
AUTOMATIC TEST SOFTWARE 135

Table 1. Manual versus Automated Testing (5)

Time (h)

Manual Automated Improvement
Test Step Testing Testing (%)

Test plan development 32 40 �25
Test case development 262 117 55
Test execution 466 23 95
Test result analyses 117 58 50
Defect tracking 117 23 80
Report creation 96 16 83

Total hours 1090 277 75

Software testing tools began appearing in the 1970s. LINT,
a code checker, was part of the old Unix systems. The name
was appropriately chosen in that, as Poston (3) explains, it
‘‘goes through the code and picks out all the fuzz that makes
programs messy and error-prone’’. One of the first code in-AUTOMATIC TEST SOFTWARE
strumentors JAVS was developed by Edward Miller (who
founded Software Research in 1977) in 1974 for evaluatingEven when software is developed using a rigorous discipline,
structural coverage. In the mid-1980s computing becameit will contain a significant number of bugs. At one time, it
cheap and plentiful. Powerful software technologies such aswas believed that the use of formal methods would eventually
programming environments and structured relational data-allow probably correct programs to be written, thus com-
base systems became available, making it possible to developpletely eliminating the need for testing. Today, we know that
tools that can capture and analyze a lot of information. Today,while the number of defects in a program written will be
we see integration of capabilities such as capture–replay andlower under certain development environments, they will still
comparison code coverage in the newer tools.add up to a large number in a large program. There has to be

Recently, we have seen the emergence of a new class oftesting and debugging, which can consume up to 60% of the
tools that addresses the new programming paradigms. Mem-total effort.
ory-leak detectors emerged in 1992 and have already becomeA study by McGibbon presents a perspective (1). He com-
indispensable in many development organizations. We nowpares traditional development approach with two formal
see many new tools for testing web servers and documentsmethods, VDM and Z. For a program with 30,000 source lines
and for handling the Y2K problem. We can expect to see newof code (SLOC), the traditional methods will be able to deliver
types of tools becoming available that will automate some ofsoftware with 34 defects at an estimated life-cycle cost of $2.5
the gaps in the program design–test life cycle.million. Using Z, the total cost would be reduced by $2.2 mil-

Many organizations are still resisting the introduction oflion, but still about 8 defects would be left. Additional cost
testing tools. Surveys suggest much of this is due to the steepsavings can be achieved by using VDM; however, it will result
learning curve faced by testers, who are very reluctant toin 24 defects in the delivered product. In all three cases, a
move to new approaches when they are facing deadlines (4).substantial part of the cost is due to testing and debugging.
Some tools have not delivered what they seemed to promise.Finding most of the defects is a formidable task. Much of
This will change when tools are better understood. Today, notesting is still being done manually, and the process is intu-
hardware engineer would think of doing a design without us-itively guided. In this respect, software development lags be-
ing SPICE- or VHDL-level simulation. No one thinks of doinghind hardware design and testing, where use of tools is now
manual test generation for hardware. The same will be trueregarded as mandatory. The main deterrents are the learning
for software in only a few years.curve of testers and the reluctance of management to commit

In 1995 the Quality Assurance Institute conducted ato new tools in the middle of a project. However, as we discuss
benchmark study comparing manual and automated testing,below, in a carefully implemented program, the cost/benefit
involving 1750 test cases and 700 defects (5). The results areratio strongly favors the use of tools. Manual software testing
shown in Table 1. It shows that while initially the tools re-is very repetitive, and thus very unattractive to software engi-
quire some investment, they eventually result in an impres-neers. Use of appropriate tools will allow testers to use their
sive saving in the time spent in testing.skills at a much higher level. The software market today is

extremely competitive. Many cutting-edge organizations have
been able to achieve high process maturity levels, and they

TERMINOLOGYare delivering software with significantly lower defect densi-
ties than in the past. The average acceptable defect density

The following are the important terms used in the softwaredeclined from about 8 per thousand lines of code (KLOC) in
testing literature.the late 1970s to about 5 in 1990 (2). It is now believed to be

below 2 per KLOC in leading-edge organizations. In the near
future, the reliability expectations in the market will require Failure. A departure of the system behavior from user re-

quirements during execution.all developers to greatly rely on automation in testing.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

136 AUTOMATIC TEST SOFTWARE

Defect (or Fault). An error in system implementation that dently, it can be exercised much more thoroughly
than a large program.can cause a failure during execution. A defect will cause

a failure only when the erroneous code is executed and Integration Testing. During integration, the units are
the effect is propagated to the output. gradually assembled, and partially assembled sub-

systems are tested. Testing subsystems allows the in-Defect Density. Usually measured as the number of defects
per thousand source lines of code (KSLOC). terface among modules to be tested. By incremen-

tally adding units to a subsystem, the unitFailure Intensity. The expected number of failures per unit
responsible for a failure can be identified more easily.time.

System Testing. The system as a whole is exercised dur-Mean Time to Failure (MTTF). The expected duration be-
ing system testing. Debugging is continued untiltween two successive failures. It is the reciprocal of the
some exit criterion is satisfied. The objective of thisfailure intensity.
phase is to find defects as fast as possible. In generalOperational Profile. To be able to estimate operational re-
the input mix may not represent what would be en-liability, testing must be done in accordance with the
countered during actual operation.operational profile. The profile is the set of disjoint ac-

Acceptance Testing. The purpose of this test phase is totions (operations) that a program may perform, and
assess the system reliability and performance in thetheir probabilities of occurrence. The probabilities that
operational environment. This requires collecting (oroccur in actual operation specify the operational profile.
estimating) information about how the actual usersObtaining an operational profile requires dividing the
would use the system. This is also called alpha test-input space into sufficiently small leaf partitions and
ing. It is often followed by beta testing, which in-then estimating the probabilities associated with each
volves actual use by the users.leaf partition. A subspace with high probability may

need to be further divided into smaller subspaces. Regression Testing. When significant additions or modi-
fications are made to an existing version, regression
testing is done on the new, or build, version to ensure

SOFTWARE DEVELOPMENT AND TEST PHASES that it still works and has not regressed to lower re-
liability.

A competitive and mature software development organization
E. Operational Use. Once the software developer has de-targets a high reliability objective from the very beginning

termined that an appropriate reliability criterion is sat-of software development. Generally, the software life cycle is
isfied, the software is released. Any bugs reported bydivided into the following phases. As we will see later, differ-
the users are recorded but are not fixed until the nextent testing-related tools may be required for different phases.
release.

A. Requirements and Definition. The developing organiza-
tion interacts with the customer organization to specify SOFTWARE TEST METHODOLOGY
the software system to be built. Ideally, the require-
ments should define the system completely and unam- To test a program, a number of inputs are applied and the
biguously. In actual practice, there is often a need to program response is observed. If the response is different
do corrective revisions during software development. A from what was expected, the program has at least one defect.
review or inspection during this phase is generally done Testing can have one of two separate objectives. During de-
by the design team to identify conflicting or missing re- bugging, the aim is to increase the reliability as fast as possi-
quirements. A significant number of errors can be de- ble, by finding faults as quickly as possible. On the other
tected by this process. A change in the requirements in hand, during certification, the objective is to assess the reli-
the later phases can cause increased defect density. ability; thus the fault-finding rate should be representative of

actual operation. The test generation approaches can be di-B. Design. The system is specified as an interconnection
vided into the following classes:of units, such that each unit is well defined and can

be developed and tested independently. The design is
A. Black-Box (or Functional) Testing. When test genera-reviewed to recognize errors.

tion is done by only considering the input/output de-C. Coding. The actual program for each unit is written,
scription of the software, nothing about the implemen-generally in a high-level language such as C or C��.
tation of the software is assumed to be known. This isOccasionally, assembly-level implementation may be
the most common form of testing.required for high performance or for implementing

B. White-Box (or Structural) Testing. In this approach theinput/output operations. The code is inspected by ana-
actual implementation is used to generate the tests.lyzing the code (or specification) in a team meeting to
While test generation using the white-box approach isidentify errors.
not common, evaluation of test effectiveness often re-D. Testing. This phase is a critical part of the quest for
quires use of structural information.high reliability and can take 30% to 60% of the entire

development time. It is generally divided into these
subphases. COVERAGE MEASURES
Unit Test. Each unit is tested separately, and changes

are made to remove the defects found. Since each The extent to which a program has been exercised can be
evaluated by measuring software test coverage (6). Test cover-unit is relatively small and can be tested indepen-

AUTOMATIC TEST SOFTWARE 137

age in software is measured in terms of structural or data- ponents for each statement. The requirement verifiers can au-
flow units that have been exercised. These units can be state- tomatically check for ambiguity, inconsistency, and complete-
ments (or blocks), branches, and so on, as defined below. Some ness of statements. However, they cannot determine that the
popular coverage measures are often referred to by using a set of requirement statements is complete. This would require
compact notation, these are given in parentheses. review by human testers. A requirements recorder may also

assist in specification-based test case generation.
Statement Coverage (C0). The fraction of the total number

of statements that have been executed by the test data.
Test Case Generation

Branch Coverage (C1). The fraction of the total number of
Automatic test case generation can be an extremely impor-branches that have been executed by the test data.
tant part of achieving high-reliability software. Manual testC-Use Coverage. The fraction of the total number of com-
case generation is a slow and labor intensive process and mayputation uses (c uses) that have been covered during
be insufficient if not done carefully. Arbitrarily generatedtesting. A c-use pair includes two points in the program:
tests can find defects with high testability relatively easily;a point where the value of a variable is defined or modi-
however, these tests can become ineffective as testing pro-fied, followed by a point where it is used for computation
gresses. Specification-based test generation can ensure that(without the variable being modified along the path).
the different test cases cover at least some different function-P-Use Coverage. The fraction of the total number of predi-
ality by partitioning the functionality and probing the por-cate uses (p uses) that have been covered during testing.
tions. Either the input space or the state space may be parti-A p-use pair includes two points in the program: a point
tioned. Poston (3) classifies the strategies used as active-where the value of a variable is defined or modified, fol-
driven (to test for missing actions), data-driven, logic-driven,lowed by a point that is a destination of a branching
event-driven, and state-driven. Both Validator (Aonix) and T-statement where it is used as a predicate (without modi-
VEC (T-VEC) include specification verification and test casefications to the variable along the path). It has been
generation.shown that if all paths in the program have been exer-

Orthogonal to the test generation strategy is question ofcised, then all p uses must have been covered. This
test vector distribution. The distribution may be chosen tomeans that the all-paths coverage requirement is
conform with the operational profile, so that the tests repli-stronger than the all-p-use. Similarly, all-p-use cover-
cate the normal operation. On the other hand, the strategy,age implies all-branches coverage, and all-branches cov-
at each step, may choose to probe a functionality that haserage implies all-instructions coverage. This is termed
been relatively untouched by testing so far. The second ap-the subsumption hierarchy.
proach may be implemented in the form of antirandom test-Module Coverage (S0). The fraction of the total number of
ing (7). A combinatorial-design-based test generation can sig-modules that have been called during testing. A module
nificantly reduce the number of combinations to beis a separately invocable element of a software system,
considered. This is the approach used in AETG (Bellcore) (8).sometimes also called a procedure, function, or program.

It is also possible to generate tests using the software im-Call-pair Coverage (S1). The fraction of the total number
plementation formulation. Some tools can use this approach,of call pairs that have been used during testing. A call
termed ‘‘white-box’’ testing. Such test generation can requirepair is a connection between two functions in which one
enormous amounts of computation, and thus should be con-function calls (references) the other function.
sidered only for branches, p uses, and the like that are very

Path Coverage. The fraction of the total number of paths
hard to test otherwise. Beizer has called such testing ‘‘kiddiethat have been used during testing. A path is any se-
testing at its worst.’’ Such tests cannot detect missing func-quence of branches taken from the beginning to the end
tions (3).of a program. To achieve 100% path coverage, all per-

mutations of paths must be executed.

PROGRAMMING-PHASE TOOLSTools for different phases are examined below. Some tools are
applicable to multiple phases. Some of the types of tools are

These are often called ‘‘static’’ tools, because they do not in-now widely used; others have just started to emerge.
volve actual execution of the software.

REQUIREMENTS-PHASE TOOLS
Metric Evaluators

Requirement Recorder/Verifier Many metrics have been used to evaluate aspects of the com-
plexity of programs. They include lines of code, number ofRequirements can be recorded informally in a natural lan-
modules, operands, operators, and data/control flow mea-guage such as English or formally using Z, LOTOS, etc. Use
sures. The belief is that if a module is more complex, it isof formal methods results in a more thorough recording of
more fault-prone and thus deserves special attention. It hasrequirements. The requirement information needs to be un-
been shown that many metrics are strongly correlated withambiguous, consistent, and complete. A term or an expression
the number of lines of code, and may not provide any furtheris unambiguous if it has one and only one definition. A re-
information (9). Still, when the resources and time are lim-quirements specification is consistent if each term is used in
ited, it may be a good strategy to identify the fault-prone mod-the same manner for each occurrence. Completeness implies

the presence of all needed statements and of all required com- ules. Poston regards such tools as ‘‘nice’’ but not essential.

138 AUTOMATIC TEST SOFTWARE

Code Checkers hard-coded values and pathnames to make them more gen-
eral by passing setting environment variables and passing pa-

These are also static tools like metric evaluators. These tools
rameter values. One can build a library of small test scripts,

look for violations of good programming practices to generate
which can be combined to obtain different test sequences. A

warnings. They can identify misplaced pointers, uninitialized
test sequence can be implemented by using a state table as

variables, and nonconformance with coding standards. STW/
a driver.

Advisor (Software Research) includes both code checking and
An alternative is to have data-driven scripts that input

metric evaluation.
data as well as parameters and environment variables. Using
appropriate data values, the same test scripts can be made to

Inspection-Based Error Estimation cover different functionalities of the program. The data files
can also contain the expected results for specific test cases,A design document or code can be inspected. Many defects
such as success or failure. Most capture–playback tools todaycan often be detected simply by inspection. If separate teams
incorporate a comparator, which compares the expected andor individuals do inspection independently, it amounts to
actual outputs. QA Partner (Seague) and WinRunner/Xrun-sampling the defects present. Statistical methods are avail-
ner (Mercury Interactive) are examples of this class of tools.able that can be used to obtain a preliminary estimate of the

remaining number of bugs remaining (10).
Memory-Leak Detectors

Modern programming practices use dynamic memory alloca-TESTING-PHASE TOOLS
tion. If a program fails to deallocate memory that is no longer
being used, it keeps on reserving more and more of the mem-These tools were the earliest to appear and are now widely
ory to itself, until eventually it runs out of memory. Suchused. They are often termed ‘‘dynamic’’ because they involve
memory leaks can be detected by tools such as Bounds-actual execution of the software using the test cases selected
Checker (Relational Software) or Purify (Purify).and evaluation of test thoroughness.

Capture–Playback Tools Test Harnesses

These are somewhat like a VCR, or perhaps more closely like Software under test needs to interface with a capture–replay
tool as well as a database system and perhaps with other sys-recording and running spreadsheet macros. Older capture–

playback tools worked at the bit-map level. Modern tools can tems also. These interfaces also need to be tested. Such a test
execution environment is termed a test harness. It may in-capture and replay information at the bit-map, widget, object,

or control level. Information captured can be edited to replace clude ‘‘stubs’’ to stimulate missing parts. In the past, test har-

Figure 1. Software development and test phases
and testing and reliability tools.

Test cases

Test case
generation

Static
parameter
estimation
(planning)

Design
phase

Coding
phase

To unit
testing

Requirements
phase

Integration
test

Acceptance
test

Regression
testing

System
test

Reliability growth
models, coverage

models

Load/
stress
testing

Unit
testing

Inspection-
based bug
estimation

Metrics

Bug tracker Configuration
management

Checker

Test harness

Capture/replay

Coverage

Test cases

Test cases

Requirements
verifier

AUTOMATIC TEST SOFTWARE 139

nesses have been custom-built. Some test harness generators, Bug Trackers
such as Cantata (Information Processing), have recently be-

A bug tracker records the status of each bug found. De-come available.
pending on the strategy used, a bug may or may not be fixed
immediately after it is found. A bug-tracker is basically a da-

Coverage Analyzers tabase tool.

It is impossible to test a program exhaustively. The testers
must decide if a program has been exercised sufficiently thor- Reliability Growth Modeling Tools
oughly. One way is to use a coverage analyzer, which will

As defects are found and removed, the reliability of the pro-keep track of the fraction of all structural or data-flow units
gram increases. This is manifested by a gradual decline in thethat have been exercised. It has been shown that coverage
defect finding rate. A wealth of methods is available that usemeasures are approximately linearly correlated with the de-
software reliability growth models (SRGMs). Several SRGMfect coverage (6).
tools are available that have these features (11):Most analyzers are intrusive. They ‘‘instrument’’ the code

by inserting test probes in the software before it is compiled.
Instrumenting affects the performance slightly. Nonintrusive

1. Preprocessing or smoothing of dataanalyzers are a much more expensive alternative; they collect
2. Estimating parameters of a selected SRGMinformation using a separate hardware processor.

Statement coverage is not a rigorous measure even with 3. Answering queries such as how much longer the soft-
100% coverage: the residual defect density can still be high. ware needs to be tested
Branch coverage is a popular remedy. Sometimes a threshold
value, say 85% branch coverage, is used. Pure coverage is

SMERFS (NSWRC) is a popular SRGM tool. ROBUST (CSU)stricter than branch coverage and is suitable for high-reliabil-
allows parameters of SRGMs to be estimated even before test-ity programs. Module coverage and call-pair coverage are
ing begins, which can be useful for preliminary resourcecommon system-level coverage measures. At the present time
planning.use path coverage is feasible only if its definition is revised to

reduce the total path count. GCT (Testing Foundations) and
ATAC (Bellcore) are coverage analyzers. Coverage-Based Reliability Tools

Recently, a model describing defect coverage and test cover-
Load/Performance Testers

age has been proposed and validated. The model tends to fit
the data quite closely and can yield very stable estimatesThese tools allow stress testing of client/server applications,

which are often expected to work correctly under high loads. of the number of residual defects (12). ROBUST (CSU) al-
lows coverage to be used as the stopping rule criterion. ItSQA LoadTest (SQA) allows stress testing of Windows client/

server applications; Final Exam Internet Load Test (Plati- also allows stable estimation of the number of residual de-
fects (12).num) is specifically for web applications.

Table 2. TestWorks Quality Index (13)

Requirement
My Score

50 60 70 80 90 100 on This
No. Evaluation Factor Points Points Points Points Points Points Factor

F1 Cumulative C1 for all tests �25% �40% �60% �85% �90% �95%

F2 Cumulative S1 for all tests �50% �65% �80% 90% 95% 95%

F3 Functions with cyclomatic complexity �25% �25% �50% �75% �90% �95%
E(n) � 20

F4 Functions with ‘‘clean’’ static analysis �20% �20% �30% �40% �50% �60%

F5 Last pass/fail percentage �25% �25% �50% �75% �90% �95%

F6 Total number of test cases per KLOC �10 �10 �15 �20 �30 �40

F7 Calling tree aspect ratio (width/height) �1.0 �1.25 �1.5 �1.75 �2.0 �2.0

F8 Number of open criticality-1 �5 �5 �3 �2 �1 �0.5
Defects per KLOC

F9 Functions for which path coverage is �1% �2% �5% �10% �15% �25%
performed

F10 Cost per defect �$100K �$50K �$25K �$10K �$1K �$1K

Total points � � � � � �

140 AUTOMATIC TEST SOFTWARE

IDENTIFYING THE TOOLS NEEDED

Software testing tools can be expensive. The cost to license a
tool can be just a fraction of the overall cost. The testers need
to understand the tools and become familiar with them. The
use of the tools needs to be incorporated in the process.

Poston (3) regards these as the essential tools at most de-
velopment organizations; he terms them the ‘‘Big 3’’ tools:

1. Requirement recorder and test case generator
2. Test execution tool
3. Test evaluation tool

Table 4. Bedside Cardiac Monitor (13)

Cumulative C1 (branch coverage) value for all tests 100
Cumulative S1 (call-pair coverage) value for all tests 100
Percentage of functions with E(n) � 20 80
Percentage of functions with clean static analysis 80
Last pass/fail percentage 90
Total number of test cases per KLOC 85
Calling tree aspect ratio (width/height) 60
Current number of open defects per KLOC 95
Percentage of functions for which path coverage is performed 60
Cost per defect 50

Total points scored 800

TestWorks Quality Index 80
He refers to some of the other tools as ‘‘nice to have’’ and
considers structure-based test generation tools to be useless.

Not all projects need sophisticated tools. Many can signifi-
cantly benefit by using some of the simpler tools. One good
approach to identifying the tools needed is to consider the

2. Testing and Test Management Tools, http://www.meth-quality required in the final project. A measure of quality
ods-tools.com/tools/frames_testing.html, another de-called TestWorks Quality Index has been defined by Software
tailed list of tools.Research (13). It is composed of 10 additive factors as given

3. RST Hotlist, http://www.rstcorp.com/hotlist.html.in Table 2.
For example, a ‘‘quick and dirty’’ (but still useful) order 4. STORM Software Testing On-line Resources, http://

tracker may have the quality index calculated as in Table 3. www.mtsu.edu/~storm/.
On the other hand, a bedside cardiac monitor may be required

5. SR/Institute’s Software Quality HotList, http://to have a much higher quality index, as calculated in Table
www.soft.com/Institute/HotList/index.html.4. It will require reliance on more powerful tools to achieve

higher quality. 6. Software Testing Hotlist, http://www.io.com/~wazmo/
qa.html.

7. Papers by Cem Kaner, http://www.kaner.com/writ-SOURCES OF INFORMATION
ing.htm.

Here major sources of detailed information on software test- 8. The Testers’ Network, http://www.stlabs.com/test-
ing related tools are listed. net.htm.

Web Sites
Books1. Testing Tools Supplier List, http://www.stlabs.com/

MARICK/faqs/tools.htm, includes information and 1. D. Hoffman and P. Strooper, Software Design, Auto-
links to a very detailed list of tools, classified into test mated Testing, and Maintenance: A Practical Approach,
design tools, GUI test drivers and capture/replay tools, London: International Thomson Computer Press, 1995.
load and performance tools, non-GUI test drivers and

2. Graham Titterington, Ovum Evaluates: Software Test-test managers, other test implementation tools, test
ing Tools, London: Ovum Limited, 1998.evaluation tools, static analysis tools, and miscellane-

3. R. M. Poston, Automating Specification-Based Softwareous tools.
Testing, Los Alamitos, CA: IEEE Computer Society
Press, 1996.

4. L. G. Hayes, The Automated Testing Handbook, Richard-
son, TX: Software Testing Institute, 1995.

Conferences

1. IEEE High-Assurance Systems Engineering Workshop

2. International Conference on Computer Safety, Reliabil-
ity and Security

3. International Conference on Software Maintenance

4. Metrics—International Symposium on Software Met-
rics

5. ISSRE—International Symposium on Software Relia-
bility Engineering

Table 3. A ‘‘Quick and Dirty’’ Order Tracker (13)

Cumulative C1 (branch coverage) value for all tests 75
Cumulative S1 (call-pair coverage) value for all tests 70
Percentage of functions with E(n) � 20 50
Percentage of functions with clean static analysis 50
Last pass/fail percentage 80
Total number of test cases per KLOC 50
Calling tree aspect ratio (width/height) 60
Current number of open defects per KLOC 50
Percentage of functions for which path coverage is per- 50

formed
Cost per defect 100

Total points scored 535

TestWorks Quality Index 53.5

AUTOMATION 141

BIBLIOGRAPHY

1. T. McGibbon, An analysis of two formal methods, VDM and Z
[Online], 1997. Available www: http//www.dacs.dtic.mil

2. The quality imperative, Business Week, special bonus issue, Fall
1991.

3. R. Poston, A Guided Tour of Software Testing Tools, San Fran-
cisco: Aonix, 1998.

4. Results from August’s survey on automated testing, quality tree
[Online], 1997. Available www:http://www/qualitytree.com/
survey/august/results.htm

5. QA Quest, The Newsletter of the Quality Assurance Institute,
Nov. 1995.

6. Y. K. Malaiya et al., The relationship between test coverage and
reliability, Proc. Int. Symp. Software Reliability Eng., 1994, pp.
186–195.

7. H. Yin, Z. Lebne-Dengal, and Y. K. Malaiya, Automatic test gen-
eration using checkpoint encoding and antirandom testing, Proc.
Int. Symp. Software Reliability Eng., 1997, pp. 84–95.

8. D. M. Cohen et al., The AETG system: An approach to testing
based on combinatorial design, IEEE Trans. Softw. Eng., 23: 437–
444, 1997.

9. J. Rosenberg, Some misconceptions about lines of code, Proc. Int.
Software Metrics Symp., 1997, pp. 137–142.

10. N. B. Ebrahimi, On the statistical analysis of the number of er-
rors remaining in a software design document after inspection,
IEEE Trans. Softw. Eng., 23: 529–532, 1997.

11. M. R. Lyu (ed.), Software Reliability Engineering, New York:
McGraw-Hill, 1996.

12. Y. K. Malaiya and J. Denton, Estimating defect density using
test coverage, Colorado State University Tech. Report CS-98-
104, 1998.

13. TestWorks Quality Index: Overview, software research applica-
tion note, San Francisco, CA: Software Research, Inc., 1998.

YASHWANT K. MALAIYA

Colorado State University

