
COMPUTATIONAL LINGUISTICS 637

COMPUTATIONAL LINGUISTICS

Computational linguistics is concerned with the computer-
based representation, processing, and discovery of informa-
tion associated with human languages. This information en-
compasses such aspects as (1) the sounds used in words; (2)
the structure of words and their formation from prefixes, suf-
fixes, and other word elements; (3) the structure of phrases,
sentences, and texts; (4) the meanings of such linguistic enti-
ties as words, phrases, and sentences; and (5) the use of lan-
guage in context. These five aspects of linguistic information
are related to linguistic research in the areas of (1) phonology,
(2) morphology, (3) syntax, (4) semantics, and (5) pragmatics.
The processing of this linguistic information typically involves
analysis tasks, which use human language as input, and gen-
eration tasks, which produce human language as their out-
put. This ties in with the closely related area known as natu-
ral language processing. While natural language processing
can be viewed as the application of computational techniques
to human language in general, computational linguistics is
more concerned with the computational aspects of linguistic
information. From this perspective, applications of computa-
tional linguistics would intersect with natural language pro-
cessing.

Applications of computational linguistics are seen in such
tasks as (1) machine translation, (2) grammar or style check-
ers, and (3) natural language interfaces to machines. Machine
translation is concerned with the use of computers to trans-
late from one human language to another (1). The degree of
human intervention in this process can vary, so that one can
have (1) fully automatic machine translation of a text, in
which users do not require any knowledge to assist in the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

638 COMPUTATIONAL LINGUISTICS

translation process; (2) human-assisted machine translation, or it can be modifying the action that is taking place, as in
response to the question ‘‘When do you like water?’’ Ambigu-in which user knowledge is applied to help with the transla-

tion; or (3) machine-assisted human translation, in which the ity is also introduced by such words and phrases as pronouns
(e.g., it). Pronoun (pronominal) ambiguity can be seen in thecomputer provides tools (for example, on-line dictionaries,

possible translations of specific phrases) to aid the human sentence ‘‘I like water in the spring when it is cold,’’ in which
‘‘it’’ can correspond to ‘‘water,’’ to ‘‘spring,’’ or could even betranslator. Grammar and style checkers can be viewed as the

next step in a sequence pioneered by spelling checkers. Docu- used in a nonreferring sense, as part of the phrase ‘‘it is.’’ A
grammar that attempts to capture all the information rele-ments can be processed so that unusual constructions can be

flagged either interactively while they are being composed or vant to examples like these will contain a great deal of ambi-
guity, so it is not unusual for a sophisticated grammar to haveoff-line after they have been produced. For instance, the user

can be notified if a sentence is missing a verb or if the subject hundreds and sometimes thousands of possible analyses for
some sentences.and main verb of the sentence are inconsistent in their form.

This requires a system that incorporates linguistic informa-
tion concerning the structure of a language. Natural language Modeling Natural Language
can also be used to access the large amounts of information

Linguistic information needs to be identified and then repre-contained in computer databases and to instruct the com-
sented in a manner that is useful to both a human and aputer how to perform complex tasks. Natural language is ex-
computer. There are a variety of formats that can be used totremely attractive as input and output modes for a computer
represent linguistic information. Some formats are wellsince it allows humans to communicate in a more natural way
suited for the representation of specific kinds of information.with the computer (much as they would with another human).
For example, formats based on first-order logic can be used toIt is also attractive for users who do not want to learn special-
describe information relating to linguistic meaning or seman-ized artificial languages for communicating with machines;
tics, while grammars are typically used to represent struc-for example, natural language can be used in place of data-
tural or syntactic information. A grammar contains rules thatbase query languages (2). Natural language gives users po-
describe the set of sentences that make up a language. Theretentially enormous freedom of expression and can offer kinds
are even some formats in which both syntactic and semantic-of interaction different from graphic user interfaces. Some in-
based information can be described. The format that is usedterfaces make use of speech input and output (3). Typically,
to represent this information is determined by the ‘‘formal-the systems need a short training period for the user so that
ism.’’ Formalisms designed for dealing with the grammar of athe system can adapt and optimize its performance. Some-
language are referred to as ‘‘grammar formalisms.’’ Formal-times, training is not possible so the system must rely on a
isms differ depending on factors such as (1) what set of lan-user-independent strategy.
guages they can represent, (2) how efficiently they can be pro-It is frequently possible to use the same processing tech-
cessed by a machine, (3) how they actually representniques regardless of the choice of human language being pro-
linguistic information, and (4) how easily they can be used bycessed. The amount of linguistic information associated with
a human. The first two factors are reflected in the ‘‘power’’ ofa language is vast, and it is a formidable task to isolate and
the formalism. The choice of formalism frequently depends onencode the information. However, it is possible to create, au-
the type of linguistic phenomena that are being taken intotomatically or semiautomatically, many linguistic data struc-
account and the specific task at hand.tures that can subsequently be used in various applications,

Depending on the grammar formalism used to describe lin-as discussed in Ref. 4. These tasks for the discovery of linguis-
guistic information, there are different computational modelstic information typically make use of collections of examples,
for processing the information. Some of these models allow forexisting resources such as text corpora (containing selected
very efficient processing, while others can require extremelytext from books, articles, etc.) (5), or even human-designed
intensive computation. If a formalism is used that is ex-dictionaries.
tremely powerful in discriminating which sentences are and
are not in a language, then the amount of computation

NATURAL LANGUAGE needed to recognize a sentence can be very great. For formal-
isms that are not discriminating, the amount of computation

Ambiguity needed to recognize a sentence can be relatively small. It thus
comes as no surprise that when powerful formalisms areNatural languages such as English are significantly different
used, it is sometimes necessary to take shortcuts when thefrom artificial languages such as programming languages.
grammar is used for specific applications (taking merely anWords used in natural languages are frequently highly am-
approximation of the set of sentences described by the entirebiguous. For instance, the meaning for ‘‘down’’ includes (1) a
grammar); grammars can be compiled or translated from onedirection, (2) soft feathers such as those used in quilts and
form to another.pillows, (3) an emotional state of feeling down and depressed,

The Chomsky hierarchy is frequently used to illustrate theor (4) an action when a fighter can ‘‘down an opponent with a
relationship between the power of different grammar formal-single blow.’’ Ambiguity is also present in the syntax or struc-
isms and the relationship between the languages associatedture of natural language, since a given expression can fre-
with the formalisms (6). The relationship of the Chomsky hi-quently have numerous alternative structures associated
erarchy to natural languages has also been examined in de-with it. A sentence like ‘‘I like water in the spring’’ is highly
tail (7). At the bottom of the hierarchy is the set of regularambiguous not only due to the different meanings of the
grammars (also known as type 3 grammars), which corre-words, but also because the phrase ‘‘in the spring’’ can be

modifying water, as in water that comes from a cold spring, spond to the set of regular languages. Regular grammars are

COMPUTATIONAL LINGUISTICS 639

the least powerful grammar formalism in the hierarchy, and GRAMMAR FORMALISMS
the set of regular languages represents the simplest lan-
guages. Regular languages can be recognized and generated There are a large number of grammar formalisms that have

been proposed and used in computational linguistics. Whileby a finite-state machine in an amount of time proportional
to the length of the sentence. Context-free grammars, also the differences between formalisms may range from extreme

to insignificant, a number of concepts can be viewed as com-known as type 2 grammars, are a proper superset of regular
grammars. The set of regular languages is thus a proper sub- mon to many formalisms. Formalisms tend to have primitives

for describing the basic building blocks of language, alongset of the set of context-free languages. The automaton corre-
sponding to this class is the pushdown automaton, which is with rules for stating how complex structures are built from

more primitive structures. In our discussion of grammars, wejust a finite-state machine having a single stack as a storage
will be focusing on syntactic or structural aspects of language.device. In the worst case, a sentence from a context-free gram-
Although semantic information (6) can be incorporated into amar can be parsed in an amount of time proportional to the
grammar, or into a natural language processor, it is not ofcube of the length of the sentence. Subcubic algorithms for
primary concern to us here. Similarly, we will not be con-recognizing, as opposed to parsing, sentences have also been
cerned with morphological (10) or phonological information,developed. Context-sensitive grammars (type 1) are, for all
though these kinds of information can play an important rolepractical purposes, a proper superset of context-free gram-
in speech recognition (3). We will also not be looking at themars, and their corresponding languages are also in a su-
mathematical aspects of formalisms or languages in any greatperset relationship. The automaton associated with these
detail (6,11). We will now consider a selection of the moregrammars has an ‘‘infinite tape’’ as its storage device, and
widely known grammar formalisms.there are some restrictions on the operations that it may per-

form. There are no efficient algorithms for recognizing or
parsing context-sensitive languages in general, but given a

Context-Free Grammarssequence of words, it is always possible to say whether or not
it is ‘‘grammatical’’ (whether or not it is part of the set of Context-free grammars (CFG) have played an influential role
sentences that make up the language). Later in this article in computational linguistics. Aspects of CFGs are reflected in
we describe some ‘‘mildly context-sensitive’’ formalisms that different grammar formalisms. Indeed, many grammar for-
do have polynomial time algorithms for sentence recognition malisms tout a ‘‘context-free backbone,’’ having rules pat-
or parsing. Unrestricted rewrite grammars (type 0) are at the terned after context-free rules but augmented with additional
top of the Chomsky hierarchy. Every recursively enumerable information. There are various parsing algorithms that have
set is generated by some type 0 grammar, and every type 0 been designed to process CFGs efficiently and formalisms
grammar generates a recursively enumerable language. having a context-free backbone. CFGs are closely related to
Thus, when given a sequence of words, it is always possible Backus–Naur form (BNF) specifications (12), which are fre-
to say whether it is a grammatical sentence according to a quently used to describe formally the syntax of programming
type 0 grammar, but it is not necessarily possible to say that languages and which are also used to define recursive data
it is ungrammatical. It is important to note that linguistic structures in computing science applications.
formalisms are not the only means for modeling natural lan-
guage. Models based on acceptability or based on comprehen-

Components of a Context-Free Grammar. Let us now con-sive sets of examples are also possible, as discussed in statis-
sider the components of a CFG. A CFG consists of (1) a set oftical language modeling (5).
terminal symbols corresponding to the words or tokens of the
language (such as mother or like); (2) a set of nonterminal
symbols corresponding to constituents or classes of constit-Use of Procedural Information
uents found in a language (such a sentence or relative clause);

The distinction between the representation of linguistic infor- (3) a set of grammar rules of the form ‘‘A � �,’’ where A is a
mation and the processors of that information is really just nonterminal symbol and � is a sequence of zero or more ter-
the familiar distinction between data and processes that is minal and nonterminal symbols; and (4) a designated nonter-
important in all areas of computer science. With this distinc- minal symbol known as the start symbol, a constituent or
tion, linguistic processes that work with one language can class for all valid/grammatical sentences of the language. For
easily be adapted to work for other languages using similar cases where � is the empty sequence, a special symbol like �
data structures. In addition, the task of maintaining an ex- or � is often used.
isting computational linguistic application is simplified. The
clear separation of linguistic information from procedural in-
formation is characteristic of ‘‘declarative formalisms.’’ Context-Free Grammar Example. Equations (1) to (10) intro-

duce a collection of grammar rules for approximating a smallWoods’ augmented transition networks (ATN) are one exam-
ple of a more procedural formalism that allows actual LISP subset of English, where the terminal symbols are shown in

italics. Nonterminal symbols that introduce a terminal sym-programming language code to be mixed with the linguistic
information (8). Similarly, definite clause grammars allow bol are often called preterminal symbols. So the nonterminals

in Eqs. (7) to (10) are considered to be preterminals. Equa-Prolog programming language code to be included in gram-
mar rules (9). While such approaches may make the linguistic tions (9) and (10) also illustrate the use of disjunction in rules,

which is represented with a vertical bar. In each of these twoknowledge less apparent, they frequently can lead to im-
proved performance in applied systems. cases, a single disjunctive rule could be replaced by two alter-

640 COMPUTATIONAL LINGUISTICS

native rules without disjunction, one for each alternative in sentences that, when analyzed, would conform to the accepted
the disjunction. rules of the language yet would probably not be employed or

understood by a typical native speaker. This competence as-
pect of language use is exemplified by the 13-word sentencesentence → noun phrase, verb phrase (1)

The dog that the cat that the dog hates likes hates the cat.verb phrase → verb (2)
Indeed, current research in natural language processing is

verb phrase → verb, noun phrase (3) concentrating more on the performance aspect during the de-
velopment of robust natural language processing systemsrelative clause → relative pronoun, sentence (4)
with broad coverage.

noun phrase → noun phrase, relative clause (5)

Categorial Grammarsnoun phrase → determiner, common noun (6)

Categorial grammars (CGs) also have a long history associ-determiner → the (7)
ated with them, as discussed in Ref. 14, and have the samerelative pronoun → that (8)
power as CFGs. The primary difference from CFGs lies in the
categories that are associated with the terminal symbolscommon noun → cat|dog (9)

(words) of the grammar. While CFGs have atomic nontermi-verb → likes|hates (10)
nal symbols, CGs allow structured category names that are
recursively composed of other category names. We can defineThe language of the grammar is the set of sequences of
a CG to consist of (1) a set of atomic categories; (2) a set ofterminal symbols (words) that can be generated according to
complex categories of the form �/� or ���, where each of �the rules of the grammar, given the start symbol. Correspond-
and � are themselves categories (either atomic or complex);ing to grammatical sentences are parse trees, or derivation
(3) two rules, one for forward functional application, as showntrees, which indicate which rules are responsible for the sen-
in Eq. (11), and one for backward functional application, astence. A sentence that has more than one parse or derivation
shown in Eq. (12); and (4) a start category.tree is said to be ambiguous. The language of the preceding

CFG allows sequences of words that constitute sentences like
The dog that the cat likes hates the cat or The dog hates the α → α/β, β (11)
cat or even The dog that the cat that the dog hates likes hates

α → β, α\β (12)
the cat, but excludes sentences like The dog the cat hates. Ob-
serve that this grammar is only a rough approximation since

CGs are frequently viewed as a lexical formalism because ofit would also allow unacceptable sentences like The dog that
the heavy reliance on the information associated with the dif-the cat hates the dog hates the cat. Figure 1 shows a tree for
ferent lexical items (words) and the minimal information as-the sentence The dog that the cat likes hates the cat.
sociated with the rules—as presented previously, CGs haveObserve that some of the aforementioned grammatical sen-
only two rules. Each of these two rules can also be viewed astences seem very unnatural or difficult to understand. How-
schema describing a large set of rules that have specific cate-ever, a traditional linguistic analysis would deem some of
gory names rather than variables like � or �. Intuitively,them to be valid sentences of the English language. This
when a word or a constituent has a category name of the formraises the issue of competence versus performance, which was
�/�, it can be viewed as a function that looks for its argumentdiscussed by Chomsky (13). When using language, we may
� on its right in order to become an �, as reflected in theemploy and understand expressions that we would consider
grammar rule from Eq. (11). Similarly, a constituent with cat-to violate the rules of the language. Such sentences reflect

performance aspects of language use. In contrast, there are egory name ��� is a function looking for a � on its left, Eq.

Figure 1. Context-free grammar parse
tree of the sentence The dog that the cat
likes hates the cat. The terminal symbols
(leaves) of the tree correspond to words,
while the nonterminal symbols (internal
nodes) correspond to classes or constit-
uents. The branches correspond to gram-
mar rules; the numbers in parentheses
reference the equation numbers of the
grammar rules used.

Sentence

Noun_phrase

Relative_clauseNoun_phrase

Common_nounDeterminer

Verb_phraseNoun_phrase

Sentence

Verb Noun_phrase

hates

Common_noun VerbDeterminerRelative_pronoun

dogThe

(9) (9)(1)

(6) (2)

(7)

that

(8)

the

(7)

cat

(9)

likes

(10)

Verb_phrase

(10)

(3)

(1)

(5)

(4)(6)
Common_nounDeterminer

catthe

(7)

(6)

COMPUTATIONAL LINGUISTICS 641

ous ambiguities are not limited to just CGs but are wide-
spread in many large grammars.

Grammar and Formalism Equivalence. Our comparison of CG
and CFG analyses of the same sentence leads us to another
important issue relating grammar formalisms and grammars:
Two grammars are strongly equivalent if they generate the
same structures, and they are weakly equivalent if they gen-
erate the same set of sentences. Two formalisms are thus
strongly equivalent if every grammar in one formalism has
a strongly equivalent grammar in the other formalism. The
formalisms would be weakly equivalent if every grammar in
one formalism had a counterpart in the other formalism that
would generate the same language (sets of sentences). While
this strong/weak distinction may be important for some dis-
cussions, it need not concern us here. We can restrict our dis-
cussion to weak equivalence when discussing the relative

s

np

np\npnp

nnp/n

(s/np)\npnp

s/np

(s\np)/np np

hates

nnp/n(np\np)/(s/np)

dogThe

BA

FA

that the cat

likes

s\np

FA

BA

BA

FAFA
nnp/n

catthe

FA

power of different grammar formalisms.
Figure 2. Categorial grammar parse tree of the sentence The dog
that the cat likes hates the cat. Branches are labeled with the names

Combinatory Categorial Grammarsof the grammar rules used, either forward functional application (FA)
or backward functional application (BA). While traditional CG incorporates only two grammar rules,

combinatory categorial grammar (CCG) allows a greater vari-
ety of grammar rules (15). The motivation for exactly which
rules are introduced is based on specific ‘‘combinators.’’ By(12). Alternatively, either an �/� or an ��� can be viewed as
introducing additional grammar rules, some forms of lexicalan � that is ‘‘missing’’ a �.
ambiguity [see, for instance, Eqs. (17) to (20)] can be de-
creased. However, this often comes at the cost of increased

Categorial Grammar Example. The following example shows structural ambiguity and can lead to spurious ambiguities,
that essentially the same structure can be obtained for the where the ambiguity present in the grammar is merely an
sentence The dog that the cat likes hates the cat, as was ob- artifact of the grammar and does not correspond to true syn-
tained using the CFG from Eqs. (1) to (10). Equations (13) tactic ambiguity in the natural language being modeled.
to (20) show the categories for the different words, where s CCGs also allow the description of languages that cannot be
(sentence), np (noun_phrase), and n (common_noun) are in- described by CFGs. Thus, they have more than context-free
troduced as the only atomic categories. Figure 2 shows the power—they belong to the class of mildly context-sensitive
corresponding parse tree, where the branches are labeled grammar formalisms (16). In addition to the forward and
with the name of the grammar rule used, either FA for for- backward functional application rules, the rules that are usu-
ward functional application or BA for backward functional ap- ally associated with CCG include functional composition, type
plication. raising, and functional substitution, which are described in

turn next.
cat: n (13)

Functional Composition. Functional composition rules allowdog: n (14)

the combination of two complex categories. There are forwardthe: np/n (15)
and backward versions of functional composition, mirroring
the forward and backward versions of functional application.that: (np\np)/(s/np) (16)

likes: (s\np)/np (17)
α/γ → α/β, β/γ (21)

likes: (s/np)\np (18)
α\γ → β\γ , α\β (22)

hates: (s\np/np (19)

There are also variations on these rules depending on the di-hates: (s/np)\np (20)
rection associated with the slash in the various constituents.
The notion underlying all of these rules is the same: There isObserve that the lexical entries for hates and likes in Eqs.
one function that is looking for an argument � to return an(17) to (20) are ambiguous—each word has a choice of two
�, and there is another function that is looking for an argu-possible category assignments. This ambiguity means that
ment � to produce a �. These two functions can be composedfull sentences like The dog the cat hates are allowed that were
to produce a function that is looking for a � to produce annot allowed by the CFG given earlier. In contrast, the CG
�. Sometimes a direction independent version of a rule likedoes not allow sentences like The dog that the cat hates the
functional composition is given, as shown in Eq. (23), wheredog hates the cat, that were allowed by the CFG. The grammar
a vertical bar is used as a slash with an unspecified direction.will also allow two analyses for a simple sentence like The

dog hates the cat. This last ambiguity is not linguistically sig-
α|γ → α|β, β|γ (23)nificant, so it is deemed to be a ‘‘spurious ambiguity.’’ Spuri-

642 COMPUTATIONAL LINGUISTICS

Type Raising. Type raising is a unary rule that allows one
to change a category in a restricted manner. Until now, we
have seen only binary rules in categorial grammar. Type rai-
sing effectively allows a constituent of some category � that
is an argument of a function of some category � to change its
category and become a function that takes an � as its argu-
ment. This results in rules for forward and backward type
raising.

ϕ/(ϕ\α) → α (24)

ϕ\(ϕ/α) → α (25)

Restrictions on these rules usually take the form of different
categories that are allowed for � and �. Notice that without
any restrictions on a type-raising rule, it could act like a
schema corresponding to potentially an infinite number of
rules, where the variables � and � are replaced with actual
categories.

s

np

np\npnp

nnp/n

(s\np)/nps/(s\np)

s/np

(s\np)/np np

hates

(np\np)/(s/np)

dogThe

that

np

TR

FC

nnp/n

the cat

likes

s\np

nnp/n

catthe

Functional Substitution. The functional substitution rules
allow two functions looking for the same category of argument Figure 3. Combinatory categorial grammar parse tree of the sen-
to be combined into a single function still looking for that ar- tence The dog that the cat likes hates the cat. The rules used for the
gument. As with functional composition, there are variations branches are the same as in Fig. 2 except when explicitly specified as

type raising (TR) or functional composition (FC).on this rule depending on the direction of the slash in the
categories of the constituents. Equation (26) shows the rule
without the direction information.

String Grammars
α|γ → (α|β)|γ , β|γ (26)

String grammars (12) incorporate CFGs but introduce addi-
tional mechanisms that result in a formalism more powerful

The first function is ‘‘looking for’’ a � argument and a � argu- than CFGs. Thus far, a nonterminal symbol in a grammar
ment in order to produce an �. The second function needs a � has been used to refer to a string of terminal symbols (words),
argument to become a �. Thus, the rule allows the first func- and this string of terminal symbols has been defined recur-
tion to combine with the second function, even though the � sively as the concatenation of the string of words associated
argument has not yet been encountered. The resulting func- with its immediate subconstituents. Returning briefly to Fig.
tion then still needs to find the �. 3, the nonterminal symbol s, for example, refers to the entire

sentence, with np corresponding to The dog that the cat likes
Combinatory Categorial Grammar Example. Let us now con- and s�np corresponding to hates the cat. String grammars use

sider a CCG that can be used to provide an analysis of the context-free rules (in BNF notation) to describe ‘‘linguistic
same sentence considered in previous sections, The dog that strings,’’ which are sequences of terminal and preterminal
the cat likes hates the cat. Our grammar can use the same symbols. Linguistic strings are placed into different general
lexical entries that were introduced in Eqs. (13) to (16), sup- classes depending on the role that the strings play in the lan-
plemented by unambiguous lexical entries for hates and likes. guage. There are two operations, adjunction and substitution,

which allow linguistic strings of selected types to be com-
bined, subject to a collection of constraints or restrictions. Re-likes: (s\np)/np (27)
strictions are stated in a specially designed programming lan-hates: (s\np)/np (28)
guage; thus string grammars have a more procedural (less
declarative) flavor than the other formalisms we have beenFigure 3 illustrates how the type-raising (TR) rule from Eq.
discussing.(24), used in conjunction with the functional composition (FC)

rule from Eq. (21), results in an analysis of the sentence.
Example of String Operations. The ideas behind linguisticViewing the tree from the bottom up, observe how application

strings are illustrated in the following example. Assuming theof type raising to the constituent the cat, which follows the
CFGs introduced in Eqs. (1) to (10), Eq. (29), and Eq. (30)relative clause, allows it to be promoted to a function that can
show linguistic strings for the sentence The dog hates the catthen be combined with likes according to functional composi-
and for the phrase that the cat likes, respectively.tion from Eq. (21). So the same effect that was obtained in

traditional CG is achieved without lexical ambiguity, but at
determiner noun verb determiner noun (29)the cost of additional grammar rules. However, spurious am-

biguity is introduced if we consider that type raising could be relative pronoun determiner noun verb (30)
applied to the subject of the sentence, The dog that the cat
likes, and then the type-raised subject could then instead take The string in Eq. (30) could be inserted into Eq. (29) using the

adjunction operation to the right of the first noun, to result inhates the cat as its argument.

COMPUTATIONAL LINGUISTICS 643

a linguistic string, shown in Eq. (31), that would be associated Tree Adjoining Grammars
with a sentence like The dog that the cat likes hates the cat.

Tree adjoining grammars (TAGs) (20) have trees, rather than
symbols or strings of symbols, as their basic building blocks
and introduce an adjunction operation for combining trees.
Thus, they share some of the same underlying concepts found

determiner noun relative pronoun determiner

noun verb verb determiner noun (31)
in string grammars, but the data structures are different and
the properties of TAGs are much more well defined and un-Head Grammars
derstood. There is a wide range of formalisms that belong to

With the introduction of head grammars (17), we see yet an- the TAG family, but they all have the same underlying princi-
other variation on the traditional context-free style grammar ples. Trees are defined as primitives, and there are two basic
rule that results in a grammar formalism having essentially types of trees: (1) elementary trees, in which the leaves are
the same power as CCG. Computational linguists do not tend terminal nodes, resembling the parse trees obtained ac-
to use head grammars, but this formalism has affected how cording to a traditional CFG; and (2) auxiliary trees, in which
string combination is viewed in a wide range of grammar for- the leaves contain one nonterminal node among the other ter-
malisms. Head grammars influenced developments in head- minal nodes and in which this single nonterminal node has
driven phrase structure grammar (HPSG) (18). the same name as the root node of the tree.

Adjunction Example. Figure 4 (left) shows an example of anHeaded Strings. Rules in a head grammar describe how
elementary tree and Fig. 4 (right) an auxiliary tree corre-‘‘headed strings’’ are combined rather than the traditional
sponding to the sentence The dog hates the cat and to thestrings we have seen in CFGs, CGs, or CCGs. In this respect,
phrase that the cat likes, respectively. The adjunction opera-they resemble string grammars. However, the characteriza-
tion has the same effect as the adjunction operation of stringtion of head grammars is much more formal and declarative,
grammars or the wrapping operation of head grammars. Ad-with the formalism not relying on arbitrary restrictions that
junction allows the creation of a more complex tree by adjoin-are stated in a programming language. A headed string is
ing an auxiliary tree to a node in an elementary tree. Whensimply a string in which exactly one position in the string
the auxiliary tree from Fig. 4 (right) is adjoined to the first(one word) is designated to be the head. While traditional
noun_phrase node of the elementary tree from Fig. 4 (left),grammars combine strings simply using concatenation, head
we obtain a tree identical to the one that was originally intro-grammars also allow one string to be inserted into another
duced in Fig. 1 for our full example sentence.string at its head position. Thus, we get a wrapping operation

that is similar in effect to the adjunction operation from
string grammars. Adopting Pollard’s (17) notation of having Restrictions on Adjunction. There are restrictions that may
the head preceded by a *, a head grammar rule could allow be placed on the adjunction operation, just as there were con-
the headed string The *dog hates the cat to be combined with straints on adjunction in string grammars. Nodes in trees
that the *cat likes to produce The *dog that the cat likes hates may be designated as obligatory adjunction sites or as op-
the cat. tional adjunction sites. In addition, each node may have re-

strictions concerning which auxiliary trees (if any) may be ad-
joined at that site. These restrictions on the adjunctionOperations on Headed Strings. The grammar rules must
operation differ considerably from those used in string gram-specify how the head of the resulting string is determined
mars in that they do not require the power of a full program-from the heads of the constituent headed strings. So for a
ming language—the restrictions in TAG need only referencetraditional concatenative grammar rule involving two constit-
other trees.uents, there are two different possibilities: one in which the

head of the left subconstituent becomes the head of the re-
Other Tree Operations. Adjunction is not a transformationsulting constituent, and one in which the head of the right

in the sense traditionally used in transformational grammarsubconstituent is used. For a binary rule involving wrapping,
(21). Tree transformations are known to be computationallythe first constituent can either be wrapped around the second,
demanding, since the introduction of transformations allowsor the second can be wrapped around the first. In addition,
the description of a type 0 language. Much more efficient tech-the wrapping position can either be before or after the head.
niques have been developed for processing the adjunction op-This results in four possible wrapping relationships so far,
eration. Adjunction can, however, be used to implement sub-and when we take into account that it is either the head of
stitution, in which a nonterminal symbol present as a leaf onthe first or second constituent that becomes the head of the
a tree is replaced by an entire tree. Some variations of TAGresulting constituent, we have a total of eight different wrap-
make explicit use of the substitution operation.ping relationships. In the example in the previous paragraph,

we saw the first constituent wrap around the second constit-
uent at the position following the head of the first constituent, Linear Indexed Grammars. Gazdar’s linear indexed gram-

mars (LIGs) also belong to the class of mildly context-sensi-with the head of the first constituent becoming the head of the
resulting constituent. Repeated application of this operation tive grammar formalisms (16), but they achieve this ‘‘greater

than context-free power’’ by augmenting the structure of thewould result in multiple relative clauses modifying the head
dog. A simple modification to the head grammar formalism nonterminal symbols used by the grammar rules (22). A (po-

tentially infinite) sequence of indices is associated with eachresults in normalized head grammars (19), which require
fewer wrapping operations and are more closely related to nonterminal symbol in the grammar. Aho introduced this

generalization to create indexed grammars (23), which wereCCG and tree adjoining grammar (16).

644 COMPUTATIONAL LINGUISTICS

Sentence

Noun_phrase

Common_nounDeterminer

dogThe

Verb_phrase

Noun_phraseVerb

hates Common_nounDeterminer

catthe

thethat cat likes

Noun_phrase

Noun_phrase Relative_clause

Sentence

Relative_pronoun

Verb_phraseNoun_phrase

Common_nounDeterminer Verb

Figure 4. Elementary tree (left) and auxiliary tree (right) from a tree adjoining grammar. The
intended adjunction site in the elementary tree is shown in bold. The root and foot of the auxil-
iary tree are also shown in bold. Adjunction occurs by effectively inserting the auxiliary tree in
place of the node at the adjunction site in the elementary tree.

not linguistically motivated and which are, in fact, more pow- relative pronoun in encountered), and Eq. (36) for removing
an index from a stack (whenever a noun_phrase is realized aserful than CCGs, head grammars, or TAGs. Indexed grammar
the empty sequence �).rules treat the sequences of indices associated with one sym-

bol as a stack, and they allow (1) the stack to be copied, (2)
sentence[..] → noun phrase[], verb phrase[..] (32)an element to be pushed onto a stack, or (3) an element to be

popped from a stack. By restricting the form of grammar rules noun phrase[..] → noun phrase[], relative clause[..] (33)
used by the formalism, we obtain a formalism of more re- verb phrase[..] → verb[],noun phrase[..] (34)
stricted power; we obtain LIGs, which have the same power
as CCGs, head grammars, and TAGs. In LIGs, at most one relative clause[..] → relative pronoun[], sentence[t, ..] (35)
symbol from the right-hand side of a grammar rule may have noun phrase[t,..] → λ (36)
a nonempty stack.

The resulting grammar takes into account the property of En-
Linear Indexed Grammar Example. The following example glish that a sentence within a relative clause is effectively

shows a grammar in which the indices stack is used to keep ‘‘missing’’ a noun phrase. Recall that the categories in categ-
track of the missing noun phrases in a constituent. We start orial grammar also allowed us to keep track of missing con-
by assuming the same grammar rules as presented in Eqs. stituents, and the use of a stack to keep track of missing con-
(6) to (10), where we assume that empty stacks are associated stituents can also be seen in generalized phrase structure
with each of the nonterminal symbols in the grammar. We grammar (GPSG) (24) as well as HPSG. Figure 5 shows the
then introduce the rules in Eqs. (32) to (34) for copying stacks, parse tree for the sentence The dog that the cat likes hates

the cat.Eq. (35) for introducing an index into a stack (whenever a

Figure 5. Linear indexed grammar parse
tree for The dog that the cat likes hates the
cat. The branches and nodes associated
with the linear indexed grammar rules in
Eqs. (32) to (36) are labeled. The empty
stacks for the other nodes are not dis-
played. Equation (35) introduces an index
t into the sentence stack, which is propa-
gated by the grammar rules, allowing Eq.
(36) to introduce the ‘‘empty’’ noun
phrase.

Sentence []

Noun_phrase []

Relative_clause []Noun_phrase []

Common_nounDeterminer

Verb_phrase [t]Noun_phrase []

Sentence [t]

Verb [] Noun_phrase []

hates

Common_noun Verb []DeterminerRelative_pronoun []

dogThe

(34)

(32)

that the cat likes

Noun_phrase [t]

λ

(36)

Verb_phrase []

(34)

(32)

(33)

(35)
Common_nounDeterminer

catthe

COMPUTATIONAL LINGUISTICS 645

WORDS

SYNTAX

SEMANTICS fido

<Fido>

CAT

AGR

np

PERSON
NUMBER

third
sing

PERSON
NUMBER

third
sing

WORDS

SYNTAX

SEMANTICS

<Loves, Bill>

CAT

AGR

vp

NUMBER

RELATION love
billOBJECT

Figure 6. Feature structures associated with the term Fido (left) and the phrase loves Bill
(right). The value of the WORDS feature is a list of words enclosed in angle brackets. The SYN-
TAX feature takes another feature structure as its value, having features for category (CAT) and
syntactic agreement (AGR). AGR also has a feature structure as its value that states that each
constituent is in the ‘‘third person’’ (as opposed to first or second person) and is singular (as
opposed to plural). Each feature structure contains a very simplified SEMANTICS feature. For
the np, we have introduced an atomic value corresponding to the entity, while for the vp we
have introduced a nested feature structure that introduces a RELATION and an OBJECT of
the relation.

Unification-Based Formalisms tures. For example, the feature structures themselves might
not be allowed to contain variables, but descriptions of feature

Unification-based formalisms (25) allow more complex (and structures may be allowed to contain variables, disjunctions,
potentially recursive) structures called ‘‘feature structures’’ to and other operations, thus allowing a description to denote a
be used as the basic building blocks that are subject to the whole set of feature structures.
operations associated with a formalism. In this respect, their
building blocks are similar to those of categorial grammars Unification-Based Rules. The operations or rules of the
and indexed grammars, but the structures can be much more grammar state how feature structures associated with differ-
complex. A feature structure is simply a set of attribute value ent constructions are related to the feature structure associ-
pairs, where each feature (also known as an attribute) is an ated with a more complex constituent. Rules in unification-
atomic ‘‘name’’ and where each value is either atomic or is based formalisms often resemble those in a CFG except that
itself another feature structure. There are several variations feature structures are used in place of the terminal and non-
of feature structures and of the kinds of information that they terminal symbols of a CFG. For example, Fig. 7 shows a
can express. Some theories introduce the notion of typed fea- grammar rule for combining noun phrases and verb phrases.
ture structures, in which each feature structure possesses a The notion of unification comes from the basic operation
‘‘type’’ in addition to a set of attribute value pairs (26). Some- that is performed on feature structures through the grammar
times values are allowed to be sets, lists, and so forth. For rules. Unification of two feature structures can informally be
example, Fig. 6 (left) shows the feature structure that might thought of as an operation that combines the information
be associated with term Fido and Fig. 6 (right) the feature present in two feature structures, along with a requirement

that the two feature structures not contain incompatible in-structure for loves Bill. One desirable aspect of feature struc-
formation. If unification is attempted on two feature struc-tures is that they can contain more than just syntactic infor-
tures that contain incompatible information, then the unifi-mation, as illustrated in Fig. 6.
cation operation does not take place and is said to beOften, theories make distinctions between feature struc-
undefined. For example, the feature structure in Fig. 6 (left)tures themselves and a language for describing feature struc-
will unify with the first feature structure on the right-hand side
of the grammar rule introduced in Fig. 7. The feature structure
in Fig. 6 (right) will unify with the last feature structure from
the grammar rule. An attempt to unify the feature structure in
Fig. 6 (left) with the last one in the grammar rule would be un-
defined due to conflicting information. Figure 8 shows the re-

WORDS

SYNTAX

SEMANTICS

1 + +

CAT

AGR

s

SUBJECT

4

3

5 2

WORDS

SYNTAX

SEMANTICS

1

CAT

AGR

np

3

2

WORDS

, SYNTAX

SEMANTICS

4

CAT

AGR

vp

3

5

PERSON
NUMBER

third
sing

WORDS

SYNTAX

SEMANTICS

<Fido, loves, Bill>

CAT

AGR

s

NUMBER

RELATION

SUBJECT

love
bill
fido

OBJECT

Figure 7. A grammar rule for combining feature structures. The
presence of a number surrounded by a box acts like a pointer; any Figure 8. The feature structure resulting from application of the

grammar rule to two feature structures. The SEMANTICS feature ofvalue referenced by one pointer is shared by other occurrences of the
same pointer. The notation �� is used to denote concatenation of the feature structure contains some information supplied by the first

feature structure and some supplied by the second feature structure.lists.

646 COMPUTATIONAL LINGUISTICS

sult of using the rule from Fig. 7 to combine the feature struc- the sentence rule to produce the complete structure. As we
have described the process here, the parsing occurs bottom-tures from Fig. 6.
up in a breadth-first fashion: One layer of the tree is com-
pleted before the next layer is attempted. The context-freePower of Unification-Based Formalisms. Unification-based

formalisms have much more than context-free power and style grammar rules are thus used in reverse during the pars-
ing process: When symbols corresponding to the right-handclearly have much more than mildly context-sensitive gram-

mars, since it would require only one feature in a feature side of a rule are found, a symbol from the left-hand side of
the grammar rule can be introduced into the parse tree. Astructure to act as a stack and thus obtain an indexed gram-

mar. In fact, unification-based grammars can express any re- depth-first approach places priority on the vertical construc-
tion of the parse tree rather than on the horizontal prioritycursively enumerable language since any type 0 grammar

from the Chomsky hierarchy can be expressed in a unifica- associated with breadth-first. For example, a bottom-up
depth-first parser could see the constituent for thetion-based grammar as we have defined them. Given that

they are so powerful, unification-based grammars are still of noun_phrase being completed before processing of the words
likes the dog even began. One can even imagine variationsinterest to computational linguists since, subject to certain

restrictions, they can still be processed efficiently. depending on the order that the sentence itself is traversed:
left to right versus right to left.

Unification with Other Formalisms. Feature structures have
been introduced into other formalisms, resulting in a large Top-Down Parsing. A top-down parser works from the start

symbol and builds the tree downward toward the leavesfamily of unification-based formalisms. For example, they
have been introduced into CG, resulting in unification categ- (words). Context-free style rules are processed in the forward

(left to right) direction: Appearance in the parse tree of a sym-orial grammar and categorial unification grammar (14). They
have been introduced into TAGs, resulting in feature-struc- bol from the left-hand side of a grammar rule licenses the

introduction of the symbols from the right-hand side, subjectture-based TAG (16). Unification also plays an important role
in logic grammars, which have been explored in logic pro- to the condition that they do not introduce terminal symbols

that are inconsistent with the sentence being processed.gramming (see LOGIC PROGRAMMING).
Again, this can be done in a depth-first or breadth-first
manner.

PROCESSING

Dealing with Ambiguity. Ambiguity is perhaps the greatest
The actual grammars developed within a particular grammar

stumbling block that parsers encounter. Natural languages,
formalism can be used in the analysis and generation of natu-

unlike artificial languages like computer programming lan-
ral language text. The task of assigning a structure to a given

guages, are inherently ambiguous. So, frequently a parser
input text is known as parsing, while the process of determin-

must choose concerning which rule is responsible for a con-
ing the text associated with an underlying structure is known

stituent or which dictionary entry is appropriate for a word.
as generation. In principle, the same grammar could be used

If the correct choice is not made initially, then the parser
for both analysis and generation of text, but in practice there

must later go back and try the other alternatives. Clearly,
are different factors that come into play that make the use of

as sentences get longer, the combinations of possible choices
a single grammar for these two tasks more difficult (27). The

increase, leading to potentially huge numbers of interpreta-
actual algorithms used may differ from formalism to formal-

tions for sentences.
ism, but there are many underlying principles that are the
same regardless of the formalism used. Parsing and genera-

Performance. The performance of parsers varies depending
tion can both incorporate some specific techniques, which can

on the actual grammar and text being processed. For in-
be discussed independent of any specific formalism.

stance, when processing ungrammatical sentences, the parser
must exhaust all possible rule combinations before it can con-

Parsing
clude that the sentence is not grammatical. Some naive algo-
rithms will not even terminate on certain grammar and sen-A traditional parser is given a string of words and determines

how the grammar rules can be used to produce a structure tence combinations. For CFGs, the most efficient algorithm
takes an amount of time proportional to the cube of the sen-(like a tree in the case of a CFG) showing the syntactic depen-

dences among words and various more complex constituents. tence length in the worst case, so the task is of polynomial
time complexity. There are polynomial time algorithms forSome general overviews of parsing can be found in textbooks

(8,9,28). Parsing algorithms can be distinguished according to TAGs as well (29). Some comparisons between different types
of parsing algorithms can be found in Ref. 30. Worst-casewhether they work predominantly in a bottom-up or a top-

down manner. complexity does not tell the complete story, since syntactic
processing in natural language processing systems need not
be done in isolation. For instance, semantic, pragmatic, and/Bottom-Up Parsing. A bottom-up parser builds a parse tree

starting from the leaves and proceeding up to the root. For or statistical information can be used in parallel to constrain
the processing and obtain average-case performance appro-example, given the string of words The cat likes the dog, the

parser could first determine which rules are associated with priate for real-time systems.
The performance of various parsing algorithms will alsoeach of the individual words, such as common_noun and verb,

then determine which rules can be used to combine the con- vary depending on the kind of ambiguity found in grammars
and lexicons, and on the structure of rules found in the gram-stituents (like noun_phrase and verb_phrase), and finally de-

termine that these higher-level constituents are licensed by mar. In addition, there is also a trade-off of time and space,

COMPUTATIONAL LINGUISTICS 647

with more efficient processing resulting at a cost of increased the resulting low-level CFG does not incorporate any gram-
mar rules for categories containing more than n slashes (formemory usage.
some value of n). One could also imagine compiling a CFG
down into a regular grammar under the assumption that theGeneration
resulting grammar will not incorporate analysis for construc-

In generation, the goal is to create a sentence from some un- tions involving more than m levels of recursion in the original
derlying structure. There is a great variety of generation algo- grammar. There has even been work done on converting
rithms depending not only on the formalism used but on the HPSG representations into TAG representations (34).
kind of underlying structure used (31). The underlying struc- There are also disadvantages associated with compiling
ture typically incorporates some aspect of the meaning (se- grammars into a lower-level representation rather than using
mantics) of the sentence. While the parsing algorithms were them directly. First, the compilation process can be very in-
required to deal with multiple alternatives in the form of am- tensive in time and space if the high-level and low-level repre-
biguity, generation algorithms must choose which sentence to sentations differ considerably. Second, it can be difficult to
generate from a selection of acceptable alternatives. This is diagnose problems associated with the processes on the low-
not just simply the mirror image of the ambiguity encoun- level representations when they differ significantly from the
tered during parsing. Consider the problem of generating a high-level representations—the compilation process can
sentence saying that Fido loves Bill. One could imagine gen- cause substantial changes to the representations.
erating any of the following: (1) Fido loves Bill, (2) It is Bill
that Fido loves, (3) Bill, Fido loves, (4) Bill is loved by Fido,

BIBLIOGRAPHYand (5) Who Fido loves is Bill. For a generator to choose be-
tween these alternatives requires a great deal of subtle infor-

1. W. J. Hutchins and H. L. Somers, An Introduction to Machine-mation to be included in the underlying structure.
Translation, San Diego: Academic Press, 1992.

2. I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, Natural lan-Memoization
guage interfaces to databases—an introduction, J. Nat. Language
Eng., 1: 29–81, 1994.Given the large number of choices involved in the parsing and

generation processes, it is important for all but the shortest 3. L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recogni-
tion, Englewood Cliffs, NJ: Prentice-Hall, 1993.sentences to ensure that correct or even incorrect hypotheses

related to the construction of certain subconstituents are ‘‘re- 4. E. Charniak, Statistical Language Learning, Cambridge, MA:
MIT Press, 1993.membered’’ in case they are again encountered during alter-

native analyses. Previously encountered hypotheses or con- 5. S. Young and G. Bloothooft (eds.), Corpus-Based Methods in Lan-
guage and Speech Processing, Boston: Kluwer, 1997.stituents are frequently stored in a chart or table. The storage

of such results is often referred to as memoization since it can 6. B. H. Partee, A. ter Meulen, and R. E. Wall, Mathematical Meth-
ods in Linguistics, Boston: Kluwer, 1993.be viewed as the processor writing a ‘‘memo’’ concerning the

result obtained (32). There is a cost in terms of space and 7. W. J. Savitch et al. (eds.), The Formal Complexity of Natural Lan-
guage, Boston: D. Reidel, 1987.time associated with the storage, and some algorithms thus

do not incorporate such techniques. For example, a back- 8. R. Grishman, Computational Linguistics, New York: Cambridge
Univ. Press, 1986.tracking algorithm keeps track of all possible choices at a de-

cision point, and when a parse or generation attempt fails, 9. M. A. Covington, Natural Language Processing for Prolog Pro-
grammers, Englewood Cliffs, NJ: Prentice-Hall, 1994.the process reverts back to the state at the most recent deci-

sion point and the next choice is tried. This frequently results 10. G. D. Ritchie et al., Computational Morphology, Cambridge, MA:
MIT Press, 1992.in a duplication of work as the processor again moves forward

from the decision point. By using a chart or table, some inter- 11. D. E. Johnson and L. S. Moss, Mathematics of Language, Special
Issue of Ling. Philos. 20: 571–756, 1997.mediate results obtained during a parse or generation at-

tempt for a complex constituent that failed can be reused in 12. N. Sager, Natural Language Information Processing, Reading,
MA: Addison-Wesley, 1981.an alternative attempt.

13. N. Chomsky, The Logical Structure of Linguistic Theory, New
York: Plenum, 1975.Compilation

14. M. M. Wood, Categorical Grammars, New York: Hudson, 1993.
Some parsers and generators work directly with grammars

15. M. Steedman, Surface Structure and Interpretation, Cambridge,
associated with a specific formalism, while others use gram- MA: MIT Press, 1996.
mars that have been compiled or translated into a different

16. A. K. Joshi, K. Vijay-Shanker, and D. Weir, The convergence of
form. One reason for converting a grammar from one form mildly context-sensitive grammar formalisms, in P. Sells, S. M.
into another is that it can result in more efficient or faster Shieber, and T. Wasow (eds.), Foundational Issues in Natural
processing of natural language. Grammar designers can de- Language Processing, Cambridge, MA: MIT Press, 1991.
scribe linguistic knowledge using a high-level grammar for- 17. C. J. Pollard, Generalized Phrase Structure Grammars, Head
malism, and the resulting grammar can then be compiled Grammars and Natural Language, Ph.D. dissertation, Depart-
down into a low-level representation that can be processed ment of Linguistics, Stanford University, Stanford, CA, 1984.
easily by the computer, as is done in Ref. 33. Sometimes this 18. C. J. Pollard and I. Sag, Head-Driven Phrase Structure Grammar,
compilation process may result in a representation that only Chicago: University of Chicago Press, 1994.
approximates the original grammar but that may be sufficient 19. K. Roach, Formal properties of head grammars, in A. Manaster-
for the task at hand. For example, one could imagine a CCG Ramer (ed.), Mathematics of Language, Amsterdam: John Benja-

mins, 1987.being compiled down into a CFG under the assumption that

648 COMPUTER-AIDED INSTRUCTION

20. A. K. Joshi, An introduction to tree adjoining grammars, in A.
Manaster-Ramer (ed.), The Mathematics of Language, Amster-
dam: John Benjamins, 1987.

21. A. Radford, Transformational Grammar: A First Course, New
York: Cambridge Univ. Press, 1988.

22. G. Gazdar, Applicability of index grammars to natural languages,
in U.Reyle and C. Rohrer (eds.), Natural Language Parsing and
Linguistic Theories, Boston: D. Reidel, 1988.

23. A. V. Aho, Indexed grammars: An extension of the context-free
grammars, J. ACM, 15: 641–671, 1968.

24. G. Gazdar et al., Generalized Phrase Structure Grammar, Oxford:
Basil Blackwell, 1985.

25. U. Reyle and C. Rohrer (eds.), Natural Language Parsing and
Linguistic Theories, Boston: D. Reidel, 1988.

26. B. Carpenter, The Logic of Typed Feature Structures, New York:
Cambridge Univ. Press, 1992.

27. T. Strzalkowski (ed.), Reversible Grammar in Natural Language
Processing, Boston: Kluwer, 1993.

28. F. C. N. Pereira and S. M. Shieber, Prolog and Natural Language
Analysis, CSLI Lecture Notes, Chicago: Univ. Chicago Press,
1987.

29. S. Rajasekaran, Tree-Adjoining Language Parsing in o(n6) Time,
SIAM J. Comput., 25: 862–873, 1996.

30. G. van Noord, An efficient implementation of the head-corner
parser, Computational Linguistics, 23: 425–456, 1997.

31. D. D. McDonald and L. Bolc (eds.), Natural Language Generation
Systems, New York: Springer-Verlag, 1988.

32. M. Johnson, Memoization in top-down parsing, Computational
Lingustics, 21: 405–417, 1995.

33. R. C. Moore et al., CommandTalk: A spoken-language interface
for battlefield simulations, Proc. 5th Conf. Appl. Nat. Language
Proc., Association for Computational Linguistics, San Francisco:
Morgan Kaufmann Publishers, 1997, pp. 1–7.

34. R. Kasper et al., Compilation of HPSG to TAG, Proc. 33rd Annu.
Meet. of the Assoc. for Computational Linguistics, San Francisco:
Morgan Kaufmann Publishers, 1995, pp. 92–99.

FRED POPOWICH

Simon Fraser University

COMPUTATIONAL NUMBER THEORY. See NUMBER

THEORY.
COMPUTED TOMOGRAPHY. See COMPUTERIZED TO-

MOGRAPHY; TOMOGRAPHY.
COMPUTER-AIDED DESIGN. See CAD FOR MANUFACT-

URABILITY OF INTEGRATED CIRCUITS.
COMPUTER-AIDED DESIGN FOR FPGA. See CAD

FOR FIELD PROGRAMMABLE GATE ARRAYS.

