
APPLICATION GENERATORS

INTRODUCTION

When a programming activity is well-understood, it can be
automated. Automation transforms software development
from activities like rote coding and tedious debugging to
that of specification, where the “what” of an application is
declared and the “how” is left to a complex, but automat-
able mapping. Programs that perform such mappings are
application generators (or just generators). In the techni-
cal sense, application generators are compilers for domain-
specific programming languages (DSLs). A domain-specific
language is a special-purpose programming language for a
particular software domain. A “domain” can be defined ei-
ther by its technical structure (e.g., the domain of reactive
real-time programs, the domain of LALR language parsers)
or by real-world applications (e.g., the database domain,
the telephony domain, etc.). The purpose of restricting at-
tention to specific domains is to exploit the domain features
and knowledge to increase automation.

If we view generators as compilers for DSLs, we should
ask whether they differ substantially from compilers for
general-purpose languages. Indeed, although there is a
continuum, the research and practice of application gener-
ators is quite different from that of traditional compilers.
A general-purpose language compiler implements a sta-
ble, separately defined specification and can take several
man-years to develop. In contrast, a generator is typically
co-designed with the DSL that it implements. The effort of
implementing a generator is typically small—comparable
to the effort of implementing a software library for the do-
main. This is largely the result of leveraging the high-level
language (commonly called the object language) in which
the generated programs are expressed. The above techni-
cal realities affect the problems that are of main interest to
application generators. For instance, a lot of the emphasis
in general-purpose compilers is on analyzing a program to
infer its properties. In contrast, in generators the emphasis
is on designing the DSL so that domain-specific properties
are clearly exposed, and on having the generator exploit
them with as little effort as possible. To leverage the high-
level features of the object language, generators often fo-
cus on issues such as language extensibility and program
transformations.

Before we delve further into generator specifics, it is
worth addressing the following question: why are genera-
tors needed? Is it not sufficient to employ other program-
ming tools (e.g., traditional software libraries)?

Libraries/APIs can themselves be thought of as crude
domain-specific languages. They have their own simplistic
syntax: only function call syntax is allowed and the syntax
checking is limited to checking the number of arguments.
They have their own semantic restrictions:arguments need
to satisfy some preconditions and calls may affect the state
of the system, thus needing to occur in specific order-
ing patterns. Limited static error checking takes place by
type checking the function calls in the host language. Li-
braries/APIs even have their own simple optimization: they

typically offer multiple hand-specialized versions of oper-
ations for different kinds of arguments, such as special-
purpose multiplication operators for sparse arrays in a sci-
entific computing library. The user needs to pick the ap-
propriate operations and to ensure their safety. Users of
standard libraries/APIs are often constrained more by the
library semantics than by the semantics of the host pro-
gramming language. This is a common sentiment among
users of large parallel processing and scientific computing
libraries (like MPI or LAPACK). It is also often expressed
by programmers in large projects where each part of the
code needs to support the conventions of other parts. In
this case, the “domain” is the project itself.

The software engineering benefit of domain-specific lan-
guages relative to function libraries/APIs is exactly in ad-
dressing the above deficiencies of syntax, safety, and perfor-
mance. A domain-specific language can offer more concise
syntax, increasing the ease of development and mainte-
nance; it can perform static error checking to detect com-
mon violations of the library semantics; and it can offer
better performance through domain-specific optimizations.

There are many dimensions of variability among gener-
ators, despite their common goal. Some generators imple-
ment specification languages that have a sound theoretical
basis (e.g., [42, 46]) and thus have been used extensively
to implement formal specifications. More typically, full ax-
iomatic theories simply do not exist and generator design
is based on an informal understanding of a domain.

Another important variability deals with implementa-
tion technology. Most generators are self-sufficient, stand-
alone translators (in much the same way as compilers for
general-purpose languages). Yet others take on a very dif-
ferent form, such as when generators are implemented us-
ing program transformation systems (e.g., [29, 49]). A pro-
gram transformation system (or just transformation sys-
tem) is a platform for expressing and executing program
transformations—that is, mappings from programs to pro-
grams. Sets of transformations define the automatable
mappings of a particular domain. In this case, a genera-
tor would be merely a set of transformations that may not
even be encapsulated in a single module.

In general, the field of application generators is a col-
lage of ideas from various areas of computer science, such
as programming languages, compiler technology, and soft-
ware engineering, to name a few. An examination of the
field reveals a few common principles and many distinct
generator “camps,” each promoting a different philoso-
phy of what generators represent and how they should
be built. Hence, a representative overview of generators
needs to include both basic background and a sampling
of approaches. This article cannot be fully comprehensive,
however. For further reading, our references emphasize re-
cent work which can serve as a starting point. Partsch and
Steinbrueggen [35] provide a good survey of past work on
transformation-based systems. Jones and Glenstrup [18]
offer a survey of program generation as it pertains to par-
tial evaluation.
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Figure 1. A generator is similar to a
conventional compiler, with a front end,
translation engine, and back end.

ARCHITECTURE OF A GENERATOR

Application generators have the standard internal form of
a compiler with a front-end, translation engine, and back-
end component (see Fig. 1). The front-end is responsible
for the one-to-one mapping of the input form to an equiv-
alent but more convenient internal representation, such
as flow graphs, or abstract syntax trees, possibly anno-
tated with data-flow and control-flow information. Typical
input specifications are in text format, in which case the
front-end consists of a conventional lexical analyzer and
a parser. Other specification formats (e.g., graphical rep-
resentations) may map straightforwardly to the interme-
diate representation, thus simplifying the front-end. It is
interesting to note that generator writers have often tried
to keep the cost of implementing front-ends low by employ-
ing ideas from extensible programming languages. Many
generators are implemented as extensions of the Lisp lan-
guage [19] or its variants. Lisp has explicit syntax (map-
ping directly to parse trees) and a very powerful exten-
sion facility (Lisp macros). In other cases, tools that gen-
erate parsers from modular grammar specifications (e.g.,
[4,48,55]) have been used. Such tools can effectively extend
a language by adding new language constructs.

The translation engine implements transformations on
the intermediate representation. Usually transformations
are expected to satisfy some correctness property: the
transformed program should have the same semantics as
the original, if not for all inputs, at least under well-defined
input conditions. Translation engines and transformations
are the core of generators and are discussed in detail in the
next section.

The result of applying transformations to the intermedi-
ate representation is a concrete executable program. The
concrete program, however, is still represented as a flow
graph or an abstract syntax tree. Mapping from the inter-
mediate representation to program text is straightforward
and is the role of a generator’s back-end. Generated code
is usually in a high-level programming language. Several
generators and transformation systems (e.g., [1,20,30,46])
offer multiple back-ends, thus producing code in more than
one language. Once again, this can be a straightforward
process, if the generator does not rely on unique features
of any specific language.

TRANSFORMATIONS IN GENERATORS

Translation engines and the transformations they support
are in the heart of all generators. We next classify the most
common kinds of transformations with respect to two crite-
ria. Section 3.1 describes transformations from a technical
standpoint. This answers the question of how translation
engines express and apply transformations. Section 3.2
discusses how transformations differ relative to whether

they intend to refine a high-level specification or to opti-
mize at a single level of abstraction.

Transformation Machinery

There are several degrees of variability in the capabilities
of translation engines (and, consequently, in the transfor-
mations they support). A fairly comprehensive classifica-
tion of translation engines can be derived by answering
the following questions:

� How are transformations expressed? (E.g., procedu-
rally, using syntactic patterns, or using data-flow pat-
terns.)

� How powerful are they? (E.g., can they change the
global outline of a program or only local properties?)

� When are they applicable? (E.g., can they depend on
complex data-flow properties? How are such proper-
ties expressed? What is the machinery to check them?)

� If multiple transformations are applicable, what is the
order of their application? (E.g., are transformations
always applied in a fixed order? If not, is the order
determined automatically or manually?)

� To which extent are transformations automated?
(E.g., does the user need to explicitly match program
elements to transformation elements, or is the match-
ing automatic?)

� Is the set of transformations fixed or extensible? (E.g.,
can the user add new transformations? Can the trans-
lation engine combine existing transformations to
form new ones?)

Instead of answering each question individually, we
identify four common axes of variation in transformation
engines:

1. Stand-alone generators vs. general transforma-
tion systems: Generators can be packaged either as
stand-alone tools, in much the same way as regular com-
pilers, or as collections of transformations under a gen-
eral transformation system. Expressing a generator as
a collection of transformations has the disadvantage of
making the generator dependent on a complicated piece
of infrastructure (the transformation system). On the
other hand, transformation systems (e.g., [5,29,49,54])
offer support for expressing and applying a variety of
transformations in a general, domain-independent way.
In other words, both the language in which the trans-
formation is expressed, as well as the mechanism that
applies transformations are determined by the transfor-
mation system and are the same for every domain. In
theory, generators expressed as a collection of transfor-
mations are easily extensible, simply by adding more
transformations. (In practice, this is may not be the
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case. There are often subtle interdependencies among
individual transformations that make transformation
additions and substitutions hard and error-prone.) Ad-
ditionally, because transformation systems are domain-
independent, they typically allow for a higher degree of
sophistication in the translation engine. Thus, general
transformation systems commonly support specifying
transformations declaratively instead of operationally.
Given the declarative specifications of transformations,
the translation engine may be able to deduce the appro-
priate order of transformation application when multi-
ple transformations are applicable. Also, optimizations
in the transformation application may be possible, by
combining transformations to form new ones.

2. Programmatic vs. pattern-based transformations:
As mentioned earlier, a transformation is a mapping
from an input program to an output program. Such map-
pings can be expressed in a variety of ways. Transfor-
mations are commonly classified as programmatic or
pattern-based. Programmatic transformations are arbi-
trary programs that manipulate code representations
(also known as meta-programs). Pattern-based trans-
formations, on the other hand, are written in a special
pattern language that repeatedly searches a program
representation for instances of patterns. When a pat-
tern is found, the transformation is applicable and may
be triggered, resulting in a different pattern being re-
placed for the original one. (Such a transformation is
also known as a rewrite rule.) For instance, a simple
rewrite rule could have the form:

while ($cond$) $stmt$

− > L : if ($cond$) {$stmt$; goto L; }
The left hand side of the above rule is the pattern to

be matched, and the right hand side is the pattern to
be replaced. (Patterns are written in self-explanatory
syntax resembling that of the C language, with pattern
variables explicitly designated.)

Both pattern-based and programmatic transforma-
tions offer distinct benefits. Pattern-based transforma-
tions are generally simple and easy to understand. At
the same time, their declarative nature allows for so-
phisticated automatic manipulation. In theory, pattern-
based transformations are as expressive as any com-
puter program (equivalent to Markov systems, e.g., see
[24],p.263-264). Practically,however,pattern-based lan-
guages are inconvenient for applying complex trans-
formations that rely on complex properties or contex-
tual information. Programmatic transformations over-
come this restriction. Overall, programmatic transfor-
mations are usually employed in ad hoc generator sys-
tems (i.e., stand-alone compilers for a specific domain) or
for expressing global program transformations. Pattern-
based transformations are in wide use in general pro-
gram transformation systems. It is also possible to mix
pattern-based and programmatic transformations. For
instance, a transformation may be triggered by a cer-
tain pattern but the actions executed at this point may
be specified programmatically. Similarly, a transforma-
tion may be programmatic but use patterns to describe

newly created code.
Many interesting languages for expressing transfor-

mations are hard to characterize as strictly pattern-
based or programmatic. For instance, a large number of
transformation systems (e.g., [53, 37]) rely on attribute
grammars [22] for expressing transformations. Briefly,
attribute grammars are context free grammars ex-
tended with syntax-directed functional (i.e., side-effect-
free) computations of “attribute” values, which are as-
sociated with symbols in the grammar. Thus, transfor-
mations expressed as rules in attribute grammars are
triggered by parsing (essentially, pattern-matching) the
program representation. Nevertheless, the actual action
performed when a rule matches is expressed in a limited
programmatic form. Limiting the attribute computation
to be functional allows the translation engine to deter-
mine automatically the order of transformation appli-
cations, based on the dependencies among attributes.

3. Syntax-directed vs. flow-directed transforma-
tions: As in standard compiler-based transformations,
the translation engine of a generator could be operat-
ing on intermediate representations that reflect syntax
(e.g., abstract syntax trees) or control/data flow (e.g.,
flow graphs). Syntax-based representations have the ad-
vantage of being simpler, easier to obtain, and directly
reflecting the hierarchical nature of the program to be
transformed (e.g., a while-statement is represented as
a tree with the while operator at its root). Control flow-
based representations have the advantage of providing
a normal form for representing control information (e.g.,
all kinds of loops have the same form in a flow graph).

The vast majority of realistic transformations are only
applicable under certain guarantees about the context
of a transformation application site. For instance, the
following two transformations are context-dependent:

x evaluates to a number, has no side − effects

= > ($x$ + 0 − > $x$) cond is guaranteed true,

has no side − effects = >

(if ($cond$) $thenbody$ else $elsebody$

− > $thenbody$)

The transformations are read as follows: if the cur-
rent context implies the property on the left side of
the “=>” symbol (called the enabling condition), then
the rewrite rule on the right side of “=>” is applicable.
To enable context-dependent transformations to be ap-
plied automatically, the generator must perform exten-
sive program analysis. This analysis is easier with a pro-
gram representation that makes the program’s control
and data flow explicit (e.g., a flow-graph). (A discussion
of program analysis techniques is beyond the scope of
this article, and can be found in textbooks on optimiz-
ing compilers—e.g., [27].)

In practice, unlike general-purpose compilers, few
generators use intermediate forms that explicitly re-
flect control flow. Notable exceptions are stand-alone
generators for domains that are best exploited by tradi-
tional compiler analysis tools (e.g., matrix algebra [25]).
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Only few general transformation systems (e.g.,[5]) use
a control flow-based representation, but almost all sup-
port the annotation of abstract syntax with information
derived from program analysis. The motivation behind
this widespread practice is partly its simplicity, but also
the fact that generators usually transform generated
programs and not arbitrary programs that an end-user
has written. That is, control/data flow analysis is less
meaningful at the level of the input of a generator. Most
generators have input languages that are highly declar-
ative, with very little operational information. When a
generator transforms the input specification, it can pro-
duce at each step both the transformed code and au-
tomatically derived properties of this code, which can
be attached as annotations (e.g., see [7]). In this way,
one transformation step can supply all necessary con-
textual information to the steps following it, thus avoid-
ing the need for program analysis. For this approach to
be successful, the generator writer has to identify in ad-
vance a few high-level properties that are fundamental
for the produced implementation (e.g., the property “the
expression has no side effects” for transformations (2)
and (3), above).

Based on the above observation, it is not surprising
that the emphasis in generators (beyond program syn-
thesis) is not on program analysis (deriving program
properties) but on expressing program properties and
inferring other properties from them. Thus, generators
and transformation systems often offer powerful infer-
ence capabilities, in the form of specialized theorem-
provers (e.g., [44]).

4. Degree of structure in the transformation pro-
cess: The spectrum of translation engines found in gen-
erators is very wide. A good heuristic rule for classi-
fying generators is to compute the average number of
transformations that are potentially applicable at ev-
ery step in the transformation process (i.e., how many
options the system has when it makes a transforma-
tion decision). For stand-alone generators, whose input
is a rather concrete specification (e.g., [51,15,25,40), this
number is typically small (at most around 10). Further-
more, the transformation process in simple generators
may be confluent: different orders of transformation ap-
plication can produce different intermediate results but
further transformation will reduce them all into the
same normal form. More ambitious generators, trans-
lating more abstract specifications (e.g., [8, 42]) usually
have to choose among many tens or hundreds of trans-
formations at every step. In other words, generators of
the first kind act more like conventional compilers,while
generators of the second kind apply more intelligence in
the transformation process, using heuristic knowledge
to make complex decisions.

Some of the latter generators (e.g., 42) are based on an
equational rewrite paradigm. That is, transformations
may be specified only implicitly using a set of axioms
in an equational logic. The generator can then use these
axioms to derive equational properties (theorems). Each
of these equations can be viewed as a pair of transfor-
mations: either the left hand side can be matched and

the right hand side be replaced, or the converse. In this
case, it is not easy to guarantee that the transforma-
tion process will always terminate. A naive transforma-
tion engine may even repeatedly perform a transforma-
tion and its reverse, as they are both derived from the
same equation. There has been significant work on de-
riving (from a set of equality axioms) a set of transfor-
mations that are guaranteed to terminate, regardless of
their application order. Most work is based on the well-
known Knuth-Bendix completion algorithm [23] and a
relatively recent comprehensive survey of rewrite sys-
tems can be found in [12].

Although a sophisticated transformation process is
desirable, it can also be highly complicated. “Tradi-
tional” transformations are rewrite rules that work on a
small fragment of code, such as (1)-(3) above. Given a set
of such rules, automatically determining the next rule(s)
to apply may be very difficult, and hence it is not un-
common for transformation systems with such rules to
require periodic guidance/inputs from its users. The de-
gree of interaction becomes more involved as programs
become more complicated: Transforming a declarative
specification into an optimized program may require
many thousands of such rewrites. To address this com-
plexity, many modern generators (e.g., [51,15,40]) en-
capsulate several small transformations in large com-
ponents and apply them in a consistent manner (i.e.,
the generator decides to apply either all the transfor-
mations in a component or none). This approach, known
as “consistent refinement”, is quite beneficial in the do-
mains for which it is applicable (typically such domains
are well-structured and well-understood). For example,
suppose one is transforming a declarative specification
of a program that uses a data structure. At one point
in the translation, a concrete implementation must be
chosen for the data structure. A large number of small
transformations may make a common assumption (e.g.,
the data structure is a list), and all of them need to be
applied consistently.

Transformations and Level of Abstraction

Transformations can usually be classified based on the rel-
ative level of abstraction of their input and output. A refine-
ment adds implementation detail to an abstract specifica-
tion. For instance, an abstract data type, such as a set, may
be refined to be implemented using a specific data struc-
ture, such as a binary tree (e.g., [8]). Refinements can oc-
cur at many levels and may fundamentally affect program
structure and performance. Restructuring transformations
reorganize a program, typically in order to improve perfor-
mance, but maintain the same conceptual level of abstrac-
tion.

Next we discuss some common kinds of refinement and
restructuring transformations. Our presentation is selec-
tive. A valuable further reference is Partsch’s textbook [35],
which contains a large number of example transformations
for many common tasks.

Refinement Transformations. The presence of refinement
transformations is the single most striking difference be-
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tween generators and compilers for general-purpose lan-
guages. We discuss two common types of refinements be-
low:

1. Algorithm Derivation: The most important kind of
refinement for generators is that of transforming a
declarative specification into an operational procedure
that produces values satisfying the specification. Com-
mon algorithm derivation transformations include map-
ping operators from the declarative specification into
heuristic-guided search procedures. For instance, an ex-
istential quantification (i.e., a specification of the form
“there exists an element satisfying property P”) can be
mapped into a search procedure that iterates over ele-
ments until one is found to satisfy property P. The chal-
lenge is to exploit the structure of property P and use
it to derive efficient implementations that do not ex-
haustively search the space of possible solutions. For
instance, P could be a property that admits efficient fil-
tering (i.e., if there is an element satisfying it, then a
larger group of elements will satisfy another property
Q, which can be used to filter out non-solutions). Excel-
lent starting points for exploring the wealth of research
work in general algorithm derivation are Chapter 5 of
[36], and [42], [43].

Deriving algorithms from highly abstract specifica-
tions is still a research challenge, however. In prac-
tice, most actual generator systems are less ambitious.
Stand-alone generators (e.g., [7,17,25,32,40,51]) usu-
ally perform algorithmic refinement by using algorithm
schemas: generic algorithm templates that allow lim-
ited specialization for particular data representations
and special-purpose operations. For instance, an algo-
rithm schema could provide the skeleton of a global
search procedure. This procedure can then be special-
ized by adding the actual conditions for terminating
the search. Local optimizations can be performed, but
the overall structure of the search process will be the
same for every search procedure generated, regardless
of data structure or searched element. Clearly, this ap-
proach can only produce efficient code for highly struc-
tured domains, but this is sufficient for most generators
that cater only to specific programming needs.

2. Data Type Refinement: A complementary refinement
to algorithm derivation is that of selecting an implemen-
tation for data types in a specification. Different data
structures offer good performance for different opera-
tions (e.g., retrieval of elements with key values in a
range, vs. retrieval of elements with a single key value).
Additionally, often data structures need to be combined,
effectively creating indexes that support the efficient re-
trieval of groups of elements. Just like in the case of al-
gorithm derivation, the approaches taken by different
systems vary with respect to their sophistication. Sys-
tems that take input in a declarative language often use
a set-theoretic abstraction for specifications. Sets can
later be mapped into efficient data structures automat-
ically (see Chapter 9 of [36], and [38, 42]). The choice of
data structure depends on the kind of operations com-
monly performed (e.g., exhaustive searches vs. searches

that can be efficiently indexed). At the same time, the
guarantees offered by the data structure (e.g., always
fully sorted vs. partial priority queue ordering) influ-
ence the way algorithms are derived. For instance, the
decision to choose a fully sorted data structure may in-
fluence the subsequent choice of an algorithm that ma-
nipulates data structure elements. The interplay of al-
gorithm derivation and data type refinement provides
interesting research challenges.

Many generators (e.g., 31, 40) employ more realistic
approaches to data type refinement,by allowing the user
to specify either the desired data structure, or the de-
sired algorithms, and optimizing one choice based on
the other. An example of this approach is discussed in a
later Section (P2).

Restructuring Transformations. Restructuring transfor-
mations are typically used to implement performance
optimizations in generators. Compared to compilers for
general-purpose languages, generators offer more op-
portunities for restructuring transformations: automati-
cally generated code is usually highly formulaic. Domain-
specific knowledge (which the generator incorporates) can
be used to exploit this structure to realize fairly sophisti-
cated optimizations—often improving performance by sev-
eral orders of magnitude.

Restructuring transformations in generators partly bor-
row from conventional compiler technology. Nevertheless,
several kinds of optimizing restructurings have been devel-
oped much more extensively in the transformational pro-
gramming community than in general-purpose compilers.
Restructuring transformations in generators fall mainly
into three categories:

1. Partial Evaluation: Partial evaluation (e.g., see 6, 18)
refers to the specialization of a code fragment under
the assumption that its (implicit or explicit) parame-
ters satisfy certain conditions. It is probably the most
common kind of optimization in application generators
(for instance, transformations (2), and (3), shown earlier,
represent cases of partial evaluation). This is expected:
partial evaluation is a general technique for specializing
general pieces of code for use in concrete contexts. Par-
tial evaluation can be effected through pattern-based
transformations but the most complex cases are usually
treated programmatically. Two special cases of partial
evaluation are function specialization (producing a new
function by fixing some of the arguments of an existing
one) and constant folding (performing computations on
constants at compile time).

2. Incrementality Optimizations: Another class of
valuable restructuring transformations rely on tech-
niques that perform complex computations incremen-
tally. This is particularly interesting in the context of
generators, since, when composing abstract algorithms,
a generator often has knowledge of the update patterns
for the data used by each algorithm. Thus, it is not
surprising that incrementality optimization techniques
have been explored extensively in the generator commu-
nity. One such technique is known by the name finite dif-
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ferencing or formal differentiation [34,33,39]. Finite dif-
ferencing substitutes expensive computations that oc-
cur in a specific pattern (e.g., in a loop) with an incre-
mental update of the result of the previous computation
in the pattern. The origins of finite differencing can be
traced in the well-known strength reduction optimiza-
tion in compilers. Continuing work in transformational
programming has yielded new results in a more general
setting (a good starting point for exploring such research
is [26]).

Finite differencing is best applicable when there are
strong static guarantees on how data are updated. Other
incrementality optimizations can be used even when a
strong pattern is not statically known, but run-time uni-
formities are expected. This is the case with standard
caching or memoization optimizations in the context of
application generators (e.g., see Chapter 6 of [36]).These
techniques store values produced by a computation at
run-time so that they can be used by subsequent oper-
ations (possibly for incrementally computing other val-
ues). The algorithms used need to be modified to take
advantage of cached values when these are available.

3. Traditional Optimizing Restructurings: Most tra-
ditional compiler optimizations can be also applied in
the context of generators. These include dead code elim-
ination, loop unrolling, loop invariant code motion, loop
fusion, etc. (see 27). The applicability of such optimiza-
tions can either be inferred from the code or estab-
lished by previous refinements, so that expensive pro-
gram analysis infrastructure is not required.

CASE STUDIES OF CONTRASTING APPROACHES

As indicated earlier, there is significant variability among
generators: generators are being used for everything from
trivially automatable specifications to formal languages
that cannot be transformed without human input. Addi-
tionally, generators are built using widely different tech-
niques. In this section, we look at the approaches taken
in two generators that are, in many respects, at opposite
ends of the spectrum. (Many more (older) systems are dis-
cussed in [35].) Each of the two generators that we have
selected are among the best-known representatives of a
distinct and wide class of successful systems. At the same
time, each promotes a distinct philosophy on the princi-
ples upon which generators should be based. We end this
section with a comparison of these approaches.

KIDS

The Kestrel Interactive Development System (KIDS) [42]
is a semi-automatic generator applied to the problems of
automatic programming. Although it is hard to strictly de-
fine what “automatic programming” is, the name is usu-
ally reserved for the most ambitious software production
techniques, i.e., those trying to automate most of the soft-
ware development process. Even though automatic pro-
gramming has been a moving target (the first compil-
ers were touted as “automatic programming” systems), a
consensus on the fundamental elements of the field has

evolved in the past three decades (sadly reflecting our fail-
ure to advance the “automation” target significantly dur-
ing this period). Two main approaches to automatic pro-
gramming are usually identified: the knowledge-based ap-
proach and the formal-model-based approach. KIDS is one
of the primary representatives of the formal-method-based
approach. More importantly, in addition to its ambitious
goals, KIDS has seen several practical applications and has
tested the limits of common generator optimizations.

The domain of KIDS is that of algorithm design and im-
plementation. The system superficially departs from the
usual generator model since several high-level transfor-
mation decisions are specified interactively by the user.
Nevertheless, it is fundamentally a generator that refines
and optimizes a formal specification. The input of KIDS is a
functional specification of a problem (i.e., a function charac-
terizing the possible outputs for each input) expressed us-
ing first-order logic operators and set-theoretic data types.
As a simple example, the notion of an injective sequence
of integers (sequences can be viewed as functions with a
domain 1...n) can be expressed as:

function injective (M : seq(integer), S : set(integer) :

boolean = range(M) � S ∧ ∀ (i, j)(i ∈ domain(M)

∧ j ∈ domain(M)) ⇒ (i �= j ⇒ M(i) �= M( j))

That is, a sequence M is injective into a set S if all el-
ements of M are in S and no two elements of M are the
same. Distributive laws are common in KIDS specifica-
tions, essentially specifying a structural induction phase:
the meaning of the combination of two operators is defined
in terms of the meanings of “simpler” combinations. An ex-
ample distributive law for the injective predicate is:

∀ (W, a, S)(injective(append(W, a), S))

= (injective(W, S) ∧ a ∈ S ∧ a /∈ range(W))

KIDS gets additional input interactively from a human
user. The user can make strategic decisions, such as “de-
sign a divide-and-conquer algorithm for this specification”
or “simplify this algorithm by applying finite differencing
on this value.” The system contains a powerful inference
engine [44] that applies pattern-based transformations de-
rived from theorems of first-order logic. To schedule these
transformations, the engine uses a combination of heuris-
tic measures, such as the number of logical “weakening”
rules that it has applied. KIDS encodes knowledge of a
few general algorithmic search procedures (such as “global
search”) in the form of program templates. The result of
the inference procedure is a correct specialization of such
templates, thus yielding a complete abstract algorithm.

At that point, standard refinement and optimization
techniques can be applied to the output. KIDS provides
several rewrite rules for either context-independent (i.e.,
without enabling conditions) or context dependent simplifi-
cations. The powerful inference infrastructure collects con-
text information and decides whether an expression can
be simplified. Other optimizations (different forms of par-
tial evaluation and finite differencing) can also be applied
under user guidance. Finite differencing, in particular, is
especially valuable because of the set-theoretic nature of
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KIDS specifications. Sets can easily be specified incremen-
tally and most KIDS algorithms reference complex pred-
icates on sets. Refinements are also essential in KIDS to
implement abstract data types (such as sets, maps, and se-
quences) as efficient data structures (e.g., arrays, trees, and
lists).

KIDS is a representative of a formal approach to the
specification of a domain. Assessing its applicability is
hard—there is no general algorithm for satisfying speci-
fications in first-order logic. Thus, we can only judge the
practical value of the KIDS approach in empirical terms.
In these terms, the system has been successful. Its best
known application has been in deriving very fast and ac-
curate transportation schedulers for use by the U.S. Trans-
portation Command [41]. Excellent discussions on the ap-
plication of KIDS to other (simpler and more easily under-
stood) domains, together with complete examples of pro-
gram derivations, can be found in [42] and [45].

Many other generator and transformation systems ef-
forts are directly related to KIDS. The system is built on
top of the Refine [49] transformation system (later mar-
keted under the name Reasoning5). In fact, the input spec-
ification language of KIDS (logic-based with set-theoretic
types) is part of the standard Refine infrastructure. Refine
also offers a front-end tool [48] for the creation of mod-
ular parsers and a back-end (unparser) tool. Internally,
programs are represented as abstract syntax trees, data-
flow graphs, or control-flow graphs, depending on the most
convenient level for each manipulation. Finally, many of
the ideas introduced in KIDS relative to specifying search
theories formally are more systematically explored in the
SPECWARE system [46]. SPEC WARE is mainly con-
cerned with modeling domains using algebraic specifica-
tions and composing specifications using techniques moti-
vated by category theory.

P2

P2 is a component-based generator for the domain of
container data structures. Component-based generators
(e.g.,[10,15,17,28,40]) are a common class of generators
whose transformations are represented as reusable and
interchangeable components. Users declaratively specify
their target application (in this case,a container data struc-
ture) and use compositions of components to tell the gener-
ator how to transform these declarations into efficient code.
By using different compositions of components, P2 gener-
ates a completely different implementation of the same
declarative specification. A key distinction between a P2
component and a KIDS transformation is one of scale: a
P2 component encapsulates complex refinements and op-
timizations of multiple data types and operations on these
types, which are presented as a “monolithic” transforma-
tion to a user. As each P2 component has a simple inter-
pretation (e.g., there are different components for red-black
trees, ordered lists, etc.) and the P2 component library is
quite small (a characteristic of all component-based gener-
ators), the number of components (or transformations) that
have to be composed to specify even complex applications
(e.g., data structures) is modest (around 5-15).

P2 imposes relational abstractions on container data
structures: data structures implement containers of ele-
ments and individual elements are accessible through cur-
sors. Common data structures—arrays, binary trees, or-
dered lists—implement the container abstraction and are
encapsulated as individual P2 components. P2 components
implement protocols by which a component can query other
components about what properties they support, what op-
timizations they can perform, what is the expected com-
plexity of the code they generate, which other components
they are compatible with, etc. Such knowledge is needed
when generating efficient application source code, as well
as when checking the consistency of component composi-
tions.

The P2 language is a superset of the C language, where
C is extended with cursor and container declarations and
operations on their instances. For example, consider a
phone-book data structure and the following declarations:

Container < phonebook − record > phonebook; /∗
abbreviated container decl. ∗ /

Cursor < phonebook > where ′$.phone == 4783487′ joe; /∗
cursor declaration ∗ /

Cursor < phonebook > where ′$.name > ′S′&& $.name
< ′T′′ all/ s; / ∗ cursor declaration ∗ /

Assuming that elements are instances of the phone-
book record record type, the first line above declares
a container (phonebook) for such elements. (Actually, the
container declaration is abbreviated from the usual P2 syn-
tax since it does not specify the components that implement
the data structure—see below.) The subsequent lines de-
clare two different cursors ranging over selected elements
of the phonebook container. For example, the joe cursor
ranges over all elements of phonebook where the phone
attribute equals 4783487. Predicates need not be this sim-
ple; P2 can handle arbitrarily complicated predicates. In
addition, P2 offers the standard operations on containers
and cursors. For instance, the foreach operation is used be-
low to iterate over all elements accessible by cursor all s,
and for those selected elements, the name of the element
is printed:

foreach (all s){printf (′%s/n,′ all s.name); }
Container implementation decisions are controlled by

the P2 user by composing components from the P2 library.
This is achieved with a typeq (type equation) declaration:

typeq{simple typeq = top2ds[qualify[hash[phone, odlist

[name, malloc[transient]]]]]; }
simple typeq is a composition of six P2 components,

where each component encapsulates a consistent data and
operation refinement of the cursor-container abstraction
and is responsible for generating the code for this refine-
ment. The top2ds layer, for example, translates foreach
statements into while loops and primitive cursor oper-
ations; qualify translates qualified retrieval operations
into if tests and unqualified retrieval operations; hash
stores all elements in a hash structure where attribute
phone is hashed; odlist connects all elements of a con-
tainer onto a doubly-linked list that is ordered on ascend-
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ing name values; malloc allocates space for elements from
a heap; and transient allocates heap space from tran-
sient memory. The complete container declaration for the
phonebook container is shown below; it declares the type
equation that determines how the container is to be imple-
mented.

Container < phonebook record > using simple typeq

phonebook;

The type equation determines how elements are to be
stored and which fields are to be indexed (e.g., attribute
phone is hashed and elements are arranged on a list in as-
cending name order). The P2 generator is responsible for
implementing all operations on cursors and containers ef-
ficiently using information that it can infer statically from
cursor selection predicates and the container type equa-
tion. For instance, P2 infers for the joe cursor (above) that
the fastest way to find elements that satisfy the predicate
is to use the hash table on the phone field. Similarly, P2
infers for the all s cursor that the fastest way to find el-
ements that satisfy the all s predicate is to traverse the
name-ordered list. The techniques that P2 uses to evaluate
the cost of each retrieval method are motivated by query
optimization in database systems.

In essence, type equations relieve P2 of the burden of
making high-level refinement decisions. P2 does not at-
tempt to automate data structure (or type equation) se-
lection, but rather offers a friendlier interface to the user
and facilitates program modification when requirements
change. This was demonstrated, for example, when P2
was used to re-engineer a hand-coded, highly-tuned con-
tainer data structures used in a production system com-
piler (LEAPS). As a result, P2 reduced the code size by a
factor of three and offered significant performance benefits
(up to several orders of magnitude in some cases) [51].

P2 covers a well-known domain and, hence, is ideal for
demonstrating the benefits of component-based generators
over traditional software libraries. P2 components capture
features that are not easy to compose in their concrete
form. Components such as a hash table and a linked list
data structure will have very different interfaces if encoded
as concrete library components. This is, for instance, true
in the C++ Standard Template Library (STL) [47] where
sequences and associative containers have different inter-
faces (and, thus, are not interchangeable). In contrast, P2
raises the level of abstraction up to the point where all
data structures have the same interface. At the same time,
the specification language (i.e., the selection predicates,
discussed previously) supplies enough information to the
generator so that the full functionality of individual com-
ponents (e.g., the fast random access capabilities of a hash
table) can be utilized. This way implementation efficiency
is regained automatically by the generator, even though an
abstract language is used for operation specification.

Comparison

Consider KIDS and P2 both from a technical and from an
end-user perspective.

� KIDS is built on top of a general transformation sys-
tem (Refine), whereas P2 is a stand-alone compiler.

� KIDS is a semi-automatic development system that
takes general declarative specifications (first-order
logic formulas) as input. P2 is highly specialized for a
single domain (data structure programming), and its
input contains significant (albeit compact) implemen-
tation guidance in the form of a type equation.

� KIDS is based on an equational rewrite engine and
uses a complex inference engine to guide the trans-
formation process. P2 has a straightforward transla-
tion engine, based on a combination of programmatic
transformations and pattern-based macro expansion.
In a typical transformation step, KIDS has a wide
space of possible choices for the next transformation,
whereas P2 has no more than a handful.

� Context information in KIDS is expressed in a rich
language and can be combined to derive new proper-
ties. P2 only uses a small set of predefined context
properties that guide the transformation process.

� KIDS has a sophisticated model for deriving new
algorithms, while P2 can only specialize existing
algorithm templates. Accordingly, the KIDS refine-
ment process may require significant user interaction,
while P2 is fully automatic.

The sharp contrast between our two generator case
studies illustrates the heterogeneity of the area, despite
the occasional technological similarities. Generators vary
as much as the different domains of software, both in depth
and in breadth. Generator technology can be quite practical
and immediately applicable, as long as the domain of the
generator is narrow, well-structured, and well-understood.
At the same time, generator technology can be ambitious,
tackling domains that have little structure and challenge
the limits of our capabilities.

APPLICATION GENERATORS NOW AND IN THE
FUTURE

Generators in Practice

Application generators represent a significant software
production technology. The breadth of the application gen-
erators field allows it to claim successes in many practical
settings. Bassett’s frames [3] are a generative technique
for adapting code text through pure lexical manipulation.
Despite their simplicity, frames have been used with great
success to create programs of significant size (e.g., million-
line) in the information systems domain. Also, many pro-
grams that produce code skeletons by composing code tem-
plates are primitive generators (e.g., the wizards supplied
with Microsoft compilers). Similarly many language tools
for mature domains are clearly generators (for instance,
the yacc parser generator or the LaTeX set of typesetting
macros). Nevertheless, these are rarely considered exam-
ples of what we will call the generator approach to soft-
ware development. The reason is that the above tools do
not need sophisticated transformation machinery. For in-
stance, typically such tools do not have to choose which
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transformations to apply, either because their domain is
so well-structured, or because their job is simply to con-
catenate code text. Hence, the approaches that we examine
here are among those that employ transformation technol-
ogy of the kind discussed in this article.

We selectively discuss two representative industrial
projects employing application generators in the construc-
tion of complex software.

� The SciNapse system [2] (formerly called Sinapse
[20]) is a generator for mathematical modeling soft-
ware. SciNapse uses both programmatic and pattern-
based transformations and performs algorithmic re-
finement by using algorithm schemas, which are
later specialized extensively. The specializations typ-
ically are numerical approximations for discrete rep-
resentations of the continuous specifications of vari-
ables. SciNapse also includes transformations for
data structure refinement and optimizations oriented
towards scientific computing. The transformation pro-
cess can be either automatic or interactive, with the
user being able to override the system’s choices at key
points. The system is implemented in the Mathemat-
ica programming environment and uses Mathemat-
ica’s algebraic manipulation capabilities. The system
has multiple back-ends, generating code in Fortran
77, CM Fortran, or C.
SciNapse was used originally to generate programs
that solve partial differential equations for sonic wave
modeling. These programs have multiple applications
in exploring seismic wave propagation between oil
wells, measuring the transit time of sonic waves in
a moving fluid, exploring the 3D effects in complex
geological formations, etc. More recently, the system
was applied to financial modeling. SciNapse gener-
ates 200-4000 lines of code programs from compact
(around 50 lines) specifications. The generated pro-
grams exhibit performance often comparable to hand-
coded versions and are commonly used with only
small manual modifications.

� Mousetrap is a transformation system developed at
Motorola, which has been applied to the derivation
of efficient real-time code for the company’s sub-
scriber radio products [13]. Mousetrap operates on
an abstract syntax tree intermediate form with fine-
grained pattern-based transformations (tens to hun-
dreds of thousands of transformations may be ap-
plied in the derivation of a complex system). The
system performs algorithm selection based on algo-
rithm schemas—e.g., translating a finite-state ma-
chine specification into code containing nested loops
and conditionals. Multiple optimizations are applied
in the generated code—for instance, loop invariant
code motion, as well as machine-architectural opti-
mizations like grouping bit-operations together and
applying them at a machine-word level.
The primary application of Mousetrap has been in
generating marshalling code for subscriber radio pro-
tocols. The role of such marshalling code is to con-
vert data from an in-memory representation (opti-

mized for fast access) to the representation needed
for wireless transmission (optimized for size). A set
of Mousetrap transformations implement a genera-
tor for a domain-specific language that is used to de-
scribe the general structure of protocol packets. Be-
cause of optional information, many configurations of
protocol packets can exist (all with the same general
structure), and the transformation rules ensure that
efficient code is created in every occasion. Many of
the optimizing transformations employed in this pro-
cess are domain-independent and part of the general
Mousetrap infrastructure.
The result of generating marshalling code using
Mousetrap has been “a tremendous success” [13]. The
process was estimated to result in a reduction of the
development cycle for marshalling code by a factor of
four. Benefits in the maintainability and ease of code
evolution were also observed.

Outlook

Generators are gaining momentum in the software engi-
neering community. In the past few decades, software con-
struction has not seen any radical improvements with re-
spect to increased productivity and reliability. The propo-
nents of the generator approach consider generators to of-
fer the greatest promise among emerging technologies for
the future of software development. In particular, advo-
cates of generators consider them to be the right tool every
time a software product is designed to be reused, or every
time a domain exhibits significant systematic variability.
This view promotes generators as a substitute for most, if
not all, of the existing software libraries for appropriate
domains.

There are certainly serious challenges in trying to move
generators to the forefront of software development. After
all, generators are by nature domain-specific. Envisioning
them as primary tools in the software construction process
seems somewhat paradoxical. Furthermore,generators are
often considered undisciplined and error-prone: reasoning
about a generator is much harder than reasoning about a
concrete library, as the properties of the generator output
may crucially depend on its (unknown) input. Therefore,
recent work has focused on transformation systems that
offer support for determining the correctness of generators
expressed in them.

There are several levels of correctness properties we
may need to express and prove for generated code. The
first level concerns the syntactic well-formedness of gener-
ated code. This is not a difficult property to establish. Most
transformation systems (e.g., [4,5,54,56]) are structured
meta-programming systems, and operate on syntax objects
(e.g., abstract syntax trees) instead of text strings. In this
case, tree operations can be constrained to only allow cre-
ating syntactically well-formed objects. A second level of
correctness concerns the well-formedness of generated pro-
grams with respect to the target language’s type-checker.
That is, we want to ensure that the generated program does
not suffer from errors typically detected by a conventional
compiler, such as type mismatch errors, references to un-
declared variables, duplicate variable definitions, etc. We
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call this property of a generator static legality and discuss
it next in detail. A third level of correctness concerns the
correct semantics of the generated code—i.e., the genera-
tor can certify that the generated code satisfies domain-
specific correctness properties during its execution.

Static Legality. Static legality is a hard property to en-
sure. Consider a generator that produces first a declaration
of a variable and later a reference to it. (We use a “quote”
syntax—’ [. . . ]—for generated code.)

if (pred1) {emit‘[int i; ]; }
· · ·
if (pred2){emit ‘[i + +; ]; }

The generator produces a declaration for i, of type int,
if pred1 evaluates to true. It then generates a reference of
i if pred2 is true. Ensuring that the generated code never
refers to an undefined variable i is equivalent to ensuring
that whenever pred2 is true, pred1 is also true. This is an
undecidable program analysis property. In general, we can
take any hard program analysis property (e.g., any control-
or data-flow property) and map it to an equivalent problem
of static legality for a generator.

Therefore, to guarantee static legality automatically,
our program transformation infrastructure typically needs
to limit the kinds of generators that are expressible—either
by conservatively rejecting some generators when their
static legality cannot be proven, or by restricting the lan-
guage so that some generators cannot be written. An inter-
esting restrictive kind of program transformation infras-
tructure that guarantees the static legality of generators
is multi-stage languages, such as MetaML [50] and MetaO-
Caml [9]. Type-checking a generator expressed in a multi-
stage language ensures that the generated code is always
type-correct. Nevertheless, such languages only allow ex-
pressing program specialization: the generated program is
a specialization of the original program with some parts
computed statically. For example, the following is a simple
multi-stage program for efficient exponentiation—we use
again the “quote” construct but allow parts of the quoted
expression that are designated with an “unquote” operator
(#) to be evaluated instead of generated:

exp(n, a) =
if (a == 0)‘[1]
else ‘[#[n] ∗ #[exp(n, a − 1)]]

This function takes in a number n for exponentiation,
and a number a as the exponent. If a is 0, the generated pro-
gram is the constant 1. Otherwise, the function generates a
piece of code representing the multiplication of the value of
n, and the code returned by calling exp on n and a-1. Thus,
exp(3,4) would return us a piece of code, 3*3*3*3*1. The
property of multi-stage languages that makes them suit-
able only for code specialization is the erasure property: a
multi-stage program is still a valid program if all quote and
unquote constructs are removed. For instance, we can re-
move quotes and unquotes from the above exponentiation
program to get the following legal program:

exp (n, a) =
if (a == 0)1
else n ∗ exp (n, a − 1)

In this program, exp(3,4) is no longer staged—it is
now a regular function call, and would return 81.

In practice, most generators are not just program spe-
cializers. Not only can generators produce variable decla-
rations and references independently (as in our earlier ex-
ample) but also generators often need to produce variables
whose names are not known until run-time. For instance, a
generator can be used to reflect over the functions or fields
of an existing program and produce a new set of functions
with similar or identical names, which may call the origi-
nal functions as part of their execution. This kind of reflec-
tive generation is quite common in practice. Its advantage
is not performance but productivity. Reflective generation
can capture common interfacing conventions with exter-
nal code and relieve the programmer of the tedious task
of producing conforming code. For instance, the GOTECH
[52] generator accepts as input arbitrary Java classes and
produces isomorphic wrapper classes and interfaces to en-
able the original classes to interoperate with a specific run-
time system (a J2EE Application Server). This approach
has since become widespread and program generation is
now a common technique in server side computing appli-
cations.

There is ongoing work on ensuring static legality au-
tomatically for richer transformation languages. SafeGen
[16] is a proposal for a reflective transformation language
that offers static legality guarantees for any generator ex-
pressible in it. The language allows defining iterators over
existing programs. The iterators can range over reflective
entities such as all fields of a class, all arguments of a
method, all classes in a package, etc. All program gener-
ation is predicated on an iterator: copies of the quoted code
will be generated for each iteration. For example, we could
have a code generation expression such as:

#for[f in Field(c), ‘[#[Type(f)] #[Name(f)] ; ]]

(The #for primitive is part of the SafeGen syntax. Field,
Type, and Name are iterator functions.) In this example,
definitions for several variables are being generated. The
generated variable names are not statically known but
they depend on existing names of fields in class c. Thus,
static checking can be done, based on the assumption that
the input class c is legal. For instance, the above code frag-
ment can never generate a duplicate definition: the gen-
erated names are in a one-to-one mapping with fields of
input class c, which are guaranteed to be uniquely named.
Similarly, when generating references, the system can use
the iterators to match them to generated definitions. For
instance, one can refer to the variables generated by the
above fragment in code such as:

#for[f in Field(c), ‘[insert(#[Name(f)])]]

We know that the emitted code refers to valid variable
names because the iterator f ranges over the same values
(all fields of class c) when generating both definitions and
references.

SafeGen uses a first-order logic based type-system. All
facts about the input program and generated program are
represented as first order logic sentences. All properties of
legal programs are also encoded as logic axioms. The sys-
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tem then constructs an implication of the form “facts =>”
property”, where property represents the static correctness
property of the output program. SafeGen then uses an au-
tomatic theorem prover to prove the validity of this sen-
tence for all possible values of input variables. If the sen-
tence is valid, then any generated program is legal under
the static checks of the target language, or equivalently the
generator is statically legal.

Guaranteeing Semantic Correctness. The final level of
correctness for generated applications is semantic correct-
ness. We would like to ensure that generated programs sat-
isfy standard software correctness properties. Neverthe-
less, the semantic correctness of a program is a domain-
specific property. Thus, there does not seem to be a gen-
eral way for transformation infrastructure to help ensure
the semantic correctness of multiple generators automat-
ically. Some approaches of general value have been pro-
posed, however. One idea is to avoid establishing the cor-
rectness of every possible generator output (which is a hard
property) and instead have the generator emit, together
with the generated application, a proof of its correctness. A
verifier program will then check the proof and certify that
the specific generator output satisfies the required seman-
tic property. Consider an axiomatic framework for program
verification, such as a Hoare-style invariant framework. A
generator can be extended so that, along with the output
program, it also generates annotations that indicate for-
mal properties (preconditions, postconditions, invariants)
at different points of the generated program. The proper-
ties are then automatically checked for consistency (e.g., a
statement precondition is ensured to imply its postcondi-
tion under Hoare logic) and the desired final correctness
property should directly follow from the individual proper-
ties. This approach is exemplified by the AutoBayes gen-
erator [11, 14] used at NASA to produce statistical data
analysis applications.
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