
BATCH PROCESSING IN COMPUTERS 223

BATCH PROCESSING IN COMPUTERS

In some broad sense, batch processing refers to the activity in
which a computer system processes a collection of requests as

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



224 BATCH PROCESSING IN COMPUTERS

a whole rather than individually. There are several reasons erating systems and high-level programming languages. Pro-
grammers had to write programs in machine languages onfor batch processing. Consider, for example, a user who wants

to run a program repeatedly against one hundred different plugboards and feed them into the computer to run the job
(1). Individual programmers were fully responsible for settinginput data files. It will be quite frustrating if the user has to

sit in front of the computer and type the same command, only up the computers to run the programs and for monitoring the
progress of the running jobs. Since computer time was pre-with different input file names, one hundred times. Moreover,

in a multiuser computer system, running one or many in- cious, users reserved the use of the computer by filling up a
time slot in a sign-up book. This type of operation could bestances of a long-running program may take up many system

resources and slow down the response time of some other in- considered serial processing, reflecting the fact that users had
access to the computers in series.teractive users. Thus, most computer systems are equipped

with a batch-processing utility that allows users to assign jobs
to the computer in a batch and let the system handle the jobs Simple Batch Systems
without user assistance. An important function of the batch

The serial processing nature of the very first computer sys-
processing mechanism is to make the best use of the system

tems was quite inefficient: the wasted time caused by the
resources. For example, the system may perform long-haul

setup overhead of subsequent jobs is not acceptable. Com-
batch jobs, either computation or I/O-intensive, off-line at

puter vendors soon realized that some software was needed
nights, freeing the system for interactive users during normal

to automate job scheduling and setup, in order to maximize
business hours. In a networked computing environment, the

the use of the computers. This led to the development of the
system may even locate an idle machine to process the batch

first batch operating system over the years from the mid-
jobs. The first part of the article examines, in an evolutionary

1950s to the mid-1960s. One example is IBSYS, the batch op-
spirit, the development and features of batch-processing

erating system for the IBM 7094 computers.
systems.

The basic idea of the simple batch operating system was to
While the above avenue of batch processing lies mainly at

use software called Monitor (2)—the ancestor of all modern
the application level, the computer system itself may adopt

operating systems—to control the job setup. The user submit-
the principle of batch processing at a much lower level, to

ted programs on cards or tapes to the operator, who batched
achieve better performance. One such technique is to batch

them on an input device of the computer, ready to be loaded
disk-write operations. Due to disparate processing speeds be-

into the memory by the monitor. The monitor read in jobs one
tween processors and disk I/O, disk operations are more

at a time from the input device (a card reader or magnetic-
likely to become the bottleneck in many systems. While pre-

tape drive). Once a job (including the codes and data) was
fetching and caching techniques are able to reduce the aver-

placed in the memory, the monitor executed a branch instruc-
age access time for disk-read operations, they do not equally

tion, which directed the central processing unit (CPU) to jump
improve the access time for disk writes. As a result, disk

to and continue execution at the start location of the user
writes remain the hurdle to a full utilization of the disk data

program. When a job was completed, the control was returned
transfer bandwidth. The problem arises because random disk

to the monitor, which then read in the next job. The results
writes causes excessive disk head movements, which are slow,

of a job were usually sent to a line printer for printout.
due to their mechanical nature. The second part of the article

Simple batch operating systems eliminate the need for hu-
presents techniques used in some file systems that batch, and

man intervention for job setup. However, they introduce cer-
perhaps reschedule, disk-write requests, in order to achieve

tain overhead: a portion of the processor time and memory
better I/O performance.

space must be allocated to the monitor. Often this overhead
is more than offset by the saving in manual setup time.
Therefore, batch operating systems improved the use of com-

BATCH-PROCESSING SYSTEMS
puters.

Batch processing was the main design goal of many early
Multiprogramming Batch Systems

computer systems. In many cases, the batch-processing mech-
anism is part of the underlying operating system, which con- In a simple batch system, when the running program re-

quests an input or output (I/O) operation (e.g., reading fromtrols the computer. As computer technologies evolve, however,
few vendors today are manufacturing computers or operating a tape or writing to a printer), the CPU simply sits idle until

the requested I/O operation is completed. Since I/O operationsystems solely for the purpose of processing batch jobs.
Rather, modern operating systems are designed to handle in- is much slower than the CPU, much CPU time is wasted if

I/O operations are frequent. The solution to avoid such inef-teractive jobs, which require frequent interaction between the
users and the computers, as well as long-running batch jobs. ficiency is to allow more than one user job to reside in mem-

ory—a concept termed multiprogramming. When the runningMost systems now provide batch-processing capability as a
suite of utility software, which is implemented outside the job requests an I/O operation, the CPU is given to another

job in memory. If there are sufficient jobs in the memory, theoperating system.
In order to understand the key requirements and features CPU can be kept busy all the time.

During the mid-1960s, IBM introduced the System/360of batch-processing systems, it is useful to consider how
batch-processing systems have evolved over the years. Con- series—the first computer line to use integrated circuits

(ICs)—and incorporated the multiprogramming concept intemporary computers were first created and used in produc-
tion around the mid-1940s. These machines were enormous the operating system OS/360 (3). The design of a multipro-

gramming system involves some memory-management issuesin size, filling up entire rooms with tens of thousands of vac-
uum tubes. At that time, there were no such concepts as op- and requires special hardware supports:



BATCH PROCESSING IN COMPUTERS 225

• Memory Partition and Protection. The memory was di- is a multiprogramming system in which each job (or user) is
assigned small pieces of CPU time, in turn.vided into several partitions, with a different job in each

partition. The operating system designer must make cer- In a time-sharing computer system, several users may log
on and interact with the computer at the same time, throughtain decisions regarding the management of the memory.

One issue is whether the partitions should be predeter- terminals. The operating system interleaves the execution of
the user programs by giving a short CPU burst called quan-mined when the operating system is started and remain

fixed afterward, or should they be created dynamically tum (typically in the range of hundreds of milliseconds) to
each program, in turn. Given the relative slow human reac-and assigned to user jobs when the jobs are admitted?

Another issue arises when there is more than one job tion time, a time-sharing system manages to provide fast, in-
teractive service to concurrent users, producing the illusionwaiting in the queue: the system needs to determine

which job to execute next, when a memory partition is that each user has a dedicated computer. One of the first
time-sharing systems was the Compatible Time-Sharing Sys-available. For example, one may simply select the first

job in the queue that fits into the available partition, or tem (CTSS) (4), developed at Massachusetts Institute of Tech-
nology in the early 1960s for a specially modified IBM 7094one may find the job that best fits into the partition (thus

resulting in smallest unused space). All these issues have computer. Since then, time-sharing was the theme of op-
erating system design and could be found in virtually allprofound impact on the utilization of the memory and

thus the performance of the system. Finally, the op- kinds of computer systems that followed, including minicom-
puters (1970–1980) and personal computers (1980–present).erating system must prevent the failure of a job from af-

fecting other jobs in the memory. This is typically en-
forced by a combination of software and hardware. One Batch Utility. Unlike the early computer systems, in which
method is to use two boundary registers, which store the batch processing was an indivisible part of the underlying op-
low boundary and high boundary of the memory partition erating system, time-sharing computer systems usually sup-
in which the current running job resides. All memory ad- port the batch function as application programs, separate
dresses generated by the running job are checked against from the kernel of the operating system. The batch utility of-
the registers to ensure they fall between the boundaries. ten consists of a set of commands, which the user could use
Should a violation occur, the operating system would in- to submit and manage batch jobs. To avoid delaying short in-
tercept the faulty instruction, terminate the job, and teractive jobs, large batch jobs are typically run in the back-
print an error message to the user. Interested readers ground, with lower priorities, or when the CPU is otherwise
may refer to Refs. 1 and 2 for more details about the idle. The following sections describe the usage and the design
various strategies for partitioned memory management. issues of a typical batch utility. While the attempt is to keep

• I/O Interrupts. In a multiprogramming system, a run- the discussion in general, much of it is based on the at (or
ning job will give up the CPU and be blocked when it batch) command that is available in most Unix operating
issues an I/O operation. There must be a means for the systems.
I/O device to inform the operating system when the I/O Usage. To start, one must first create a batch file, which
operation is finished, so the blocked job can have a contains a list of jobs to be run in batch. The following shows
chance to regain the CPU. The solution is interrupt- the content of an example batch file that contains four jobs.
driven. When an I/O operation is completed, the I/O de-

simulate 100 < data-file-1 > result-1vice sends a signal to the CPU and sets an interrupt bit.
simulate 400 < data-file-1 > result-2The operating system will detect such a condition and
simulate 100 < data-file-1 > result-3interrupts the currently running job. It then passes the
simulate 400 < data-file-1 > result-4control to an interrupt-handling routine. The interrupt-

handling routine performs necessary tasks (e.g., moves In this example, all jobs run the same program (simu-
the data from a buffer in the I/O controller to the main late), but use different input parameters (100 and 400) and/
memory and unblocks the blocked process), and returns or data files. The phrase ‘‘< data-file-1’’ indicates the
the control to the interrupted job (or some other job in program simulate will read data from file ‘‘data-file-
certain cases). 1’’; the phrase ‘‘> result-1’’ direct the program to save

the simulation results in a file named ‘‘result-1’’. Once
Multiprogramming operating systems manage to overlap the batch file is created, the user may run the batch file by

the CPU operation of a job with an I/O operation of some using a batch command. The following statement shows how
other job. Best parallelism can be achieved and, thus, much to submit the above batch file (assuming it is saved in a file
time can be saved when a batch of jobs requires comparable named ‘‘batch-file’’) using UNIX’s ‘‘at’’ command.
CPU and I/O consumption.

at -f batch-file 24:00

Batch Processing in Time-Sharing Systems The option ‘‘-f’’ indicates that the batch jobs are to be
taken from a file (namely, ‘‘batch-file’’). The argumentTime-Sharing Systems. Multiprogramming systems were well
‘‘24:00’’ in the statement specifies that the batch jobs aresuited for large scientific or commercial data processing appli-
to be executed at midnight of the day. In general, a batchcations, which do not require constant user interaction. While
utility must provide the following user options:long response time is fine with these applications, there are

other types of applications that require frequent user input
and quick response time. This desire leads to the concept and • Execution Time. Run the submitted jobs at a later time,

even after the user has logged off the system.development of time-sharing systems. A time-sharing system



226 BATCH PROCESSING IN COMPUTERS

• Status Report. The batch utility must provide the users in a file. Electronic mail is also a good medium for the
batch utility to notify the user of the completion of awith the option to check the status of submitted jobs.

This may include progress information (e.g., which jobs batch job.
have been completed and when), as well as resource con-
sumption statistics (e.g., how much CPU time and mem- Distributed Batch Systems
ory space was used by a job).

During the late 1980s and early 1990s, the computing indus-
• Forced Termination. A batch utility should allow users try has experienced a paradigm shift from large mainframes

to voluntarily remove a job from the batch queue or to to networks of workstations or personal computers. There
kill a faulty running job. were two main driving forces behind such a trend:

Batch Job Management. The following examines some com- 1. Cost Effectiveness. Large mainframes that are powerful
mon issues that a batch utility should consider when manag- in computation are usually expensive, in both owner-
ing batch jobs. ship and maintenance. Networks of workstations and

personal computers, in contrast, are less costly and
• Access Privilege. Access control is necessary in a multi- allow more flexible and dynamic allocation of computing

user system, to prevent a user from accidentally or inten- resources among the users.
tionally exhausting the system resources and jeopardiz- 2. Technological Advance. Computer chips and networks
ing the jobs of others. Some operating systems allow the have multiplied their processing power since the early
administrator to determine who should have access to 1990s, whereas prices are continuing to drop. With fast
the batch utility and assign different levels of privileges computer chips and high-bandwidth networks, it is pos-
(e.g., by imposing a limit on the CPU time and memory sible to set up a network of workstations (or personal
space used by a job). computers), whose aggregate computation power is com-

• Spooling and Clock Demon. When a job is scheduled for parable to mainframes.
execution at a later time, the batch utility must produce
a file including necessary scheduling information and Most organizations now operate in a computing environ-
store it in a spooling directory. A clock demon (a demon ment that consists of many workstations connected by a high-
is a process running in the background that never exits) speed local area network. In many cases, however, these
will examine the spooling directory periodically (typically workstations are dedicated to the exclusive use of individuals
with an interval much less than one second) and start and lack resource sharing. A number of research institutes
those jobs whose execution times have passed the current and companies have developed software packages that make
time. better use of the computing resources of distributed comput-

• Scheduling. Batch jobs are often long-running and take ers. These software packages manage the resources available
up lots of system resources. Running a large batch job in a workstation pool, providing users with a virtual comput-
may severely delay the response time of other short in- ing machine that has a computational capacity many times
teractive jobs. To ensure fairness, the operating system larger than that of a stand-alone workstation. The software
may run batch jobs only when the load is light (e.g., after is usually implemented at the application level, without the
midnight when few users are logged on) or with lower need to modify the kernel of the operating system. This is
priority. Many operating systems use the multilevel feed- important for a wide acceptance of the software, since the
back queue (2) scheduling scheme (or its variants) to en- workstation pool it manages may contain different operating
sure fair distribution of CPU time between batch and in- systems. The workstation pool, along with the software, is
teractive jobs. The system maintains a number of job usually called a workstation cluster.
queues, say, Q1, Q2, . . ., QN, with increasing CPU There is little doubt that batch jobs should be able to take
quanta. Initially, all jobs enter Q1. If a job in Qi does not advantage of the resource-sharing nature of workstation clus-
complete after the CPU quantum expires, it is moved to ters. In this article, a distributed batch system (DBS) is de-
the next level queue Qi�1, which has a larger CPU quan- fined to be a software package that is capable of utilizing the
tum. The operating system always selects jobs for execu- resources available in a workstation pool to perform batch
tion from Q1 unless it is empty, in which case it turns to jobs. Many workstation cluster systems, however, support
Q2, and so on. With this scheme, long batch jobs descend distributed interactive jobs, as well. A complete list and re-
to lower-priority queues and receive larger CPU quanta, view of DBS commercial products and research systems is
while interactive jobs can receive higher priority and be provided in Refs. 5 through 7.
completed quickly.

• Standard Input/Output Interface. A program may read System Architecture. To run a batch job on a DBS, the user
must first create a job description file. This file is generally adata from the standard input device (e.g., keyboard) or

write data to the standard output device (e.g., monitor). plain text file, produced by the user, using a text editor or a
graphical user interface (GUI) tool. The file contains a set ofRunning such a program as a batch job may cause some

problems, because the user will not be on the scene to keywords and user-specified parameters, which are to be in-
terpreted by the DBS. The keywords should allow users torespond to the input request or see the output on the

screen. The remedy is to change the standard input (out- specify at least the following: the name of the executable (a
compiled program or an interpretable script file), input andput) device to a regular file. So, instead of awaiting input

from the keyboard or displaying data on the monitor, the output data files, command line arguments, time, and desired
platform to run the job. In a way, the job description file isprogram will both read input data and save output data



BATCH PROCESSING IN COMPUTERS 227

similar to the batch file introduced earlier. The job description be directly accessible from the executing machine. Therefore,
it is necessary for a DBS to provide remote file access so thatfile is to be submitted to the DBS through a submission

command. a batch job can read or write to a file from any machine in
the cluster.Typically, there is a demon process (the client process) run-

ning on each machine in the pool, and a master scheduler (the There are different approaches to supporting remote file
access. One essential requirement is that the solution shouldserver process), which runs on a particular machine. The cli-

ent process accepts batch commands, along with the parame- not require modification of the application program. The user
need not be aware of the distributed nature of the environ-ters, from the user, and sends them to the master scheduler

for processing. The master scheduler, also running as a ment and should be free to write the program with only the
local file systems in mind. Many DBS packages require thedemon process, acts as a global coordinator among all the cli-

ent processes. The client processes communicate the states use of a distributed file system (8,9) to provide a consistent file
system on all machines. With this approach, a program canof their hosts to the master scheduler periodically. The state

information may include the system load, the amount of re- access the file from any machine using the same path name.
The program needs neither modification nor relinking. Whensources available, and the progress of the batch jobs running

on the machine. the program makes a file system call (e.g., read() or
write()) to a file located at another machine, the distributedAfter the client process parses a job description file, a re-

quest is sent to the master scheduler. The master scheduler, file system translates the call to a remote procedural call.
Some DBS packages even provide a library to which usersbased on the job requirements and the state information, se-

lects a workstation to execute the job at an appropriate time. can relink their batch programs. The library replaces the de-
fault implementation of file system calls and will resolve fileIn systems that support parallel processing, the master

scheduler may select more than one workstation to execute access during run time. If the batch job is executed at a ma-
chine different from the submitting machine, the new file sys-the job in parallel. It is also the master scheduler’s responsi-

bility to ensure that jobs complete successfully. The master tem call will contact the submitting machine to obtain the
requested file data across the network. This usually requiresscheduler monitors the progress of running jobs. Should a

failure occur, it must either notify the users of the situation the submitting machine to run a demon process to handle
such requests. This approach is most useful when the ma-or reschedule the aborted jobs to run again, if the failure is re-

coverable. chines in a cluster do not share the same file system and,
thus, some files may not be accessible from a remote machineDifferent DBSs may vary greatly in the functions they sup-

port. In the following section some important features that through the distributed file system.
Both the above approaches degrade the performance of aare commonly found in DBS packages are examined and dis-

cussed. The features selected for discussion are based on remotely executed job, because each file operation will incur
a communication overhead. To alleviate the problem, somethose criteria originally set out in Refs. 5 and 6, for compari-

son purposes. Interested readers may refer to those references DBS packages have found solution by caching the file at the
executing machine beforehand. Subsequent accesses to thefor a complete list of comparison criteria.
file are directed to the local cache. This may reduce network
overhead substantially if the job involves frequent and largeFunctions

Job Support. The types of batch jobs that can be run by a amounts of file accesses.
Parallel Support. Workstation clusters provide a great op-DBS vary from system to system. Typically the executable of

a batch job is the compiled result of a program written in a portunity for parallel processing, due to the presence of multi-
ple processors in the cluster. There is interest in using clusterhigh-level programming language. Some DBSs allow the pro-

gram to contain any legal system calls, which request service systems as a cost-effective alternative to multiprocessor sys-
tems for high-performance computing. Consider a batch jobfrom the operating system kernel. System calls make process

migration and checkpointing (to be discussed later) more com- that requires running the same program many times but with
different input. It is natural to distribute the work load toplicated. Thus, many DBS systems support only single-pro-

cess jobs. This means the job cannot create child processes several workstations, so that each machine will run an in-
stance of the program with a different input. Most DBS pack-(e.g., by using the fork() system call in UNIX) and cannot

use any interprocess communication primitives (such as sock- ages offer this form of parallel processing. Some DBSs sup-
port advanced tools for more sophisticated parallelets, pipes, and shared-memory system calls). System calls

that bear chronological meaning (such as setting alarms) are application development, allowing users to distribute the
computation of a program or work load of a multiprocess pro-often not supported either. This avoids the problems that may

occur when a process migrates to a new host whose clock is gram over several machines. The parallel virtual machine
(PVM) (10) is an example of such a tool, and is supported ininconsistent with that of the original host. For DBS packages

that do support a broad range of system calls and multi-pro- a number of DBS packages. However, using such tools usually
means that one must write the application programs by mak-cess jobs, users usually have to write their application pro-

grams by using special function calls provided by the DBS ing function calls to a special library. This reduces the porta-
bility of the application programs, as they can be run only onpackages.

Remote File Access. The master scheduler may execute a systems that support the parallel processing tool for which
the programs are written.batch job on any machine in the cluster, not necessarily on

the machine from which the job was originally submitted. Of- Job Scheduling and Resource Allocation. An important func-
tion of almost all DBSs is load balancing. Load balancing re-ten the file system of the submitting machine is not mirrored

on every machine in the cluster. The consequence is that a fers to the distribution of work load equally among all com-
puters in the cluster, in order to achieve the best systemfile that is accessible from the submitting machine may not



228 BATCH PROCESSING IN COMPUTERS

throughput. Throughput is defined to be the number of jobs checkpointing usually needs assistance from the operating
system through various system calls.completed per unit time. Typically, the master scheduler will

communicate with the client process on each machine, to keep One important issue in implementing checkpointing is that
it should not require modification of the application programs.track of the load of the machine. The scheduler then plans the

distribution of submitted batch jobs to the member machines, This concern rules out the method of inserting checkpointing
function calls inside the application program. A common ap-based on the load information it collects.

In general, the DBS will select an idle or the least-loaded proach is using signals. For example, Condor relinks an appli-
cation program with a function that defines a new signalmachine to run the next batch job. However, arbitrarily dis-

patching a job to a light-loaded workstation may affect the SIG_CKPT and sets up a signal-handling function ckpt().
The function ckpt() performs all the necesssary tasks to pro-owner of the workstation if the owner is currently on-line.

Some DBS packages reduce the impact of the cluster system duce a checkpoint file. During the execution of the program,
Condor’s master scheduler sends periodical SIG_CKPT signalson the machine owners by monitoring user activity. For exam-

ple, Condor (11) keeps track of the load, as well as the key- to the running process. Upon receiving the signal, the process
will jump to execute the signal handler ckpt(), which takesboard activity (including that from a remotely logged-on

user), on each member machine. Condor sends a job to a a checkpoint of the process and will then return to where it
left and continue. Checkpointing may slow down a runningworkstation for execution only when it finds out the ma-

chine’s load is below a predefined threshold and there has job as it incurs substantial I/O overhead. The frequency of
checkpointing must be carefully chosen, to avoid drastic delaybeen no keyboard activity for a predefined period of time.

If the job is not finished when the owner of the machine of the running job while still guaranteeing a reasonable recov-
ery effort after a system crash.returns (which is detected by new keyboard activity), the

job will be stopped and the resources of the machine will Other Features. Many DBS packages provide features in
addition to the ones described above. Some of those are de-be given back to the owner.

Process Migration. Process migration refers to the capabil- scribed in the following. The list, however, is by no means
complete.ity of moving an unfinished job process from its current run-

ning machine to another machine and continuing the execu-
tion. One reason for a DBS to incorporate the process • Multiple Queues. The provision of multiple queues for
migration feature is to achieve better load balance. When a users to place jobs with a similar nature or resource re-
machine becomes idle and available, the DBS may move a quirement in the same queue. This enables the operating
running process from an overloaded machine to the idle ma- system to make better use of the system resources based
chine, without losing what has been done so far. Another use on the characteristics of the jobs. Consider, for example,
of process migration reason is to relocate, rather than kill, the a system with two queues: one for CPU-intensive jobs
jobs running on a machine when the owner of the machine and one for I/O-intensive jobs. When the CPU is under-
returns. For this to work properly, the state of the migrated utilized (because of some ongoing I/O-intensive jobs), the
process must be saved and sent to the new host. The proce- operating system may admit one or more user jobs from
dure of saving the state and related information of a running the CPU-intensive queue to utilize the otherwise idling
process is usually called checkpointing, which will be dis- CPU cycles. The rationale is that the users usually would
cussed next. have a better idea than the operating system of the na-

Checkpointing. In addition to supporting process migra- ture of the jobs they submit. Allowing users to place jobs
tion, checkpointing provides another advantage: efficient re- in different queues according to their characteristics
covery of unfinished jobs after a system failure. This requires greatly facilitates the operating system’s scheduling task
the DBS to perform periodical checkpointing by saving the in achieving best resource utilization and thus higher
state of a job in a checkpoint file on stable secondary storage, throughput.
usually the hard disk. In the event of a system crash, the

• Fault Tolerance. This is the capability for the jobs to sur-only lost computation will be from the point at which the last
vive system failures. For example, the master schedulercheckpoint file was made. When the system is brought back,
must be able to detect when a machine crashes andthe DBS may reconstruct the state of the unfinished job from
makes proper decisions about the uncompleted jobs leftthe last checkpoint file and continue execution from that
on the faulted machine. It may restart the uncompletedpoint.
jobs from scratch at another machine, or it may wait un-To checkpoint a job, the DBS must save the current values
til the faulted machine comes back and continues the ex-of the variables used by the job in a checkpoint file. The vari-
ecution from the last checkpoint. Also, if the machineables may include those in the memory and in certain data
running the master scheduler fails, the system must beregisters. Second, the content of certain control registers
able to recover and continue to run. Under all circum-(such as program counter and stack pointer), which are used
stances, the DBS must guarantee that a job will completeto keep track of the thread of the execution, must also be
eventually. Should an unrecoverable failure occur (e.g., asaved. This information is necessary to resume and continue
bug in the application program), the system must notifythe execution of the process from where it left off before the
the user of such a situation.crash. Finally, the information about the files opened by the

• User Control of Jobs and Resources. This allows users toprocess, including access modes (read-only, write-only, or
administer batch jobs. As a minimum requirement, aread-write) and current file positions (to which the next read
DBS must allow a user to terminate a running job andor write should be performed), must also be saved. Since
query job status. To make a more efficient use of the sys-checkpointing involves saving information that is accessible

only by the operating system, the actual implementation of tem resources, some DBSs also grant users limited con-



BATCH PROCESSING IN COMPUTERS 229

Table 1. Commercial Products and Research Systems That Support Distributed Batch Processing

Commercial Products Task Broker FAR (A Tool for Exploiting Spare
Hewlett-Packard Company Workstation Capacity)

CODINE
Chelmsford System Software Lab J.S. Morgan

GENIAS Software GmbH
300 Apollo Drive Computing Services

Erzgebirgstr. 2
Chelmsford, MA 01824 University of Liverpool

D-93073 Neutraubling, Germany
508-256-6600 P.O. Box 147

��49 9401 9200-33
Abercromby Square

CS1/JP1 Research Systems Liverpool L69 3BX, UK
Hitachi America, Ltd. �44 151 794 3746

Condor
ISSM Division

Department of Computer Science Generic NQS
437 Madison Ave.

University of Wisconsin Academic Computing Services
Floor 33

1210 W. Dayton Street University of Sheffield, UK
New York, NY 10022-7001

Madison, WI 53706-1685 �44 114 282 4254
DJM (Distributed Job Manager)

CCS (Computing Center Software) Hector (Heterogeneous Computing Task
Network Computing Services, Inc.

Paderborn Center for Parallel Computing Allocator)
1200 Washington Avenue South

University of Paderborn Department of Electric and Computer
Minneapolis, MN 55415

Furstenallee 11 Engineering
612-337-0200

D–33095 Paderborn Germany NSF Engineering Research Center for
Load Balancer �49-5251-60-6322 Computational Field Simulation
Unison Software Mississippi State University

DBC (Distributed Batch Controller)
5101 Patrick Henry Drive P.O. Box 9571

Department of Computer Science
Santa Clara, CA 95054 Mississippi State, MS 39762

University of Waterloo
408-988-2800

Waterloo, ON N2L 3G1, Canada PBS
Load Leveler NAS Systems Development Branch

DQS (Distributed Queuing Systems)
IBM NAS System Division

Supercomputer Computations Research
85B/658 Neighborhood Road NASA Ames Research Center

Institute
Kingston, NY 12401 MS 258-6

400 Science Center Library
415-855-4329 Moffett Field, CA 94035-1000

Florida State University
LSF (Load Sharing Facility) Tallahassee, FL 32306 PRM (The Prospero Resource Manager)
Platform Computing Corporation 850-644-1010 Scalable Computing Infrastructure Project
5001 Yonge Street, #1401 Information Sciences Institute

EASY (Extensible Argonne Scheduler
North York, Ontario M2N 6P6, Canada University of Southern California

System)
416-512-9587 4676 Admiralty Way, Suite 1001

Argonne National Laboratory
Marina del Rey, CA 90292

NQE (Network Queuing Environment) 9700 South Cass Avenue
310-822-1511

Cray Research, Inc. Argonne, IL 60439
655 Lone Oak Drive
Eagan, Minnesota 55121
612-452-6650

trol of the resources. For example, allowing a user to pool of computational resources. The Distributed Batch Con-
specify the run time limit of a job may prevent runaway troller (DBC) (12) is a facility that harnesses the computing
jobs from eating up all the system resources. Some sys- power of geographically separate workstation clusters con-
tems also allow users to add or withdraw their machines nected via the Internet. Its function is to speed up large scien-
from the cluster, at will. tific data processing jobs, in which the same data processing

operations are applied repeatedly and independently to a
Products and Research Systems. Table 1 lists the contact in- number of data sets. The DBC manages multiple autonomous

formation for a number of commercial DBS products and re- workstation pools, each of which, in the current implementa-
search systems. Technical documents and papers for these tion, is controlled by Condor (11). Therefore, the DBC may
systems can be downloaded from the companies’ or institutes’ distribute batch jobs to execute at multiple workstation pools
Web sites. These products and systems vary greatly in the in parallel. The DBC stages the data to one or more sites,
types of processors and operating systems they support. Inter- where it arranges the data to be processed through Condor.
ested readers may refer to Refs. 5 through 7 for a more com- When processing is complete, the DBC moves the results to a
plete list and information. Another source that provides use- result archive—a parameter specified in the DBC job descrip-
ful information and review on DBS products and systems is tion file.
the National HPCC Software Exchange (NHSE). Interested The computing model of the DBC resembles that of a regu-
readers may visit their Web site at http://www.nhse.org. lar DBS: there is one master scheduler, and a client process

(called workers) runs at each computational site. The master
Batch Processing over the Internet communicates with the workers to distribute batch jobs dy-

namically, based on the available resources at each site. TheThe Internet connects numerous computers all over the
world. Collectively, the interconnected computers form a large DBC has been used in a large scientific data processing appli-



230 BATCH PROCESSING IN COMPUTERS

cation (13), which generates atmospheric temperature and The log-structured file system, a high-performance file sys-
tem based primarily on batching file system I/O, is describedhumidity profiles from satellite data.
in the following. The results of a simulation-based perfor-Software that utilizes computing resources connected via
mance study of the file system is also presented.the Internet for batch processing is still at an early stage of

development. However, with the explosive use of the World
Wide Web, it is expected that such software will emerge soon Log-Structured File System
and play an important part in the ‘‘Web-centric’’ computing

Over the past decade, CPU speeds have increased dramati-future.
cally—about 50% to 100% per year—while I/O access times
have improved only by 5% to 10% per year. This trend is
likely to continue in the future, and it will cause more andBATCHING DISK WRITES
more applications to become disk-bound, potentially resulting
in I/O bottlenecks (14).In on-line transaction processing, requests are generally ser-

Several attempts have been made to address the I/O bot-viced in real time. In such an environment, user requests are
tleneck. Two of the many successful techniques used areprocessed mostly in their arrival order. On-line transaction

processing is often bandwidth limited, because of the poten-
tial random order in which requests arrive. Consider, as an 1. Caching. Cache memories have been successfully used
example, three customers queued up behind an ATM machine to improve I/O performance. Caching is based on the
for cash withdrawal. Suppose the customer accounts are principle of locality (15), which describes most program
stored on disk in cylinders 10, 100, and 20, respectively. In reference behavior. Locality can be temporal or spatial.
on-line transaction processing, the disk head will visit cylin- Temporal locality describes data reference pattern over
ders 10, 100, and 20, in that order, resulting in large disk time and is the tendency for data that have just been
head swings, affecting response time. used to be likely to be reused very shortly. On the other

There are three major time components associated with a hand, spatial locality describes data reference pattern
disk access. These are seek time, rotational latency, and trans- over the address space and is the tendency that the next
fer time. When a request for a disk block is initiated, the disk data to be used are very likely to be near data that have
controller causes the disk head assembly to move from the just been used. Caching has been implemented in many
current cylinder to the requested cylinder. This motion of the systems (16,17). However, RAM volatility is one of the
head assembly is called a seek and the time for the motion is major problems that limit the application of caching to
called the seek time. Movable head disks always incur seek systems. There are, however, ways to address the prob-
time, unless a preceding request had caused the head assem- lem, although a discussion of this is beyond the scope of
bly to be positioned on the correct cylinder. This is one of the this article.
major benefits of sequentially accessing a disk. A disk can be 2. Parallelism. Technological constraints have given us
sequentially accessed if the requests are batched and pre- the choice between small, slower, less reliable, and inex-
sorted. When this is done, a single seek cost can be amortized pensive disk drives and large, faster, more reliable, and
over a number of requests. expensive disk drives. However, small disks used in a

Once the head is properly positioned on the correct track, disk array have higher throughput and better reliability
the controller must wait for the requested sector to be posi- for a given cost than larger disks. Parallelism can be
tioned below the read/write head before beginning data trans- employed by assigning different tasks to different I/O
fer. This waiting time is called rotational latency. Low-end units. This results in multiple tasks being serviced con-
disks rotate at about 3600 revolutions per minute, giving a currently in the system. A mirrored-disk system, with
maximum latency of 16.67 ms. High-performance disks that multiple controller paths, can be utilized in this manner
rotate at double this speed are common, reducing the maxi- (18,19). A read request can be assigned to each of the
mum rotational latency to about 8 ms. After the correct sector disks and multiple reads can be serviced concurrently.
is properly positioned under the read/write head, data trans- In another form of parallelism, a single job is subdi-
fer can begin. The time taken to transfer data is known as vided among all the servers, so that if there are N
transfer time. servers, each server services 1/Nth part of the job. As a

If all disk accesses were for a random block, most of the result, the job jets serviced in only 1/Nth of the time it
disk time would be spent on disk seeks and rotational latency. would have taken a single server working alone. Con-
This access pattern can result in disk bandwidth utilization sider a request to access ten random tracks in an envi-
that is orders of magnitude lower than its peak performance. ronment with a single server. If it takes T ms to access
A number of successful techniques that have been used to a random track, then it will take this single server 10T
improve I/O performance are based on reducing or eliminat- ms to access the ten random tracks. However, consider
ing disk seeks and latencies during a disk access. Batching a disk array containing N � 10 disks. If this single job
disk writes is one such technique. of accessing 10 random tracks is split into ten parts,

In batch processing, user requests are ‘‘batched’’ (grouped), assuming that the data has been properly laid out, each
possibly reordered for efficient servicing, and submitted as a disk will be required to access only one track in T ms.
group for processing. In the three-account example, if the disk Since the ten disks can work concurrently, the ten
head were initially at cylinder 0, the second and third re- tracks are serviced in one-tenth of the time it took a
quests would be reordered, improving average service time of single server working alone. Disk arrays are used in

this form as described in Refs. 20–22.all transactions.



BATCH PROCESSING IN COMPUTERS 231

Although caching and parallelism helped improve I/O per-
formance by speeding up access to data and by improving I/O
rate, a log-structured file system addresses the problem by
looking at the way in which data are stored, updated, and
accessed in traditional file systems. A log-structured file sys-
tem uses disks an order of magnitude more efficiently than
current file systems.

Traditional UNIX file systems—for example, the fast file
system (FFS) (16)—are update-in-place file systems. In other
words, a file block is written at a given address and subse-
quent modifications to the same file block are made to the
same disk address. This has serious performance implica-
tions. In general, these file systems spread information
around the disk in a way that causes too many small accesses.
In the FSS, for example, the attributes (or the ‘‘i-node’’, in the
context of UNIX) for a file are separate from the file’s name.
The result is that it takes about five disk I/Os, each preceded
by a seek, to create a new file in the UNIX FFS. For small

Table 2. Disk and Work Load Parameters

Disk Parameters

No. of cylinders 1000
Tracks/cylinder 10
Blocks/track 10
Block size 4 kbytes
Rotational speed 4318 rpm (13.9 ms/rotation)
Average seek 12.50 ms
Average random access 20.84 ms
Seek cost function 2.0 � 0.01 � (distance) � 0.46 �

(distance)1/2

Disk settling time 1.39 ms

Work Load Parameters

Request size 4 kbytes
Read ratio 0% to 100%
Request distribution Uniform
I/O rate 20 per second

files, the UNIX FFS has less than a 5% disk bandwidth utili-
zation.

The fundamental assumption in a log-structured file sys-
kbytes per second. Thus, it is intuitively straightforward totem is that files are cached in main memory, and that the
see the benefits of sequential access of disks and hence thelarger the size of main memory, the more files can be cached,
main idea behind the LFS.improving overall read performance. Consequently, writes

will dominate most disk traffic. If these writes can be batched
Micro Benchmarkstogether, system performance will improve.

The fundamental idea of a log-structured file system is to A small collection of benchmark programs described in Refs.
improve write performance, by buffering a sequence of file 23 and 24 was used in Ref. 25 to measure the performance of
system changes in the file cache and then writing all the the LFS using simulation. Simulators were built for the LFS
changes to disk sequentially, in a single disk-write operation. and the UNIX fast file system which ran the same benchmark
The information written to disk includes file data blocks, at- programs. The benchmarks were not accurate models of real-
tributes, index blocks, directories, and almost all the other istic work loads; rather they were used to study the behavior
information used to manage the file system. of the file systems.

A log-structured file system (LFS) is not an update-in- Some major assumptions made in the benchmark imple-
place file system. In other words, when file blocks (data and mentation are:
meta information) are updated, they are written to new ad-
dresses on disk, such that the write is efficient. In most cases, 1. Each file system is simulated as a one-level directory
such writes do not require a disk seek or latency, and the file system and all files are created in the same root
entire disk bandwidth is used in data transfer. Given that the directory.
file blocks are written to new addresses, the old addresses are

2. 4-kbyte blocks are used.released and will be reused. This rewriting of file blocks
3. File names are of a fixed length and 8 bytes long. Eachcauses a major problem known as fragmentation in a log-

directory entry is 16 bytes long and each directory blockstructured file system. To address this problem, a cleaner is
(4096 bytes) contains 256 file entries.usually implemented. The cleaner periodically scans the disk,

4. Each i-node entry is 128 bytes and an i-node block hascompacting live data, freeing up segments to be reused.
32 i-node entries, one i-node per file.The LFS can utilize nearly 100% of the raw disk band-

width (about 70% for new data, the rest for segment cleaning) 5. 1.2 Mbyte segments were used in the LFS tests so that
while the UNIX fast file system can utilize only 5% to 10% of segments fall within cylinder boundaries of the disks
the raw disk bandwidth to write new data; the rest of the simulated in our experiments.
time is spent seeking (23). 6. Processors and channels are assumed to be infinitely

The performance benefits of LFS are derived primarily fast and all memory operations take zero time.
from the fact that it causes the disk to be accessed sequen-

7. Each file system supports a file cache of 8 Mbytes and
tially. Accessing a disk sequentially often results in better

supports read ahead capability during read operations.
performance than accessing the disk in a random manner.
Consider, for example, a disk with the parameters shown in

The micro benchmarks come in two suites (23,24):Table 2. From Table 2, average random access for a 4-kbyte
block takes 20.84 ms. This yields a transfer rate of about 190

1. a small file I/O test, andkbytes per second. However, if a random disk cylinder of 400
2. a large file I/O test.kbytes is accessed sequentially, then the time to complete the

access is: average seek time � time for ten disk rotations
(12.5 � 139) � 151.5 ms. Therefore, if it takes 151.5 ms to The benchmarks were designed to demonstrate how effi-

ciently LFS operated under different work loads.access 400 kbytes, this yields a transfer rate of about 2600



232 BATCH PROCESSING IN COMPUTERS

disk sectors. When file blocks are allocated in this manner,
they can be written and read sequentially. Sequential file ac-
cess improves the I/O performance of a system since (1) only
one seek is incurred in accessing a file and the cost is amor-
tized over the file blocks, and (2) the rotational latency is also
amortized over the file blocks. Consider a disk with 10 sur-
faces and 10 sectors per track that has a rotation time of
16.67 ms. Given a track-to-track seek of 5 ms, and 4 kbyte
disk sectors, a theoretical maximum sequential rate of

Table 3. Small File I/O Test

File Create Read Delete
System File Size (files/s) (files/s) (files/s)

UNIX FFS 1 kbytes 29 191 29
UNIX FFS 4 kbytes 23 53 27
UNIX FFS 10 kbytes 19 46 24
LFS 1 kbytes 1950 1750 5000
LFS 4 kbytes 540 520 2100
LFS 10 kbytes 220 210 1100

2329.64 kbytes/s can be achieved with such a disk.
Random Read, Random Write. In contrast, random file ac-

cess usually requires a seek and a rotational latency for every
file block. This type of access results in poor I/O performanceAsynchronous Small File I/O Test Results. The small file I/O
of a system. Reconsider the disk with 10 surfaces and 10 sec-test consists of creating, reading, and deleting 10,000 1 kbyte,
tors per track and a rotation time of 16.67 ms. Suppose the4 kbyte and 10 kbyte files. For each file size, the test was
disk has 1000 cylinders and is performing random access toconducted in this order:
file blocks. Using the nonlinear model for disk arm actuators,
an average random seek to a disk track will take about 14.12(a) create 10,000 files,
ms. [This is obtained using the seek time model suggested in(b) flush the file cache,
(18).] If an additional 8.33 ms rotational latency is incurred(c) read the files in the order they were created,
to fetch a file block, a theoretical maximum random rate of

(d) flush the file cache, and
178.17 kbytes/s can be obtained. This is only 7.64% of the

(e) delete the files in the order they were created. expected maximum sequential rate of 2329.64 kbytes/s.
If an update to a file does not change the file’s size, a tradi-

The results for the small file I/O tests are summarized in tional UNIX file system updates the blocks in place. Hence,
Table 3. Note that the FFS has synchronous semantics in file the location of each file block is unchanged, although poor up-
create and file delete operations, hence the aim in Table 3 date throughput results because of the random seek and la-
is not to directly compare FFS with LFS. The numbers are, tency incurred for each file block. For example, in Table 4,
however, listed in the table to show the efficiency of LFS. An- FFS achieves a random read rate of 210.27 kbytes/s and a
other important point in the experiment is that while the LFS random write rate of 209.89 kbytes/s using the traditional
requests were generated from multiple sources, the synchro-

UNIX update in place semantics. (These figures are bigger
nous UNIX requests were generated from a single source.

than the theoretical random rate of 178.17 kbytes computed
above because the 100 Mbyte file used in the test did not spanAsychronous Large File I/O Test Results. The large file I/O
the entire disk cylinders, resulting in shorter seek distancestest measures the transfer rate for reading and writing a 100
on average.)Mbyte file. The test is conducted in this order:

In contrast, LFS copies over file blocks to new locations
during a random update. It sorts the random blocks in cache(a) create and write 100 Mbytes sequentially (sequential
and writes them sequentially to disk. Hence the random writewrite),
rate is almost identical to the sequential write rate. For ex-

(b) read 100 Mbytes sequentially (sequential read), ample, in Table 4 the random and sequential write rates in
(c) write 100 Mbytes randomly to the file (random write), LFS are each about 2300 kbytes/s. This number is almost
(d) read 100 Mbytes randomly from the file (random read), identical to the computed maximum sequential rate of 2329

and kbytes/s.
(e) read 100 Mbytes sequentially after randomly writing If the random updates performed in LFS are not to unique

the file (sequential reread). file blocks, some blocks could be overwritten in cache saving
some writes. In such a case, the random write rate of LFS is

The results are presented in Table 4, with the details given higher than its sequential write rate.
below. Sequential Reread. A sequential read after a random up-

Sequential Read, Sequential Write. Traditional UNIX file date is very efficiently performed by the UNIX FFS because
systems attempt to allocate file blocks for a file in contiguous the order of file blocks is unperturbed during the random up-

date. In fact, the rate obtained for a sequential reread using
UNIX semantics is identical to the original sequential read
rate. This result is shown in Table 4 in which the UNIX FFS
achieves a reread rate of 2305.03 kbytes/s.

If LFS copy-over policy is used to sequentially reread a file
that has been randomly updated, poor reread rate results.
This is because the file blocks are no longer in their original
assignment order and the sequential reread is now equivalent
to a random access to file blocks. This result is shown in the
LFS column in Table 4 where a sequential reread rate of
209.97 kbytes/s is obtained.

Table 4. Large File I/O Test

LFS UNIX FFS
Operation (kbytes/s) (kbytes/s)

Sequential read 2305.38 2305.03
Sequential write 2304.95 2305.21
Random read 210.27 210.27
Random write 2304.50 209.89
Sequential reread 209.97 2305.03



BATTERY STORAGE PLANTS 233

20. M. Kim, Synchronized disk interleaving, IEEE Trans. Comput.,ACKNOWLEGMENTS
C-35 (11), 1986.

21. D. Patterson et al., Introduction to Redundant Arrays of Inexpen-The work by C.-M. Chen and N. Rishe was supported in part
sive Disks (RAID), Proc. IEEE Comput. Soc. Int. Conf., San Fran-by NASA (under grants NAGW-4080, NAG5-5095, and NRA-
cisco, CA: Feb. 1989, IEEE Computer Press, pp. 112–117.97-MTPE-05), NSF (CDA-9711582, IRI-9409661, and HRD-

22. K. Salem and H. Garcia-Molina, Disk striping, Proc. IEEE Int.9707076), ARO (DAAH04-96-1-0049 and DAAH04-96-1-0278),
Conf. Data Eng., Los Angeles, CA: Feb. 1986, IEEE ComputerDoI (CA-5280-4-9044), NATO (HTECH.LG 931449), and State
Press, pp. 336–345.of Florida.

23. M. Rosenblum and J. Ousterhout, The design and implementa-
tion of a log-structured file system, Proc. 13th ACM Symp. Op-

BIBLIOGRAPHY erating Syst. Principles, Pacific Grove, CA: Oct. 1991, ACM Press,
pp. 1–15.

1. A. S. Tanenbaum and A. S. Woodhull, Operating Systems: Design 24. M. Rosenblum and J. Ousterhout, The LFS storage manager,
and Implementation, 2nd ed., Englewood Cliffs, NJ: Prentice- Proc. Summer USENIX Conf., Nashville, TN: USENIX Associa-
Hall, 1997. tion, June 1991, pp. 315–324.

2. A. Silberschatz and P. B. Galvin, Operating System Concepts, 4th 25. C. Orji, Issues in High Performance Input/Output Systems, Ph.D.
ed., Reading, MA: Addison-Wesley, 1994. dissertation, Department of Computer Science, Chicago, Illinois:

University of Illinois, Dec. 1991.3. F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Anniversary Ed., Reading, MA: Addison-Wesley,
1996. CHUNG-MIN CHEN

Florida International University4. F. J. Corbato, M. Merwin-Daggett, and R. C. Daley, An experi-
mental time-sharing system, Proc. AFIPS Fall Joint Comput. CYRIL ORJI
Conf., AFIPS, 1962, pp. 335–344. Lucent Technologies

5. J. A. Kaplan and M. L. Nelson, A comparison of queuing, cluster NAPHTALI RISHE
and distributed computing systems, NASA Langley Research Cen- Florida International University
ter, Technical Memorandum, NASA TM-109025, June 1994.

6. M. A. Baker, G. C. Fox, and H. W. Yau, A review of commercial
and research cluster management software, Northeast Parallel Ar-
chitecture Center, Syracuse University, Syracuse, NY, June 12,
1996.

7. S. Herbert, Systems analysis—batch processing systems, Docu-
ment Code JISC-0003, Academic Computing Services, University
of Sheffield, UK.

8. R. Sandberg, The Sun Network File System: Design, Implementa-
tion, and Experience, Mountain View, CA: Sun Microsystems,
Inc., 1987.

9. J. H. Morris et al., Andrew: A distributed personal computing
environment, Commun. ACM, 29 (3): 184–201, 1986.

10. A. Geist et al., PVM: Parallel Virtue Machine: A User’s Guide and
Tutorial for Networked Parallel Computing, Cambridge, MA: MIT
Press, 1994.

11. M. Litzkow and M. Livny, Experience with the Condor distrib-
uted batch system, Proc. IEEE Workshop Experimental Distrib-
uted Syst., Huntsville, AL, 1990.

12. C.-M. Chen, K. Salem, and M. Livny, The DBC: Processing scien-
tific data over the Internet, Proc. 16th Int. Conf. Distributed Com-
put. Syst., Hong Kong: IEEE Computer Press, May 1996.

13. J. Duff et al., Processing TOYS polar pathfinder data using the
Distributed Batch Controller, Int. Symp. Opt. Sci., Eng. Instrum.,
San Diego, CA: SPIE Press, July 1997.

14. J. Ousterhout and F. Douglis, Beating the I/O bottleneck: A case
for log-structured file systems, Operating Systems Review, 23 (1):
January 1989, 11–28.

15. P. Denning, On modeling program behavior. Proc. Spring Joint
Comput. Conf., Preston, VA: AFIPS 1972, pp. 937–944.

16. M. McKusick et al., A Fast File System for UNIX, ACM Trans.
Comput. Syst., 2 (3): 181–197, 1984.

17. M. Nelson, B. Welch, and J. Ousterhout, Caching in the Sprite
network file system, ACM Trans. Comput. Syst., 6: 134–154, 1988.

18. D. Bitton and J. Gray, Disk Shadowing, Proc. 14th Int. Conf. Very
Large Data Bases, Los Angeles, CA: Morgan Kaufmann, 1988,
pp. 331–338.

19. Tandem, Configuring disks, Tandem Systems Review, December,
1986.


