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gleton connected component. Consider now the edges of E in
succession, the lightest first. In correspondence with edge (v,
w), do the following:

Find the component currently containing v, and let this be
A.

Find the component currently containing w, let it be B.
If now A and B are different components, then combine

them into a single new component and add edge (v, w)
to T.

The examples considered pose instances of the set union
problem, the general formulation of which is to maintain a
collection of disjoint sets under an intermixed sequence of the
following two kinds of operations:

union(A, B). Combine the two sets A and B into a new set
named A.

find(x). Return the name of the set containing element x.

The operations are presented on line, namely, each opera-
tion must be processed before the next one is known. Initially,
the collection consists of n singleton sets �1�, �2�, . . ., �n�, and
the name of set �i� is i, 1 � i � n. Figure 1 illustrates an
example of set union operations.

The set union problem has many applications in a veryBACKTRACKING wide range of areas besides those already mentioned of COM-
MON and EQUIVALENCE statements in FORTRAN compil-

An equivalence relation on a finite set S is a binary relation ers (3,4) and minimum spanning trees (1,2). A list, by no
that is reflexive symmetrically and transitively. That is, for s, means exhaustive, would include implementing property
t, and u in S, we have that sRs, if sRt, then tRs; and if sRt grammars (5,6), computational geometry problems (7–9),
and tRu, then sRu. Set S is partitioned by R into equivalence testing equivalence of finite state machines (1,10), string algo-
classes, where each class contains all and only the elements rithms (11,12), logic programming and theorem proving (13–
that obey R pairwise. 16), and several combinatorial problems such as solving dy-

Many computational problems involve representing, modi- namic edge- and vertex-connectivity problems (17), computing
fying, and tracking the evolution of equivalence classes of an least common ancestors in trees (18), solving off-line mini-
equivalence relation that varies with time, starting from a mum problems (19,20), finding dominators in graphs (21), and
given initial configuration. Such an initial configuration is of- checking flow graph reducibility (22).
ten the one where equivalence coincides with equality; i.e., The focus of the present discussion is represented by the
each element of S forms a singleton class all by itself. The several variants of set union, where the possibility of back-
study of these equivalence maintenance programs was moti- tracking over the sequences of unions is taken into account
vated originally by the problem of processing some declara- (23–27). These variants are motivated especially by problems
tions of the FORTRAN language, such as EQUIVALENCE
and COMMON. The EQUIVALENCE(A,B,C(3)) declaration,
for instance, indicates that the variables A, B, and C(3) (the
third element of array C) are to share the same location in
memory. In general, this poses no special problem except for
the fact that individual arrays have to occupy consecutive lo-
cations in memory, a circumstance that may create havoc as
a result of careless declarations. For instance, a declaration
such as EQUIVALENCE((A(1),B(1)), (A(2),B(3)) violates this
condition on array B and is thus unacceptable.

For further illustration, consider the problem of finding a
minimum spanning tree in a connected weighted graph G �
(V, E, W) having vertices in V, edges in E, and edge weights
in W. A minimum spanning tree for G is a subgraph T � (V,
E�) connecting all vertices of G by precisely (�V� � 1) edges, in

�1� �2� �3� �4� �5� �6� �7�

(a)

�1, 3� �5, 2� �4� �6� �7�

(b)

�4, 1, 3, 7� �5, 2� �6�

(c)

�4, 1, 3, 7, 5, 2� �6�

(d)

such a way that the edges in E� do not form any cycles, and Figure 1. Examples of set union operations: (a) the initial collection
the sum of the weights in W� is minimal with respect to all of disjoint sets; (b) the disjoint sets of (a) after performing ‘‘union(1,
possible selections for edges in E�. One proven method to com- 3)’’ and ‘‘union(5, 2)’’; (c) the disjoint sets of (b) after performing
pute T (1,2) is as follows. First, sort the edges in E in order ‘‘union(1, 7)’’ followed by ‘‘union(4, 1)’’; (d) the disjoint sets of (c) after

performing ‘‘union(4, 5).’’of increasing weight and put each vertex into a separate, sin-
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arising in logic programming interpreter memory manage- 3. (Separability). After each operation, the data structure
can be partitioned into disjoint subgraphs such thatment (28–31), in incremental execution of logic programs

(26), and in implementation of search heuristics for resolution each subgraph corresponds to exactly one current set.
The name of the set occurs in exactly one node in the(32,33). Special cases of backtracking through a special primi-

tive ‘‘split’’ are found also in connection with some of the geo- subgraph. No edge leads from one subgraph to another.
metric and string matching problems cited earlier. For the 4. To perform ‘‘find(x),’’ the algorithm obtains the node v
sake of self-containment, our exposition must start with a corresponding to element x and follows the paths, start-
brief account of the classical set union problem. We undertake ing from v until reaching the node that contains the
this task soon after the outline of computational models, name of the corresponding set.
which is given next. 5. During any operation, the algorithm may insert or de-

lete any number of edges. The only restriction is that
MODELS OF COMPUTATION rule 3 must hold after each operation.

Different models of computation have been developed for ana- The class of nonseparable pointer algorithms (40) does not
lyzing data structures. One model of computation is the ran- require the separability assumption. The only requirement is
dom-access machine, in which memory consists of an un- that the number of edges leaving each node must be bounded
bounded sequence of registers, each capable of holding one by some constant c � 0. Formally, all rules except rule 3 are
integer. In this model, the address of a memory register is left unchanged, while rule 3 is reformulated as follows:
provided directly, or it may be obtained as the result of some
arithmetic operations. It is usually assumed that the size of 3. There exists a constant c � 0 such that there are at
a register is O(log n) bits in terms of the size n of the input. most c edges leaving a node.
(In accordance with standard notation, f � O[g(n)] is used to
indicate the existence of a constant c and of a positive integer As we shall see in the course of our discussion, separable
n0 such that f (n) � g(n) for n � n0. Also, ‘‘log’’ denotes the and nonseparable pointer-based algorithms often admit quite
logarithm to the base 2.) A more detailed description of ran- different upper and lower bounds for the same problems.
dom-access machines can be found in (1). Another model of
computation, known as the cell probe model of computation,

THE SET UNION PROBLEMwas introduced by Yao (34). In the cell probe, the cost of a
computation is measured by the total number of memory ac-

As stated earlier, the set union problem consists of per-cesses to a random-access memory with cell size of log n
forming a sequence of ‘‘union’’ and ‘‘find’’ operations, startingbits. All other computations are assumed to be performed for
from a collection of n singleton sets �1�, �2�, . . ., �n�. Sincefree and thus are not accounted for. The cell probe model is
there are at most n items to be united, the number of unionsmore general than the random-access machine, which makes
in any sequence of operations is bounded above by (n � 1).it sometimes more convenient in attempts at establishing
Throughout, the following invariant conditions are preserved;lower bounds. A third model of computation is the pointer ma-
first, the sets are always disjoint and define a partition of �1,chine (35–39). Its storage consists of an unbounded collection
2, . . ., n�; second, each set is named after a representativeof registers (or records) connected by pointers. Each register
chosen among its own elements. Thus, for example, the initialcan contain an arbitrary amount of additional information,
name of set �i� is i. It is easily seen that the maintenance ofbut no calculations are allowed to compute the address of a
these invariants does not pose implementation problems. Inregister. Thus, the only way to access a register is by follow-
fact, sets are typically implemented as rooted trees, followinging pointers. This is the main difference between random-ac-
a representation introduced by Galler and Fischer (4). A sepa-cess machines and pointer machines. Throughout the discus-
rate tree is assigned to each disjoint set, with each node ofsion, we use the terms random-access algorithms, cell-probe
that tree corresponding to a distinct element in the corre-algorithms, and pointer-based algorithms to refer to algo-
sponding set. The element stored at the root of the tree alsorithms tailored to random-access machines, the cell probe
serves as the name of the set. Each node has a pointer to itsmodel, and pointer machines, respectively.
parent. In the following, we use p(x) to refer to the parent ofAmong pointer-based algorithms, two different classes are
node x.defined specifically for set union problems: separable pointer

A notable variant of the problem results from the followingalgorithms (39) and nonseparable pointer algorithms (40).
modification of ‘‘union’’:Separable pointer algorithms run on a pointer machine

and satisfy the separability assumption, introduced in (39)
unite(A, B). Combine the two sets A and B into a new set,and recalled later in this article. A separable pointer algo-

whose name is either A or B.rithm makes use of a linked data structure, i.e., a collection
of records and pointers that can be thought of as a directed

The only difference between ‘‘union’’ and ‘‘unite’’ is thatgraph: each record is represented by a node and each pointer
‘‘unite’’ allows the name of the new set to be chosen arbi-is represented by an edge in the graph. The algorithm solves
trarily (e.g., at run time by the algorithm). In most applica-the set union problem according to the following rules (39,41).
tions, this does not pose a restriction, since one is only inter-

1. The operations must be performed on line, i.e., each op- ested in testing whether two elements belong to the same set,
eration must be executed before the next one is known. not to how names are given. However, some extensions of the

set union problem have quite different time bounds de-2. Each element of each set is a node of the data structure.
There can be additional (working) nodes. pending on whether ‘‘unions’’ or ‘‘unites’’ are considered.
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Throughout our discussion, we will deal with ‘‘unions’’ unless cifically, two weighted quick-union algorithms follow immedi-
ately from adoption of one of the following rules.specified otherwise.

The best classical algorithms for the set union problem
(42,43) sought to optimize their amortized time complexity, union by size. Make the root of the smaller tree point to
i.e., the running time per operation as averaged over a worst- the root of the larger one, breaking ties arbitrarily.
case sequence (see 44) for a thorough treatment). Before de- union by rank (43). Make the root of the shorter tree point
scribing them, it is instructive to review some of the basic to the root of the taller one, breaking ties arbitrarily.
approaches to the problem (1,4,45). These are the quick-find,
the weighted quick-find, the quick-union, and the weighted These rules introduce some extra bookkeeping. In fact, the
quick-union, algorithms. As the names suggest, the quick-find first rule requires maintaining, for each node in the forest,
algorithm performs ‘‘find’’ operations quickly, while the quick- the number of its descendants, referred to as the size of that
union algorithm performs ‘‘union’’ operations quickly. Their node. The second requires maintaining, for each node, its
weighted counterparts speed up these computations by intro- rank, defined as the height of the subtree rooted at that node.
ducing some weighting rules during ‘‘unions’’ operations. After a ‘‘union (A, B),’’ the name of the new tree root is set to

The quick-find algorithm is performed as follows. Each set A. It can be easily proved [see, e.g., (43)] that the height of
is represented by a tree of height 1. Elements of the set are the trees achieved with either the ‘‘union by size’’ or the
the leaves of the tree. The root of the tree is a special node ‘‘union by rank’’ rule is never more than log n. Thus, with
that contains the name of the set. Initially, singleton set �i�, either rule, each ‘‘union’’ completes in O(1) time and each
1 � i � n, is represented by a tree of height 1 composed on ‘‘find’’ in O(log n) time.
one leaf and one root. To perform a ‘‘union(A, B),’’ all the A better, amortized bound can be obtained if one of the
leaves of the tree corresponding to B are made children of the following compaction rules is applied to the nodes encoun-
root of the tree corresponding to A. The old root of B is de- tered on the path traversed in the course of each ‘‘find’’ (see
leted. This maintains the invariant that each tree is of height Figure 2).
1 and can be performed in O(�B�) time, where �B� denotes the
total number of elements in set B. Because a set can have as

path compression (20). Make every encountered node amany as n elements, this gives a time complexity proportional
child of the root of the tree.to n in the worst case for each union. To perform a ‘‘find(x),’’

path splitting (46,47). Make every encountered node (ex-return the name stored in the parent of x. Because all trees
cept the last and the next to last) point to its grandpar-are maintained at height 1, the parent of x is a tree root.
ent.Consequently, a ‘‘find’’ requires O(1) time.

The more efficient variant known as weighted quick-find, path halving (46,47). Make every other encountered node
and attributed to McIlroy and Morris [see (1)], makes better (except the last and the next to last) point to its grand-
use of the degrees of freedom inherent in the implementation parent.
of ‘‘union’’: the latter is now executed taking weights into con-
sideration, as follows. Combining the two choices of a union rule and the three

choices of a compaction rule, six possible algorithms are ob-
union by size. Make the children of the root of the smaller tained. As shown in (43), they all have an O[�(m � n, n)]

tree point to the root of the larger one, arbitrarily break-
ing a tie.

This rule adds the (easy) requirement that notion of the
size of each tree be maintained throughout in any sequence
of operations. Following the rule does not lead to an improved
worst-case time complexity for individual operations. How-
ever, it yields an O(log n) amortized bound for a ‘‘union’’ (see,
e.g., 1).

Each set is also represented by a tree in the quick-union
algorithm (4). However, there are two main differences with
respect to the data structure used by the quick-find algo-
rithm. First, the height of a tree can now be greater than 1.
Second, the representative of each set is stored only at the
root of the corresponding tree, whence the notion of a special
node is forfeited. A ‘‘union(A, B)’’ is performed by making the
root of the tree representing set B a child of the tree root of
set A. A ‘‘find(x)’’ is performed starting from the node x by
following the pointer to the parent until the tree root is
reached. The name of the set stored in the tree root is then
returned. As a result, the quick-union algorithm supports
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‘‘union’’ in O(1) time and ‘‘find’’ in O(n) time.
This time bound can also be improved by exploiting the Figure 2. An illustration of path compaction techniques: (a) the tree

freedom in our tree implementations to choose which one of before performing a ‘‘find(x)’’ operation; (b) path compression; (c) path
splitting; (d) path halving.the two sets gets to name the new representative. More spe-
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amortized time complexity, where � is a very slowly growing As a consequence of this definition, the height of a k-UF
tree with n leaves is at most logk n. We refer to the root offunction, a functional inverse of Ackermann’s function (48).
a k-UF tree as fat if it has more than k children, and as slim
otherwise. In addition, a k-UF tree is said to be fat if its rootTheorem 1. (43) A sequence of at most (n � 1) ‘‘unions’’ and
is fat, otherwise it is referred to as slim.m ‘‘finds’’ takes O[n � m�(m � n, n)] time by any fixed combi-

Disjoint sets can be represented by k-UF trees as follows.nation of union by size or rank with path compression, split-
The elements of the set are stored in the leaves and the nameting, or halving.
of the set is stored in the root. Furthermore, the root also
contains the height of the tree and a bit specifying whether itNo better amortized bound is possible for separable and
is fat or slim.nonseparable pointer algorithms or in the cell probe model of

A ‘‘find(x)’’ is performed, along the lines already describedcomputation. Formally, with g � �( f) used to signify that
in the previous section, by starting from the leaf containing xf � O(g), we record the following theorem.
and returning the name stored in the root. This requires time
at most proportional to logk n.Theorem 2. (43,49,50) Any pointer-based or cell probe algo-

A ‘‘union(A, B)’’ is performed by first accessing the rootsrithm requires �[n � m�(m � n, n)] worst-case time for pro-
rA and rB of the corresponding k-UF trees TA and TB. Blumcessing a sequence of (n � 1) ‘‘unions’’ and m ‘‘finds.’’
assumed that his algorithm obtained in constant time rA and
rB before performing a ‘‘union(A, B).’’ If this is not the case,The bound of Theorem 2 does not rule out that a better
rA and rB can be obtained by means of two ‘‘finds’’ [i.e., ‘‘findbound is possible for a special case of set union. In fact, Ga-
(A)’’ and ‘‘find(B)’’], due to the property that the name of eachbow and Tarjan (19) proposed a random-access algorithm that
set corresponds to one of the items contained in the set itself.runs in linear time in the special case where the structure
We now show how to unite the two k-UF trees TA and TB.of the ‘‘union’’ operations is known in advance. Interestingly,
Assume, without loss of generality, that height(TB) � heightTarjan’s lower bound for separable pointer algorithms applies
(TA). Let v be the node on the path from the leftmost leaf ofalso to this special case, and thus the power of a random-
TA to rA with the same height as TB. Clearly, v can be locatedaccess machine seems crucial in achieving a linear-time algo-
by following the leftmost path, starting from the root rA forrithm. This result is of theoretical interest as well as signifi-
exactly height(TA) � height(TB) steps. When combining TAcant to many applications, such as scheduling problems, the
and TB, only three cases are possible, which give rise to threeoff-line minimum problem, finding maximum matching on
different types of unions.graphs, very large scale integration (VLSI) channel routing,

finding nearest common ancestors in trees, and flow graph
Type 1. Root rB is fat (i.e., has more than k children) andreducibility (19).

v is not the root of TA. Then rB is made a sibling of v.One more special case of the set union problem where am-
ortized linear time suffices was studied by Loebl and Nes̆etr̆il Type 2. Root rB is fat and v is fat and equal to rA (the root
(51), and it involves a restriction on the subsequence of of TA). A new (slim) root r is created and both rA and rB

‘‘finds.’’ are made children of r.
Type 3. This deals with the remaining cases, i.e., either

‘‘root rB is slim’’ or ‘‘v � rA is slim.’’ If root rB is slim,THE WORST-CASE TIME COMPLEXITY
then all the children of rB are made the rightmost chil-OF A SINGLE OPERATION
dren of v, and rB is deleted. Otherwise, all the children
of the slim node v � rA are made the rightmost childrenThe algorithms that use any union and any compaction rule
of rB, and rA is deleted.still have single-operation worst-case time complexity propor-

tional to log n (43), since such may be the height of some of
Note that type 1 and type 2 unions create new pointers,the trees created by any of the union rules. Set union algo-

while type 3 unions only redirect already existing pointers.rithms where some form of backtracking is possible are ana-
lyzed in terms of single-operation performance, rather than

Theorem 3. (41) k-UF trees support each ‘‘union’’ and ‘‘find’’amortization. The complexity achievable by a single ‘‘union’’
in O(log n/log log n) time. Their space complexity is O(n).or ‘‘find’’ in a sequence of such operations is also a topic of

intrinsic interest, and we discuss it in some detail in this Proof: Each ‘‘find’’ can be performed in O(logk n) time. Each
section. ‘‘union(A, B)’’ takes O(logk n) time to locate the nodes rA, rB,

Blum (41) proposed a data structure for the set union prob- and v defined earlier. Both type 1 and type 2 unions can be
lem that supports each ‘‘union’’ and ‘‘find’’ in O(log n/log log performed in constant time, while type 3 unions require O(k)
n) time in the worst case, and showed that this log n/log log time, due to the definition of a slim root. Choosing k � log
n is the actual lower bound for separable pointer-based algo- n/log log n yields the claimed time bound. The space com-
rithms. plexity is derived easily from the fact that a k-UF tree with �

The data structure used to establish the upper bound is leaves has at most (2� � 1) nodes. Thus, the forest of k-UF
called a k-UF tree. For any k � 2, a k-UF tree is a rooted tree trees requires O(n) space in total to store all the disjoint sets.
such that:

Blum showed also that this bound is tight for the class of
1. The root has at least two children. separable pointer algorithms. Fredman and Saks (49) showed
2. Each internal node has at least k children. that the same lower bound holds in the cell probe model of

computation.3. All the leaves are at the same level.
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Theorem 4. (41,49) Every separable pointer or cell probe by Mannila and Ukkonen (25) as a variant of the set union
problem, which they called set union with deunions, charac-algorithm for the disjoint set union problem has single-opera-

tion worst-case time complexity �(log n/log log n). terized by the fact that the following operation is added to the
standard ones of ‘‘union’’ and ‘‘find.’’

deunion. Undo the union performed most recently and not
THE SET UNION PROBLEM WITH DEUNIONS yet undone.

In this section, we undertake discussion of those variants of The set union problem with deunions can be solved by a
the set union problem where it is possible to undo one or more modification of Blum’s data structure described earlier. To fa-
of the unions performed in the past. This feature comes in cilitate deunions, we maintain a union stack that stores some
several forms, and is generally referred to as backtracking. auxiliary information related to bookkeeping of unions.
One of its main applications is found in logic programming ‘‘Finds’’ are performed as described earlier. Unions require
interpreter memory management without function symbols some additoinal work to maintain the union stack. We now
(29), because a popular logic programming language, Prolog, sketch which information is stored in the union stack. For the
uses unification and backtracking as crucial operations (31). sake of simplicity, we do not take into account names of the
We illustrate this with the help of the following example, and sets, so that ours will be a description of ‘‘unite’’ rather than
refer the interested reader to (52) for further details. ‘‘union.’’ However, names are easily maintained in some extra

Consider a database consisting of the following four asser- fields stored in the union stack. Initially, the union stack is
tions: empty. When a type 1 union is performed, we proceed as de-

scribed earlier, and then push onto the union stack a record
containing a reference to the old root rB. Similarly, when a
type 2 union is performed, we push onto the union stack a
record containing a reference to rA and a reference to rB. Fi-
nally, when a type 3 union is performed, we push onto the

likes(alice,running)
likes(alice,snorkeling)
likes(bob,snorkeling)
likes(bob,alice)

union stack a reference to the leftmost child of either rB or
rA, depending on the two cases. The pointer leaving this left-

which stand to represent the facts that Alice likes running, most child is called a separator, as it separates the newly
that Alice and Bob like snorkeling, and that Bob likes Alice. moved pointers from the rest of the pointers entering the
The question ‘‘Is there anything that Bob and Alice both like?’’ same node.
is phrased in Prolog as follows: Deunions basically use the top stack record to invalidate

the last union performed. Indeed, we pop the top record from
the union stack, and check whether the union to be undone is?- likes(alice, X), likes(bob,X).

of type 1, 2, or 3. For type 1 unions, we use the reference to
rB to delete the pointer leaving this node, thus restoring it asProlog reacts to this question by attempting to unify the first
a root. For type 2 unions, we follow the references to rA andterm of the query with some assertion in the database. The
rB and delete the pointers leaving these nodes and their par-first matching fact found in our case is likes(alice,run-
ent. For type 3 unions, we follow the reference to the node,ning). As a result, the terms likes(alice, running) and
and move this node together with all its right siblings as alikes(alice,X) are unified, and Prolog instantiates X to
child of a new root. Note that this corresponds to redirectingrunning everywhere X appears in the query. The database is
the associated separator together with all the pointers to itsthen searched for the second term in the query, which is now
right.likes(bob,running) because of the previous substitution.

It can be easily shown that this augmented version ofHowever, this term fails to unify with any other term in the
Blum’s data structure supports each ‘‘union,’’ ‘‘find,’’ and ‘‘deu-database.
nion’’ in O(log n/log log n) time and space O(n). This wasThen Prolog backtracks, i.e., it ‘‘undoes’’ the last unifica-
proved to be a lower bound for separable pointer algorithmstion performed: it undoes the unification of likes(alice,
by Westbrook and Tarjan:running) with likes(alice,X). As a result, the variable X

becomes noninstantiated again. Then, Prolog tries to reunify
Theorem 5. (27) Every separable pointer algorithm for thethe first term of the query with another term in the database.
set union problem with deunions requires �(log n/log log n)The next matching fact is likes(alice,snorkeling), and
amortized time per operation.therefore the variable X is instantiated to snorkeling every-

where X appears. As before, Prolog now tries to unify the sec-
The union stack bookkeeping just described can be appliedond term, searching this time for likes(bob,snorkeling).

to all of the union rules and path compaction techniques de-This can be unified with the third assertion in the database,
scribed earlier, thereby accommodating deunions in thosewhence Prolog notifies the user by answering:
contexts. However, path compression with any one of the
union rules leads to an amortized algorithm only bounded by
O(log n), as can be seen by first building a binomial tree [re-

X�snorkeling.

fer, e.g., to (43)] of depth O(log n) with (n � 1) unions, and
then by carrying out repeatedly a sequence consisting of aIn summary, the execution of a Prolog program without

function symbols can be regarded as a sequence of unifica- ‘‘find’’ on the deepest leaf, a ‘‘deunion,’’ and a redo of that
union. Westbrook and Tarjan (27) showed that using eithertions and deunifications. This class of problems was modeled
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one of the union rules combined with path splitting or path union(S1, S2, S). Combine the adjacent sets S1 and S2 into
the new set S � S1 � S2.halving would result in O(log n/log log n) amortized algo-

rithms for the set union problem with deunions. We now de- find(x). Return the name of the set containing x
scribe their algorithms.

split(S, S1, S2, x). Cleave S in correspondence with elementLet a union operation not yet undone be referred to as live,
x so as to produce the two sets S1 � �a � S�a � x� andthe union being dead otherwise. Again, deunions make use of
S2 � �a � S�a � x�.a union stack, in which those roots that lost their status as a

consequence of some live unions are maintained. In addition,
This interval union-split-find problem (40) and its restric-we maintain for each node x a node stack P(x), which contains

tions find applications in a wide range of areas, includingthe pointers originating from x as the result of either ‘‘unions’’
problems in computational geometry such as dynamic seg-or ‘‘finds.’’ During the path compaction accompanying a ‘‘find,’’
ment intersection (7–9), shortest-paths problems (53,54), andthe pointer from x now being disrupted is kept in P(x), and
the longest common subsequence problem (11,12). The latterthe newly created pointer is pushed on top of it. Clearly, the
arises in many applications, including sequence comparisonpointer at the bottom of any of these stacks is always created
in molecular biology and the widely used diff file comparisonby a union, and is thus called a union pointer. The other
program (11), and we shall discuss it briefly. The problem canpointers are created by the path compaction performed during
be defined as follows. Let x be a string of symbols over somesubsequent ‘‘finds’’ and are called find pointers. Each of these
alphabet. A subsequence of x is any string w obtained by re-pointers is associated with a unique union operation, namely,
moving one or more, not necessarily consecutive, symbolsthe one undoing that would invalidate the pointer. A pointer
from x. The longest common subsequence problem for inputis said to be live if its associated union operation is live,
strings x and y consists of finding a string w that is a subse-dead otherwise.
quence of both x and y and that has maximum possible‘‘Unions’’ are performed as in the set union problem, except
length.that for each ‘‘union’’ a new item is pushed onto the union

The problem can be formulated in terms of union-split-findstack, which contains the old tree root and some auxiliary
(11), and then solved according to a paradigm due to Huntinformation about the set name and either size or rank. To
and Szymanski (12). For simplicity, we describe only how toperform a ‘‘deunion,’’ the top element is popped from the
find the length of a longest common subsequence, and leaveunion stack and the pointer leaving that node is deleted. The
the computation of the subsequence itself for an exercise. Let,extra information stored in the union stack is used to main-
then, x � x1, x2, . . ., xm and y � y1, y2, . . ., yn be the twotain set names and either sizes or ranks.
input strings, and assume without loss of generality m � n.There are actually two versions of these algorithms, de-
For each symbol a in the input alphabet, compute OCCUR-pending on whether or not dead pointers are removed from
RENCES(a) � �i�yi � a�, i.e., the ordered list of positions in ythe data structure. Eager algorithms pop pointers from the
occupied by an a. The algorithm then performs m successivenode stacks as soon as they become dead (i.e., after a deunion
main stages, each stage being associated with a symbol of x,operation). On the other hand, lazy algorithms remove dead
as follows: Stage j (1 � j � m) consists of computing in succes-pointers only while performing subsequent ‘‘union’’ and ‘‘find’’
sion the length of a longest subsequence between prefix x1,operations. Combined with the applicable union and compac-
x2, . . ., xj of x and the consecutive prefixes y1, y2, . . ., yi of y.tion rules, this gives a total of eight algorithms. They all have
For k � 1, 2, lj, let Ak be the interval of positions of y thatthe same time and space complexity, as the following theo-
yield a longest common subsequence with x1, x2, . . ., xj ofrem claims.
length k. Observe that the sets Ak partition �1, 2, . . ., n� into

Theorem 6. (27) An eager or lazy algorithm based on any adjacent intervals, where each Ak contains consecutive inte-
fixed combination of union by size or rank with either path gers, and the entries of Ak�1 are larger than those in Ak, for
splitting or path halving runs in amortized time O(log n/log any k. Assume that we had already computed the sets Ak rela-
log n) per operation and overall linear space. tive to some position ( j � 1) of the string x. Now we show

how to update those intervals so that they apply to position j.
For each r in OCCURRENCES(xj), we consider whether we
can add the match between xj and yr to the longest commonSPLIT AND THE SET UNION PROBLEM ON INTERVALS
subsequence of x1, x2, . . ., xj and y1, y2, . . ., yr. The crucial
point is that if both (r � 1) and r are in Ak, then all the indicesIn some applications, the individual sets constituting our par-
s � r belong to Ak�1 when xj is considered. The pseudocode intition may be subjected to disaggregations that do not neces-
Fig. 3 describes this algorithm. The reader is referred tosarily correspond to undoing some previous union. In other
(11,12) for details of the method and to (55,56) for upgradeswords, these applications encompass our notion of back-
and additional references.tracking, but do reduce to backtracking. In particular, the role

The time complexity of this algorithm is proportional toof deunion is now taken by a new primitive split. One notable
the number p of pairs of matching symbols that can be formedinstance of these problems is represented by the set union
between x and y, multiplied by the cost of each individualproblem on intervals, which consists of maintaining a parti-
primitive set operation performed. We summarize next whattion of a list �1, 2, . . ., n� into adjacent, consecutive intervals,
is known about such a cost.each interval a sublist of the form �i, i � 1, . . ., i � d�. Union

There are optimal separable and nonseparable pointer al-is now defined only on adjacent intervals. Formally, letting
gorithms for the interval union-split-find problem. The bestSi (1 � i � k) be the ordered list of intervals in the partition,
separable algorithm for this problem runs in O(log n) time forthe problem consists of performing a sequence of operations,

each chosen arbitrarily from the following repertoire. each operation, while non-separable pointer algorithms re-



BACKTRACKING 193

derived from our discussion and are left for an exercise. The
interested reader may also refer to (20,58,59), among other
references, for details.

THE SET UNION PROBLEM WITH
UNLIMITED BACKTRACKING

Other variants of the set union problem with deunions have
been considered, including set union with arbitrary deunions
(26,60), set union with dynamic weighted backtracking (24),
and set union with unlimited backtracking (23). Here we will
discuss only set union with unlimited backtracking and refer
the interested reader to the literature for the other problems.

begin
initialize A0 = �0, 1, . . ., n�;
for i := 1 to n do

Ai := Ø;
for j := 1 to n do

for r � OCCURRENCES(xj) do begin
k := FIND(r);
if k = FIND(r - 1) then begin

SPLIT(Ak, Ak, A�k, r);
UNION(A�k, Ak+1, A�k)

end;
end;

return(FIND(n))
end

As before, we classify a union as live if not yet undone,
Figure 3. Finding the longest common subsequence. and dead otherwise. In the set union problem with unlimited

backtracking, deunions are replaced by the following, more
general, operation with the parameter a nonnegative inte-
ger i:

quire only O(log log n) time for each operation. In both cases,
no better bound is possible. backtrack(i). Undo the last i live unions performed.

For separable pointer algorithms, the upper bound de-
scends from balanced tree implementation (1,15), while the The name of this problem derives from the fact that the
lower bound was proved by Mehlhorn et al. (40). limitation that at most one union could be undone per opera-

tion is removed. Note that this problem is more general than
Theorem 7. (40) For any separable pointer algorithm, both the set union problem with deunions, because a deunion can
the worst-case per operation time complexity of the interval be simply implemented as backtrack(1). Furthermore, the ef-
split-find problem and the amortized time complexity of the fect of a backtrack(i) may be achieved by performing exactly
interval union-split-find problem are �(log n). i deunions. Hence, a sequence of m1 unions, m2 finds, and m3

backtracks can be carried out by simply performing at most
Turning to non-separable pointer algorithms, the upper m1 deunions instead of the backtracks. Applying either West-

bound can be found in (32,9,57,60). In particular, van Emde brook and Tarjan’s algorithms or Blum’s modified algorithm
Boas et al. (60) introduced a priority queue which supports to the sequence of union, find, and deunion operations, a total
among other operations insert, delete and successor on a set of O[(m1 � m2) log n/log log n] worst-case running time will
with elements belonging to a fixed universe S � �1, 2, . . ., result. As a consequence, the set union problem with unlim-
n�. The time required by each of those operations is O(log log ited backtracking can be solved in O(log n/log log n) amor-
n). Originally, the space was O(n log log n) but later it was tized time per operation. Because deunions are a special case
improved to O(n). It is easy to show [see also (40)] that the of backtracks, this bound is tight for the class of separable
above operations correspond respectively to union, split, and pointer algorithms in force in Theorem 5.
find, and therefore the following theorem holds. However, using either Westbrook and Tarjan’s algorithms

or Blum’s augmented data structure, each backtrack(i) can
Theorem 8. (57) Each ‘‘union,’’ ‘‘find,’’ and ‘‘split’’ can be im- require �(i log n/log log n) in the worst case. Indeed, the
plemented in O(log log n) worst-case time. The space required worst-case time complexity of backtrack(i) is at least �(i) as
is O(n). long as one insists on deleting pointers as soon as they are

invalidated by backtracking (as in the eager methods de-
We observe that the algorithm based on van Emde Boas’ scribed earlier), because in this case at least one pointer must

priority queue is inherently nonseparable. Mehlhorn et al. be removed for each erased union. This is clearly undesirable,
(40) proved that this is indeed the best possible bound that because i can be as large as (n � 1). To avoid this lower
can be achieved by a nonseparable pointer algorithm: bound, the only possibility is to defer the removal of pointers

invalidated by backtracking to some possible future opera-
tion, in a lazy fashion. In a strict sense, this lazy approachTheorem 9. (40) For any nonseparable pointer algorithm,
infringes on the separability condition stated earlier. How-both the worst-case per operation time complexity of the in-
ever, the substance of that condition would still be met if oneterval split-find problem and the amortized time complexity
maintains that a pointer is never followed once it is invali-of the interval union-split-find problem are �(log log n).
dated [see, e.g., (27)].

The following theorem holds for the set union with unlim-Notice that Theorems 7 and 8 imply that for the interval
ited backtracking, when union operations are taken into ac-union-split-find problem, the separability assumption causes
count.an exponential loss of efficiency.

As mentioned, special cases of union-split-find also have
been considered: the interval union-find problem and the in- Theorem 10. (60) It is possible to perform each ‘‘union,’’

‘‘find,’’ and ‘‘backtrack(i)’’ in O(log n) time in the worst case.terval split-find problem, respectively allowing union-find and
split-find operations only. Most corresponding bounds can be This bound is tight for nonseparable pointer algorithms.
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Apostolico et al. (23) showed that, when ‘‘unites’’ instead of undone by backtracks) at the completion of �. The subse-
quence of � consisting only of unions that are still valid by‘‘unions’’ are performed (i.e., when the name of the new set

can be arbitrarily chosen by the algorithm), a better bound the end of � (i.e., by neglecting the unions made void by back-
tracking) is called the virtual sequence of unions. The follow-for separable pointer algorithms can be achieved. In the fol-

lowing, we present the data structure by Apostolico et al. (23). ing rules ensure that at any time each currently valid union
u is assigned a unique integer ord(u), representing the ordinalThis data structure is called k-BUF tree or, with the implicit

assumption that k � log n/log log n, simply BUF tree. BUF number of u in the current virtual sequence of unions:
trees support ‘‘union’’ and ‘‘find’’ in O(log n/log log n) time and
backtrack(i) in constant time, independent of i. 1. The first union performed gets ordinal number 1.

We now describe the main features of BUF trees, and will 2. When a union is made void by backtracking, it relin-
highlight the implementation of union, find, and backtrack quishes its ordinal number.
operatons. BUF trees retain the basic structure of the k-UF

3. A new union gets ordinal number equal to 1 plus thetrees described in earlier sections, but differ from them pri-
ordinal number of the last valid union performed.marily because of some implicit attributes defined on the

pointers. With BUF trees, three are still three different types
of unions, as with k-UF trees. In particular, we will have that At some point of the execution of �, let imax be the ordinal

number of the last valid union performed so far. ‘‘Backtracktype 1 and type 2 unions create new pointers, while type 3
unions only redirect already existing pointers. With BUF (i)’’ consists of removing the effect of the last i valid unions,

that is, the effect of the last i unions in the current virtualtrees, however, a union must perform some additional opera-
tions on pointers. In the following, we say that a pointer e is sequence of unions. We perform ‘‘backtrack(i)’’ simply by set-

ting imax � max�imax � i, 0�, i.e., in constant time irrespectivehandled by a certain union only if e is either created or redi-
rected by that union during the aggregation stage of that of i. Note that this implementation of backtrack does not af-

fect any pointer in the forest, but its effect is implicitly re-union. It was stated earlier that a separator is the leftmost
pointer redirected by a type 3 union. The main difference with corded in the change of status of some pointers and separa-

tors. Part or all of these pointers might be removed ork-UF trees is that now, due to the lazy approach, we allow
pointers and separators to possibly survive in the data struc- redirected later, while performing subsequent union opera-

tions.ture also, after the union that introduced therm has been in-
validated by backtracking. At any given time, we call a union To perform a ‘‘find(x)’’ correctly, we need to ensure the con-

sistency of the forest of BUF trees. By the forest being consis-valid if it has not yet been undone by backtracks, and void
otherwise. We further partition void unions as follows: A void tent, we mean that each tree in the forest stores a collection

of sets in the current partition in such a way that, for any x,union is persisting if the pointers handled by that union have
not yet been actually removed from the data structure, and is a ‘‘find(x)’’ executed as specified in the following correctly re-

turns the name of the set currently containing x. We refer todissolved otherwise. This classification of unions imposes a
corresponding taxonomy on pointers and separators, as fol- the consistency of the forest as find consistency, which we will

maintain as invariant throughout the sequence of operations.lows: In a BUF tree, an ordinary pointer can be live, dead, or
cheating, and a separator pointer can be, in addition, either The complete specification of this invariant requires some ad-

ditional notions.active or inactive. Informally, live pointers represent connec-
tions not yet invalidated by backtracks; this happens when First, each pointer e in a BUF tree T has two unions associ-

ated with it. The first union, denoted first_union(e), is thethe last union that handled them is still valid. Dead pointers
represent, instead, connections that, although still in the union that created e. The second union, last_union(e), is the

last union not yet actually undone (i.e., either a valid or astructure, are only waiting to be destroyed; this happens
when the first union that created them is a void persisting persisting union) that handled e. We will maintain that

ord(first_union(e)) � ord(last_union(e)) for every pointer e. Inunion. Between live and dead pointers lie cheating pointers.
They occur when the first union that created them is valid, a consistent BUF tree, a pointer e is dead if and only if

‘‘first_union(e)’’ is void (i.e., e has to be destroyed because itbut the last union that handled them is a persisting type 3
union. Therefore, they represent faulty connections that do gives a connection made void by some intervening backtrack).

Similarly, pointer e is cheating if and only if ‘‘first_union(e)’’not have to be destroyed, but only replaced by the correspond-
ing correct connections. As in k-UF trees, separators are asso- is valid and ‘‘last_union(e)’’ is void (i.e., e gives a faulty con-

nection, and hence it has to be replaced, but it is not com-ciated with type 3 unions. At any given time, a separator is
active if its associated union is valid, and inactive otherwise. pletely destroyed). Finally, e is live (i.e., it gives a connection

not yet affected by backtracking) if and only if ‘‘last_union(e)’’A node of a BUF tree is live if there is at least one live pointer
entering it, and is persisting otherwise. In analogy with the is still valid. In addition to ‘‘first_union’’ and to ‘‘last_union,’’

each separator s also has associated the type 3 union thatnodes of k-UF trees, the live nodes of BUF trees can be slim
or fat, but this is decided based only on the number of live made it a separator. In the following, such a union will be

referred to as separate_union(s). A separator s is active if andpointers entering each node. Specifically, a node is slim if the
number of live pointers entering it is less than k, and fat if only if ‘‘separate_union(s)’’ is valid, inactive otherwise.

To complete our description of a consistent BUF tree T, letthe number of live pointers entering it is at least k.
Assume that we perform an intermixed sequence � of S1, S2, . . ., Sp be the disjoint sets stored in T. We specify the

mapping from the set of leaves of T to the set of names of S1,union, find, and backtrack operations starting from the initial
partition of S into n singletons. The partition of S that results S2, . . ., Sp. Let x be a leaf of T and also a member of the set

Sq, 1 � q � p. Let Y be the name of Sq. Ascend from x towardfrom � is the same as that produced by applying to S, in the
same order as in �, only those unions that are valid (i.e., not the root of T following live pointers until a node without an
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outgoing live pointer is met. Call this node apex(x). In a con- store, respectively, A and B. These roots are located by per-
forming two ‘‘finds.’’ The associated subtrees have to be de-sistent BUF tree, an apex falls always in one of the following

three classes. tached from their host trees and then combined into a single
tree. Once the two subtrees have been located and detached,
their unification requires a treatment quite similar to that ofLive apex. There is no pointer leaving ‘‘apex(x),’’ i.e., ‘‘apex
the union procedure described earlier for k-UF trees. The(x)’’ is the root r of T. We will maintain that the name
most delicate part of the process, however, is in the firstY of Sq is stored in r.
stage. The correctness of the two initial ‘‘finds’’ depends onDead apex. The pointer leaving ‘‘apex(x)’’ is dead. We will
our ability to preserve ‘‘find consistency’’ through eachmaintain that the name of Sq is stored in ‘‘apex(x).’’
‘‘union,’’ ‘‘find,’’ and ‘‘backtrack.’’Cheating apex. The pointer e leaving ‘‘apex(x)’’ is cheating.

We now describe how to perform ‘‘unions.’’ In terms of BUFIn this case, we will maintain that at least one inactive
trees, a ‘‘union(A, B)’’ transforms the current input forest F ofseparator falls within (k � 1) pointers to the left of e,
BUF trees into a new forest F� that meets the following speci-and the name of Sq is stored in the rightmost such sepa-
fications. First, F� represents, via ‘‘find consistency,’’ the samerator.
partition of S as F, except for the fact that A and B are now
joined in a single set. Second, ‘‘find consistency’’ and ‘‘number-

These descriptions explain how a ‘‘find’’ is performed on a ing’’ must still hold on F�.
BUF tree. Throughout the sequence of union, find, and back- To deal with the most general case, we assume that A and
track operations we need to maintain the forest of BUF trees B are stored in two subtrees of some BUF tree(s) in F. Dealing
in such a way that any arbitrary ‘‘find’’ would give a consis- with simpler cases is similar and will be omitted. Recall that
tent answer. We now formalize this invariant: ‘‘union(A, B)’’ must increment imax by 1, the updated value of

imax being assigned to this union as its ordinal number. This
(Find consistency). Prior to the execution of each opera- increment of imax may infringe the ‘‘numbering’’ invariant. To

tion, and for every element x of S, the following holds. restore this invariant, we remove from the forest F possibly
IF ‘‘apex(x)’’ is either dead or live, then the name of the existing pointers either with first field or separate field equal
set containing x is stored in ‘‘apex(x).’’ If ‘‘apex(x)’’ is to imax. By the same invariant, there were originally either at
cheating, then the name of the set containing x is stored most two sibling pointers e� and e� with first field equal to
in the rightmost inactive separator to the left of ‘‘apex imax, or at most one pointer e� with separate field equal to
(x),’’ and such a separator falls within (k � 1) pointers imax, and such pointers can be accessed in constant time. We
to the left of ‘‘apex(x).’’ delete these pointers, and transform the forest F into an

equivalent forest F�, no pointer of which is labeled imax. In (23),
An immediate consequence of ‘‘find consistency’’ is that it is shown that the new forest F� still satisfies the three in-

BUF trees support each ‘‘find’’ operation in time O[(k � h)t], variants and can be produced in O(k) time.
where t is the time needed to test the status of a pointer and The next task consists of locating in F�, from input A and
h is the maximum length of a path from a leaf x to its apex B, both ‘‘apex(A)’’ and ‘‘apex(B).’’ This stage is accomplished
in the tree. In (23), Apostolico et al. showed that it is possible by performing two ‘‘finds,’’ which, by ‘‘find consistency,’’ re-
to implement BUF trees in such a way that t is O(1) and h is quire O(k � h) worst-case time, where h is the maximum pos-
O(logk n). This immediately yields the claimed O(log n/log log sible length for a path originating at a leaf in a BUF tree and
n) time bound for each ‘‘find.’’ containing only live pointers. Clearly, the three invariants are

Two additional invariants are maintained throughout the not affected by this stage. Next, we transform F� into an
sequence of operations: equivalent forest F�, with the property that ‘‘apex(A)’’ and

‘‘apex(B)’’ are live in F�. This is done by ‘‘cleaning’’ ‘‘apex(A)’’
(Slim compression). The live pointers entering any slim and ‘‘apex(B)’’: this phase is quite sophisticated, and we refer

node are leftmost among their siblings, and have nonde- the interested reader to (23) for the full details of the method.
creasing last fields, from left to right. For fat nodes, this We only mention here that F� can be produced in O(k) time,
property holds for all the pointers that were directed to and it again meets the three invariants.
that node while the node was slim, including the Now let TA and TB be the BUF (sub)trees of F� storing,
pointers that made the node fat. respectively, A and B, and let rA and rB be their respective

(Numbering). For any integer i, 1 � i � (n � 1), there are roots. The final task of ‘‘union(A, B)’’ is that of combining TA

either at most two sibling pointers with first field equal and TB into a single (sub)tree, thus producing the final forest
to i or at most one pointer with separate field equal to F�. Assume without loss of generality that height(TB) � height
i. Moreover, there are at most (k � 1) sibling pointers (TA). Observe that height(TA) cannot exceed h, because there
with last field equal to i. is a live path from leaf A to rA. Our BUF tree union locates a

live node v in TA having the same height as rB. This takes
O(h) steps, e.g., by retracking the ‘‘find’’ that produced rA forWe now examine what is involved in performing union op-

erations. Let A and B be two different subsets of the partition height(TB) steps. We select one of the following three modes
of operation, in analogy with a k-UF tree union.of S, such that A � B. In the collection of BUF trees that

represents this partition, let T1 and T2 be the trees storing,
respectively, A and B. We remark that two disjoint sets can Type 1. rB is fat and v � rA. Root rB is made a sibling of v,

according to the following rule. If parent(v) is fat, rB ishappen to be stored in the same tree, so that T1 and T2 may
coincide even if A � B. The first task of ‘‘union(A, B)’’ consists made the rightmost child of parent(v). If parent(v) is

slim, rB is attached to the right of the rightmost liveof finding in T1 and T2 the roots of the smallest subtrees that
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50. J. A. La Poutré, Lower bounds for the union-find and the split-
find problem on pointer machines. Proc. 22nd Annu. ACM Symp.
Theory Comput., 1990, pp. 34–44.

51. M. Loebl and J. Nes̆etr̆il, Linearity and unprovability of set union
problem strategies. Proc. 20th Annu. ACM Symp. Theory Comput.,
1988, pp. 360–366.

52. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Berlin:
Springer-Verlag, 1981.

53. R. K. Ahuja et al., Faster algorithms for the shortest path prob-
lem, J. Assoc. Comput. Mach., 37: 213–223, 1990.

54. K. Mehlhorn, Data Structures and Algorithms, vol. 2, Graph Algo-
rithms and NP-Completeness, Berlin: Springer-Verlag, 1984.

55. A. Apostolico and C. Guerra, The longest common subsequence
problem revisited, Algorithmica, 2: 315–336, 1987.

56. D. Eppstein et al., Sparse dynamic programming I: Linear cost
functions, J. Assoc. Comput. Mach., 39 (3): 519–545, 1992.

57. P. van Emde Boas, Preserving order in a forest in less than loga-
rithmic time and linear space, Inf. Process. Lett., 6: 80–82, 1977.


