided by a communication service.of a procedure P; when the return value r of the RPC is avail-
Naturally, performance of a communication service dependsable, the service invokes P with argument r, typically in a
on both the communication software and the underlying net-new thread. This approach can be used to construct asynchro-
work. A QoS contract specifies the load to be offered by thenous versions of most synchronous services. The choice be-
application and the performance to be supplied by the service.tween the synchronous and asynchronous versions is typically
The load to be offered is characterized, for example, by thebased on performance and ease of programming [(3), chapter
minimum and average intervals between requests and the2]. The synchronous version avoids the overhead of creating
size of requests (e.g., the size of messages being sent). Typicala thread for the up-call but may require more threads in the

application to achieve the same degree of concurrency as the performance metrics for communication services include
asynchronous version. throughput, the rate (e.g., in megabits/s) at which data are

conveyed, and delay, the amount of time from when a mes-
Reliability. A reliable service guarantees that each re- sage is sent until it is received. For example, for a specified

quested operation (e.g., transmitting a message) is performed application load, a messaging service might guarantee an av-
successfully, even in the presence of specified numbers or erage delay of 2 ms and a maximum delay of 10 ms. Reliabil-
rates of specified types of failures, such as message loss. If ity metrics, such as the maximum fraction of sent messages
failures of the network or other computers prevent a reliable that are lost, are sometimes included in QoS contracts.
service from performing a requested operation, the service de-
tects the problem and notifies the requester. An unreliable

Connections. A connection-oriented service works like theservice does not include mechanisms for detecting, overcom-
ing, or reporting failures. Reliability is not a Boolean attri- telephone system: before two processes on different computers
bute; there is a spectrum of possibilities, characterized by the can use the service to communicate, an initialization step is
degree of service degradation resulting from different types needed to construct a logical connection between those pro-
and rates of failures. Reliable services have more overhead cesses. When those processes finish communicating, the con-
than unreliable services. For example, an unreliable message nection between them is released, analogous to what happens
service can send a message and then forget about it. A reli- when someone hangs up a telephone. In a connectionless ser-
able message service that tolerates message loss needs to vice, each communication request is handled independently of
store a copy of the message at the sending machine until the other requests: any two processes can communicate at any
destination confirms that the message has been received (or time, without an initialization step. One benefit of connection-
the sending application has been notified that delivery is im- oriented communication is that successful connection estab-
possible); this may incur overhead from copying, buffer man- lishment assures each party that the other party is alive and
agement, and sending and receiving acknowledgments. reachable over the network. More importantly, connection es-
Whether this cost is worthwhile depends on the application. tablishment provides an opportunity for the application pro-
Many communication packages provide both reliable and un- cesses and the communication service to negotiate a QoS con-
reliable versions of services, leaving the choice to the appli- tract and for the communication service to reserve resources
cation. so that the connection will provide the agreed QoS. In some

protocol architectures, such as the asynchronous transfer
Number of Destinations. A one-to-one communication ser- mode (ATM) protocol architecture, connection establishment

vice provides communication from a single source to a single
involves determining and fixing a path through the networkdestination in a single operation. A one-to-many communica-
connecting the two communicating parties. That path may in-tion service provides communication from a single source to
volve any number of intermediate switches or computers andmultiple destinations in a single operation. Sending a single
will be used for all messages sent along the connection. Whenmessage to all machines on a certain network is called broad-
the connection is established, the intermediate nodes on thecasting. Sending a single message to a selected set of destina-
path can also reserve resources for the connection; thus suchtions is called multicasting. For example, multicast is useful
systems are better suited to providing QoS guarantees. Also,when a group of processes on different computers maintain
repeated use of this path can provide a considerable perfor-replicas of files or other data; replication enhances availabil-
mance benefit, compared with recomputing the path for eachity and allows concurrent processing of read-only operations.
message. Reuse of paths is facilitated by use of connectionA multicast may differ in two important ways from a se-
identifiers. A connection identifier is selected when the con-quence of one-to-one send operations; the same applies to
nection is established and is included in the header of eachbroadcast. First, a multicast can often be implemented more
message sent along the connection. This identifier is used byefficiently, especially if the underlying network hardware
intermediate nodes as an index for efficient table lookup ofsupports broadcast. Second, a multicast may provide stronger
the next node in the path for that connection. Another benefitreliability guarantees. For example, a multicast might guar-
of a connection identifier is that it indicates a message’s desti-antee that if any destination receives a message, then all des-
nation and typically is shorter than the destination’s globallytinations that do not crash also receive that message; this is
unique address; with connectionless communication, eachachieved by having the destinations relay the message to each

other. A sequence of one-to-one sends (even reliable ones) message contains the destination’s globally unique address.
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CORE FUNCTIONALITY AND ternet Assigned Number Authority) to each local network in
the Internet; the administrators of that local network assignIMPLEMENTATION TECHNIQUES
suffixes to particular connections to that network. (3) An IP
address is translated into a hardware address; this is calledThis section describes the core functionality that is present in

almost all general-purpose communication software and address resolution. A simple and widely applicable approach
to address resolution is table lookup, using direct indexing orsketches common implementation techniques.
hashing. The table lookup may be done by the sender itself
or by a designated server. In networks that allow hardwareAddressing and Routing
addresses to be assigned by the local administrator, hardware

The three most important questions to ask about an ad- addresses can be computed and assigned as some function of
dressing scheme are: (1) What kind of entity is identified by the protocol address. On broadcast networks, another possi-
an address? (2) How are addresses assigned? (3) Given an ad- bility is to broadcast a query containing the protocol address
dress, how is the entity with that address located (in order to in question; if that address belongs to a machine on the local
send a message to it)? A single protocol architecture may in- network, that machine sends a reply containing its hardware
volve multiple kinds of addresses. It is common for different address. For efficiency, the results of such queries are cached.
kinds of addresses to be used at different levels. Thus some This last approach (broadcasting plus caching) is commonly
layers accept requests containing one kind of address and pro- used for IP address resolution in Ethernets.
duce requests containing a different kind of address. Resolving a protocol address into a hardware address is

The lowest layer of a protocol architecture must produce useful only if the protocol address refers to an entity on the
requests containing hardware addresses, that is, addresses same local network; otherwise, the hardware address is not
understood by the underlying network hardware. A network particularly useful, because a message cannot be addressed
interface is hardware (usually located on a card in a com- directly to it. A message is sent to a nonlocal protocol address
puter) that implements a connection between a computer and by repeatedly forwarding the message along a sequence of
a network. For example, in IEEE 802.3 local-area networks machines, each connected to two or more local networks, such
(Ethernets), each network interface stores a unique identifier that the sequence forms a path from the sender to the final
assigned by the manufacturer; this identifier is used as an destination. The problem of finding such a path is called rout-
address by the lowest layer of the software. So, for Ethernet, ing. In networks with irregular topologies, routing is usually
the answers to the above questions are: (1) A hardware ad- done by table lookup; for example, in the Internet, lookup of
dress identifies a network interface; (2) Hardware addresses the prefix part of a destination IP address yields the IP ad-
are assigned by the equipment manufacturer, under the con- dress of the next machine in a path to that destination. Typi-
trol of IEEE to ensure that addresses are unique; (3) Within cally, the routing table indicates a default router, to which
an Ethernet, a message can be sent to a given hardware ad- messages are sent when there is no explicit entry for the pre-
dress simply by transmitting the message, with a header con- fix of the destination address.
taining that destination address, on the Ethernet. For modularity, the lowest layer that introduces protocol

Using hardware addresses in higher layers of the software addresses should completely hide hardware addresses from
would be problematic. There are two fundamental (and re- higher layers, making those layers more hardware-indepen-
lated) reasons for introducing higher-level kinds of addresses, dent [(2), section 15.15]. In the Internet Architecture, IP ad-
which are sometimes called protocol addresses or virtual ad- dresses are introduced by the layer immediately below the IP
dresses. One is to provide the ability to address entities (such layer; that layer is called the network access layer, network
as processes or user accounts) that do not correspond directly interface layer, or host-to-network layer.
to hardware devices. The other reason is to achieve indepen- Domain names are a higher-level kind of protocol address
dence, that is, to make an entity’s address independent of de- in the Internet Architecture. There are two main reasons for
tails of the system configuration. This ensures that changes introducing domain names. One is independence: domain
to those configuration details do not affect an entity’s address. names are more independent of network topology than IP ad-
This is an example of the general principle of modularity, dresses. An IP address is tied to a particular local network; if
namely, that the interface to an object (entity) should not re- a machine is moved to a different (e.g., faster) local network,
veal implementation details. To make these points more con- which corresponds to a different IP address prefix, then the
crete, the different kinds of addresses in the Internet Archi- machine’s IP address must change. In contrast, the domain
tecture will be briefly discussed. name of that machine could remain unchanged. The second

The IP address is the lowest-level kind of protocol address main reason for introducing domain names is that IP ad-
in the Internet Architecture. IP addresses are independent of dresses are binary (for efficiency) and thus are hard for users
the type of underlying network hardware (Ethernet, token to remember and enter; domain names are easier to remem-
ring, ATM, etc.). This is essential for constructing heteroge- ber and enter because they are hierarchical and textual. For
neous networks like the Internet. Also, hardware addresses example, bone.cs.indiana.edu is a domain name; the dots sep-
in some types of networks (such as token ring) are not glob- arate the name into segments that reflect the hierarchical
ally unique; IP addresses are globally unique. IP addresses structure. A domain name, like an IP address, identifies a
can be characterized by answering the three questions above. connection between a computer and a network. Assignment
(1) An IP address identifies a connection between a computer of domain names is based on the hierarchical structure of the
and a network (note that the IP address can remain the same names. For example, an authority associated with .edu as-
even if the network interface implementing that connection is signs indiana.edu to Indiana University; an authority at Indi-
changed). (2) An IP address has two parts: a prefix and a suf- ana University assigns cs.indiana.edu to the Computer Sci-

ence Department; and so on. A domain name is resolvedfix. A prefix is assigned by a central authority (e.g., the In-
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(translated) into an IP address by the Domain Name System greatly reduces the throughput. So, the restriction on the
sender is relaxed, allowing it to send multiple messages be-(DNS); DNS is based on table lookups by a hierarchy of

servers, corresponding to the hierarchical structure of do- fore checking whether the receiver is ready to receive more.
This technique is called sliding-window flow control. The win-main names.

At the application level, the goal of communication is often dow size w is the maximum number of messages that can be
in transit simultaneously. The sender sends the (i � w)thto access a service provided by a process on a different ma-

chine. A domain name is not suitable for identifying a service, message only after it has received some indication that the
receiver has already received the ith message. The namebecause a single machine with a single network connection

might run several processes offering different services. This ‘‘sliding window’’ comes from the mental image of a window
of width w sliding forward along the stream of messages tomotivates the introduction of a new kind of address. It is de-

sirable for the address of a service to be independent of the be sent. The window size is determined mainly by the amount
of buffer space available at the receiver. In connection-ori-machine providing the service; otherwise, if a service is

moved between machines for the purpose of fault-tolerance ented communication, the window size is typically determined
as part of connection establishment.(e.g., because the machine that usually provides the service

crashed) or load-balancing, its address must change. The In- The implementation of flow control in a particular layer of
a protocol architecture is affected by whether the messageternet Architecture does not directly support machine-inde-

pendent addresses, though some experimental architectures, service provided by the lower layers is reliable. Implementa-
tions of reliable delivery and flow control both involve ac-such as Amoeba (a research system), do (3). Consequently, the

(machine-dependent) address for a service can be constructed knowledgments, so their implementations are combined in
some protocol architectures, such as TCP/IP. Combining theirsimply by concatenating the domain name (or IP address) of

a machine with an identifier—called a port—that identifies implementations has another benefit, discussed in the next
subsection. (In short, the window size provides a bound onthat service on that machine. For example, on UNIX systems,

the DNS server conventionally uses port 53; thus the address the number of messages stored for possible retransmission.)
of the DNS server on ns.indiana.edu is ns.indiana.edu:53.

Only a few basic services (like DNS) have ports that are Reliable Delivery
fixed by convention. For other services, the port corresonding

In reliable services, different techniques are used to cope withto a particular service is looked up in a system-specific table.
different kinds of errors. Message corruption is usually han-A directory server accepts requests containing the textual
dled using error-detecting codes (EDCs), which enable the re-name of a service (e.g., ‘‘time-of-day’’) and returns the corre-
cipient to determine with high probability whether a messagesponding port and, if appropriate, the domain name (or IP
has been corrupted by random errors during transmission.address) of a machine offering that service. The directory ser-
For efficiency, error-detecting codes are usually implementedvice itself is a basic service with a fixed port. In systems with
in hardware. If an error is detected, the error-detecting hard-such directory servers, these textual names for services con-
ware simply reports the problem to the communication soft-stitute a new machine-independent kind of address, though
ware. Typically, the net effect is the same as if the corruptedthey are not part of the Internet Architecture per se.
message had been lost. Error-correcting codes can also be
used, but for most communication media (except perhapsFragmentation and Reassembly
wireless) the error rate is sufficiently low that the additional

Each type of network hardware has a maximum transmission overhead of error-correcting codes is not worthwhile.
unit (MTU), which is the largest amount of data that can be Message loss is handled by detecting that a message has
conveyed in a single transmission. A layer in the protocol been lost and then retransmitting it. There are two basic ap-
stack can hide this restriction from higher layers by per- proaches to detecting message loss: (1) positive acknowledg-
forming fragmentation and reassembly, that is, by splitting ment and (2) negative acknowledgment. In the positive ac-
large messages into smaller pieces for transmission, and reas- knowledgment approach, on receiving a message, the
sembling them into the original message at the receiver. recipient sends an acknowledgment. If the sender does not

receive an acknowledgment within the expected time interval,
Flow Control it times out and resends the message. Note that a message

might be resent merely because the acknowledgment is lost;Differences in hardware speed and operating load between a
thus, on receiving a message that it received before, the recip-sender and receiver may cause data overrun, in which data
ient just resends the acknowledgment. Including a sequencearrive at the receiver faster than the receiver can handle,
number (modulo some fixed quantity) in each message allowscausing the receiver to drop data. The receiver can try to keep
efficient detection of duplicates. The negative acknowledg-up with the sender by simply buffering the incoming data
ment approach also uses sequence numbers (modulo some(and processing later), but data overrun will still occur if the
fixed quantity). If the recipient observes a gap in the sequencereceiver runs out of buffer space. Flow control is the problem
numbers on received messages—for example, if it receives aof preventing data overrun. Note that flow control can be per-
message numbered 7 immediately after receiving a messageformed in one or more layers in a protocol architecture. In the
numbered 5—then it sends a negative acknowledgment to thefollowing discussion, ‘‘message’’ refers to the unit of transmis-
sender, requesting retransmission of the missing message(s).sion (e.g., packet or frame) at the layer being considered.
When the sender finishes transmitting, no gap will be de-The simplest flow-control technique is stop and wait. After
tected even if the last few messages are lost. Similarly, asending each message, the sender waits for the receiver to
pause in transmission can delay detection of message loss. Tosend an acknowledgment indicating that it is ready to receive

the next message. This technique is easy to implement but overcome these problems, if the receiver does not receive a
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message from a sender for some period of time, it times out performance. If a message gets corrupted, the corruption is
detected immediately, and the previous node in the path re-and sends a message to the sender, specifying the sequence

number of the last message received; if any messages were transmits the message. If EDCs were not used on a hop-by-
hop basis, then the corrupted message would be forwarded tolost, the sender retransmits them. Negative acknowledg-

ments are typically more efficient than positive acknowledg- the final destination before the corruption is detected, and
then the message would have to be retransmitted along thements, though also more complicated to implement.

A potential problem with negative acknowledgment entire path from source to destination. A similar argument
can be made for performing retransmission on a hop-by-hopschemes is that, if a continuous stream of messages are sent

and no messages are lost, the sender will not receive any feed- basis as well. However, for most systems that argument does
not hold up quantitatively, because the frequency of messageback from the receiver, so it will not know when to discard

copies of old messages. Combining the implementation of reli- loss is so low relative to the overhead of a hop-by-hop retrans-
mission mechanism that the savings would be outweighed byable delivery with sliding-window flow control, which forces

an acknowledgment to be sent at least after every wth mes- the overhead.
sage received, overcomes this problem: the sender needs to
store copies of at most the last w messages, where w is the Congestion Control
window size.

Congestion occurs when an intermediate node in a route re-In situations where message delay is predictable (i.e., has
ceives data faster than it can forward the data to the nextlow variance)—for example, communication within a local-
node in the route. Congestion can occur even if all of the com-area network—it is reasonable to use fixed values for the
puters and links operate at the same speed. For example, if atime-outs that control retransmission. In situations where
node is receiving packets with the same destination from twomessage delay is less predictable—for example, communica-
different senders on two different links, then the maximumtion over the Internet—adaptive time-outs are much more ef-
rate at which the node can forward those packets to the desti-fective. A sender maintains an estimate of the current round-
nation is only half of the maximum rate at which the nodetrip delay to the receiver, by recording the time at which it
can receive those packets. When the node’s buffers are full, itsends each message to which it expects a reply, and, when
will be forced to drop packets. Even if the node has large buff-the reply arrives, computing the round-trip delay for that
ers and does not drop packets, the packets will experiencemessage/reply and incorporating it into a weighted average.
increasing delays, as they remain buffered for increasinglyTo allow the time-out value to adapt quickly to changes in the
long times. If reliable message delivery is involved, then theround-trip delay, the sender can also maintain an estimate of
delays or message loss due to congestion provoke retransmis-the variance in the round-trip time and compute the retrans-
sions, which can increase the rate at which packets are beingmission time-out as a linear combination of the weighted av-
sent and thereby cause worse congestion. Furthermore, if aerage and the estimated variance (4). This approach is used
congested node is dropping packets instead of storing and ac-in most implementations of TCP.
knowledging them, then the node sending those packets can-Retransmission is effective against transient problems, but
not release the buffers containing them, and this might forceadditional mechanisms are needed to cope with longer-term
that node to drop incoming packets, thereby causing conges-network problems or computer crashes. If an operation has
tion to spread. Thus, it is important for a network to detectnot succeeded after a certain number of retries, a reliable ser-
and react to congestion quickly, or better, to prevent conges-vice typically aborts the operation and reports this to the ap-
tion. This is the problem of congestion control.plication. If the service is connection-oriented, this typically

The likelihood of congestion can be reduced by careful de-has the effect of closing the relevant connection.
sign of the entire protocol architecture, including retransmis-Where should the layers that provide reliability (using
sion time-outs, window size, routing algorithm, and so forth.EDCs and retransmission) be located in a protocol architec-
Limiting the rate at which packets are injected into the net-ture? A particularly important issue is whether to place them
work can also help prevent congestion. Two techniques forabove or below the layer that performs routing. If they are
this are admission control and traffic shaping [(6), sectionplaced below the routing layer, then reliability is imple-
5.3]. Admission control is used with connection-oriented com-mented on a ‘‘hop-by-hop’’ (link-by-link) basis; if they are
munication; if the network is heavily loaded, the admissionplaced above it, then reliability is implemented on an ‘‘end-
control mechanism will refuse requests to establish new con-to-end’’ basis. First consider retransmission. If retransmission
nections. Traffic shaping is based on the observation thatis done hop-by-hop, then there is still a small chance that
bursty communication can cause congestion, even if smoothmessages get lost, for example, if a software bug causes an
communication with the same average throughput would not.intermediate node to lose a message after sending an ac-
When an application sends a burst of messages, a trafficknowledgment for it. (In a wide-area network such as the In-
shaping algorithm may buffer some of the messages at theternet, the two communicating parties might know nothing
sender and inject them gradually into the network.about the operating systems and protocol implementations

The above techniques do not completely eliminate conges-being run in the intermediate nodes, so the possibility of bugs
tion, so techniques for detecting and reducing congestion areshould not be dismissed lightly.) Thus, performing retrans-
also needed. One approach to detecting congestion is for eachmission on an end-to-end basis provides a stronger guarantee.
intermediate node to keep track of the number of packetsThis is a classic example of an end-to-end argument (5). Now
dropped due to lack of buffer space. However, there is a re-consider EDCs. An end-to-end argument implies that EDCs
maining problem of how to inform the appropriate senders ofshould be used above the routing layer. This indeed provides
the congestion, so they will reduce their transmission rate.the desired reliability. However, in many systems, it is desir-

able to use EDCs on a hop-by-hop basis as well, to improve This is nontrivial because, once congestion has started, it is
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difficult to ensure that any information gets through the net- If the layer responsible for connection management is above
layers that provide reliable FIFO delivery, then the protocolswork in a timely fashion. A second approach, which has the

benefit of circumventing this problem, is for senders to esti- are reasonably straightforward; otherwise, the connection
management protocol will itself need to implement time-outsmate congestion by detecting packet loss. This is reasonable

because modern network hardware (except wireless) is suffi- and retransmission to cope with message loss [(7), section
17.2].ciently reliable that most packet loss is due to congestion.

With this approach, when a sender detects message delay or Managing connections used for multicasts among groups of
arbitrary size is part of group management, which is dis-loss, it immediately reduces its transmission rate, then grad-

ually increases the rate as long as no further problems occur. cussed below.
If sliding-window flow control is used, the transmission rate
can be adjusted by changing the window size. Configuration and Initialization

The sliding-window technique is remarkable for its utility
Communication software must be configured (initialized) be-

in so many aspects of communication: flow control, reliability,
fore it can be used. Typical configuration parameters for an

and congestion control. Many implementations of TCP use a
IP protocol stack include the IP address of the computer it is

single sliding-window mechanism to deal efficiently with
running on, the IP address of the default router, and the IP

these three issues. One consequence is a lack of modularity
address of a DNS server. A simple way to provide values for

in those implementations. A separate layer could be used to
configuration parameters is to manually create a disk file con-

deal with each of these issues; the resulting system would be
taining them. This approach is brittle and inconvenient: a

more modular but probably less efficient. This example illus-
change in the network configuration requires changing the

trates that in layered software, the division into layers needs
configuration file on each affected computer. This approach is

to be carefully chosen, so that it does not unduly constrain
especially inconvenient for portable computers, which may be

the possible implementations.
attached to several different networks in a day.

The Internet architecture includes several protocols that
Ordered Delivery

help automate configuration of a protocol stack; two of them
will be discussed. The Bootstrap Protocol (BOOTP) enablesMany applications expect messages to be delivered in first-in,

first-out (FIFO) order, that is, in the order that the messages a booting machine to automatically obtain values of several
parameters, including the addresses mentioned above, by re-were sent. Typically, in local networks, communication is

intrinsically FIFO. However, in wide-area networks, it is pos- questing them from a server, which maintains a database of
the necessary information. BOOTP is used on broadcast net-sible (with some routing algorithms) for different messages to

follow different paths from the sender to the receiver; if one works (like Ethernet), so the request is broadcast to all ma-
chines on the local network. The BOOTP server replies; otherpath is slower than another, messages might arrive out-of-

order. machines simply ignore the request. Thus, the booting ma-
chine does not need to know the BOOTP server’s IP addressThe most straightforward approach to ensuring FIFO de-

livery is to tag each message with a sequence number. The or hardware address. However, the request message cannot
contain the sender’s IP address, since the sender does notreceiver stores the sequence number i of the last message de-

livered. If a message with a number other than i � 1, arrives, know it yet, so how does the BOOTP server determine the
destination address for its reply? One option is for the BOOTPthe receiver stores it for later delivery and then continues

waiting for message i � 1. Unbounded sequence numbers are server to broadcast the reply. If the sender is able to include
its hardware address in the request message, then a morerelatively inefficient, so it is desirable to replace with fixed-

size numbers, specifically, with sequence numbers modulo a efficient option is for the server to send the reply directly to
that hardware address. The latter option is interesting be-small fixed value. Justifying this replacement requires addi-

tional information about the system, such as an upper bound cause it violates a modularity principle stated above, namely,
that the network access layer hides hardware addresses fromon message delay or, if messages contain timestamps, an up-

per bound on the difference between the sender’s and receiv- the layers and applications above it. The BOOTP server runs
above that layer (above the UDP layer, in fact), so accordinger’s clocks.
to that modularity principle, it should deal with IP addresses,
not hardware addresses. This illustrates how difficult achiev-Connection Management
ing modularity can be in complex communication software.

Connection management is the problem of establishing and
The Dynamic Host Configuration Protocol (DHCP) is an

terminating connections between pairs of parties in a connec-
extension to BOOTP that allows the server to dynamically

tion-oriented communication service. As mentioned in the be-
allocate IP addresses (in BOOTP, the server only looks up

ginning, in some protocol architectures, such as the ATM pro-
preassigned IP addresses in a table). When a portable com-

tocol architecture, connections are used throughout the
puter is plugged into a local network, the DHCP server auto-

architecture; in such systems, connection establishment in-
matically assigns it an IP address, which it uses for the dura-

volves determining and fixing a path through the network
tion of its connection to that local network.

that will be used for all messages sent along the connection.
In other protocol architectures, connections are used only

at higher levels—in particular, above the routing layer. In THE INTERNET ARCHITECTURE
such systems, only the sender and receiver (not intermediate
nodes) are aware of the connection. This is the case in the As an example of how the core functionality described above

can be organized, the layered structure of the Internet Archi-Internet Architecture, where TCP, a connection-oriented pro-
tocol, is layered over the IP protocol, which is connectionless. tecture will be sketched. No standard explicitly defines this
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structure, but it is reasonable to consider the Internet Archi- of a group communication system are group management and
multicast. Group management supports addition and removaltecture as having five layers, which will be discussed from

bottom to top. of members, allowing a group’s membership to change dy-
namically. Multicast sends a message to all members of aThe physical layer provides the ability to transmit an un-

structured bit stream over a physical link. This layer is often group. Group communication is especially useful for con-
structing fault-tolerant systems (8). Support for fault-toler-implemented in hardware or firmware in the network in-

terface. ance can be integrated into group management and multicast.
This greatly reduces the burden on the application program-The network access layer deals with the organization of

data into blocks called frames and with the synchronization, mer. In such systems, group management includes a mecha-
nism that monitors all members of a group and automaticallyerror control (e.g., checksums), and flow control needed to

transmit frames over a physical link. The format of a frame removes members that are crashed or unreachable. Also, such
systems provide totally ordered atomic multicast. Total order-is dependent on the type of network hardware. This layer also

deals with resolution of IP addresses into hardware ad- ing guarantees that multicast messages are received in the
same order by all members (except members that crash anddresses.

The Internet layer deals with the organization of data into hence do not receive some of the messages). Atomicity guaran-
tees that if any member of the target group receives the mes-blocks called packets and with routing of packets. The format

of a packet is hardware-independent. This layer performs sage, then all members that do not crash also receive the mes-
sage. A variety of distributed algorithms have been developedfragmentation and reassembly when a packet is routed

through a local network whose frame size is smaller than the to enforce these guarantees (9–11).
To illustrate the benefits of group communication, considersize of the packet. In summary, this layer provides unreliable,

unordered (i.e., not necessarily FIFO) transmission of packets a group of servers that provide a directory service. Each
server maintains a copy of the directory; this allows concur-between any two hosts in an internetwork (i.e., a collection of

interconnected local-area networks). rent processing of read-only operations and keeps the direc-
tory available even if some servers fail. Updates to the direc-There are two standard transport layers. Both extend ad-

dresses to contain a port number as well as an IP address. tory are disseminated by multicast to the group. Use of totally
ordered atomic multicast conveniently ensures that after eachThat is essentially all the User Datagram Protocol (UDP)

does. UDP is used for applications for which unreliable unor- update, all noncrashed servers have identical copies of the
directory. Since multicasts are addressed to a group, ratherdered message delivery suffices. The Transmission Control

Protocol (TCP) provides connection-oriented reliable trans- than a specific list of machines, the application does not need
to keep track of the group membership; the group manage-mission of streams of data. Thus, implementations of TCP

must provide connection management, reliability, and or- ment system does that automatically.
The use of group names as addresses is a useful abstrac-dered delivery. For efficiency, most implementations of TCP

are based on a sliding-window mechanism and also deal with tion in many settings. This is the basis of a second class of
applications of group communication, namely, those involvingflow control and congestion control.

Many different protocols can appear in the application publication/subscription communication (8). In this style of
communication, some processes ‘‘publish’’ information associ-layer, including BOOTP and DHCP, which run over UDP, and

protocols that support applications like file transfer or elec- ated with some topic, and all processes that have ‘‘subscribed’’
to that topic receive that information. In group-communica-tronic mail.
tion terms, a group is formed for each topic, and information
is published by multicasting it to the group. Processes sub-

HIGH-LEVEL COMMUNICATION SERVICES
scribe to a topic by joining the corresponding group. For ex-
ample, group communication is well suited to financial trad-

Communication services that provide the ability to send se-
ing applications, because they typically require fault-

quences of messages or streams of data are natural from a
tolerance and involve publication/subscription communica-

bottom-up perspective, since they correspond relatively
tion, with topics corresponding to market sectors or stocks.

closely to the operations provided by the network interface.
From a top-down perspective, there are many applications for

Remote Procedure Callwhich other ‘‘higher-level’’ communication services are more
natural and more convenient. The classic examples of such A remote procedure call (RPC) mechanism allows a process to
services are remote procedure call and distributed shared call a procedure that gets executed on a different computer
memory. More recently, distributed objects and group commu- (12,13). The code needed for communication—namely, code
nication have been receiving increasing attention. for the caller to send the procedure’s arguments to the remote

Each of these communication services is ‘‘higher-level’’ computer, code for the remote computer to receive the argu-
than messaging by virtue of some form of transparency. ments, invoke the procedure, and send the return value back
Transparency means that the communication service hides to the caller, and code for the caller to receive the return
(makes transparent) some aspect of communication or distri- value—is implicit in the procedure call. Thus, communication
bution. Thus, the application can be written more like a cen- is, to some extent, transparent. Normally, the address of the
tralized program; this is typically easier for the programmer. remote machine is not indicated explicitly; instead, a binding

server (also called a directory server; see the above discussion
Group Communication of addressing) is queried to obtain the address of a computer

on which the procedure can be invoked. The most widely usedGroup communication allows a collection of processes—called
a group—to be treated as a single entity. The basic functions RPC standard is Open Network Computing RPC (14), which
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is based on Sun RPC. The remote method invocation (RMI) to a file, because appending is not idempotent. Idempotent
operations have an additional benefit. If a server crashes andfacility of the Java programming language (15) is a form of

RPC with some extensions. RPC is especially well suited to recovers, it may be difficult or impossible to determine what
operations were performed just before the crash. That infor-client–server communication. For example, communication in

the Sun Network File System (NFS) (16) is done by RPC. mation is not needed if operations are idempotent: even if the
server crashed after executing the procedure call and beforeThis, the caller and the remote computer are sometimes re-

ferred to as the client and the server, respectively. sending the reply, it is safe for the client to retransmit the
request and have the recovered server reexecute it. Thus, useRPC hides the tasks of marshalling and unmarshalling

from the application programmer. Marshalling is the task of of idempotent operations helps make server failures transpar-
ent to clients.formatting and arranging data values (such as a procedure’s

arguments or return values) so that they can be sent in a RPC has several limitations. Typically, procedures that
use global variables cannot be called remotely. Similarly, pro-single message; unmarshalling is the task of extracting those

data values from the message. In the simplest case, marshal- cedures that perform input or output (to screen, disk, printer,
etc.) generally produce different effects if called remotely. Inling involves determining the size (in bytes) of each data

value and copying the data values into the message; even this some systems, aliasing among input arguments is not pre-
served when arguments are marshalled. For example, a pro-code is tedious to write by hand when variable-length data,

such as character strings, is involved. More generally, to cedure’s arguments might include an integer x and an integer
array a. The procedure’s return value might depend onallow RPCs between computers with different architectures,

marshalling involves conversion between different data repre- whether x is aliased to some element of a. However, straight-
forward implementations of marshalling would not necessar-sentations. Furthermore, some RPC mechanisms support

passing of linked data structures, such as linked lists or ily preserve such aliasing. Marshalling entire arrays or linked
data structures may be inefficient, especially if the proceduregraphs; efficient marshalling of such data structures is non-

trivial, especially if the data structures may contain cycles. only reads or writes a small fraction of the data. Uninitialized
pointer variables may cause problems when marshallingRPC may be implemented over a connectionless protocol,

like UDP, or a connection-oriented protocol, like TCP. UDP linked data structures. RPC is poorly suited to communica-
tion of continuous streams of data, such as video, and to com-has less overhead, because it does not provide reliability, flow

control, or congestion control. The primary benefit of using munication involving more than two parties. Finally, an RPC
can fail in more ways than a local procedure call; for example,UDP is the decreased overhead—in particular, the decreased

load on the server, because in many client–server systems, an RPC can fail because the remote computer crashed or is
running an incompatible version of the software. A mecha-servers are more heavily loaded than clients (17). For a server

with hundreds or thousands of frequent or infrequent clients, nism is needed to report such errors to the caller, for example,
by introducing new exceptions.the costs of establishing, maintaining, and terminating con-

nections could cause the server to become a bottleneck. The
lack of flow control in UDP is partially compensated by the Distributed Shared Memory
fact that RPC has an intrinsic form of flow control. A caller

RPC takes a specific program construct—namely, procedurewaits for a reply after sending a single RPC request; if the
call—and extends it to operate remotely. Distributed sharedprocedure’s arguments are not too large, this is like a sliding-
memory (DSM) (18) takes two program constructs—namely,window mechanism with a window size of 1. If reliability is
memory read and memory write—and extends them to oper-needed, it may still be possible to exploit the asymmetric na-
ate remotely. Shared memory is attractive because it providesture of RPC to provide reliability with little increase in the
a unifying model for programming different types of concur-load on the server. Specifically, if its acceptable for the server
rent systems: multiple threads in one process, multiple pro-to execute an RPC multiple times, then reliability can be
cesses on one uniprocessor or multiprocessor computer, and—achieved by incorporating a retransmission mechanism only
with DSM—multiple processes on different computers. Forin the client. The server sends replies unreliably; if a reply
collections of peer processes that share data, DSM allows agets lost, the client retransmits the request, causing the
more natural programming style than RPC. Primarily, this isserver to repeat the RPC and resend the reply. Message loss
because DSM hides from the application programmer deci-is infrequent, so the decreased overhead at the server typi-
sions about where data should be stored and when data needcally outweighs the cost of the repeated procedure calls. In
to be transmitted. With RPC, procedure declarations and in-contrast, with a symmetric reliable protocol like TCP, servers
terfaces explicitly indicate what data to send. In contrast, anever execute an RPC twice, but clients and servers both
DSM system automatically transmits and stores data asbuffer and retransmit their outgoing messages. To provide
needed to make it available to all processes.congestion control, a longer time-out can be used for each suc-

Two important dimensions for classifying DSM systemscessive retransmission by the client; this helps clear the con-
are the consistency model and the unit of sharing. The consis-gestion.
tency model specifies when the effect of an update becomesAn RPC can be repeated without harm if it is idempotent,
visible on other computers, that is, when memory reads onthat is, if executing it multiple times has the same effect as
other computers should return the newly written value. Theexecuting it once. All read-only operations are idempotent,
behavior of a centralized memory is characterized by strictand with careful interface design, many services can provide
consistency: any read to a memory location a returns theidempotent update operations as well. For example, the file
value stored by the most recent write to a [(3), chapter 6].access protocol in Sun NFS includes an operation that writes
Implementing strict consistency in a distributed system isdata at a specified offset within a file; this operation is idem-

potent. It does not include an operation that appends data prohibitively expensive. A slightly weaker model is sequential
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consistency: the result of any execution is the same as if the repeatedly writes to one of them, and another computer re-
operations of all processors were executed in some sequential peatedly reads (or writes) the other, then there will be sig-
order, and the operations of each individual processor appears nificant inefficiency as one (or both) copies of the page repeat-
in this sequence in the order specified by its program (19). edly get(s) invalidated. To avoid this problem, some DSM
Intuitively, sequential consistency differs from strict consis- systems take the unit of sharing to be a single shared vari-
tency by allowing a read to return an ‘‘old’’ value if there is able, rather than a page. The page-fault-based implementa-
no way for any process to determine that the returned value tion described above can still be used if each shared variable
is old. Implementing sequential consistency can incur signifi- is put a separate page. Another benefit of variable-based DSM
cant overhead, so a multitude of weaker models have been is that shared variables are explicit in the application pro-
proposed; Tanenbaum provides a good overview [(3), chapter gram, so hints about typical access patterns for each variable
6]. Weaker models incur less overhead but are harder for ap- can be obtained from program analysis or from programmer
plication programmers to use, because weaker models are far- annotations. Based on these hints, the DSM system can in-
ther from providing the illusion of a centralized shared crease efficiency by using different implementations for differ-
memory. ent shared variables. In short, compared to page-based DSM,

The unit of sharing specifies the chunks of data that are variable-based DSM is higher-level and provides more oppor-
necessarily stored and transmitted together. DSM can be tunity for exploiting high-level information about programs. A
viewed as an extension to a traditional virtual-memory sys- logical next step in the same direction is object-based shared
tem, in which invalid pages are fetched from other computers memory, or distributed objects.
instead of from disk. From this perspective, it is natural to
use a page of memory as the unit of sharing, as in (18). This

Shared Objectsallows the DSM implementation to exploit hardware and op-
erating-system support for virtual memory. When a shared In object-oriented programming, an object encapsulates both
page is not available locally, it is marked as invalid in the data and methods, that is, procedures that access the data
process’s page table, so an access to that page causes a page in the object. For example, a stack object includes data (the
fault. The page fault handler requests the page from an ap- sequence of items on the stack) and some methods (e.g., push,
propriate computer (as described below) and blocks the pro- pop, and is-empty?) that access those data. Objects are typed;
cess. When the page arrives, the process is unblocked, with the types are called classes. Objects provide modularity, be-
the program counter pointing to the instruction that caused cause (normally) the data in an object can be accessed only by
the page fault. that object’s methods. The concept of shared objects is a natu-

Enforcing sequential consistency is easy in implementa- ral generalization of the concept of shared variables. In con-
tions where there is always at most one copy of each object. current programming, a major advantage of shared objects
To efficiently support objects that are read concurrently by over shared variables is that common patterns of synchroni-
several computers, most implementations of DSM allow ob- zation, such as mutually exclusive access to an object, can be
jects to be replicated, that is, allow multiple copies to exist. A expressed in declaratively in class definitions and imple-
typical protocol for ensuring sequential consistency in such a

mented by the run-time system of the programming language,
system works as follows: Each copy of a sharing unit (SU) is

thereby reducing the burden on the application programmer.tagged as read-only or read-write. Before writing to a SU, a
Just as objects combine data and methods, shared objectscomputer must acquire the SU in read-write mode. When a

combine aspects of DSM and RPC. A shared object system,computer acquires a SU in read-write mode, all other copies
like a DSM system, hides from the application programmerof that SU are invalidated. The process with the read-write
decisions about where to store and when to transmit objects.copy (or, if there is none, the last process to have such a copy)
If a computer does not have a copy of an object when a methodis called the owner. The owner maintains a list of the comput-
is called, the shared object system can either obtain a localers having read-only copies of the SU. When a computer
copy, as for a shared variable in DSM, or invoke the methodwants a copy of a SU, it sends a request to the owner. When
remotely, like an RPC. The latter is called remote method in-the owner receives a request for a read-only copy, the owner
vocation (RMI). Shared objects can be implemented by com-makes its copy read-only. When the owner receives a request
bining implementation techniques for RPC and DSM. Thisfor a read-write copy, it invalidates its own copy and tells all
approach underlies the shared objects provided by the Orcaother machines with read-only copies to invalidate them;
programming language (20).when those other machines have replied to the invalidation

Most current implementations of distributed object sys-message, the owner grants a read-write copy (and hence own-
tems are simpler (hence, for some access patterns, slightlyership) to the requester. How does a computer find the owner
more efficient, but for some access patterns, much less effi-of a SU? A simple approach is to designate for each SU a
cient) than the DSM-like shared objects described above. Spe-particular computer called its manager. The manager keeps
cifically, most current implementations do not support repli-track of the owner of the SU. Thus, to obtain a copy of a SU,
cation of objects and do not allow the owner of an object toa computer sends a request to the manager, which forwards
change. Consequently, all invocations of the methods of a par-the request to the owner, which replies to the requester.
ticular object are executed on the same computer, regardlessSynchronization constructs, such as semaphores, require
of which computer invoked them. For example, this is thespecial treatment in DSM implementations, to avoid busy-
case for distributed objects in version 1.1 of the Java pro-waiting loops that repeatedly access shared variables; such
gramming language (21). (Objects are sometimes copied, butloops would cause excessive communication.
this is fundamentally different from replication. An update toPage-based DSM suffers from false sharing: if two shared

variables happen to be on the same page, and one computer a copy of an object has no effect on the original or other cop-
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