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APPLICATION PROGRAM INTERFACES

Applications usually do not perform directly certain opera-
tions, such as controlling input/output (I/O) devices. On most
operating systems, in order to perform I/O, applications act
as clients that request services from system servers. Servers
process each request and reply to the respective client, as il-
lustrated in Fig. 1. The format of a server’s requests and re-
plies defines that server’s application program interface
(API).

The goals of an API include:

1. Portability. By offering uniform APIs on different plat-
forms (e.g., different hosts and I/O devices), operating
systems may eliminate or greatly reduce the effort nec-
essary for porting applications between those platforms.

2. Modularity/Software Reuse. By encapsulating into a
server services that many applications require, op-
erating systems make it unnecessary for application
writers to reimplement those services.

3. Protection. By implementing clients and servers in sep-
arate protection domains, operating systems can pre-
vent unauthorized users from performing operations
that could compromise system protection or integrity.
A protection domain defines the memory addresses and
objects that code running in it can access. Typical im-
plementations base protection domains on CPU-en-
forced privilege levels (e.g., kernel or user mode) and
virtual memory (VM) mechanisms. By setting up do-
mains so that only a certain trusted server can access
network interface hardware directly, for example, op-
erating systems can prevent malicious or buggy applica-
tions from gaining access to other users’ packets or dis-
rupting the operation of the interface.

4. Low Overhead. Ideally, the API should be implement-
able so that performance is not substantially worse
than would be the case if the client itself performed the
services (in a nonportable, nonmodular, unprotected
manner).

Unfortunately, it can be difficult to achieve simultaneously
all these goals. Mainstream operating systems, for example,
often incur significant overhead to attain protection. The
main sources of overhead are typically:

1. Data Passing. Requests and replies often require pass-
ing data between client and server because each party
holds data in buffers that are not usable by the other
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Figure 1. Application program interfaces (APIs) promote portability,
modularity, and protection.
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are called migrant, whereas all other buffers are called native.
In migrant-mode data passing, the API implicitly allocates
input buffers and deallocates output buffers. When making
an input request, the application cannot choose the location
or layout of input buffers; after making an output request,
the application cannot or should not access output buffers.

In native-mode data passing, on the contrary, the API does
not allocate or deallocate buffers. When making an input re-
quest, the application specifies the location and layout of its
input buffers; after making an output request, the application
can still access output buffers.

Migrant-mode and native-mode data-passing semantics
necessitate different APIs. The main difference regards input
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buffers: In migrant-mode APIs, the location and layout of in-
put buffers are output parameters, returned by the interface;Figure 2. Data-passing taxonomy. Buffer allocation and integrity de-

fine the data-passing semantics. The qualified semantics also takes in native-mode APIs, the location and layout of input buffers
into account optimization conditions. are input parameters, passed to the interface. Migrant-mode

APIs also include primitives for explicit migrant buffer alloca-
tion and deallocation. Applications with balanced amounts of

party. For example, client buffers may be pageable (i.e., input and output may be able to avoid explicit buffer alloca-
not always present in physical memory), whereas a tion and deallocation by reusing input buffers as output
server requires unpageable buffers, or a server may use buffers.
buffers that are not accessible by its clients. Many sys- Migrant-mode APIs should accept as output buffers only
tems, including Unix (1), pass data by copying. The cost migrant buffers. This restriction prevents native regions that
of copying, however, has become quite high because must be kept contiguous, such as the stack or the heap, from
memory performance improvements have long been becoming discontiguous because a migrant-mode interface ac-
trailing behind performance improvements in proces- cepts part of the region as an output buffer and deallocates
sors (2) and I/O devices such as fiber-optic networks (3). it, making the region discontiguous. Native-mode APIs can

accept as input or output buffers both native and migrant2. Control Passing. Monolithic systems, such as Unix (1),
integrate most servers in the kernel and run applica- buffers.

Native-mode APIs are far more common than are migrant-tions as user-level processes. A request is therefore im-
plemented as a system call, the overhead of which is mode ones. Native-mode data passing is typified by the usual

copy semantics of Unix’s read and write calls (1). Net-typically much larger than that of a simple function
call. On the other hand, microkernel systems, such as working APIs (e.g., BSD Unix sockets (1), Unix SVR4 TLI (5),

Windows NT Winsocks) typically have copy semantics. Mi-Mach (4), implement both applications and most servers
as user-level processes. Requests and replies then re- grant-mode data passing is typified by the move semantics of

certain experimental APIs, such as DASH (6), Alloc Streamsquire interprocess communication (IPC). IPC is even
more expensive than a system call because IPC also re- (7), and Container Shipping (8). Move semantics normally is

implemented by unmapping the pages containing the dataquires a VM context switch and process scheduling.
from one party’s address space and mapping those pages to a
new region in the other party’s address space.Techniques for reducing data and control passing overheads

have been proposed in the literature. However, many such
techniques change the system’s API in an incompatible way Buffer Integrity
(3), sacrificing portability.

API data passing can be with strong or weak buffer integrityThis article characterizes API data passing and control
guarantees. Strong-integrity data passing guarantees that:passing, presents examples of actual APIs, and discusses
(1) the owner of an output buffer cannot, by overwriting thedata-passing and control-passing optimizations and their per-
buffer after data passing, affect the contents of the other par-formance effects.
ty’s input buffer; and (2) the owner of an input buffer can
access the buffer only in the states as of before an input re-

DATA-PASSING CHARACTERIZATION quest or after successful reply, but not in an intermediate,
inconsistent, or erroneous state. Weak-integrity data passing

The taxonomy shown in Fig. 2 classifies API data passing ac- makes no such guarantees.
cording to three orthogonal characteristics: (1) buffer alloca- Copy and move semantics both provide strong integrity be-
tion, (2) buffer integrity, and (3) optimization conditions. The cause each party cannot access the other party’s buffers. On
following subsections discuss each characteristic in turn. the other hand, weak integrity allows in-place data passing,

that is, data passing using buffers that can be accessed by
Buffer Allocation both parties. The client can access these buffers while its re-

quest is being processed and, consequently, can corrupt out-Data passing may or may not imply allocation and dealloca-
put data or observe input data in inconsistent states.tion of the buffers that contain the data, and each option re-

Native-mode weak-integrity data passing defines share se-quires a fundamentally different API. In the taxonomy of Fig.
2, buffers allocated or deallocated by virtue of I/O requests mantics, whereas migrant-mode weak-integrity data passing
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defines weak move semantics. Under weak move semantics, reply at some later time. In an asynchronous request, the API
may return a pending reply to the client and let the clientan output buffer remains physically accessible to its previous

owner after data passing, but this previous owner should not run while the server processes the request. The client later
polls for the final reply. In a synchronous request, on the con-access the buffer because the other party becomes the logical

owner of the buffer and may reuse it. trary, the API never returns a pending reply to the client.
Synchronous requests can be blocking or nonblocking. WhenFor weak-integrity, in-place input, requests have to be

made before input physically occurs. If this condition is not a server returns a pending reply to a blocking request, the
API blocks the client (i.e., makes it nonrunnable) until themet (e.g., when a packet is received unexpectedly from a net-

work), input can be completed according to the strong-integ- server generates the corresponding final reply. In contrast,
when a server returns a pending reply to a nonblocking re-rity semantics with the same buffer allocation scheme (i.e.,

share reverts to copy semantics, and weak move reverts to quest, the API aborts the request and returns an error indica-
tion to the client.move semantics). Additionally, for correctness, clients should

not access a weak-integrity buffer during processing of a re- Usually, a server generates a final reply when the server
has actually completed processing the corresponding request.quest that uses that buffer (and, in the case of output with

weak move semantics, any time thereafter). In some cases, however, a server may generate an anticipated
final reply, instead of an actual one. The anticipated replyIn Unix, share semantics is an exception, used in read and

write system calls for the case of raw (uncached) disk I/O indicates that the server has checked the request and guaran-
tees that the request will complete successfully at some later(1). Weak move semantics is used in some experimental APIs,

for example, cached and cached volatile fbuf input (9) and ex- time. For example, a TCP/IP server may generate an antici-
pated reply to an output request after it has checked the spec-posed buffers (10).
ified connection and gained a reference to the output data,
but well ahead of actually physically outputting the data. InOptimization Conditions
case of an anticipated reply, client and server may execute in

Each data-passing semantics may admit many different opti-
parallel, even if the request is synchronous.

mizations, some of which may depend on special conditions.
An API’s data-passing qualified semantics is defined by the
API’s data-passing semantics and special optimization condi- EXAMPLES
tions. Contrary to buffer allocation and integrity, which each
admit only two alternatives, optimization conditions admit a In the Unix API (1), the two most common I/O calls are proba-
spectrum of possibilities, including many not discussed here. bly read and write:

Optimization conditions can be as important as semantics
ssize_t read(int d, void �buf, size_t nbytes)for compatibility between two data-passing schemes. Some
ssize_t write(int d, const void �buf, size_toptimization conditions may be spatial, restricting, for exam-
nbytes)ple, buffer location, alignment, or length. Other optimization

conditions may be temporal, restricting, for example, when The explicit read and write calls can be used for very differ-
requests should occur or when a party may access its buffers. ent types of I/O. The descriptor d may refer to objects as dis-
The spatial restrictions of migrant-mode data passing, ex- parate as, for example, open files and network connections.
plained in the ‘‘Buffer Allocation’’ section, and the temporal read attempts to read nbytes of data from the object d into
restrictions of weak-integrity data passing, explained in the the application buffer pointed to by buf. Upon successful com-
section titled ‘‘Buffer Allocation’’, are intrinsic to the respec- pletion, read returns the number of bytes actually read and
tive semantics and not special optimization conditions. placed in the application buffer. In case of error, read returns

The restrictiveness of an optimization is the likelihood that �1. Conversely, write attempts to write nbytes of data to
an application not aware of the optimization will not meet the the object d from the application buffer pointed to by buf.
optimization’s special conditions. Hard conditions are those write returns the number of bytes actually written or, in
that are met by practically no application not aware of the case of error, �1.
optimization. Soft conditions are those that are not hard. read and write usually pass data with copy semantics.

The criticality of an optimization is the degree to which An exception is raw file I/O (1), where data passing has share
nonconformance with the optimization’s conditions causes semantics (i.e., occurs directly between application buffers
performance to worsen relative to the base case against which and the physical disk). Because copy and share semantics
the optimization is claimed. At one end of the criticality spec- both have the same buffer allocation scheme (native), the
trum are mandatory conditions, those that must be met for same Unix calls can be used with either semantics, although
data passing to occur or that impose heavy penalties if not with different buffer integrity guarantees.
met. At the other end of the spectrum are advisory conditions, read and write are by default blocking; however, control
which, if not met, do not cause substantial penalty. passing in I/O involving an object d can be converted to non-

blocking by using the call:
CONTROL-PASSING CHARACTERIZATION int fcntl(int d, int cmd, int arg)

API control passing can be classified according to how the API with cmd equal to F_SETFL (set status flag) and arg equal
to O_NONBLOCK.handles replies. Replies can be final or pending. A final reply

indicates that the corresponding request succeeded or failed. DASH (6) is an experimental system with an API that pas-
ses data with move semantics. In DASH, the callsA pending reply, on the contrary, indicates that the server

will process the request and generate the corresponding final get_request and send_reply synchronously input or out-
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put messages. The corresponding asynchronous calls are re- the corresponding memory region from the address space of
party a and mapping those pages to a new memory region inceive and send. Messages are represented by a header,

which may contain pointers to separate data pages. The appli- the address space of party b. The pages carry the data with-
out copying; however, party a cannot access the data aftercation passes as an argument a pointer to the message

header. send_reply and send unmap from the application’s data passing, and party b cannot choose the location or layout
of the data that it receives.address space each data page specified in the message header.

Conversely, to return a message to the application, Likewise, APIs with share semantics can pass data in-
place, without copying, by mapping client pages to theget_request and receive map data pages to the applica-

tion’s address space and fill in corresponding pointers in the server’s address space and making those pages unpageable
during request processing. That is, client buffers are pro-message header. The same calls could be used in an API with

weak move semantics, except that data pages would then not moted to double as server buffers until request processing
completion. However, clients must make input requests be-actually be mapped or unmapped.
fore input occurs and should not read input buffers or over-
write output buffers during request processing.

DATA-PASSING OPTIMIZATION
APIs with weak move semantics use buffers permanently

comapped to client and server, which may only need to be
Most APIs pass data between client and server buffers by cop-

made unpageable during request processing. Only the refer-
ying. On an output request, the system copies the data from

ence to a buffer is passed from party a to party b; no data
application to system buffer. Output processing thereafter

copying or page remapping is necessary. However, party a
uses only the system buffer, and the application is free to re-

should not access the data after data passing, and party b
use its buffer. Conversely, the system inputs data into system

cannot choose the location or layout of the data.
buffers. When returning a successful reply to an input request

For long data, the cost of data passing using VM manipula-
the system copies data from system to application buffers.

tions typically is much less than it is using copying. There-
Copying is flexible and convenient because it imposes no spa-

fore, APIs with noncopy semantics can offer lower overhead
tial or temporal conditions for data passing. Both client and

than that of conventional APIs with copy semantics. However,
server can specify the location and layout of the respective

APIs with noncopy semantics may have several problems:
buffers and can access buffers before or after requests or re-
plies without corruption of either party’s data.

1. Incompatibility with Existing Applications. Because ex-However, over the years, CPU performance and the band-
isting applications often expect an API with copy se-width of certain I/O devices, such as high-speed networks,
mantics, it may be necessary to introduce a ‘‘compatibil-increased more rapidly than did memory bandwidth. There-
ity library’’ that copies data between application buffersfore, copying became relatively expensive, which motivates
and buffers subject to the noncopy semantics of the newmany proposals for data passing optimization.
API.The applicability of such proposals depends on whether

2. Incompatibility with New Applications. Some applica-they assume that server buffers are ephemeral or cached. An
tions, even if new or reimplemented, have requirementsephemeral buffer is one that is deallocated when the server
that conflict with intrinsic restrictions of noncopy se-completes processing the request that uses the buffer. On the
mantics. For example, applications that are sensitive tocontrary, a cached buffer is one that may remain allocated
data location or layout or that need access to outputindefinitely after the completion of the first request that uses
data after output requests would need to copy data be-it. In Unix, for example, with few exceptions, buffers used in
tween application buffers and buffers used for I/O usingcharacter I/O (including networking) (1) are ephemeral,
an API with move or weak move semantics. Likewise,whereas buffers used in block I/O (e.g., file I/O) (1) are
applications that do not make input requests before in-cached.
put occurs or that access buffers during request pro-The following two subsections discuss optimizations for
cessing may not benefit from APIs with share seman-ephemeral and cached server buffers, respectively, in the case
tics.of system calls. Optimizations for IPC are discussed in the

final subsection. 3. Lack of Hardware Support. APIs with share or weak
move semantics require early demultiplexing (11), that

System Calls with Ephemeral Server Buffers is, that data be input from a device directly to the corre-
sponding client’s buffers. Many devices, especially net-If server buffers are ephemeral, copying can be avoided by
work adapters, do not have this capability: They allo-using an API with noncopy semantics. More recent optimiza-
cate input buffers from a pool regardless of the datations demonstrate, however, that copying can be avoided
destination.while preserving the copy semantics of conventional APIs. As

explained in the following, optimized APIs with copy and non-
In all such cases, use of a new API with noncopy semanticscopy semantics can provide comparable performance. How-
may fail to reduce the total amount of data copying.ever, optimized APIs with copy semantics can be less restric-

tive and less critical.
Outboard Buffering. In I/O where (1) the device controller

is implemented outboard and has plenty of memory available,Noncopy Semantics. APIs with noncopy semantics nor-
mally pass data using VM manipulations instead of copying. and (2) server(s) and driver do not need to access I/O data or

can offload to the outboard controller all processing that re-For example, APIs with move semantics usually pass data by
unmapping the pages containing the data and deallocating quires such access, I/O data can be passed by DMA directly
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between application buffers and outboard memory. In net- the data into it; otherwise, emulated copy removes write per-
missions from all mappings of the client page and increaseswork I/O, this solution can be applied if the network adapter

computes packet checksums (the only data-touching opera- the latter’s output reference count. At request processing com-
pletion time, emulated copy respectively deallocates the sys-tion, aside from copying, typically performed by protocol

stacks) (12,13). tem page or decreases the client page’s output reference
count. Client pages with nonzero output reference count serveOutboard buffering removes copying overhead from the

host while preserving copy semantics. However, it also makes as in-place system pages during request processing. Any at-
tempt to overwrite such pages causes a page fault. Emulatedthe controller more complex and costly. It can also increase I/

O latency, given its ‘‘store-and-forward’’ architecture. copy modifies the system’s page fault handler to guarantee
that results are the same as if data had been copied to distinct
system pages. The modification affects write faults on regionsEmulated Copy. Emulated copy (3) is a recent copy-avoid-

ance scheme that preserves copy semantics but does not re- for which the faulted process has write permissions and the
faulted page is found in the top memory object backing thequire outboard buffering. Therefore, emulated copy can use

controllers with ‘‘cut-through’’ architecture and achieve corre- region (14): If the page’s output reference count is nonzero,
the system recovers the process by invalidating all mappingsspondingly lower latency.

For client input buffers, emulated copy preserves copy se- of the page, copying the contents of the page to a new page,
swapping pages in the memory object, and mapping the newmantics using input alignment, that is, by inputting data into

distinct server buffers that start at the same page offsets and page to the same virtual address in the process, with writing
enabled. If the faulted page’s output reference count is zero,have the same lengths as the respective client input buffers,

as shown in Fig. 3. Emulated copy swaps pages between cli- the system recovers the process by simply reenabling writing
on the page (no copying).ent and server buffers when returning the reply to the client,

after server buffers have been successfully filled with input Emulated copy uses I/O-deferred page deallocation to
guarantee correct deallocation of client output pages onlydata. That is, for each pair of pages at the same offset from

the start of the respective buffer, emulated copy invalidates after request processing completion. The system’s page deallo-
cation routine is modified to refrain from placing pages withall mappings of both pages, removes both pages from the re-

spective memory object, inserts each page in the previous nonzero reference count in the list of free pages, where they
might be reallocated to other processes. Emulated copy placesmemory object of the other page, and maps each page to the

virtual address and address space where the other page was a client output page in the list of free pages at request pro-
cessing completion time if the page doesn’t have any furthermapped. Partially filled pages in the server buffer are han-

dled as follows: If the data length is less than a configurable references and no longer is allocated to a memory object.
threshold ti, emulated copy simply copies it out; otherwise,
emulated copy completes the page with the complementary Restrictiveness and Criticality of Emulated Copy. Input align-

ment can be achieved by client-aligned or server-aligned buff-data of the corresponding page in the client buffer, using re-
verse copyout, that is, copying from client to server page, and ering, that is, respectively, by the client or server aligning its

buffers with respect to the buffers of the other party. Client-then swaps pages. After swapping, the contents of client
pages is the same as if data had been copied. aligned buffering imposes a spatial condition: Clients should

lay out their buffers according to the preferred alignment andFor client output buffers, emulated copy preserves copy se-
mantics using transient output copy-on-write (TCOW). When length informed by servers. In the case of network servers,

for example, the preferred alignment would be the length ofthe client makes a request, for each page in the client output
buffer, if the data length is less than a configurable threshold unstripped packet headers, while the preferred length would

correspond to the network’s maximum transmission unit.to, emulated copy allocates a distinct system page and copies
Server-aligned buffering, on the contrary, imposes a temporal
condition: Clients should inform servers about the layout of
client buffers before input physically occurs; servers then lay
out their buffers accordingly. Server-aligned buffering also re-
quires devices to have early demultiplexing (11). Note that
the conditions for client-aligned and server-aligned buffering
are similar to those implicit in input with migrant-mode and
weak-integrity data passing, respectively.

In the terminology of the ‘‘Optimization Conditions’’ sub-
section, given that many client buffers (especially those allo-
cated via malloc) are page-aligned and of length multiple of
the page size, the condition for client-aligned buffering may
be soft in cases of servers that have such preferred alignment
and length. Because many existing applications already re-
quest input before input physically occurs, the condition for
server-aligned buffering is also soft. Both server-aligned and
client-aligned buffering impose only advisory conditions: With

Server buffer Client buffer

Conventional

Aligned

1. Copyout

 Copyout

2. Swap

4. Swap
3. Reverse copyout

a properly tuned ti, the cost of data passing is never greater
than that of copying.Figure 3. Conventionally, both client and server buffers are allo-

In cases of asynchronous requests or servers that returncated without concern for alignment, and all data need to be copied.
Input alignment enables page swapping. anticipated replies, TCOW imposes a temporal, soft condition:
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It is more efficient not to overwrite a client output buffer until application cannot choose the location and layout of the input
data. If the application can post input requests before datarequest processing completion. Note that this condition is

similar to, but less restrictive than those implicit in output are physically received, copy avoidance is possible using emu-
lated copy with server-aligned buffering. Copy avoidance iswith migrant-mode or weak-integrity data passing.

The criticality of TCOW’s condition may depend both on also possible with outboard buffering.
Certain applications, for example, web proxies, need tohow buffers are overwritten and on the setting of to. Examina-

tion of existing applications reveals that often output buffers cache data. Copy avoidance is not possible if the API has
move or weak move semantics, because then output requestsare overwritten not by the client itself, but by a server pro-

cessing an input request on behalf of the client. For example, deplete the application’s cache. Copy avoidance is possible,
however, using emulated copy.many applications input data, perhaps process the data, and

then output the data using the same circular buffer alter- Applications that cannot post input requests before input
physically occurs may have difficulty using APIs with sharenately as input and output buffer. An informal analysis shows

that TCOW and input alignment interact synergistically to semantics. For example, an application may implement an
ftp server by mapping files into memory regions (see theeliminate copying in such cases. For the part of a client buffer

that is page-aligned and has length multiple of the page size, ‘‘System Calls with Cached Server Buffers’’ section) and in-
putting or outputting data directly between those regions andit is easy to see that input alignment and page swapping will

cause pages with outstanding output to be simply swapped the network. Copy avoidance may not be possible on input
with share semantics because, before making the input re-out of the client buffer, with deallocation deferred until com-

pletion of the output request. No copying at all occurs for data quest, the application may need to decode an application-
layer header that precedes the data and determines the cor-output or input.

On the other hand, clients themselves (and not input rect file and corresponding memory region (i.e., input must
already have occurred physically). Copy avoidance is possible,servers on their behalf) may also overwrite buffers with out-

standing output. In such case, compared to copying, TCOW however, if the API uses emulated copy or outboard buffering.
The application can then peek at the application-layer headerwith to equal to the page size gives output data-passing costs

that are the same for pages only partially occupied by client before the actual input request. In the Unix API, for example,
the following call could be used:buffers, and that are greater by the cost of swapping pages

for fully occupied pages. If the cost of swapping pages is much
ssize_t recv(int d, void �buf, size_t nbytes,

less than that of copying a page, as is usual, then TCOW has
int flags)

low criticality even in this case. If the relative cost of copying
is high, however, it may be desirable to optimize more aggres- recv is similar to read (see the ‘‘Examples’’ section), but can

only be used on open sockets (network connections) and in-sively, setting to less than the page size. Two alternative addi-
tional conditions can make TCOW’s temporal condition still cludes the extra argument flags. The flag MSG_PEEK causes

the first nbytes to be copied to application buffer buf with-advisory even with such tuning, but at the cost of making
TCOW more restrictive. The first condition is to require that out consuming or deallocating the corresponding system

buffers.a client, before overwriting an output buffer, make a synchro-
nous flush request to the server, so as to ensure that pro- Applications that reuse output buffers may also have diffi-

culty using APIs with share semantics. For example, an appli-cessing of the previous output request is actually completed.
The second, alternative condition is to have clients use a cir- cation may in a loop input video data, compress it, and output

it over a network, always using the same buffer. Because thecular buffer, overwriting and synchronously outputting, suc-
cessively at each time, only a fraction of size f of the buffer. output request may return with an anticipated reply, video

input may then corrupt the data being output. Copy avoid-The API allows the client to set a limit on the amount of phys-
ical memory in the client’s pending I/O requests to a value ance without data corruption is possible using emulated copy:

Input then uses a separate server buffer. When input com-less than the total size of the circular buffers by at least f . In
that case, the fraction that is being overwritten at any given pletes, emulated copy swaps the buffer being used for output

out of the application’s address space.time is sure not to have pending output—the client would
block on an output before it would have the opportunity to
overwrite parts of the buffer with pending output. Performance Comparison. This subsection reports measure-

ments of end-to-end latency for datagram communication be-
tween applications running on separate computers connectedOptimization Conditions versus Application Requirements.

Applications may have requirements that are incompatible by an ATM network at 155 Mbps. In the experiments, each
computer had an Intel Pentium 166 MHz CPU and 32 Mbytewith the conditions for copy avoidance of the data-passing

scheme used. Such applications may need to copy data be- memory organized in 4 kbyte pages. The operating system
used was NetBSD 1.1 augmented with an implementation oftween application data structures and application buffers

used for I/O. The total amount of copying may remain the Genie (3), an experimental API that allows selection of data-
passing schemes. The network adapter supported early de-same as with conventional data passing, where the system

copies between application data structures and system multiplexing. Conditions for copy avoidance according to each
data-passing scheme were met.buffers.

For example, some distributed applications operate on ma- Figure 4 shows the end-to-end latency for datagrams of
length multiple of the page size, using different data-passingtrices and may need to receive data from other hosts into spe-

cific matrix rows or columns. Copy avoidance may not be pos- schemes. Only copying resulted in distinctly worse perfor-
mance. Emulated copy provided latency similar to that ofsible if the API has move or weak move semantics or uses

emulated copy with client-aligned buffering, because then the noncopy semantics.
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Most contemporary systems offer two APIs for storage-re-
lated I/O: (1) explicit and (2) mapped. The explicit API is typi-
fied by Unix’s read and write system calls. The mapped API,
on the other hand, is typified by Unix’s mmap and munmap
system calls. For network-related and other forms of I/O with
ephemeral server buffers, usually only the explicit API is
available.

The optimizations discussed in the previous subsection are
for explicit APIs. Most of those optimizations assume that
server buffers are ephemeral and may be unsuitable for
cached server buffers. Explicit APIs with move or weak move
semantics, for example, transfer input buffers from servers to
clients, and therefore do not allow servers to cache those buff-
ers. Moreover, explicit APIs with weak move semantics may
leave client output buffers both client- and server-accessible
after request completion, and therefore enable caching by
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servers but also overwriting by clients, with consequent
Figure 4. End-to-end latency. Emulated copy provides performance

server cache corruption. Explicit APIs with share semanticsimprovements similar to those of noncopy semantics.
may make client buffers server-accessible only during request
processing, and therefore may not allow servers to cache
them.

Figure 5 shows the corresponding measurements for data- Emulated copy is also inappropriate for cached server buff-
grams shorter than a page, with thresholds to � 1666 bytes ers. First, emulated copy makes client output buffers immune
and ti � 2178 bytes. Move semantics gave the highest latency from overwriting only during request processing, that is,
for short data because move semantics maps whole pages to while buffer pages have nonzero output reference count.
the receiving application and, to preserve protection, the part Therefore, those buffers cannot be cached by servers. Second,
of the page not filled with input data has to be filled with zero emulated copy swaps pages on input request completion, cor-
before mapping. Copy semantics gave the lowest but also the rupting the contents of server buffers with the previous con-
most rapidly rising latency because of the high incremental tents of the client buffers. Such corruption is inconsequential
cost of copying. Emulated copy had about the same latency as if server buffers are ephemeral because ephemeral buffers are
that of copying for data up to a half-page long; above that, deallocated on request completion. Cached server buffers, on
reverse copyout and page swapping significantly reduced the the contrary, should be preserved after request completion
latency of emulated copy relative to that of copying. and therefore do not allow page swapping.

Although copy avoidance with cached server buffers is dif-
System Calls with Cached Server Buffers ficult using explicit APIs, the mapped API lends itself easily

to a copy-free implementation. The mapped API allows clientsServers of storage-related I/O (e.g., file I/O) often cache the
to map a file (or part of it) to a region in the client’s addressbuffers of previous requests. Servers can use such buffers to
space. In the explicit API, the request to map a file is equiva-avoid accessing secondary storage (e.g., disks). Because sec-
lent to that of allocating a new region and inputting file dataondary storage devices often are very slow, caching can im-
into it. Likewise, the request to unmap a file is equivalent toprove response times by orders of magnitude.
that of outputting the region’s data to the file and deallocat-
ing the region. (This description corresponds to a file mapped
in shared mode. If multiple clients map the file in shared
mode, the region is shared among them, and the output of the
region’s data to the file occurs when the last such client un-
maps the file. It is often also possible to map a file in private
mode, in which case the region’s data are not output back to
the file.)

In the Unix API, mmap and munmap have the following
syntax:

caddr_t mmap(caddr_t addr, size_t len, int
prot, int flags, int fd, off_t offset)
int munmap(caddr_t addr, size_t len)

mmap causes the pages starting at addr and continuing for at
most len bytes to be mapped from the object described by fd
(e.g., file descriptor), starting at byte offset offset (from the
beginning of the file). addr is only a hint; mmap returns the
actual address of the mapped region. Access permissions to
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the region (read, write, and/or execute) are set by prot.
flags may specify the MAP_SHARED or MAP_PRIVATE modes.Figure 5. End-to-end latency for short datagrams. Using reverse co-

pyout, emulated copy avoids copying more than about half a page. munmap deletes the mappings for the specified address range
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and causes further references to addresses within the range L4 (15,16) reduces the number of copies to one (the same
as in conventional system calls). To make this possible, L4to be invalid.

The mapped API passes data between client and file server maps the buffers of party a to the address space of party b,
copies the data, and unmaps a’s buffers from b’s addressby mapping or unmapping cache pages to or from the client’s

address space. Using VM techniques, the API may map each space. This optimization can be used whether server buffers
are ephemeral or cached.page on an exception basis, that is, only when the client actu-

ally accesses that page. No copying is necessary if cache and All copying can be avoided in cases of outboard buffering
(which only applies for certain servers and devices, as ex-VM pages are allocated from the same pool, as they are in

many contemporary systems. (For mapping in private mode, plained in the ‘‘Outboard Buffering’’ subsection) and mapped
APIs (which only applies for cached server buffers, as ex-cache pages can be mapped copy-on-write to the client’s ad-

dress space.) If cache and VM pools are separate, however, as plained in the ‘‘System Calls with Cached Server Buffers’’
subsection). Data passing in such cases does not depend onthey originally were in Unix (1), it may be necessary to copy

data between pages from each pool. whether servers are implemented at kernel or user level.
All copying can also be avoided if the IPC facility offers

a client API with noncopy semantics and server buffers areIPC
ephemeral. The IPC facility can then simply move or share

The previous subsections assume that clients interact with
pages between the client and a server implemented at user

servers using system calls. This is appropriate for monolithic
level, instead of kernel level. The DASH (6) and Container

systems, such as Unix (1), which integrate most servers in
Shipping (8) IPC facilities, for example, have APIs with move

the kernel. In contrast, microkernel systems, such as CMU’s
semantics. On the other hand, the fbuf IPC facility (9) com-

Mach (4), implement most servers as separate user-level pro-
bines several optimizations. Cached fbuf output has seman-

cesses. User-level servers are easier to debug and maintain
tics similar to that of emulated copy, but leaves buffers read-

and provide greater fault isolation than do kernel-level ones.
only until explicit deallocation. Cached volatile fbuf output

However, user-level servers interact with clients using IPC,
has share semantics. Cached and cached volatile fbuf input

not system calls. This subsection examines data-passing opti-
have semantics similar to weak move but use read-only buff-

mizations for IPC.
ers that must be deallocated explicitly.

In order to support existing applications directly, the IPC
Unfortunately, such IPC facilities do not directly support

facility should offer a client API with copy semantics. Unfor-
many existing applications, which expect copy semantics. The

tunately, IPC facilities with copy semantics can have high
Peregrine (17) IPC facility offers a compromise, with distinct

overhead. Such facilities often copy data twice, once between
APIs for client and server. The client API has copy semantics,

each party’s and system buffers, as illustrated in Fig. 6.
while the server API has move semantics. Data passing be-
tween client and system buffers is by copy-on-write (output)
and copying (input). Between system and server buffers, data
passing is by page mapping and unmapping.

I/O-oriented IPC (18) is a recent proposal that combines a
client API with copy semantics and bidirectional copy avoid-
ance. Data passing between client and system buffers is by
emulated copy (see the ‘‘Emulated Copy’’ subsection). Data
passing between system and server buffers is by mapping and
unmapping. The greatest novelty with respect to Peregrine is
the use of input alignment and page swapping for input. Both
Peregrine and I/O-oriented IPC assume ephemeral server
buffers.

CONTROL-PASSING OPTIMIZATIONS

Unlike the overheads of data passing, those of control passing
typically do not grow with data length. Consequently, control-
passing overheads have greatest impact for short data; they
are amortized and become less significant for long data.
Therefore, applications may be able to optimize control pass-
ing and improve throughput by aggregating many short-data
requests into fewer long-data requests.

Applications may also be able to improve throughput by
overlapping computations and I/O requests. Such overlap
may be implemented using (1) multiple application threads
and blocking I/O requests, or (2) a single application thread
and multiple asynchronous or nonblocking I/O requests.
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(a)

(b) Blocking requests are easier to program, but their require-
ment of multiple application threads may increase contextFigure 6. I/O data crosses the user/kernel boundary multiple times

in microkernel systems. switching and, therefore, control passing overheads relative
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to asynchronous or nonblocking requests (19). Mainstream cations; and the special hardware requirements may
generate portability problems.APIs usually support both blocking and some form of non-

blocking or asynchronous I/O. BSD Unix’s API (1), for exam- 4. Extensible Kernel Systems. Extensible kernel systems
ple, is by default blocking, but also enables nonblocking I/O. allow applications to download extensions (application-

Although request aggregation and overlap can improve specific code) into the kernel. Because I/O servers also
throughput, they do not improve latency, that is, they do not run in the kernel, extensions can perform I/O without
reduce the time between a given request and the correspond- IPC or system calls. Several techniques have been used
ing request processing completion and reply. For latency im- to make extensions safe. SPIN (28) requires extensions
provement, operating system optimizations are necessary. La- to be written in a type-safe language, and VINO (29)
tency improvements often also result in better throughput. encapsulates extensions for software fault isolation.

Researchers have demonstrated that careful design and These techniques have been reported to make code run
implementation can reduce the latency of system calls (20) from 10% to 150% more slowly (30). Proof-carrying code

(31) offers the promise of eliminating such overheads,and IPC (15,20) by roughly an order of magnitude. These opti-
but has not yet been demonstrated to be practical formizations can, in principle, be integrated into existing sys-
large extensions. The API for extensions is also uncon-tems. Further latency reductions are possible by more radi-
ventional, which may cause portability problems.cally changing the structure of the operating system, so as to

make IPC or system calls unnecessary. Proposed optimiza-
tions include:
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