J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright © 1999 John Wiley & Sons, Inc.

AUTHORING LANGUAGES

Multimedia presentations utilize content derived from a variety of information sources in order to convey
a message to a viewer. Examples of multimedia content include recorded and synthesized audio, video, still
images, bitmap and vector graphics, animations, and text. Although a message could be conveyed through
any one of these media, combining them into a synchronized, coherent presentation creates a more appealing,
compelling, and entertaining display. For example, watching an entertaining television commercial, which
creatively uses synchronized audio, video, and special effects, creates a more compelling presentation than a
print advertisement or radio commercial. A well-designed multimedia presentation continually makes use of
the viewer’s auditory and visual senses through dynamically changing displays, and as a result offers a more
interesting and effective medium for conveying information (1,2,3).

The difference between a noninteractive and an interactive multimedia presentation involves the partic-
ipatory role of the viewer. In a noninteractive presentation, the role of the viewer is that of a passive observer.
The viewer is external to the display of information and is forced to experience it from the beginning to the
end; e.g., a television viewer can neither skip to the end of a show to see how it ends, nor influence the way
it ends. In an interactive presentation, the role of the viewer is transformed from a passive observer to an
active participant enabling a unique, individual experience. To enable this unique experience, an interactive
presentation may allow the viewer to actively navigate its content, periodically respond to questions, or play
a more central role such as controlling the main character of a virtual murder mystery (4). Regardless of the
interaction technique, it is the inclusion of the viewer as an active participant that differentiates an interactive
from a noninteractive multimedia presentation. For example, in the popular adventure game Myst (5), a viewer
controls his or her path through a mysterious island, and along the way interacts with various objects in order
to unlock the secrets of the island. Interactive multimedia has successfully been applied within many appli-
cation domains such as computer-based training, instructional manuals, distance learning, electronic books,
corporate presentations, and computer games. Thus, the term interactive multimedia presentation collectively
refers to each of them, rather than to a specific application domain.

The goal of this article is to define the processes, roles, and tools used to build an interactive multimedia
presentation. Authoring is the process of designing and implementing an interactive presentation. The author
collectively refers to the persons fulfilling roles throughout the authoring process. And authoring tools are the
software and hardware tools used by an author to design or implement a presentation. In addition to further
explaining these concepts, this article also provides a discussion of three popular authoring tools: Apple’s
HyperCard, Macromedia’s Director, and Macromedia’s Authorware. The history and authoring environment
of each tool is discussed, and then the use of each tool is demonstrated by authoring a sample presentation.
Finally, this article concludes with a discussion of current research shaping the future landscape of interactive
media authoring.

2 AUTHORING LANGUAGES

The Author

Although the term author usually implies a single person, it is rare that a single person designs and implements
an innovative interactive presentation. In fact, designing a presentation usually requires a great deal of time,
skill, and effort from a diverse community of professionals, including writers, graphic artists, user-interface
designers, content editors, and programmers. Each profession offers a unique talent and perspective, that when
combined, produces innovative presentations well beyond that which any individual could produce alone. This
diverse set of professionals involved in the authoring process is commonly and collectively referred to as the
author.

The Authoring Process

Authoring an interactive multimedia presentation combines creative talent with computer expertise. The
creative talent is used to design and organize media content and to provide innovative interaction. The computer
expertise is used to transform these creative ideas into a working presentation. As with learning other skills,
learning to author an innovative interactive multimedia presentation requires a great deal of practice and
experience.

Authoring an interactive presentation consists of several tasks. First, an author must clearly define the
intended audience and the message that needs to be conveyed to them. Second, an author must design the
media content necessary to convey the intended message. Third, an author must organize the media content
in both space and time. Finally, an author must design the interaction with the viewer, which may affect both
content design and organization.

Define the Intended Audience and Message. Every multimedia presentation must have an in-
tended audience and a clearly defined message. An author must characterize the audience and then define
what information its members should come away with after viewing and interacting with the presentation.
When characterizing the audience, several criteria should be considered, such as the average age, relevant
computer experience, content familiarity, and viewing environment such as individual or group. For example,
an author must determine if the audience will consist of grade school students, professional businesswomen,
or college undergraduates. After the audience is characterized, an author must define the message that needs
to be conveyed to its members. For example, an appropriate message for grade school students could be how to
multiply and divide numbers involving more than one digit. For businesswomen, an appropriate message could
be how to use a new software product at the workplace. Once the audience and message have been defined, the
goal of an interactive multimedia presentation is to convey the message to the audience in an entertaining, yet
informative way, using a variety of different content and interaction techniques.

Design the Media Content. Just as a film director must create the audio, video, and special effects
for a movie, an interactive-media author must create the media content necessary for a presentation. To create
the content, or media elements, an author may use one or more software tools such as Adobe PhotoShop, Adobe
Premiere, or Macromedia’s SoundEdit. Because an author must anticipate and provide for a variety of unique
experiences, content creation is a challenging and time-consuming task.

An author has two primary objectives when designing content. First, an author must design content that
conveys the intended message to the audience. For example, to explain the use of a new software product to
a company’s employees, an author may create several screen captures of the product’s interface along with
descriptive voice narrations explaining their use. Second, an author must design content that fits together
coherently; for example, a narration to accompany a video must have a length close to that of the video.

Organize the Media Content. Once the media elements have been created, an author must organize
them in both space and time. In other words, an author must define where and when each media element will
be displayed within the presentation. The organization of media elements in space is called spatial layout,
while the organization of media elements in time is called temporal layout.

AUTHORING LANGUAGES 3

Spatial Layout. Spatial layout refers to the physical location and relative positioning of visual media
elements on the computer screen. For each visual media element to be displayed, such as a video, image,
or text element, the screen location where it is to appear must be specified. The spatial layout of media
elements should be visually pleasing to the viewer and appropriate for the message being conveyed. To ensure
an effective layout, an author should apply proven user interface and graphic design principles (2, 6, 7). For
example, semantically related information and functions should be positioned close together in order to make
the display more readable and to offer the correct affordances.

Temporal Layout. Temporal layout refers to when, for how long, and under what conditions each media
element is displayed within a presentation, as well as to the synchronization of multiple media elements within
that presentation. For example, as a voice narration describes a country’s culture to the viewer, the referenced
country is highlighted on a displayed map. After the narration finishes, the highlight remains visible for a few
seconds before being removed. Both the initial highlighting of the referenced country and the delay before its
removal are examples of how media elements must be synchronized within a presentation.

Defining temporal layout is a difficult task and has been the focus of much research over the past decade.
In research literature, temporal layout is often expressed through the use of a synchronization model. A
synchronization model is a formal technique for representing, or modeling, the temporal relationships among
the media elements of a presentation. Synchronization models can generally be categorized as (8):

e Timeline. Events are placed at specific time points along a timeline. An event might represent the starting
or stopping of a voice narration, or it might represent the display or removal of an image.

e Hierarchic. Special synchronization operators, parallel and serial, are applied to the endpoints of different
media elements. By using these operators, an author constructs a presentation tree where the interior
nodes represent simultaneous or sequential playback of their children and the leaf nodes represent the
individual media elements.

e Reference-Point. Synchronization points are placed between media elements. These points can either inhibit
or cause the display of one or more media elements (9).

e FEvent-Based. Programming scripts, known as event handlers, are attached to specific events that may be
generated within a presentation such as the starting or stopping of a voice narration. Whenever an event
occurs, the attached script is invoked.

In addition to modeling temporal relationships, a synchronization model may also attempt to detect tem-
poral inconsistencies (10) or automatically generate run-time playback schedules (11) from those relationships.
However, using a synchronization model to author an interactive multimedia presentation is difficult, because
only a few support viewer participation (4, 12).

Design the Interaction. Interaction defines the participatory role of a viewer within a presentation.
Without the ability to interact, viewing a presentation is similar to viewing a television show or listening to
a radio broadcast. A goal of interaction design is to enable a unique experience for each presentation viewer.
A unique experience is created by enabling the viewer’s interests, desires, or skills to influence the display of
information. Designing innovative interaction is the key to creating an appealing, compelling, and effective
multimedia presentation.

Within a multimedia presentation, interactions can generally be categorized as:

e Control. Represents the operations a viewer can use to directly manipulate the playback of a presentation.
For example, a viewer could use VCR operations such as pause and fast forward to control presentation
playback.

e Navigation. Represents the links viewers can traverse to jump to the information that most interests them.
For example, a virtual tour of a home might provide the viewer with links to different sections of that home
such as the kitchen, living room, and bedroom.

4 AUTHORING LANGUAGES

e Participation. Represents the responses a viewer can make throughout a presentation. Based on these
responses, a presentation can determine the next set of content to be displayed. For example, an interactive
math lesson might request the viewer to enter one more numbers at a strategic location within a problem.
The next set of content to be displayed depends upon whether the viewer entered the correct numbers or
not.

In addition, interactions can also be categorized as synchronous or asynchronous within a presentation. A
synchronous interaction requests viewer input at a specific time point within a presentation, and the presen-
tation halts until a response is given. An asynchronous interaction may occur at any point within a specified
temporal interval, where that interval may span from only a few seconds to the entire presentation.

Authoring Tools and Languages

An author uses a variety of tools to accomplish each task within the authoring process. These tools may include
word processors for script writing and documentation, graphic design tools for creating and editing visual
content, and sound tools for voice recording and editing. Traditionally, however, the term authoring tool has
referred only to those tools facilitating the implementation of a multimedia presentation, such as HyperCard,
Director, and Authorware. In this article, the term authoring tool is used in the traditional sense; however, it
is important to realize that professional authors often rely on many other tools during the authoring process.

An authoring tool simplifies the implementation of a multimedia presentation by providing abstractions
for spatial and temporal layout, media playback, and interaction. These abstractions are often made available
to an author through either a scripting or a visual authoring language integrated as part of the authoring tool.
Although there are no hard and fast rules, choosing the right authoring tool and language depends primarily
on the temporal and interactive requirements of the presentation being defined, the abstractions directly
supported by the authoring tool, and the author’s ability to understand and specify the requirements using
those abstractions.

Scripting Languages. A multimedia scripting language is a general-purpose scripting language
equipped with commands suitable for implementing multimedia presentations, such as for controlling sound
and movie clips, positioning media elements on the screen, and creating transitional effects. Examples of
multimedia scripting languages are HyperCard’s HyperTalk and Director’s Lingo. Similar to building a user
interface with a user interface toolkit (13), authoring an interactive presentation with a scripting language
requires the use of an event-based programming model. In this model, a presentation is not implemented or
executed in a linear fashion as with a traditional C or C++ program; rather, a presentation is implemented by
attaching short scripts to specific events generated from the viewer or run-time system. An example of a viewer
event is the pressing of a mouse button; an example of a system event is the reaching of a specific playback
point within a sound or movie clip. Whenever an event is generated, the run-time system searches for and
then executes the script attached to the event, if any. Execution of the script may affect the global state of the
presentation. The primary advantages of multimedia scripting languages are:

e Expressive Power. Because multimedia scripting languages support general programming constructs such
as variables, functions, branching, looping, and file I/O, they can be used to implement innovative interactive
presentations. In addition, almost any attribute of a presentation or media element can be manipulated
through the scripting language.

e Rapid Development. Scripting languages are interpreted, which relieves an author of the details of memory
allocation, provides high-level programming abstractions such as lists, sets, and associative arrays, and
supports interactive development. An interpreted language enables faster development than a traditional
language such as C or C++ (13).

AUTHORING LANGUAGES 5

e Specialized Commands. Multimedia scripting languages are equipped with multimedia-specific commands
such as those for playing and controlling audio and video clips. Leveraging these commands also speeds
the implementation of a presentation.

Although multimedia scripting languages can be used to implement almost any presentation, they are best
utilized for implementing a presentation involving innovative interaction. For more information on multimedia
scripting languages and the event-based authoring paradigm, see the sections on HyperCard and Director in
this article.

Visual Languages. Visual authoring languages allow an author to use direct manipulation to define
the spatial and temporal layout and the interactive behavior of a presentation. Spatial layout is defined by
interactively positioning media elements within a presentation window. Temporal layout is defined using a
visual metaphor and editor such as a timeline editor (14), synchronization graph editor (10, 15), or flowline
editor (16, 17). Temporal relationships are defined by relative positioning, drawing behavioral arrows, or
placing specific display and erasure commands, respectively. Interactive behavior is defined by reusing existing
interaction objects or by editing detailed property sheets associated with generic interaction objects. Using a
visual authoring language provides several benefits:

e Fewer Programming Concepts. An author is not required to know about detailed programming concepts
such as scope, functions, or memory allocation. As a result, the author can focus on the high-level aspects
of the authoring task rather than on the low-level aspects of the implementation.

e Concreteness. An author can directly manipulate the spatial and temporal layout and the interactive
behavior of a presentation.

e Immediate Visual Feedback. An author can immediately visualize the behavior of a presentation, which
aids in the debugging process and increases the general understandability of the presentation design.

In contrast to scripting languages, visual authoring languages are best utilized for smaller presenta-
tions involving less innovative interaction; otherwise, visual languages can become cumbersome to use and
comprehend. For more information on visual authoring languages see the section on Authorware in this article.

Hypercard: Authoring Hypermedia Using Cards

HyperCard is an authoring tool used to build hypermedia presentations. In contrast to multimedia authoring
tools, hypermedia authoring tools focus more on the structure and linking of semantically related information
and less on expressive temporal models. The concept of hypermedia dates back to a 1945 paper written by
Vannevar Bush entitled “As We May Think” (18). In his paper, Bush discussed the difficulty scientists have
in collecting, organizing, and later retrieving the vast amounts of scientific literature being generated by
other scientists. To help overcome this emerging problem of information overload, Bush proposed a mechanical
device called Memezx, short for memory extender. As Bush stated, “a Memex is a device in which an individual
stores his books, records, and communications, and which is mechanized so that it may be consulted with
exceeding speed and flexibility.” Bush emphasized that the most important aspect of this device was the
ability to create associative links, or information trails, among documents of particular interest or importance.
Information trails would provide a storage and retrieval model that more closely matches how the human mind
works. Thus, as a scientist browsed information and discovered pertinent documents, or documents that were
especially informative on a certain subject, their trail of knowledge discovery could always be retraced by other
scientists.

Although the Memex device was never actually built, the idea of creating associative links among seman-
tically related information is paramount to all hypermedia authoring tools.

6 AUTHORING LANGUAGES

Slack

Card

Fig. 1. A HyperCard card represents an organizational unit of information. A group of related cards sharing a common
theme is a HyperCard stack.

Although it was built nearly 40 years after Bush first described his Memex system, the HyperCard
authoring tool embodies many of the same ideas. HyperCard uses an intuitive card metaphor to facilitate the
collection, organization, and retrieval of related information. Authors can establish links (trails) between the
different cards, enabling HyperCard users to browse and retrieve related information. In this section, we give a
brief history of the HyperCard authoring tool and an overview of its authoring environment, and demonstrate
its use by creating a digital photo album.

History. HyperCard began as an extension to the original Apple MacPaint software, the first commercial
product available for the Macintosh computer. At that time, the creator of MacPaint, Bill Atkinson, wanted to
enhance the software to support interactive behavior, enabling a user to click on a portion of an image in order
to bring up a related textual description. As he continued to explore and refine his idea, Atkinson began to
realize the huge potential of this new interactive medium, and convinced Apple to fully support his endeavor. In
1986, Apple Computer released the first commercial hypermedia authoring tool, HyperCard. The name reflects
the purpose of the tool: to organize information into a network of interconnected cards.

Because early Mac computers shipped without a programming language, utilizing them to create new
applications such as address books, file-system shells, or interactive games, was virtually impossible. To address
this issue as well as to enable the authoring of more complex interactive presentations, Apple developed an
interpreted scripting language called HyperTalk. Because the language was intended to be used by people
unfamiliar with programming, HyperTalk was based on an English-like syntax and command structure. In
1987, Apple began shipping HyperCard bundled with HyperTalk on every Macintosh computer free of charge.
Due to the power and availability of the HyperTalk language, HyperCard quickly became the programming
tool of choice. However, as other multimedia authoring tools, such as Director and Authorware, became more
powerful, and as Apple introduced a new scripting language called AppleScript, the usage of both HyperCard
and HyperTalk began to fade. Today, HyperCard is mainly used as a robust prototyping environment for both
graphical user interfaces and hypermedia presentations.

Authoring Environment. HyperCard provides a simple and intuitive authoring environment for col-
lecting, organizing, and retrieving information existing in a variety of forms such as text, images, sound, and
Apple QuickTime movies. HyperCard documents are known as stacks, and are made up of identical-sized cards.
A card represents the fundamental unit of information display, organization, and addressing within a stack.
The relationship between a stack and a card is depicted in Fig. 1. To further illustrate the stack and card
metaphor, consider a personal address book implemented using HyperCard. The address book itself would be
represented as a single HyperCard stack. The information associated with each entry in the address book,
such as a person’s name, address, and telephone number, would be organized and displayed using a single
HyperCard card. To support navigation among the different entries, each card would contain several links,
such as to the next, previous, first, and last cards.

Card Elements. A HyperCard card supports three media element types: a text field, image, and button.
The text field and image types have their obvious meanings; however, a button provides more functionality

AUTHORING LANGUAGES 7
HyperCard

Home stack

f

Stack

f

Background layer

Card Search

- | r
messages Card laye

f

Mouse Search Buttons and
—_— .
messages text fields

Fig.2. HyperCard’s object hierarchy determines the order in which scripts are searched for a matching message handler.
The type of the message generated determines where in the hierarchy HyperCard begins its search. Once a matching
handler is found, HyperCard automatically invokes it.

than just navigation. A button can be used to create visual effects, launch other applications, or play QuickTime
movies. To place an instance of one of these media element types onto a card, an author chooses the appropriate
element type, sets the related properties, and then visually positions the instantiated element onto the card.
Because HyperCard does not support media types for audio or QuickTime movies, an author must write
HyperTalk scripts to achieve this functionality.

Card Layers. A HyperCard card consists of two layers: a background layer and a foreground layer. The
background layer is used to organize and display information content and related behavior common to all cards
within a stack. By using this layer, an author saves both time and space, as the content and behavior in the
background only have to be specified and stored once. The foreground layer, also known as the card layer, is
used to specify content and behavior that change from card to card. Before placing a media element on a card,
an author must choose the appropriate layer in which the element is to be placed.

HyperTalk. HyperTalk is the English-like scripting language enabling authors to incorporate dynamic
behavior and interactivity into their HyperCard presentations. An author uses HyperTalk to write numerous
scripts, which are relatively short pieces of programming code structured in the form of message and function
handlers. A message handler defines how the presentation responds to the occurrence of a particular message
such as a mouse click or the opening of a card, whereas a function handler defines a supporting routine. Scripts
can be attached not only to specific card elements such as a button or text field, but also to the background
layer, card layer, current stack, and home stack.

A HyperTalk message is generated in response to a user interaction such as a mouse click, or to a system
event such as the opening of a card. For each message generated, HyperCard searches the attached scripts in
a predefined order looking for a matching message handler, and if a match is found, HyperCard automatically
invokes it. Scripts are searched according to the objects to which they are attached, starting with the most
specific, such as a particular instance of a button, and continuing towards the more generic, such as the current
stack. The object hierarchy defining the script search order is illustrated in Fig. 2. The location within the object
hierarchy at which HyperCard begins searching for a matching handler depends on the type of the message
generated. For example, the search for an openCard message handler begins at the card level and then moves
up the hierarchy until a matching handler is found. A script attached to an object lower in the hierarchy is
never searched and can therefore never respond to this particular message. Although a complete description
of HyperTalk’s message-dispatching behavior is beyond the scope of this article, the reader may refer to Refs.
19 and 20 for additional details.

8 AUTHORING LANGUAGES

Trip to Minnesota

Stack Kit *hoto A [fddress Book Contacts

Fig. 3. One of the empty home stack cards provided by HyperCard has been adapted for the index of the photo album.
The album index contains a link to each stack representing a particular event, such as a “Trip to Minnesota.”

Case Study: Authoring a Digital Photo Album. To demonstrate the use of HyperCard’s authoring
environment, a case study involving the creation of a digital photo album is presented. The goal of this case
study is to simulate a traditional photo album environment in which a user can annotate, organize, store, and
later retrieve photographs. Specifically, the interactive photo album created here enables a user to:

Include a title and textual description for each photograph

Hear the textual description read aloud

Organize a set of photographs resulting from an event, such as a recent vacation
Navigate among the photographs resulting from a particular event

Organize photographs from multiple events into a single album

When authoring a presentation using HyperCard, the first step is to determine the organization of
information content in terms of stacks and cards. For this example, the photo album itself is represented using
one of the home stack cards that come standard with HyperCard. Unlike other cards, a home stack card may
contain links to other stacks, thus providing an additional level of organization for multiple stacks. In this
example, the home stack card is entitled “Photo Album” and contains a link to each event in the album. Each
event is then represented as a distinct stack containing the individual photographs. This structure is illustrated
in Fig. 3. Although the album only contains a single event, additional events with their related photographs
can easily be added.

Each photograph entry in the album is represented using a single HyperCard card containing the following
information and behaviors:

e Background Image. Simulates the appearance of a physical photo album.
e Photograph. The actual photograph taken with a digital camera or digitized with an image scanner.

AUTHORING LANGUAGES 9

O Trip to Minnesota HE

Fig. 4. Three text entries representing the title, description, and card-count information, and four buttons representing
the previous, next, read-aloud, and home-stack behaviors, have been placed in the card background layer.

Title. A heading for the photograph.
Description. Additional information associated with the content of the photograph, such as its historical
significance, related stories, or when and where it was taken.
Narration Button. Reads the description of the photograph aloud when selected.
Home Stack Button. Allows the user to navigate back to the index of the photo album.
Card Count. Displays the current card number along with the total number of cards associated with this
event.
e Navigation Controls. Allow the user to navigate to the previous and next entry.

Because each photograph entry shares much of the same information structure and behavior, the common
elements are factored out and placed in the card’s background layer. Utilizing the background layer guarantees
a consistent look and feel among the existing entries and serves as a template for creating new ones. In the
background layer the title, card count, and description elements are added as empty text fields. When a new
card is created from this background, the appropriate information can be entered into each text field. Similarly,
the icons and related behaviors have been added to the background layer as illustrated in Fig. 4.

Behavior is defined by attaching a HyperTalk script to a button. For example, in order for the narration
button to retrieve and then read aloud the textual description, a HyperTalk script is attached to it. Within the
script, a mouseUp message handler is defined and will be invoked whenever the user clicks on the narration
button. When invoked, the script retrieves the contents of the text description field and then sends a request
to HyperCard to read the text aloud. The programming code for this message handler is shown in Fig. 5.

Displaying the correct card-count information is more complex, because new cards can be added to or
removed from the stack at any time. Thus, the card-count information cannot be statically defined; rather,
it must be dynamically placed in the text field each time a card is opened. This behavior is accomplished by

10 AUTHORING LANGUAGES

on mouselp
speak (background field “Description”)
end mouselUp

Fig. 5. The HyperTalk message handler that reads the photograph’s description aloud. The script first retrieves the
contents of the text description field and then sends HyperCard a request to read it aloud. The script is attached to the
narration button shown in Fig. 4.

on openCard
put the number of cards into len
put “Card" && the number of this card && “of"
&& into background field “Counter”

end openCard

Fig. 6. The HyperTalk message handler that displays the card-count information at the bottom of each card. The script
retrieves the current card number as well as the total number of cards in the current stack and then inserts these values
within a meaningful structure. The script is attached to the current stack and is invoked each time a card is opened.

attaching a script to the current stack and defining a handler for the openCard message. The programming
code for this message handler is shown in Fig. 6.

Each of the home, previous, and next buttons also has a script attached to it, which responds to the
mouseUp message. The programming code for each of these message handlers is a single statement instructing
HyperCard to go home, go prev, and go next, respectively.

By placing each of these common elements in the background layer and attaching the appropriate be-
haviors through scripts, new cards created from this background will automatically share its structure and
defined behavior. Adding a new photograph entry to the album only requires choosing this background, and
then entering the title, text description, and photograph for the entry. Each of the defined behaviors, such as the
narration button, card count, and navigation controls, functions correctly without modification. To illustrate
this concept, a new card containing a photograph of the Mall of America has been created and inserted into
the photo album. The resulting entry is shown in Fig. 7.

Macromedia Director: a Timeline-Based Authoring Tool

Macromedia Director is one of the most widely used multimedia authoring tools today. Director has been suc-
cessfully applied within a variety of application domains such as kiosks, games, and computer-based training.
The success and widespread use of Director can be attributed to several factors. First, Director is a mature
authoring tool whose movie-based metaphor makes it is easy to learn and use for nonprogrammers. Second,
it offers a mature, powerful, and extensible scripting language called Lingo that can be used by professional
authors to implement innovative interactive presentations. Finally, Director is a cross-platform authoring tool
supporting Windows and Macintosh computers as well as a variety of publishing mediums including CD-ROM,
videotape, and the Internet. To support Internet publishing, Macromedia has developed a set of software prod-
ucts called Shockwave. Shockwave enables a Director presentation to be embedded within a Web page and
subsequently viewed within a Web browser. In this section, we give a brief history of the Director authoring
tool and an overview of its authoring environment, and demonstrate its use by re-creating the interactive video
game Pong.

AUTHORING LANGUAGES 11

rip to Minnesota

Mall of America

The Mall of America is
located in Bloomington,
MM. The mall opened its
doors in August of 1992
and receives between 35
and 40 million visitors

each year.
<)

Card 1 of 3 Q o

Fig. 7. The photo-album entry for the Mall of America. Because the background layer shown in Fig. 4 was used to create
this card, only the photograph and text for the title and description fields need to be included. Each of the behaviors located
in the background layer continues to function correctly without modification.

History. In 1984, Marc Canter founded the Macromind Company with a vision of putting high-end
audio, video, and graphics technology into the hands of artists and musicians. The company’s first product,
SoundVision, was a multimedia authoring tool useful for integrating voice and animation on the early Macin-
tosh computer. Soon after the release of their SoundVision product, the company separated out the animation
and sound tools, creating two new products; MusicWorks and VideoWorks. MusicWorks was an enhanced
version of the company’s sound tools, while VideoWorks was an enhanced version of the company’s animation
tools. In 1987, Macromind integrated an interpreted scripting language called Tiny Basic into their VideoWorks
product, forming a new product called VideoWorks Interactive. As its name implied, this new product was de-
signed for authoring interactive multimedia presentations. As development continued on this new product and
language, they both received new names. VideoWorks Interactive was renamed Director, while Tiny Basic was
renamed Lingo. In 1992 Macromind merged with a small company named Authorware to form the present-day
company Macromedia. The Director authoring tool and its interpreted scripting language Lingo have set the
standard for professional authoring tools in use today.

Authoring Environment. Macromedia Director’s authoring environment is based on a movie metaphor
using components such as the cast, stage, and score. The movie metaphor was intended to make the authoring
tool intuitive to use and learn by its target audience: artists, musicians, and video editors. However, beneath
this metaphoric cover, Director is a timeline-based authoring tool offering a timeline partitioned into discrete
temporal units for authoring. A timeline simplifies the specification of time-based behavior such as animations
and transitional effects. For example, an author can animate an object by incrementally adjusting one or more
of its attributes, such as its location, scale, or color, over a finite period of time. Similarly, an author can define a
transitional effect such as a wipe, fade, or dissolve by first choosing the appropriate effect and then stretching
it across an interval proportional to the desired transition time.

12 AUTHORING LANGUAGES

Although it simplifies the creation of time-based behavior, a timeline complicates the creation of an in-
teractive presentation, because it does not directly support asynchronous interaction (4). An asynchronous
interaction may occur at any point within a specified temporal interval, whose length may range from a few
seconds to the entire presentation. Because time is progressing during the playback of a presentation, defining
a precise interval in which an asynchronous interaction may occur is usually not possible. For example, assume
a presentation offers an “exit” button, which the viewer can select at any time to end the presentation imme-
diately. Because the length of the presentation is unknown, defining a finite interval in which the interaction
may occur is not possible. As a result, either the duration of the interaction must be set to infinity or the
progression of time within the presentation must be stopped. Director supports the latter technique through
the Lingo command go to the frame, which is demonstrated in the case study.

In Director, a presentation is a collection of one or movies creating using the authoring tools Cast, Stage,
and Score components, along with numerous Lingo scripts.

Cast. The Cast represents the set of media elements used within a presentation. Each media element
within the Cast is known as a cast member. Example cast members include audio clips, graphic images,
geometric shapes, video clips, and film loops (animations). Each cast member is named and maintains a set of
default properties such as size, display location, and color. In order for a cast member to be visible during the
presentation, it must be placed onto the Stage. An instance of a cast member on the Stage is called a sprite.
A sprite maintains a distinct set of properties initialized to the values of the underlying cast member. Thus,
multiple instances of a single cast member can appear on the Stage simultaneously, yet can be individually
controlled.

Stage. The Stage represents the display area of a presentation, typically defined as a 640 x 480 window
centered on the computer screen. In order for a cast member to be visible during a presentation, an instance of
it (sprite) must be placed on the Stage. Each sprite placed on the Stage is represented as a sequence of filled
frames within one of the Score’s sprite channels. The filled frames of the sprite channel determine when, and
for how long, the sprite is visible on the Stage.

Score. The Score is a visual timeline and editor used to specify the temporal layout of a presentation.
The Score’s editable timeline is subdivided into both horizontal and vertical units. A horizontal unit is called
a frame and represents a discrete unit of time. The collection of frames spanning an entire horizontal row is
called a sprite channel, or just channel for short. Within a channel, the starting point and duration of a sprite
appearing on the Stage is represented as a sequence of one or more filled frames. Vertical units represent
different sprite channels, enabling multiple sprites to be active on the Stage simultaneously. The collection of
frames spanning a vertical column (i.e., having the same frame number) within each sprite channel represents
the same instant in time. Vertically aligned sprites are drawn on the Stage in ascending order of the occupied
channel number.

When a cast member is either added to the Stage or dragged onto the Score directly, a sprite representing
the cast member is inserted into the first available channel. An author can then move the sprite horizontally or
vertically to manipulate when and in what order it appears on the Stage. An author can also shrink or stretch
the sprite across channel frames in order to manipulate the sprite’s duration. Although many of its frames may
not be used, a channel is typically occupied by a single sprite for the entire presentation.

Lingo. Lingo is the English-like scripting language enabling an author to incorporate dynamic behavior
and interactivity into a Director presentation. Using Lingo, an author can also control almost any aspect of the
presentation, including cast-member properties, sprite properties, frame location, and playback rate. Similar
to HyperTalk, an author uses Lingo to write numerous scripts, which are short pieces of programming code
structured in the form of event and function handlers. An event handler defines how the presentation responds
to the occurrence of a particular event such as a mouse click or the entering of a frame, whereas a function
handler defines a supporting routine. Director supports four types of scripts:

AUTHORING LANGUAGES 13

Movie
Frame Search = T
e
events raTme

Casl member

T

Search
Mouse = Sprite

events

Fig. 8. Director’s object hierarchy determines the order in which scripts are searched for a matching event handler. The
type of the event generated determines where in the hierarchy Director begins its search. Once a matching handler is
found, Director automatically invokes it.

e Sprite Scripts. These scripts allow behavior to be attached to individual sprites. For example, suppose a
click should be heard whenever a viewer selects a specific graphic element on the Stage. To create this
behavior, an author would define the mouseUp event handler within a script and then attach it to the
graphic element’s sprite in the Score.

e Cast-Member Scripts. These scripts allow behavior to be attached to cast members, thus providing default
behavior for sprite instances. For example, suppose a click should be heard whenever a viewer selects an
instance of a particular cast member on the Stage. Rather than defining and attaching a separate script to
each sprite instance, an author could write a single script defining this behavior and then attach it directly
to the cast member.

e Frame Scripts. These scripts allow behavior to be attached to a specific frame within the Score. For example,
suppose a presentation reaches a playback point where a viewer response is required before it can continue.
Using the appropriate Lingo code to hold the presentation until a response is received, an author would
define the enterFrame event handler within a script and then attach it to the appropriate frame in the
Score.

e Movie Scripts. These scripts usually define functions globally accessible to any of the sprite, cast member, or
frame scripts. However, a movie script can also be used to define behavior associated with the beginning or
ending of a presentation. For example, suppose a QuickTime movie needs to be prefetched at the beginning
of a presentation to ensure smooth playback. Using the appropriate Lingo code to prefetch the QuickTime
movie, an author would define the prepareMovie event handler within a script and then attach it to the
current movie.

An event is generated in response to a user interaction such as a mouse click, or to a system event such as
the entering of a frame. For each event generated, Director searches the attached scripts in a predefined order,
looking for a matching event handler, and if a match is found, Director automatically invokes it. Scripts are
searched based on the elements to which they are attached, starting with the most specific, such as a particular
sprite, and continuing towards the more generic, such as the current movie. The hierarchy defining the script
search order is illustrated in Fig. 8. The location at which Director begins searching for a matching handler
within the hierarchy depends on the type of the event generated. For example, the search for an enterFrame
event handler begins at the frame level and then moves up the hierarchy until a matching handler is found,;
thus, scripts attached to elements lower in the hierarchy are never searched and can therefore never respond
to this particular message. Although a complete description of Lingo’s event-dispatching behavior is beyond
the scope of this article, the reader may refer to Ref. 21 for additional details.

Case Study: Re-creating the Game of Pong. In this section the Director authoring tool is used to
re-create the world’s first video game, Pong. The single-player version of Pong involves three objects: a paddle,

14 AUTHORING LANGUAGES

Internal Cast M=l

= el al =el
|l
Elﬂ =1 W = il o =

Paddle | Ball hhbwiescrp
bon

n
=it niterF,
F 7 @ g] |
KIS Mz

Fig. 9. The Cast window, showing the different cast members used to create the game Pong. Both the paddle and ball
shapes are cast members as well as the Lingo scripts that define the interactive behavior.

Fig. 10. The paddle and ball cast members positioned on the Stage.

ball, and 2-D court. The court consists of three walls: a bottom, left, and top wall. The fourth (right) wall of the
court does not exist. Located on the right side of the court, the player-controlled paddle can be moved vertically
but must remain within the confines of the court. The ball, which is controlled by the game itself, always moves
in a straight line. Any time the ball touches a wall or the paddle, it bounces off in a new direction computed
from the negative of its incoming slope plus a small noise factor. The player’s goal is to keep the ball within
the confines of the court by moving the paddle vertically and bouncing the ball away from the missing right
wall. If at any time the player misses the ball with the paddle, the ball escapes the court and the game ends.
To challenge the player, the speed at which the ball travels around the court is slowly increased.

The first step in authoring this interactive game is to decide upon the appropriate cast members. For this
game two filled rectangles will suffice, one representing the paddle, and the other representing the ball (the
first two cast members displayed in Fig. 9). The 2-D court is represented by the Stage itself, and thus does
not require an explicit cast member. Both the paddle and ball are created using Director’s shape tool, which
automatically inserts each shape into the Cast. From the Cast window, the paddle and ball are dragged onto the
Stage and positioned as shown in Fig. 10. By dragging the cast members onto the Stage, Director automatically
inserts sprites into the Score for each one. The next step is to write the Lingo scripts defining the behavior for
both the paddle and ball. Although this game does require a few other scripts to be written, only these two are
described here, due to space limitations and because they represent the main function of the game.

The player must be allowed to click on the paddle and then drag it up and down. However, the paddle
must always remain within the confines of the Stage. Because only a single instance of the paddle cast member

AUTHORING LANGUAGES 15

on mouselDown
global startV — starting vertical position of the mouse

set startV to the mouseV
end

(a)

on mouseWithin

global pddieX, paddleY — (x,y) of the paddle
global paddleHeight, startV
global paddleChannel — Sprite channel of the paddle

if the mouseDown then
set delta¥ to (the mouseV - startV)
set newY to (paddleY + delta)

alsg
set paddleY to newy
set the locV of sprite paddleChannel to paddleY
set startV to the mousaVV

end if

end

(b)

Fig. 11. The cast member script for the paddle defines two event handlers. The mouseDown handler in (a) records the
vertical position of the mouse when its button is pressed. The mouseWithin handler in (b) updates the paddle location
based on how far the mouse has moved vertically. The Lingo code enforcing that the paddle stays within the court has been
omitted.

is ever placed on the Stage, defining this behavior within either a sprite or a cast-member script would suffice.
This case study uses the latter.

The paddle’s-cast member script defines two event handlers: mouseDown and mouseWithin. The mouse-
Down handler records the vertical position of the mouse when its button is pressed. The mouseWithin handler
updates the paddle location based on how far the mouse has moved vertically and also enforces that the paddle
remains within the court (Stage). The Lingo code implementing these handlers is shown in Fig. 11.

The script defining the behavior of the ball implements the main logic of the game. Because the player’s
interaction with the paddle represents an asynchronous interaction, the script defining the ball’s behavior
must be written as a frame script. The frame script uses a technique common among Lingo programmers: a
continuous loop created with the Lingo command go to the frame. By using this loop, the behavior of the ball
is integrated with the player’s ability to interact with the paddle. The frame script implements the following
game logic:

e Paddle and Wall Detection. Upon touching the paddle or the bottom, left, or top wall of the court, the ball
bounces away and continues in a new direction. If the player misses the ball with the paddle, the game
ends and then asks the player to play again.

Speed Increment. The speed of the ball is periodically increased to challenge the player.
Adjusted Bouncing. When the ball bounces away from the paddle or a wall, its new direction includes a
small noise factor causing it to traverse different paths.

16 AUTHORING LANGUAGES

on exitFrame
updateBallLocation
go to the frame
end

(a)

on updateBallLocation
glebal ballX, ball¥, ballWidth, ballHeight
global ballChannel, paddleChannel
global wallsHit
global slope, increment

if (ballX <= 0) then
set slope to ((-1 ° slope) + naoise())
sel incremment to (-1 * increment)
set wallsHit to (wallsHit + 1)

else if ((ballX + ballWidth) >= 640) then

endif

set ballX to (ballX + increment)
set ballY to (ballY + (slope * increment))

(b)

Fig. 12. A portion of the frame script that animates the ball and detects if the ball touches the paddle or a wall. The event
handler in (a) is invoked each time the playback head exits the current frame. Because the handler forces the playback
head to continuously reenter the current frame, the progression of time is stopped. The function handler in (b) displays the
partial code determining whether or not the ball is touching the left or right side of the court. If so, the new direction and
speed of the ball are computed and then used to update the ball’s location.

This game logic is shown in Fig. 12 while the Score of the finished Pong game is shown in Fig. 13.

Authorware: a Flow-Based Authoring Tool

Authorware is an authoring tool specifically designed for creating interactive courseware presentations. Exam-
ples of these types of presentations include computer-based training, educational learning, situational testing,
and drill and practice. Like other multimedia presentations, the goal of an interactive courseware presentation
is to convey a message to the viewer using a variety of different media. However, to ensure that the viewer
has understood the presented message, an interactive courseware presentation periodically judges the viewer’s
knowledge related to the presented information. For example, consider an interactive courseware presentation
designed to help undergraduate students learn the concept of mathematical integration. Assume the instructor
has already prepared several primary lessons, supplemental lessons, and interactive exercises for the students.
After each primary lesson, a student is asked to complete several exercises on their own and respond with the
calculated answers. If the student answers a high percentage of the exercises correctly, then the next primary
lesson will be presented; otherwise, the supplemental material associated with that primary lesson will be
presented next. By judging their understanding of the material, the presentation allows a student who needs

AUTHORING LANGUAGES 17

'.% Pong 5Score
| kdl E
Ink:l jl j

al | JF St 7 Flaybgain 1
[|8l

r EEH|

r Il

r o

Il o 2

r =| [45E 7

|Memberj|":5"":10"':15'"':20"jJ
r 1|10 o =]
m ¢ ezo o =
r El

r 4 -
HERERET v 2

Fig. 13. The Score of the Pong game after implementation. The sprites representing the paddle and ball cast members
are numbered 1 and 2, respectively. The sprite representing the frame script of Fig. 12 is numbered 6 in the Score.

additional instruction to receive it, while allowing a student who has correctly grasped the concept to go on.
An authoring tool designed to facilitate the creation of interactive courseware presentations must support
the storage, retrieval, manipulation, and reporting of viewer responses, which is exactly what Authorware
provides.

Authorware provides a unique authoring environment in that building interactive presentations requires
little or no programming. To build a presentation, an author drags predefined behavior icons onto a visual
flowline and then fills out a set of related properties. Authorware provides icons for playing media such as
audio and video, as well as for creating viewer interactions such as hyperlinks and multichoice questions. The
flowline provides a visual representation of the presentation’s behavior, or flow over time. Once implemented,
an Authorware presentation can be published on CD-ROM, DVD, or the Internet. In this section, we give a
brief history of the Authorware authoring tool and an overview of its flow-based authoring environment, and
demonstrate its use by building an interactive atlas.

History. The origins of Authorware are firmly rooted in a system named PLATO (Programmed Logic for
Automatic Teaching Operations) developed by Don Bitzer at the University of Illinois in the early 1960s (22).
Professor Bitzer was interested in applying computer technology to learning environments, and subsequently
founded the Computer-based Education Research Laboratory (CERL) at the University. Along with several
other engineers and students, Bitzer designed the PLATO hardware and software system at this laboratory.
The hardware consisted of a time-sharing mainframe computer, while the software consisted of an authoring
language called TUTOR. Although the system originally supported only a small classroom of users, it eventually
supported up to 1000 users simultaneously.

Realizing the potential commercial value of this new technology, Control Data Corporation began turning
PLATO into a commercial product in 1975. One of the principal designers of this commercial product was
Dr. Michael Allen. By 1985, over 100 commercial PLATO systems were operating at sites around the world.
However, the mid 1980s also marked the beginning of the microcomputer revolution. Because microcomputers
were becoming a more cost-effective platform than mainframes, Control Data Corporation sold or closed many
of its mainframe businesses, including those that supported the PLATO systems. Recognizing the need for

18 AUTHORING LANGUAGES

state-of-the-art multimedia authoring tools in this emerging PC market, Dr. Allen left Control Data Corporation
and founded a new company named Authorware in 1985.

In 1987 Authorware released its first authoring product, called Course of Action, which was designed
to facilitate the creation of instructional courseware. The company continued to enhance and support this
product until 1992, at which time Authorware merged with the Macromind company. The merger resulted in
the formation of a new company called Macromedia. Because Macromind was already an established producer
of multimedia tools, the merger helped solidify Authorware’s place in the interactive multimedia market.

Authoring Environment. The Authorware tool has three distinguishing characteristics setting it apart
from other authoring tools. First, Authorware is based on the concept of a flowline. A flowline represents the
behavioral flow of a presentation over time. However, time is represented at a more abstract level and is
not partitioned into discrete time units as in a timeline-based authoring tool. To build a presentation, an
author drags predefined behavior icons from a tool palette onto the flowline. The flowline represents not only
the visual design of the presentation, but also the implementation of the presentation. Second, Authorware
provides direct support for interaction with little or no programming. In fact, programming is considered
an advanced feature of the tool, and most introductory texts on Authorware do not even cover this topic.
Third, Authorware provides several built-in mechanisms such as response properties and system variables
for controlling and judging viewer responses. Response properties enable an author to control the number of
answer attempts and enforce time limits regarding a viewer’s response. System variables enable an author to
retrieve the response time, number of correct or incorrect responses, total number of judged responses, and
more. Together, these mechanisms expedite the process of creating interactive courseware presentations.

The Authorware environment consists of three primary components: the Icon palette, Design window, and
Presentation window. These components are shown in Fig. 14. The Icon palette provides the predefined behavior
icons an author uses to construct a presentation. The Design window contains the flowline onto which these
behavior icons are placed. The Presentation window displays the output of icons as they are executed along the
flowline, provides tools for creating text and geometric shapes, and allows an object’s visual properties such as
location, size, and color to be modified. The next three sub-subsections describe each of these components in
greater detail.

Icon Palette. The Icon palette provides the predefined behavior icons used to construct a presentation.
Specifically, Authorware provides the following behavior icons:

e Display. Displays text, graphics, and images on the screen. These media elements can be imported from
an existing file or created using Authorware’s text and shape tools.

e Motion. Animates a visual media element on the screen. An author can define the speed, path, and direction
of the animated element.

Erase. Removes one or more displayed media elements from the screen.

Wait. Pauses execution of a presentation until either a specified amount of time elapses or the viewer clicks
a “continue” button.

Navigate. Jumps to a specific page created as part of a framework.

Framework. Defines a set of pages along with navigation controls.

Decision. Directs execution along one of several paths based on parameters such as viewer responses or
variable values, or by following a sequential or random order.

e Interaction. Displays information or controls that a viewer may interact with either synchronously or asyn-
chronously. Supported interactions include drag and drop, menu selection, hot spots, buttons, hyperlinks,
and more. Whenever a viewer responds to an interaction, execution of the presentation continues along the
path defined for that particular response.

e Calculation. Executes an attached programming script written in the Authorware language. A script can
access and manipulate almost any aspect of the presentation.

e Map. Creates a hierarchical grouping of icons facilitating a modular design.

AUTHORING LANGUAGES 19

% Authorware |_ |O]

File Edit “iew Inzet Modify Test Contral ¥traz Window Help

OEalal =] [Fo]@] %] et syie) =]

Lewvel 1

I
Title
&

JIEHEIOCBIOnnE

Text associated with the Title icon

=
T
m
=1

s

|
h

RRE|

Fig. 14. The Authorware environment consists of three main components: the Icon palette, Design window, and Presen-
tation window. The Icon palette, located on the far left, provides the predefined behavior icons an author uses to construct
a presentation. The Design window (entitled Sample.a4p) contains the flowline onto which these behavior icons are placed.
The Presentation window displays the output of icons as they are executed along the flowline, provides tools for creating
text and geometric shapes, and allows an object’s visual properties to be modified.

e Movie. Imports a video file existing in a standard format such as MPEG, AVI, or QuickTime.
e Sound. Imports an audio file existing in a standard format such as PCM, AIFF, or WAV.

Each icon within the Icon palette is labeled in Fig. 15. Once an author places an icon on the flowline,
numerous properties of the icon can be configured, specializing its behavior. In some cases, determining the
proper configuration of an icon and understanding how the icon will behave in the context of the overall
presentation can be difficult.

Design Window. The Design window is where an author visually constructs the temporal layout and
interaction of a presentation. An author selects icons from the Icon palette and drags them onto the flowline
contained in the Design window. The flowline begins at the top of the Design window and ends at the bottom, as
shown in Fig. 14. Although the flowline is not a timeline, it does impose a temporal ordering on the placed icons.
An icon placed higher on the flowline is executed before an icon placed lower on the flowline. The flowline is not
considered a timeline because it does not represent discrete points in time. Authorware executes each icon until
it is finished and then moves sequentially to the next one. The execution time of an icon depends on its type
and configured properties. For example, the execution time of a display icon is the amount of time required to

20 AUTHORING LANGUAGES

Display
Maotion
Erase | [&
Wait
Navigation |57
El:ﬂ Framework
Decision <>
E’) Interaction
Calculation ||[[=]
Map
Motion @
Sound
Video
m Start flag
Stop flag ||
% leon color

Fig. 15. The behavioral icons available from the Icon palette.

draw the associated visual elements in the Presentation window. On the other hand, the execution time of an
interaction icon depends on whether the interaction has been configured as perpetual or time-bounded, and on
the viewer’s response time. Because the execution time of an icon is either unknown or can only be estimated,
achieving a precise level of synchronization can be difficult (e.g., playing a sound effect at a precise point within
an animation). Timeline-based authoring tools such as Director are much better at achieving this precise level
of synchronization through the use of temporal layers.

Presentation Window. The Presentation window displays the output of icons as they are executed along
the flowline, provides tools for creating text and geometric shapes, and allows an object’s visual properties to be
modified. To associate visual content with an icon, such as a display or interaction icon, an author first places
the icon on the flowline and then selects it by double-clicking. After selecting the icon, any content imported,
created, or otherwise placed in the Presentation window is associated with that icon, and displayed whenever
that icon is executed. For example, in Fig. 14 a display icon has been placed on the flowline and selected. Next,
a text message was created in the Presentation window, causing it to be associated with the display icon. Each
time the display icon is executed, the associated text message will be displayed. Any visual content displayed
in the Presentation window remains visible until it is explicitly removed.

Case Study: Designing an Interactive Atlas. To demonstrate the use of Authorware’s authoring
environment, a case study involving the creation of an interactive atlas is presented. The interactive atlas
displays a map of the world’s continents and then asks the viewer three different questions regarding them.
For each question, the viewer must respond using a different interaction technique. For the first question, the
viewer is presented with the name of a continent and must respond by dragging the name to its appropriate

AUTHORING LANGUAGES 21

[Atlas. adp M= B3

= Lewvel 1
World Map

(uestion 1
[uestion 2
[uestion 3

Tally

Fig. 16. Two display and three map icons have been placed on the flowline representing the outline of the interactive
atlas. Each icon has also been given an appropriate title.

geographic location. For the second question, the viewer is presented with a circled continent and must respond
by entering its name. Finally, for the third question the viewer is presented with a multichoice question and
must respond by selecting the button associated with their preferred choice. The viewer receives three attempts
to correctly answer each of the first two questions, and only receives one attempt to correctly answer the third.
After the last question, the total number of correct answers is displayed to the viewer.

When authoring a presentation in Authorware, an author should first outline the general flow of the
presentation. For the interactive atlas, a reasonable outline is:

Display the world map.

Present Question 1.

Present Question 2.

Present Question 3.

Tally the number of correct answers.

This process of creating and further refining multiple levels of detail is known as top-down design. Unlike
many other authoring tools, Authorware directly supports top-down design through its map icon. Although
the first and last steps of the outline can each be accomplished by using a display icon, the middle three steps
require that several substeps be completed, and thus, a map icon is used to represent each one of them. The
result of placing these icons on the flowline is shown in Fig. 16. For the initial display icon, an image containing
a map of the world’s continents is imported and associated with it. For the map icons, each one must be further
refined.

Question 1—Drag the Name of a Continent to Its Geographic Location. The first question presents
the viewer with the name of a continent and then requests that the viewer drag that name to its matching
geographic location. On selecting the Question 1 map icon of Fig. 16, Authorware brings up another Design
window containing an empty flowline. In this new window, a display icon for the question text is placed on the
flowline. To create the drag and drop behavior, an interaction icon is also placed on the flowline. Associated
with the interaction icon is the name of a continent, Africa, which must be appropriately positioned within
the Presentation window. To the right of the interaction icon, three map icons are placed, representing the
different response paths. The paths represent the correct response, incorrect response, and exceeded number
of attempts, respectively.

When an icon is placed to the right of an interaction icon, Authorware prompts for the response type.
The first two response types are set to target area, while the third response type is set to #ries limit. Here

22 AUTHORING LANGUAGES

&= Question 1 M= E3

e Lewvel 2
Instruction Test

+Afica

— = Other
Counter

Fig. 17. The refined flowline for Question 1. The display icon displays the instruction text to the viewer, while the
interaction icon displays the name of the continent the viewer must drag to its geographic location. Each map icon to the
right of the interaction icon represents a possible viewer response path. The paths represent the correct response, incorrect
response, and exceeded number of attempts, respectively.

target area represents a specific screen location where the viewer may drag and drop an object, while ¢ries limit
represents the number of attempts the viewer is allowed for this interaction. The branching selection for the
first and third responses are set to exit interaction, while the branching selection for the second response is set
to continue. Figure 17 displays the results of these steps.

If the viewer drags the name of the continent to the correct location on the map, the first response
is matched and the contents of its associated map icon are executed. Afterward, the presentation exits the
interaction. If the viewer drags the name of the continent to any other location, the second response is matched
and the contents of its associated map icon are executed. Afterward, the presentation continues to the right,
allowing the counter (third response) to increment by one. If the counter reaches the maximum value of three,
the contents of its associated map icon are executed and then the presentation exits the interaction. Thus, the
interaction continues until the viewer either responds correctly or makes three incorrect attempts.

To complete the implementation of the first question, each of the map icons associated with a response
path must also be further refined. After each response, the viewer should receive a message indicating if the
answer was correct or incorrect, and whether or not another attempt is allowed. Because refining each response
behavior is similar, only the refinement of the correct (first) response path will be discussed here.

By selecting the map icon associated with the correct response path, Authorware brings up a new Design
window. To remove the question text, an erase icon is placed on the flowline and associated with the text. Next,
an appropriate message indicating that the answer was correct is created and then associated with a display
icon. Finally, a wait icon is placed on the flowline and configured to give the viewer adequate time to read the
message. Figure 18 shows the results of these steps. After completing similar steps for the other responses, the
first question is now complete and is shown in Fig. 19.

Question 2—Identify the Circled Continent. The second question asks the viewer to identify the circled
continent, which in this case is Australia. The steps necessary to design this question are similar to those of
Question 1, and so will be given in lesser detail. By selecting the Question 2 map icon of Fig. 16, Authorware
brings up another Design window containing an empty flowline. To build the question, a display icon is first
placed on the flowline and a circle around the Australian continent is associated with it. Next, an interaction
icon is placed on the flowline along with three map icons representing the different response paths as before.
The response types for the first two map icons are set to text entry, while the response type for the third map
icon is set to tries limit. For a text-entry response, the title of the icon represents the matching answer. Thus,
the first (correct) map icon’s title is set to Australia, while the second (incorrect) map icon’s title is set to a

&= Africa M= E3

= Level 3

AUTHORING LANGUAGES

23

Fig. 18. The contents of the map icon associated with the correct-response path of Question 1. When a correct response is
given, the current question text is erased and an appropriate message is displayed. After a short pause, the presentation

continues to the next question.

Presentation Window

File:

Africa

Click on the name of the continent listed above and then
drag the name to its corresponding geographical location.

Fig. 19. The display of Question 1 to the viewer. The viewer is asked to drag the name of the continent to its proper
geographic location. If the viewer’s response is correct, the presentation displays an appropriate message and then moves
on to the next question. If the viewer’s response is incorrect, the presentation displays an appropriate message and then
gives the viewer another attempt. The viewer is given at most three attempts to respond correctly.

wildecard, signified by -- at the beginning of the title. Because Authorware matches the responses from left
to right, the catchall response must be placed to the right of the correct response. The completed flowline for

Question 2 is shown in Fig.

20.

The map icons associated with the response paths of Question 2 are refined in a similar manner as those
in Question 1, and therefore will not be discussed further. The second question is now complete and is shown

in Fig. 21.

24 AUTHORING LANGUAGES

E‘E Question 2 [_ [}

i + Level 2
@] Circled Continent

E;T_EN_?E*_ +auztralia

1t = - Other

Courber

Eraze

Fig. 20. The refined flowline for Question 2. The display icon displays the circle around the Australian continent, while
the interaction icon displays the question text. Each map icon to the right of the interaction icon represents a possible
viewer response path. The paths represent the correct response, incorrect response, and exceeded number of attempts,
respectively.

Prezentation Window
Filz

Enter the name of the circled continent:

b

Fig. 21. The display of Question 2 to the viewer. The viewer is asked to enter the name of the circled continent. If the
viewer’s response is correct, the presentation displays an appropriate message and then moves on to the next question.
If the viewer’s response is incorrect, the presentation displays an appropriate message and then gives the viewer another
attempt. The viewer is given at most three attempts to respond correctly.

Question 3—Select the Continent with the Largest Population Size. The third question is a multiple-
choice question asking the viewer to select the continent with the largest population size. Unlike the first two
questions, this question offers the viewer only a single attempt to respond correctly. By selecting the Question
3 map icon of Fig. 16, Authorware brings up another Design window containing an empty flowline. To build the
question, a display icon is first placed on the flowline, and the question text is associated with it. In addition,
the text for each answer choice is also associated with this display icon. Next, an interaction icon is placed

AUTHORING LANGUAGES 25

& Question 3 M= E3

Fig. 22. The refined flowline for Question 3. The display icon displays the question text as well as the three possible
answer choices. The interaction icon has no visible elements associated with it. Each map icon to the right of the interaction
icon represents a possible viewer response path. The paths represent the selection of buttons A, B, and C, respectively.

onto the flowline, along with three map icons representing the different response paths as before. The second
choice (B) is the correct response, while the first and third choices (A and C) are the incorrect responses. The
response type of each map icon is set to dbutton, and in return, Authorware automatically creates a button
in the Presentation window with its label set to the icon’s title. Each button must be positioned within the
Presentation window next to the answer choice that it represents. The completed flowline for Question 3 is
shown in Fig. 22.

The map icons associated with the response paths of Question 3 are refined in a similar manner to those
in Question 1, and therefore will not be discussed further. The third question is now complete and is shown in
Fig. 23.

Tally the Number of Correct Responses. The final task of the interactive atlas is to tally the number of
correct responses and display this result to the viewer. Authorware provides two system variables, TotalCorrect
and JudgedInteractions, which automatically provide the desired information. Along with the Tally display
icon of Fig. 16, the following text is associated with it:

You correctly answered {TotalCorrect} out of {JudgedInteractions} questions

The string names inside the braces represent the names of system variables. When Authorware displays
the text, it will replace the system variables with their current values.

The Future of Authoring Interactive Media

Past research in the area of authoring interactive media has focused on building expressive temporal mod-
els and logics, providing semantically rich linking structures, and supporting innovative interaction. Future
research in the area of authoring interactive media will focus on creating standardized encoding formats for
multimedia presentations, building expressive authoring languages for the Internet, and integrating multi-
modal interactions into presentations.

Standardized Encoding of Multimedia Presentations. An authoring tool enables an author to spec-
ify the spatial and temporal layout and the interaction of a multimedia presentation. Once these specifications
are made, an authoring tool must encode them into a format that can be distributed and later interpreted
for playback or editing. Because each authoring tool uses its own proprietary encoding format, a presentation

26 AUTHORING LANGUAGES

Presentation Window
File

YWhich continent has the largest population ?

@ North America
Asia
South America

Fig. 23. The display of Question 3 to the viewer. The viewer is asked to select the name of the continent having the largest
population. Upon receiving the viewer’s response, the presentation displays an appropriate message and then moves on to
the tally of correct responses.

created with one tool cannot be interpreted by another. For example, a presentation authored with HyperCard
cannot be edited or played using Director. To address this problem, the Multimedia/HyperMedia Information
Coding Experts Group (MHEG; ISO/IEC 13522) is developing a standardized encoding format for describing
the spatial and temporal layout and the interaction of a multimedia presentation (23). The encoding format
provides a declarative syntax and associated semantics for describing a multimedia presentation. If MHEG
is adopted by new and existing multimedia authoring tools, authors will be able to use their favorite tools
to build a presentation, and then export it in the MHEG format. Another MHEG-compliant tool will then be
able to interpret this format for playback or editing. For example, a presentation authored using Director and
converted into MHEG might be played on any computing device equipped with an MHEG-compliant player,
speakers, and display device. However, designing an encoding format that is expressive enough to capture
innovative interactive presentations is a challenging and ongoing task.

Authoring Languages for the Internet. HTML is currently the primary authoring language for the
Internet. Using HTML, an author can easily combine text and graphics into one or more documents, and
can establish links between semantically related content. However, an author cannot use HTML to express
the sophisticated temporal layout or innovative interactions required by most multimedia presentations. As
a result, the World Wide Web Consortium (W3C) has proposed the Synchronized Multimedia Integration
Language (SMIL) (24), enabling the creation of interactive multimedia presentations on the Internet. SMIL
supports streaming audio and video, run-time adaptation, and a rich timing and linking semantics not found
in HTML. Because SMIL is defined by an XML document-type definition, authoring a multimedia presentation
using SMIL is similar to authoring a hypertext presentation using HTML.

In SMIL, spatial layout is based on the concept of a region. A region represents a rectangular area of the
screen in which media elements are displayed, and controls the position, size, and scaling of those elements. A
SMIL presentation can specify any number of overlapping regions; however, a media element must be assigned
to a specific region in order for that element to be visible to a viewer.

AUTHORING LANGUAGES 27

Temporal layout is defined using the parallel and serial synchronization grouping tags. These grouping
tags place a temporal structure on their child elements (children). A parallel tag starts all of its children at the
same time, while a serial tag plays its children in a sequential order. A child element may be either a media
element such as an audio or video clip, or another synchronization tag. By nesting synchronization tags, an
author can achieve complex temporal layouts.

Similar to HTML, SMIL supports interaction through hyperlinks. However, SMIL’s hyperlinks have
two additional features. First, SMIL allows the destination of a link to be a temporal subpart of the same or a
different SMIL presentation. A temporal subpart of a presentation is specified by including the synchronization
tag identifier associated with that subpart as part of the link destination. This feature allows the viewer to
navigate to a specific point within a presentation and have the presentation behave as if it had already played
to that point. Second, SMIL allows an author to specify a context for link traversal. Link context defines how
the source presentation containing the link behaves when the viewer follows the link. SMIL supports three
contexts for link traversal:

e Replace. The source presentation is paused and then replaced with the destination presentation. If the
viewer returns to the source presentation at a later time, it may resume from the state in which it was
paused.

New. The destination presentation starts in a new context and the source presentation is unaffected.
Pause. The source presentation is paused at its current state while the destination presentation starts in
a new context. When the destination ends, the source presentation resumes from the state in which it was
paused.

Finally, SMIL supports adaptive playback of a presentation based on system parameters and user prefer-
ences specified through the switch element. The switch element allows an author to specify a set of alternative
media elements from which only one element is chosen. For example, a switch element can be used to choose
among different qualities of an audio segment according to the network bandwidth available at run time.

Multimodal Input and Output for Multimedia Presentations. Today’s computer looks little different
from the workstations developed twenty years ago. Since the addition of the bitmapped screen and mouse to
the standard keyboard, little noticeable change has been made in the exterior interfaces of computers. Now,
just a few years after computers have commonly become powerful enough to display high-quality audio and
video, several significant new input and output modalities are on the horizon.

The two input technologies that are most likely to change multimedia interfaces are speech and user
sensing. Speech technology is already available for users who prefer to control a computer by speaking rather
than typing. While accuracy is still a challenge, current commercial systems by IBM and Dragon Systems work
well enough to satisfy many users. As improvements continue, we are likely to see more speech-controlled
applications. User sensing uses various sensors, including cameras, smart cards, and even eye trackers, to
detect the presence and actions of users. This technology can allow a presentation to reset when the viewer
leaves, can adapt a presentation to the set of viewers, or can add humor to a presentation if it notices a drop in
attention from the user. As new input technologies become pervasive, authors will have new types of interaction
available for creating multimedia presentations.

Two exciting output technologies are virtual reality displays and force-feedback devices. Virtual reality
displays combine high-quality graphics with accurate detection of user position to create a more realistic sense of
immersion in a space. Common displays include: headsets, which may block out the world or display computer
graphics over it; cave displays, which project contents on the walls of a room; and various special-purpose
displays such as car and airplane simulators. Force-feedback devices, also commonly used in virtual reality
applications, allow users to feel a force through fingers, arms, or a body suit. With force-feedback output, it is
possible to add substantial reality to an otherwise computer-feeling application. For example, a force-feedback
steering wheel adds the sense of real steering to a car simulator. Combining this with force-feedback pedals and

28 AUTHORING LANGUAGES

seats can give surprising realism. It remains to be seen how authors will use these new media for interactive
presentations.

Further Reading

Several published books and research papers are available on many aspects of authoring interactive multimedia
presentations. For a general introduction to multimedia systems and applications see Refs. 6 and 25. For
insight into the early influential work on hypertext, hypermedia, and multimedia systems see Refs. 18, 22,
and 26,27,28,29,30. For additional information regarding content selection and design see Refs. 1,2,3 and
31,32,33,34,35,36,37. For additional information regarding temporal models see Refs. 4, 8,9,10,11,12, 24, and
38,39,40,41,42,43. And for additional information regarding authoring tools and languages see Refs. 44 and
45.

BIBLIOGRAPHY

1. P. Faraday A. Sutcliffe An empirical study of attending and comprehending multimedia presentations, Proc. ACM
Multimedia, 1996.

2. P.Faraday A. Sutcliffe Designing effective multimedia presentations, Conf. Proc. Human Factors in Computing Systems,
1997.

3. L. J. Najjar Multimedia information and learning, J. Educ. Multimedia Hypermedia, 5: 129-150, 1996.

4. B. Bailey et al. Nsync—a toolkit for building interactive multimedia presentations, Proc. ACM Multimedia, 1998.

5. Myst (computer software distribution), Broderbund Software.

6. J. Nielsen Multimedia and Hypertext: The Internet and Beyond. AP Professional, 1995.

7. D. Norman The Design of Everday Things, New York: Doubleday, 1988.

8. G. Blakowski R. Steinmetz A media synchronization survey: Reference model, specification, and case studies, IEEE J.

Selected Areas Commun., 14: 5-35, 1996.
9. J. Schnepf J. Konstan D. Du Doing FLIPS: Flexible interactive presentation synchronization, IEEE oJ. Selected Areas

Commun., 14: 114-125, 1996.

10. J. P. Courtiat R. C. De Oliveira Proving temporal consistency in a new multimedia synchronization model, Proc. ACM
Multimedia, 1996.

11. C. Buchanan P. Zellweger Scheduling multimedia documents using temporal constraints, Proc. NOSSDAV, 1992.

12. J. Herlocker J. Konstan Commands as media: Design and implementation of a command stream, Proc. ACM Multimedia,
1995.

13. J. K. Ousterhout Tcl and the Tk Toolkit, Reading, MA: Addison-Wesley, 1994.

14. G. D. Drapeau Synchronization in the MAEstro multimedia authoring environment, Proc. ACM Multimedia, 1993.

15. C. Buchanan P. Zellweger Specifying temporal behavior in hypermedia documents, Proc. ACM ECHT Conf., 1992.

16. M. Holtz The Multimedia Workshop: Authorware Professional 2.0, Wadsworth, 1995.

17. L. P. Rieber Getting Interactive with Authorware: Building Simulations and Games [Online]. Available www:
http://www.nowhereroad.com/authorware/index.html

18. V. Bush As we may think, Atlantic Monthly, July 1945.

19. Apple Computer, HyperCard: Reference Manual, 1993.

20. Apple Computer, HyperCard: Script Language Guide, 1993.

21. Macromedia, Learning Lingo, Macromedia Press, 1997.

22. D. Bitzer P. Braunfeld W. Lichtenberger PLATO: An automatic teaching device, IRE Trans. Educ., E-4: 157-161, 1961.

23. M. Echiffre et al. MHEG-5—aims, concepts, and implementation issues, IEEE Multimedia, 5 (1):84-91, 1998.

24. Synchronized Multimedia [Online]. Available www: http:/www.w3.org/AudioVideo/

25. R. Steinmetz K. Nahrstedt Multimedia: Computing, Communications, and Applications, Upper Saddle River, NJ:
Prentice-Hall, 1995.

26

217.

28.
29.
30.

31.

32.
33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

43.
44.

45

R

AUTHORING LANGUAGES 29

. D. Engelbart A conceptual framework for the augmentation of man’s intellect. In Vistas in Information Handling, Vol.
1, Washington: Spartan, 1963.

F. Halasz Reflections on NoteCards: Seven issues for the next generation of hypermedia systems, Commun. ACM, 31
(7):836-852, 1988.

T. H. Nelson Literary Machines, Swarthmore, PA: Self-published, 1981.

T. H. Nelson On the Xanadu project, Byte, September 1990, pp. 298-299.

N. Yankelovich et al. Intermedia: The concept and the construction of a seamless information environment, IEEE
Computer, 21 (1):81-96, 1988.

P. Baggett The role of temporal overlap of visual and auditory material in forming dual media association, J. Educ.
Psychol., 76 408-417, 1984.

R. B. Kozma Learning with media, Rev. Educ. Res., 61 (2):179-211, 1991.

M. T. Maybury (ed.) Intelligent Multimedia Interfaces, AAAI Press, 1993.

R. E. Mayer Aids to text comprehension, Educ. Psychol., 19: 30—42, 1984.

R. A. Reiser R. M. Gagne Characteristics of media selection models, Rev. Educ. Res., 52: 499-512.

L. P. Rieber Animation in computer based instruction, Educ. Technol. Res. Devel., 38: 77-86, 1990.

A. G. Sutcliffe Task-related information analysis, Int. J. Human Computer Stud., 47 (2):223-257, 1997.

dJ. F. Allen Maintaining knowledge about temporal intervals, Commun. ACM, 26 (11):832-843, 1983.

K. Candan B. Prabhakaran V. Subrahmanian CHIMP: A framework for supporting multimedia document authoring
and presentation, Proc. ACM Multimedia, 1996.

T. Little A. Ghafoor Interval-based conceptual models for time-dependent multimedia data, IEEE Trans. Knowl. Data
Eng., 5 (4):551-563, 1993.

B. Prabhakaran S. V. Subrahmanian Synchronization models for multimedia presentation with user input, Multimedia
Syst., 2 (2):53-62, 1994.

K. Rothermel T. Helbig Clock hierarchies: An abstraction for grouping and controlling media streams, IEEE J. Selected
Areas Commun., 14: 174-184, 1996.

R. Steinmetz Synchronization properties in multimedia systems, IEEE J. Selected Areas Commun., 8: 401-412, 1990.
C. MacKnight S. Balagopalan An evaluation tool for measuring authoring system performance, Commun. ACM, 32
(10):1231-1236, 1989.

. M. D. Merrill Where is the authoring in authoring systems? JJ. Computer-Based Instruction, 12 (4):90-96, 1985.

EADING LIST

Apple Computer, Inside Macintosh: QuickTime, Reading, MA: Addison-Wesley, 1997.

R.
P.
M

Baecker et al. A multimedia system for authoring motion pictures, Proc. ACM Multimedia, 1996.
R. Cohen et al. QuickSet: Multimodal interaction for distributed applications, Proc. ACM Multimedia, 1997.
. Helander Handbook of Human Computer Interaction, 2nd ed., Amsterdam: Elsevier/North-Holland, 1997.

BRIAN P. BAILEY
JOSEPH A. KONSTAN
University of Minnesota

