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RADAR, ADAPTIVE

Effective radar was developed during World War II to de-
tect and engage enemy aircraft, warships, and missiles,
whose increasing sophistication and lethality exposed any-
one without early warning to devastating attack. This mo-
tivation intensified during the Cold War; fear of nuclear
weapons impelled further developments in radar and their
requisite electronics and digital computers. Buderi (1) pro-
vides a compelling and thorough history. Modern weapons
systems are designed to regain the advantage of surprise
by attempting to thwart radar detection. The technological
response to this tactic is to design radars that are more sen-
sitive and robust against enemy countermeasures. Adap-
tivity is one method that provides modern radars with
these advantages.

Electromagnetic interference is a principal factor affect-
ing any radar’s sensitivity. Such interference may be gen-
erated externally to the radar by an opponent seeking to
jam the radar, or internally by radar reflections from the
ground. External interference is called jamming, and in-
ternal interference is called clutter. This article describes
adaptive methods to mitigate such interference and pro-
vides performance predictions for adaptive radar systems.

Clutter interference has always affected radar perfor-
mance. The earliest and simplest technique for eliminat-
ing ground clutter is moving-target indicator (MTI) radar
(2), where the Doppler effect is used to distinguish mov-
ing targets from the stationary ground. If the radar is
mounted on an aircraft, then the ground clutter will have
a nonzero Doppler shift, and an airborne MTI algorithm
such as DPCA (3) must be used to cancel the clutter. Both
MTI and DPCA are nonadaptive algorithms—they do not
use information from the radar data to determine the fil-
tering required to eliminate clutter interference. Instead,
they use physical assumptions about the radar scenario to
filter the clutter, and their performance is limited by the
accuracy of these assumptions. In contrast, adaptive meth-
ods (4–8) are robust against such modeling mismatches be-
cause actual measurements from the radar itself are used
in the mitigation scheme.

Jammer interference can be eliminated nonadaptively
through the use of low-sidelobe antenna arrays; however,
it is still possible to jam a radar through low sidelobes. To
guard against false detections from jammers, an auxiliary
antenna called a sidelobe blanker (SLB) is used to detect
the presence of sidelobe jamming. Because it is desirable
to detect targets in the presence of jamming, ECCM (elec-
tronic counter-countermeasure) techniques such as adap-
tive sidelobe cancelers (SLCs) or adaptive arrays are used
to adaptively subtract the jammer energy from the radar
receiver (9, 10).

Space–time adaptive processing (STAP) (3,4,11–13)
[Guerci (59)] provides a unified approach to radar jamming
and clutter interference rejection. Because jammers lie in
specific directions from the radar, jammer mitigation re-
quires spatial adaptivity. Mitigating clutter interference in

an airborne radar requires space–time adaptivity because
the ground’s Doppler spectrum varies with its azimuth and
elevation with respect to the aircraft.

This article is concerned with the description and per-
formance of algorithms used for adaptive cancellation of
radar interference. A radar’s job is to receive a signal, ex-
amine the signal for the presence of targets, and provide
estimates of the speeds and positions of any targets it finds.
The methods used to perform each of these steps are mo-
tivated by simple physical and statistical models of the
radar and its environment. The section “Adaptive Radar
Fundamentals” describes the fundamentals of receiving a
radar signal, including a physical description of the radar,
its environment, the type of signals it is to receive, and
the nature of the interference with which it must contend.
Performance metrics used throughout the article are also
introduced and defined. The section “Statistical Model for
Adaptive Radar” provides the statistical assumptions used
to formulate the adaptive radar detection problem, derive
adaptive algorithms, and deduce their performance. The
subsequent four sections (“Optimum Adaptive Processing,”
“Space–Time Adaptive Processing,” “Adaptive Detection,”
and “Adaptive Weight Computation”) all address differ-
ent aspects of the problem of examining the signal for the
presence of targets. The section “Optimum Adaptive Pro-
cessing” describes the general theory of detecting targets
in the presence of interference and provides performance
bounds for this problem. The section “Space–Time Adap-
tive Processing” applies the theory of the previous sections
to the radar problem, whose joint spatial and temporal na-
ture imposes a special structure for interference mitiga-
tion. Several STAP algorithms are classified and analyzed
in this section. After the interference has been mitigated,
a threshold detector is used to declare the presence of any
targets. The section “Adaptive Detection” provides predic-
tions of adaptive radar detection performance for the case
where the measured radar data itself is used to mitigate
interference. The numerical procedures used to implement
adaptive processing and detection on a computer are de-
scribed in the section “Adaptive Weight Computation.” Fi-
nally, bounds on the achievable accuracy of a target’s posi-
tion are given in the section “Adaptive Radar Estimation.”

ADAPTIVE RADAR FUNDAMENTALS

Matched-Filter Signal Processing

Radars operate by transmitting a burst of radio frequency
(RF) energy, then matched-filtering the return signal to
detect the presence of any targets. In a noise-only envi-
ronment, a peak in the matched-filter output indicates re-
flected target energy. Because the reflected signal is ex-
pected to be coherent in time, space (if there are inde-
pendent receiver elements), and pulses (if several pulses
are transmitted), the matched filter is a function of these
variables. Matched filtering over the RF burst’s time dura-
tion is considered in this section. This time scale is some-
times called fast time to distinguish it from the slow time
scale of the pulse repetition interval (PRI) for the case of
several coherent pulses. Spatial and slow-time processing,
called space–time processing when combined, are consid-
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ered in the first three sub-subsections of the next subsec-
tion (“Steering Vectors”) and in the section “Space–Time
Adaptive Processing.”

All radar signals s(t) are viewed as complex phasors
e j2π f0t modulated by a bandlimited pulse p(t), where the
bandwidth of the pulse is less than the center frequency f0,
i.e., the radar waveform is expressed as

The pulse p(t) and radar waveform s(t) have the spectral
decompositions

i.e., they are sums of weighted phasors over the signal
bandwidth. By Eq. (1), S(f) = P(f + f0). Because p(t) is ban-
dlimited, P(f) and S(f) have finite support near 0 and f0,
respectively.

If the radar transmits the signal st(t) and receives the
signal sr(t), then the matched filter output at time delay τ
is given by the integral

where the asterisk denotes complex conjugation. We now
use the integral form of the Cauchy–Schwarz inequality:
For complex signals f(t) and g(t) with finite energy,

where equality holds if and only if f(t) is a scalar multiple
of g(t). Thus Eq. (4) has a peak at τ ′ if the received signal
sr (t) is a multiple of the transmitted signal st (t) delayed
by τ ′—almost precisely the condition of a reflected radar
signal.

A pulse Doppler radar transmits coherent pulses at reg-
ular intervals called the pulse repetition interval (PRI).
Denote the PRI by Tr. The mth pulse transmitted has the
form

If this pulse is reflected by a target moving at velocity v
toward the radar and propagates back to the radar, then
under the far-field plane wave assumption, the value of the
reflected field at time t and position r = (r1, r2, r3)T is given
by the signal

where a is a combined reflection and propagation coeffi-
cient called the target amplitude, c is the speed of light,

the time dilation 1 + δ due to the reflection is

the time delay τ due to the round trip distance 2R to the
target is

and = (k1, k2, k3)T is the unit vector in the direction from
the radar to the target ( = 1). The dot denotes the dot
or scalar product, so that ·r = Tr = �3

i=1 kiri . Using
Eq. (6) and ignoring the time delay τ caused by the round
trip distance to the target, the spectral decomposition of
the reflected wave sr(t, r) is

where fd is the frequency-dependent Doppler shift

at the (frequency-dependent) wavelength

Assuming that fd < f0, k = −2πλ−1
0 is the wave vector at

the center frequency, correctly implying that waves propa-
gate from the target to the radar with speed c.

The matched filter output of the reflected target signal
is obtained by combining Eqs. (4), (6), and (10):

In general it is important to keep in mind the frequency de-
pendence of the Doppler frequency fd and the wavelength
λ. This integral is important for wideband waveforms, but
for narrowband signals [bandwidth of pt(t) less than a few
percent of f0], λ ≈ λ0 and fd ≈ 2v/λ0 over the entire signal
bandwidth, and the matched filter output may be approx-
imated by

where

is called the ambiguity function (14) of the waveform p(t).
Note that the phase factor e j2π f0τ has been absorbed into
the unknown amplitude a. The value of the ambiguity func-
tion will also be absorbed into a for the remainder of this
article, but it is important to keep in mind the physical
significance of this quantity for radar waveform design.

The ambiguity function is so called because it describes
the tradeoff between the knowledge of a target’s position
and velocity. Two ideal extremes for our choice of baseband
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waveform are p(t) = δ(t) (an impulse) and p(t) ≡ 1 (a perfect
tone, or so-called continuous wave, or CW, signal). In the
case of an impulse, χ(τ, fd) = δ(τ), i.e., the ambiguity func-
tion is an impulse in time, and we have perfect knowledge
of the target’s range via Eq. (9), but no knowledge of its
Doppler frequency. In the case of a CW signal, χ(τ, fd) =∫ ∞−∞ e j2π fd t dt = δ(fd), i.e., the ambiguity function is an
impulse in Doppler frequency, and we have perfect knowl-
edge of the target’s velocity via Eq. (11), but no knowledge
of its position. Actual waveforms, such as linear FM, are
designed for specific radar missions with this tradeoff as
well as implementation complexity issues in mind.

Actual radar waveforms possess a fine bandwidth B that
determines the radar’s range resolution

The matched filter output of Eq. (4) is sampled in time at
this frequency. The range samples corresponding via Eq.
(9) to the sequence of discrete matched-filter samples are
called rangegates. A peak in the sequence of outputs at a
particular rangegate indicates the presence of a target at
that range.

Steering Vectors

A steering vector is defined by the response of a signal
coherently measured across a sensor array distributed in
space, time, or both space and time. It therefore represents
a discrete matched filter in space–time. Given a sensor’s
space–time position, these coherent matched-filter outputs
are predicted by Eq. (13) (wideband case) and (14) (nar-
rowband case). Denote the predicted response of coherent
matched-filter outputs by the vector

where N is the number of independent outputs. The vector
v is called the steering vector because of its dependence on
target angle (through ) and Doppler frequency (through
Tr). For every combination of target angle and Doppler fre-
quency, there is a specific vector v “steered” to that combi-
nation. Only the direction of v is important, not its length.

Let

be the vector of matched-filter outputs measured across
the sensor array in space and/or time. The vectors v and
z are analogous to the functions st(t) and sr(t) in Eq. (4).
The coherent combination of the outputs of all N sensors is
given by

where superscript H denotes the Hermitian or con-
jugate transpose. The finite-dimensional form of the
Cauchy–Schwartz inequality states that for complex vec-
tors v and z,

where equality holds if and only if z is a scalar multiple of
v. Thus, the matched filter output is maximized when the
measurement vector z is a scalar multiple of the steering
vector v.

Phased Array Radar. A phased array radar is composed
of N sensors located at positions r1, r2, . . . , rN (with re-
spect to an arbitrary origin r0), each with independent,
synchronous matched-filter receivers. By Eq. (14), the
matched-filter outputs from the N sensors are given by the
N-by-1 steering vector

where the unknown target amplitude a, the ambiguity
function χ(τ, fd ), the phase factor e j2π fdTrm corresponding to
the time delay for the mth pulse, and the arbitrary phase
factor e- j2πλ

-1
0 r0 ·r0 corresponding to the origin are ignored.

Because the vector = (φ, θ) depends upon the target’s
azimuth angle φ and elevation angle θ, the spatial steering
vector

also depends upon these angles.
The case of a rotating uniform linear array is encoun-

tered frequently; here the sensors are located at positions

where d is the interelement spacing (ideally, d = λ0/2), φa

is the array’s rotation in the xy plane, and î and ĵ are the
standard unit vectors along the x and y axes, respectively.
For a target located in direction = î cos φt + ĵ sin φt with
respect to the radar, Eq. (21) yields the steering vector (Fig.
1)

where φ′
t = φa − φt + 90◦ is the target cone angle with re-

spect to the array’s normal. A bank of such steering vectors
sensitive to many target directions is used to determine a
target’s position, analogously to the way a matched filter
is used to determine a target’s range.

If the N antenna sensors are not uniform but have dis-
tinct responses to targets at different azimuths and eleva-
tions and different polarizations, then the spatial steering
vector of Eq. (21) must be replaced by
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Figure 1. Space–time array.

where Gi (φ, θ, p) (i = 1, . . . , N) is the ith sensor’s complex
antenna response to a signal at azimuth φ and elevation
θ, and with polarization vector p. Oftentimes p is decom-
posed into a vertical and horizontal component, in order
to consider these two independent polarization modes con-
sidered separately.

Pulse Doppler Radar. A pulse Doppler radar transmits
M coherent pulses at regular PRIs, then matched-filters
the radar returns during the PRI. If the target remains co-
herent throughout the entire coherent pulse interval (CPI)
of all M pulses, then the vector of all M coherent matched
filter outputs is given in Eq. (14) by the M-by-1 steering
vector

where the unknown target amplitude a and the phase fac-
tor e j2πλ

-1
0 ·r corresponding to the sensor’s position are ig-

nored. The temporal steering vector

is a function of the target Doppler frequency. A bank of
steering vectors sensitive to many Doppler frequencies is
used to determine a target’s velocity (slow-time matched
filtering), analogously to the way a matched filter is used
to determine a target’s range (fast-time matched filtering).
Note that a target whose distance causes a round-trip delay
greater than one PRI appears range-aliased with targets
within the maximum range

This range aliasing problem may be overcome by using a
sequence of different pulse repetition frequencies (PRFs)
over several CPIs, then using the Chinese remainder the-
orem to disambiguate target ranges over a greater unam-
biguous range.

Space–Time Steering Vectors. A phased array is used in
conjunction with a pulse Doppler waveform to mitigate
jammer and clutter interference in airborne radars, as well
as providing spatial and temporal coherent gain on tar-
gets. Examining Eq. (14) at the combination of all possible
pulses and element positions yields the M N-by-1 space-
time steering vector (Fig. 1)

The space–time steering vector

is a function of the target’s azimuth, elevation, and Doppler
frequency. This vector is expressed conveniently using the
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tensor or Kronecker product ⊗:

where vs is the spatial steering vector given in Eq. (21) and
vt is the temporal steering vector given in Eq. (26). The
angle–Doppler response of a space–time steering vector is
shown in the left-hand plot of Fig. 2.

The following properties of the tensor or Kronecker
product are necessary to determine the properties of
space–time signals. Let A and B be vectors or matrices of
arbitrary dimension. Then

In addition to being bilinear, this product has the following
properties:

Tapered Steering Vectors. As in finite-impulse response
(FIR) filtering, the steering vectors used in practice may be
tapered (or, synonymously, windowed, weighted, shaded) to
reduce their sidelobe levels and thereby limit sensitivity to
the presence of sidelobe targets or interference. Let t = (t1,
t2, . . . , tN )T be the true target steering vector, and let d = (d1,
d2, . . . , dN )T be the taper vector. Then the tapered steering
vector is given by

where � denotes the Schur–Hadamard (componentwise)
product. Popular choices for d are the Chebyshev or Kaiser
windows for Doppler filters or uniform linear array beam-
formers, or Taylor windows for uniform linear and planar
array beamformers.

For space–time steering vectors of the form in Eq. (31),
a space–time taper of the form

is used, where ds is the spatial tapering vector and dt is
the temporal tapering vector. For a true space–time tar-
get steering vector of the form t = tt ⊗ ts, the tapered
space–time steering vector is

The angle–Doppler response of a space–time steering vec-
tor with a 30 dB Chebyshev spatial taper and 50 dB Cheby-
shev temporal taper is shown in the right-hand plot in Fig.
1.

Dispersion. The spatial, temporal,and space–time steer-
ing vectors defined in this section all use the narrowband
assumption, that is, Eq. (14). If the radar waveform has a
fractional bandwidth greater than a few percent, then Eq.
(13) must be used to define the steering vectors. The effect
of wideband signals is called dispersion because, in accor-
dance with Eqs. (11), (12), (13), a wideband signal from a
single direction and a single Doppler frequency is equiv-
alent to a sum of narrowband signals from many direc-
tions and Doppler frequencies. Let v(f) be the frequency-
dependent steering vector (i.e., both the Doppler frequency
fd and the wavelength λ depend on f according to Eqs. (11)
and (12), respectively). If the range of Doppler frequencies
fd over the signal bandwidth is small relative to this band-
width and the matched-filter time offset τ is small relative
to the signal duration, then the wideband steering vector
v is approximated by the integral

that is, v is a weighted sum of narrowband steering vectors
across the signal bandwidth.

Signal-, Jammer-, and Clutter-to-Noise Ratios

The signals measured by a radar are composed of reflec-
tions from targets as well as undesired reflections from
the environment (clutter), interference transmitted inad-
vertently or purposely from other electromagnetic sources
(jamming), and noise from both receiver and sky. The
signal-to-noise ratio (SNR), clutter-to-noise ratio (CNR),
and jammer-to-noise ratio (JNR) are required to predict
the radar’s performance. Typically, these ratios are com-
puted via the radar equation at the output of a matched
filter coherently combining all antenna elements and radar
pulses; however, it is also oftentimes convenient to express
them on a per-element and per-pulse basis by dividing by
the numbers of coherent elements (N) and coherent pulses
(M). We shall compute the full coherent ratios.

The SNR is determined by the radar’s average power
Pt (W) coherently integrated over a CPI of TCPI (s), trans-
mitted with directivity Gt, reflected from a target of size σ
(m2), and received with an antenna whose effective area is
Grλ

2/4π. There is a 1/(4πR2) propagation loss in both direc-
tions, and the noise power is kTF, where k = 1.38 × 10−23

W/Hz·K is Boltzmann’s constant, T is the receiver temper-
ature (typically about 290 K) and F is the receiver noise
factor (typically about 10 dB). Combining these gains and
losses into one equation, we have

By a slight modification, Eq. (38) also provides the CNR:

where σc is the effective area of a clutter patch appearing at
the output of a rangegate, beam, and Doppler filter bank. A
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Figure 2. The response patterns of untapered and tapered space–time steering vectors. The radar parameters N = 14, M = 16 from the
Mountaintop experimental radar system (31) are used. The cone angle φ

′
t is defined after Eq. (24).

“constant gamma” model for the clutter is oftentimes used,
in which the clutter area is assumed to be

where γ is a constant ranging from about −15 dB (light
clutter) to −3 dB (heavy clutter), and θ is the grazing an-
gle of the radar’s beam on the clutter patch of area Ac, as-
sumed to be approximately rectangular. The downrange
dimension is determined by the radar’s range resolution
�R = c/2B of Eq. (16), and the crossrange resolution is de-
termined either by R�φ, the effective beamwidth at range
R, or by Rλ/(2vTCPI), the effective Doppler resolution cell
size at range R, whichever is smaller. Note that v is the
radar platform’s velocity. Also note that for steep grazing
angles (θ near 90◦), the approximation tan θ Ac is inappro-
priate and must be replaced by the radar’s effective beam
area R2 �θ �φ at range R.

The JNR is qualitatively different from the SNR and
CNR because the jammer signal is generated externally to
the radar and propagates only in a single direction from the
jammer to the radar. Assuming that a broadband jammer
transmits a waveform having power spectral density (PSD)
�t (W/Hz) over a bandwidth B (Hz) during the radar’s CPI
of TCPI (s), the JNR is

where Gt is the jammer’s transmit directivity and Grλ
2/4π

is the radar’s effective receive area. Note that there is only
a single factor 1/(4πR2) due to one-way propagation.

Noise, Jammer, and Clutter Covariance Matrices

The interference plus noise, represented by the random
vector n, can be decomposed into three statistically inde-
pendent components:

—the noise component nn, the jammer component nj, and
the clutter component nc. The interference-plus-noise co-
variance matrix R is defined as

Because these three sources are statistically independent,
the interference-plus-noise covariance matrix takes the

form

where Rn = E[nnnH
n] is the noise covariance, Rj = E[njnH

j]
is the jammer covariance, and Rc = E[ncnH

c] is the clutter
covariance.

Noise Covariance. The receiver and sky noise are spa-
tially and temporally uncorrelated; therefore, the covari-
ance matrix of the noise at the matched filter outputs is a
diagonal matrix:

where σ2
i is the noise power at the ith matched filter. If all

receivers have identical gains, as is often the case, then the
noise covariance is a multiple of the identity matrix I:

where σ2
n is the noise power per element per pulse. For

space–time signals, it is also possible to express the noise
in the form

where ns is the spatial noise and nt is the temporal noise.
The space–time noise covariance is therefore expressed as

where Rs = E[nsnH
s] and Rt = E[ntnH

t].

Jammer Covariance

Jammer interference is typically uncorrelated temporally
because its waveform spans the radar’s full operational
bandwidth, but correlated spatially because it propagates
from a specific direction (Fig. 3). It is this spatial coherence
that is used to null jammer interference. A broadband jam-
mer at the output of the radar’s match filters is represented
by the waveform

where vj is the spatial steering vector corresponding to the
jammer’s position, and Rt = E[ntnH

t] is the temporal co-
variance matrix of the jammer waveform; typically Rt =
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σ2
jI, where σ2

j/σ2
n is the JNR per element per pulse. For

the case of several independent jammers,

where the ni (i = 1, . . . , J) are the temporal components of
the jammer signal, and the vi (i = 1, . . . , J) are the spatial
steering vectors corresponding to the jammers’ positions.
Assuming that the jammers are statistically independent
and that E[ninH

i ] = σ2
iI, the jammer covariance matrix is

where

Note that for spatial-only signals, Eq. (51) reduces to Rj =
JJH.

The rank of Rj given in Eq. (51) is MJ; as will be dis-
cussed in the subsection “Adaptive Degrees of Freedom and
Nulling Performance,” an adaptive weight vector requires
at least this many degrees of freedom to null those jam-
mers.

Clutter Covariance. Clutter interference is best under-
stood by representing it as the sum of many infinitesimal
reflections from discrete points on the ground. Reflection
from a discrete point, called a clutter discrete, is targetlike
because it appears from a specific direction and has a fixed
Doppler shift. If the radar platform is airborne, there is
a relationship between the clutter’s direction and Doppler
frequency:clutter in front of the radar is approaching and
has a positive Doppler shift, while clutter behind the radar
is receding and has a negative Doppler shift. This angle-
dependent Doppler frequency is given by the expression

where v is the radar platform’s speed, θc is the lookdown an-
gle to the clutter patch, and φ′

c is the complementary angle
between the clutter patch and the radar platform’s velocity.
This locus of angle–Doppler positions is called the clutter
ridge (Fig. 3); oftentimes the mainlobe clutter is shifted
to zero Doppler frequency using TACCAR (3). Matched
filtering localizes clutter reflections to a fixed-range ring
on the ground; if the radar is range-unambiguous (Rmax

> radar horizon), clutter interference may be assumed to
come only from reflections around this range ring. If the
radar is range-ambiguous (Rmax < radar horizon), clutter
interference comes from the set of ambiguous range rings.
In either case, the clutter covariance matrix for a single
range ring is determined by integrating the infinitesimal
return from the clutter patch between the azimuth φ and
φ + dφ over the full ring:

where vt(φ) is the temporal steering vector of the clutter at
azimuth φ, vs(φ) is the spatial steering vector of the clut-
ter at azimuth φ, A(φ) is the antenna pattern, and dγ(φ)

is the infinitesimal clutter reflectivity. It is assumed that
this reflectivity is a stochastic process with orthogonal in-
crements (15), so that

that is, clutter reflectivity at different points on the ground
is independent. From Eqs. (54) and (55) the space–time
clutter covariance matrix is

Equation (55) may be evaluated using Riemann summa-
tion.

In the case of uniform linear arrays, this integral may
be evaluated very efficiently using a Fourier–Bessel series
and the Toeplitz–block-Toeplitz structure (16) of Rc (17)
(Fig. 4). The rank of the clutter covariance matrix Rc in
this case when the array’s axis is aligned with the velocity
vector is approximated by Brennan’s rule (12),

where

(in which v is the radar platform’s velocity, Tr is the PRI,
and d is the interelement spacing) is the number of half
interelement spacings traversed per PRI. If β is an integer,
Brennan’s rule holds exactly (12). As will be discussed in
the subsection “Adaptive Degrees of Freedom and Nulling
Performance,” an adaptive weight vector requires at least
this many degrees of freedom to null the clutter.

The PSD of radar clutter measured at White Sands,
NM, and of modeled radar clutter is illustrated in Fig. 5.
The angle–Doppler dependence of the clutter is evident.
Note that these PSDs are computed from the clutter output
power of tapered space–time steering vectors at a particu-
lar angle and Doppler shift. The clutter itself is localized to
a locus along the broad ridges seen in these PSD estimates.

Dispersive Effects on Covariance. In addition to the dis-
persion of a target response considered in the sub-section
“Dispersion” above, the dispersion of the interference must
also be considered. Except for the unknown target ampli-
tude, the matched filter output of Eq. (13) assumes a non-
random radar return. If the radar measurements are due
to a broadband jammer or clutter, the radar return sr(t) is
more accurately modeled as a stationary stochastic process
with PSD �(f), i.e., sr(t) has the spectral decomposition

where ψ(f) is a stochastic process with orthogonal incre-
ments. For broadband jammers,�(f) is the jammer signal’s
power spectrum, and for clutter in the absence of intrinsic
clutter motion �(f) is modeled as the transmit waveform’s
power spectrum |S(f)|2. From Eqs. (4), (43), and (59), the
covariance matrix R of the matched filter outputs due to a
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Figure 3. Clutter and jammer ridges in angle–Doppler space.The mainlobe clutter at a cone angle of 0◦ has been shifted to zero Doppler
frequency using TACCAR.

Figure 4. Structure of an ideal Toeplitz–block-Toeplitz clutter covariance matrix (M = 8, N = 16,β = 2). The log magnitudes of the elements
of Rc are shown using a relative color scale.

broadband waveform is given by

where R(f) is the narrowband interference covariance at
frequency f. For jammer-only covariance matrices, R(f)

takes the form of Eq. (51), and for clutter-only covariance
matrices, R(f) takes the form of Eq. (56). Therefore, the
wideband covariance matrix is a weighted sum of narrow-
band covariance matrices. Because of this fact, the rank
of a wideband interference covariance matrix may exceed
that of a narrowband interference matrix, which has an
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Figure 5. Measured and modeled clutter interference PSD (relative to noise) versus Doppler frequency and angle. The measured PSD on
the left is estimated using data from the Mountaintop database (31), collected on March 9, 1994 at White Sands, NM. The modeled PSD
on the right is obtained using Eq. (56) assuming the constant-gamma clutter model in the preceding subsection.

effect on the adaptive nulling performance, as discussed in
the subsection “Adaptive Degrees of Freedom and Nulling
Performance” below.

Equation (60) also quantifies the effect of electronic
countermeasures (ECM) on radar performance. Because
radars may select to transmit an instantaneous frequency
f0 from a range of frequencies in the radar’s operational
bandwidth, a broadband jammer must spread its energy
�(f) over this operational bandwidth to ensure that the
product |S(f)|2�(f) is large enough to interfere with target
signals regardless of the choice of f0. The radar’s electronic
counter-countermeasure (ECCM) is to use spatial diversity
to adaptively null the jammer interference in the radar re-
turns.

Intrinsic Clutter Motion. Clutter motion is caused by
windblown trees or ocean waves whose velocities are
sensed by the radar. Radar reflections from ocean waves
can exhibit complicated behavior (18); however, simple, em-
pirically supported models exist for the Doppler spectra of
windblown ground clutter. For CPI lengths less than a sec-
ond or so, the windblown clutter’s random Doppler com-
ponent is constant over the CPI. Therefore, assume that
windblown ground clutter imparts a random Doppler shift
to all pulses in the CPI, modeled as the random space–time
vector

where x(t) is a wide-sense stationary stochastic process
with spectral decomposition

�(f) is the Doppler power spectrum of x(t), and ξ(f) has or-
thogonal increments. The Kronecker product with the N-
by-1 vector 1N = (1, 1, . . . , 1)T corresponds to the fact that
the random Doppler shift is sensed identically on all N ele-
ments.The matched-filter output of the clutter interference
for pulses m = 0, 1, . . . , M − 1 may be modeled as

where nnoicm is the clutter interference vector without in-
trinsic clutter motion (ICM), defined in Eq. (54). The clutter

reflectivity defined by γ(φ) in Eq. (54) and the ICM defined
by x(t) in Eq. (62) are assumed to be independent stochastic
processes.

The clutter covariance matrix with ICM is

where Rnoicm is the clutter covariance matrix without ICM,
defined in Eq. (56), and Ricm = E[nicmnH

icm]. That is, to in-
clude the effects of internal clutter motion, we need only to
compute the clutter covariance matrix without ICM, then
multiply it componentwise by the matrix Ricm. This matrix
is given by the time samples of the ICM’s autocorrelation
function

From Eqs. (62), (61), and (65),

Ricm = (

X(0) X(−Tr) . . . X(−(M − 1)Tr)
X(Tr) X(0) . . . X(−(M − 2)Tr)
...

...
...

X((M − 1)Tr) X((M − 2)Tr) . . . X(0)

)⊗1N×N (65)

where 1N×N = 1N1T
N is an N-by-N matrix whose elements

are all unity. Note that the matrix on the left-hand side of
the Kronecker product is Toeplitz.

Billingsley’s (19) empirical model of windblown ground
clutter applicable from VHF to X-band frequencies is

where

is the empirically derived ratio of dc to ac power, vw is the
wind speed in miles per hour, f0 is the center frequency in
megahertz, λ0 is the wavelength in meters, and β is an ex-
ponential shape parameter loosely dependent on the wind
speed. For example, in breezy conditions, vw is 7 mi/h to 15
mi/h (3 m/s to 7 m/s) and a typical value for β is 8 (m/s)−1.

Another choice for X(τ) is Barlow’s Gaussian model (2)

where
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is the standard deviation (in hertz) of the clutter power
spectrum �(f), σv is the standard deviation (in meters per
second) of the intrinsic clutter motion, and λ is the trans-
mitted wavelength.

The Adaptive Weight Vector

Adaptive radar processing consists fundamentally of three
steps: (1) compute an adaptive weight vector w; (2) apply
w to the vector z of radar measurements, and compare the
output power (Fig. 1)

with a threshold to determine the presence of a target, and
(3) estimate the target’s speed and bearing. All three steps
are dependent upon the adaptive weight vector w.

The adaptive weight vector’s purpose is to provide coher-
ent gain on any targets present in the measurement z while
simultaneously canceling any interference (Fig. 6). If the
interference-plus-noise covariance matrix R were known,
the optimum choice (relative to the criteria given in the
section “Optimum Adaptive Processing”) for the adaptive
weight vector w to detect a target with steering vector v
would be

This equation is the consequence of various optimality cri-
teria discussed in the section “Optimum Adaptive Process-
ing” below. Because the precise jammer and clutter charac-
teristics are unknown, the interference covariance matrix
R is also unknown, and is typically estimated using the
sample covariance matrix

where zk (k = 1, . . . , K) are independent measurements
of the interference in the absence of target returns. The
adaptive weight vector becomes

Much of the performance of an adaptive radar can be
predicted using the known covariance adaptive weight vec-
tor w of Eq. (72), and the detection performance using the
estimated covariance adaptive weight vector ŵ of Eq. (74)
can be predicted by an extension of classical matched-filter
detection theory provided in the section “Adaptive Detec-
tion” below.

Performance Metrics

To compare the performance of different adaptive algo-
rithms with each other, as well as with nonadaptive ap-
proaches, it is necessary to use some standard benchmarks.
Important radar performance metrics are the probability
of detecting a target of a given size, the probability (or
rate) of declaring a false alarm, and the accuracy with
which target speed and/or bearing may be measured. Use-
ful intermediate quantities for the probability of detection
are the signal-to-interference-plus-noise ratio (SINR) and

SINR loss, defined below. Finally, the filter response itself
is important—it should have a distinct mainlobe that is as
narrow as possible as well as low sidelobes.

Probabilities of Detection and False Alarm. A target is de-
clared to be present if the output power z in Eq. (71) exceeds
a set threshold τ. Therefore, the probability of detection
(PD) and probability of false alarm (PFA) both depend on
the statistics of z in the presence and absence of a target.
If f(z) is the probability density of this output power, then
the PD and PFA are given by the equations

In the section “Optimum Adaptive Processing” below, it is
shown that the adaptive weight vector of Eq. (72) optimizes
the probability of detection for a fixed PFA. Example PD
curves are shown in Fig. 13.

Target Parameter Estimation Accuracy. The accuracy with
which a radar can determine a target’s bearing and speed
is bounded by the radar’s aperture in space and/or time.
Given a vector of radar measurements z, the root-mean-
square (rms) accuracy of an estimate is defined to be

SINR and SINR Loss. Given a true target steering vector
t, the SINR at the output of an adaptive filter weight using
the weight vector w is

It is important to note that the vector t represents the steer-
ing vector of a target in the radar returns, whereas the vec-
tor v will be used to represent an arbitrary steering vector,
which may be the true target vector t, a hypothesized steer-
ing vector, or a tapered steering vector. Compared with the
maximum SNR achievable in the absence of interference,
the SINR loss due to adaptivity is given by the equation

Example SINR loss curves for several STAP algorithms are
shown in Fig. 10 below.

Minimum Detectable Velocity. The width of the SINR
loss notch near mainlobe clutter (as seen in Fig. 11) de-
termines the lowest velocity detectable by the radar.

Response Patterns and Sidelobe Levels. The response

of a fixed adaptive weight vector to steering vectors at vari-
ous Doppler frequencies and angles defines the weight vec-
tor’s response pattern and sidelobe levels. The response
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Figure 6. Space–time adaptive weight vector response pattern versus Doppler frequency and angle. The response is computed using Eq.
(72), where v is a space–time steering vector pointed to the target location shown, R = Rn + Rj + Rc is a space–time covariance matrix,
Rn = I, Rj is a jammer covariance given by Eq. (51) for a jammer at a cone angle of 8◦, and Rc is a clutter covariance using parameters
similar to those shown in Figs. 2 and 4. A space–time null in the directions of the clutter and jammer interference is visible. A close-up of
the pattern is shown on the right. Compare this adaptive weight response with the nonadaptive steering vector response of Fig. 1.

patterns of a tapered and untapered space–time steering
vector are shown in Fig. 2; the patterns of several adaptive
weight vectors are shown in Figs. 6 and 12.

STATISTICAL MODEL FOR ADAPTIVE RADAR

All fundamental performance limits of adaptive radar are
derived from a statistical model of the radar measure-
ments. Such a model provides an optimum detection strat-
egy, predicts detection performance (i.e., probability of de-
tection and false alarm rates), and predicts estimation per-
formance (i.e., the best achievable accuracy). An additive
Gaussian model is the prevailing choice, because it is for
the most part physically accurate and because it yields
tractable solutions to detection and estimation problems.
Of course, a Gaussian model is not completely accurate;
however, the detection and estimation techniques derived
from it have been shown to be robust within a wide class
of different models. See Ref. 20a–f.

Adaptive Radar Hypothesis (Known Covariance)

The radar detection problem is posed as distinguishing be-
tween the hypotheses

The vector z is assumed to be distributed as a complex
Gaussian random variable with distribution

where the covariance R = E[nnH] and mean direction v are
assumed to be known, the complex amplitude a is assumed
to be unknown and possibly random, and N is the dimen-
sion of the vector z. For space–time problems, N must be
replaced by MN—the product of the number of coherent
pulses M and the number of coherent antenna elements N.
The vector n refers to both interference and noise, which
appear additively. The precise structure of the interfer-
ence and noise encountered in adaptive radar is consid-

ered in the subsection “Noise, Jammer, and Clutter Covari-
ance Matrices” above. Of course, the whole point of adap-
tive radar is that we do not know the interference covari-
ance beforehand, violating a key assumption above, and
must therefore estimate it. Nevertheless, most of the re-
sults from the known-covariance case are directly applica-
ble to the unknown case.

Adaptive Radar Hypothesis (Unknown Covariance)

In practice the interference-plus-noise covariance matrix R
in Eq. (82) is unknown and must be estimated. Fortunately
for the radar problem, the large number of range gates to be
tested for the presence of targets usually provides a suffi-
cient number of samples that may be assumed to be identi-
cally distributed. It is important that these range gates be
free of target reflections, because such targets will be (par-
tially) nulled by the adaptive weight vector. Assume that
there is a vector of radar measurements z0 from the range
gate of interest, and K other vectors of radar measurements
z1, z2, . . . , zK from nearby range gates. The vector z0 is
called the primary data, and the collection of vectors z1,
z2, . . . , zK are called the secondary data. Further assume
that the secondary data are independent of the primary
data, that they have zero mean (i.e., there are no target
reflections in the secondary data), and that they have the
same covariance matrix as the primary data. This final as-
sumption ensures that we can use the secondary data to
estimate the interference found in the primary data.

By the assumptions of independent and identically dis-
tributed data and Eq. (82), the primary and secondary data
have the joint probability distribution

where R̂ is the sample covariance matrix (SCM) given in
Equation (73). The SCM is the maximum likelihood esti-
mate of R given the secondary data.
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The proof of this last fact is a short computation. The log
likelihood of the secondary data is l(z1, . . . , zK |R) = −K(tr
R−1R̂ + log det R) + constants. From the first-order terms
of the Taylor series

the derivative of the log likelihood function with respect to
R is

Setting this derivative to zero and solving for R yields
the maximum likelihood estimate R = R̂. The second-order
terms of the Taylor series above establish that this point is
indeed a maximum.

Fluctuating Target Statistics

The statistics of the unknown amplitude a strongly af-
fect the radar’s detection performance. The magnitude and
phase of a = rejφ are treated separately. In almost all cases,
the phase component ejφ is assumed to be unknown and
distributed uniformly on the unit circle from −π to π. Con-
ditioning the density of Eq. (82) over the random phase
component (21, 22) yields the probability of radar measure-
ments conditioned on the unknown target magnitude r:

where I0 is the modified Bessel function of the first kind
with order 0—a monotonic function for positive real num-
bers.

There are several standard statistical models for the
target magnitude r, each applicable for specific targets. The
simplest is Marcum’s (21) nonfluctuating target model, in
which r is fixed. Swerling (23) introduced a class of target
fluctuation models based upon the complex χ2

ν probability
distribution with ν complex degrees of freedom:

where r̄ = E r is the mean amplitude. In Swerling model
I, the target magnitude is assumed to be fixed over a lim-
ited dwell of several CPIs, but fluctuates according to a χ2

1

model (r̂-1e-r/r̂) from scan to scan, where scans may occur
on the order of tens of seconds apart. For Swerling model
II, the target is assumed to fluctuate every CPI according
to a χ2

1 model. Swerling called this “pulse-to-pulse” fluctu-
ation, but in the context of pulse Doppler radar, it is appro-
priate to regard it as “CPI-to-CPI” fluctuation. Swerling I is
appropriate for determining the probability of detecting a
target over several scans, whereas Swerling II is appropri-
ate for determining the probability of detecting the target

over several CPIs. Of course, if one CPI is used per scan,
there is no difference between the two. Swerling models III
and IV are identical except that a χ2

2 model is used. Oth-
ers have suggested using more degrees of freedom for some
targets, based on experimental data. Sometimes Marcum’s
nonfluctuating model is called a Swerling model with in-
finite degrees of freedom because fR(r) → δ(r − r̄) as ν →
∞.

OPTIMUM ADAPTIVE PROCESSING

The goal of adaptive radar is to use spatial and temporal
coherence to mitigate the clutter and jamming interference
and achieve radar performance limited only by noise. This
is accomplished by constructing an optimum filter that in-
corporates a steering vector and the interference and noise
covariance. This filter is optimum in several senses; per-
haps the most compelling is that under some ideal assump-
tions about the signal, interference, and noise statistics, it
optimizes the probability of detecting a target given a fixed
probability of false alarm.

Detection Optimality

The Neyman–Pearson criterion of maximizing the proba-
bility of detection given a fixed probability of false alarm
yields the test (24)

for some fixed threshold that is determined by the prob-
ability of false alarm. The notation means: if the likeli-
hood ratio on the left exceeds the given threshold, decide
that a target is present; otherwise, decide that no target is
present. Inserting Eq. (86) with unspecified target magni-
tude r for H1 and r = 0 for H0, and taking the logarithm
(which gives the log likelihood function on the left), this
test reduces to the equivalent test

after absorbing the constant term r2vHR−1v into the
threshold on the right. Because log (·), I0(·), (·)2, and scaling
by positive constants are all monotonic functions for posi-
tive real arguments, this test may be reduced to the form

for some positive threshold τ. This is called the matched-
filter (MF) test. We shall use this form of the test even when
the steering vector v differs from the true target steering
vector t, i.e., when E[z|g] = at. The effect of this steering
vector mismatch on detection performance is given in the
section “Adaptive Detectors.” The squared (power) form of
this test is used instead of the unsquared (voltage) form
for consistency with the SINR analysis in the next subsec-
tion. Note that the exact threshold must change for each
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of the equivalent tests of Eqs. (89), (90), and (91) despite
the fact that this is hidden typographically. One important
quality of the MF test is that it has a constant false-alarm
rate (CFAR), that is, its probability of false alarm is inde-
pendent of the interference-and-noise scenario defined by
R. This is an important practical feature because it allows
the detection threshold to be set without regard to a specific
interference scenario.

For a known covariance matrix, the probabilities of de-
tection and false alarm are given by the classical matched-
filter formulae. Assume that z is a Gaussian random vari-
able with covariance R and mean at (the complex target
amplitude a = rejφ multiplied by the true target steering
vector t). By using the whitened coordinates z̃ = R−1/2z, ṽ

= R−1/2v, and t̃ = R−1/2t, then, choosing a unitary matrix Q
such that αe1 = Qṽ, where e1 is the canonical unit vector (1,
0, . . . , 0)T and α is a complex constant whose magnitude is
the length of ṽ, the left-hand side of Eq. (91) is recognized as
a noncentral complex χ2 statistic with one complex degree
of freedom and noncentrality parameter

which is the SINR of the target. Therefore, the PFA and
PD are given by the (known covariance) formulae

where Q(α, β) is the Marcum Q-function (21, 25). The
threshold τ is determined by Eq. (93) for a given PFA. Be-
cause of the large number of rangegates, Doppler bins, and
beam directions to be examined for targets, radar PFAs typ-
ically lie in the range 10−6 to 10−12. Conditioning the PD
over a target fluctuation model for r yields detection prob-
abilities for fluctuating targets. These known-covariance
probabilities must be modified as described in the subsec-
tion “Adaptive Detectors” below when sample covariance
matrices are used.

The Neyman–Pearson optimum detection test of Eq.
(91) may be interpreted in the following way. First, con-
struct an adaptive filter

second, compute

at the output of this adaptive filter, and third, compare
the SINR with a fixed threshold, yielding a desired PFA.
Equation (83) is called the adaptive filter equation; the el-
ements of w are called adaptive weights, and the number
of elements in w is called the number of adaptive degrees
of freedom (dof).

SINR Optimality

An optimum adaptive weight vector may be obtained with
relaxed conditions on the statistical model of the radar
measurements. Given the signal and additive noise vector

where n is a zero-mean random vector with covariance R
= E[nnH], compute the linear filter

that maximizes the SINR. Note that only the first- and
second-order statistics of the noise have been specified. The
interference-plus-noise power is

The signal-plus-interference-plus-noise power is

Therefore, the SINR is

We now utilize a generalization of the finite-dimensional
Cauchy–Schwartz inequality.

For complex vectors w and v and nondegenerate Hermi-
tian inner product 〈, 〉,

and equality holds if and only if w is a scalar multiple of v.
For the problem of optimizing the SINR, take 〈w, v〉 def ≡
wHRv; then SINR = |a|2|〈w, R−1v〉|2/〈w, w〉. Thus the SINR
is maximized if and only if

for an arbitrary complex constant α. The maximum SINR
is

Like Eq. (95), Eq. (103) is called the adaptive filter equa-
tion, and the components of w are called adaptive weights.

Maximum Likelihood Estimate of Target Amplitude

The adaptive filter equation is also a consequence of the
maximum likelihood estimate of the target amplitude. The
log likelihood function (ignoring constants) from Eq. (82)
is

A necessary condition for optimality is that the first deriva-
tives with respect to a* and a vanish. Recall that if a = x +
jy is a complex variable, the derivatives with respect to a
and a* are
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These derivatives yield the desired formulae

Note that f(a, a*) is an analytic function if and only if ∂f/∂a*
= 0, which simply expresses the Cauchy–Riemann equa-
tions. As we are considering the log likelihood function—a
real-valued function everywhere—analyticity is irrelevant
here.

Solving the equation

for a provides its maximum likelihood (ML) estimate

The Hessian matrix

is negative definite with respect to the Hermitian metric

therefore, this estimate provides a maximum. Inserting the
ML estimate of Eq. (109) into the maximum SINR of Eq.
(104) yields the Neyman–Pearson statistic of Eq. (91).

Adaptive Nulling and Interference Subspaces

The optimum properties of adaptive filters are theoreti-
cally and practically important; however, perhaps the most
intuitive explanation of their function comes from con-
sidering the effect of adaptivity on the interference and
noise subspaces. These are defined by the weight vectors u
that are stationary values of the interference-plus-noise-
to-noise ratio (INNR),

By the Courant–Fisher minimax theorem, these vectors
and the corresponding INNR values are, respectively, gen-
eralized eigenvectors and generalized eigenvalues of the
generalized eigenvalue problem

Its solution yields the decomposition of the interference-
plus-noise covariance

R = R1/2
n U�UHR1/2

n

= R1/2
n (U i Un)( �i

�n
)( UH

i
UH

n
)R1/2

n
(109)

where � = diag(�i, �n) is a diagonal matrix of ordered
eigenvalues and U = (Ui, Un) is a unitary matrix of eigen-
vectors. The generalized eigenvalues in the matrix �n are
called the noise eigenvalues. For ideal covariance matri-
ces, �n = I. The generalized eigenvalues in the matrix �i

= diag(λ1, λ2, . . . , λr ) are called the interference eigenval-
ues; any eigenvalue that exceeds the greatest noise eigen-
value is an interference eigenvalue. For ideal covariance
matrices, this distribution is straightforward; however, for
sample covariance matrices, there is an arbitrary cutoff
set between interference and noise eigenvalues, because it
is difficult or impossible to measure the interference and
noise separately. In practice, one uses a sample covariance
matrix in place of R (an assumed ideal matrix Rn, which
is typically σ2

nI) and declares all generalized eigenvalues
of Eq. (113) near or below the 0 dB level to be noise eigen-
values. Note well that the 0 dB level for generalized noise
eigenvalues is implied by Eq. (113) and not the noise co-
variance Rn itself. The column spans of the generalized
eigenvector matrices Ui = (u1, u2, . . . , ur ) and Un are called
the interference and noise subspaces, respectively. The di-
mension r of the interference subspace is called the rank
of the interference. Each generalized eigenvector in U is
called an interference or noise eigenvector. The response of
each of these vectors to a bank of steering vectors is called
an eigenbeam. For the case of pulse Doppler radar or a
uniform linear array, an eigenbeam is simply the discrete
Fourier transform of an eigenvector.

The adaptive weight equation (95) using the interfer-
ence and noise subspaces from Eq. (114) becomes

Interpreting the adaptive weight equation in the form
of Eq. (115), the optimum weights are obtained by
first whitening the steering vector, second projecting the
whitened steering vector R−1/2

nv onto the interference
and noise subspaces, third scaling the projected, whitened
steering vectors UHR−1/2

nv by the reciprocals of the inter-
ference and noise eigenvalues, and fourth lifting the result-
ing vectors back up into the original unwhitened space. The
fourth step may also be thought of as premultiplying by the
interference and noise subspaces so that when the product
wHv is formed, the steering vector is projected onto these
subspaces.

The effect of nulling becomes apparent if one views Eq.
(115) for the special white noise case Rn = I (noise at 0 dB).
Each of the interferernce eigenvalues represents an INNR
= INR + 1, where INR is the interference-to-noise ratio, and
Eq. (115) may be written

Adaptive nulling is achieved because the interference
eigenvalues INRi are larger than the noise; therefore, di-
viding any component of the steering vector in the inter-
ference subspace by the relatively large INR reduces the
interference allowed through the adaptive filter. Note that
unless the INR is infinite, the adaptive weights are not sim-
ply an orthogonal projection of the steering vector onto the
noise subspace. The adaptive weights balance the amounts
of interference and noise power to optimize the SINR (or
probability of detection) at the adaptive filter’s output.
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Adaptive Cancellation

Though adaptive cancellation is synonymous with adap-
tive filtering, it is best identified with the adaptive filter of
Eq. (95) expressed in the following way. As discussed in the
subsection “Noise, Jammer, and Clutter Covariance Matri-
ces” above, the interference-plus-noise covariance matrix
may be expressed in the form

where C is the Cholesky decomposition of the interference
covariance. By the Sherman–Morrison–Woodbury matrix
inversion lemma (26),

Applying Eq. (118) to the adaptive weight equation (95),

The two terms in this equation provide the interpretation
of an adaptive canceler—a mainbeam R−1

nv is formed on
the target, and any interference that appears in the several
sidelobe beams R−1

nC is subtracted out.
Equation (119) implies that the optimum weight vec-

tor lies in the subspace spanned by the quiescent adaptive
weight vector R−1

nv and the subspace R−1
nC. Explaining

the appearance of the term R−1
n in Eq. (119) is instructive.

The adaptive filter output

may be expressed using either the unwhitened steering
vector v and adaptive weight vector w, or the whitened
steering vector ṽ = R−1/2

nv and whitened adaptive weight
vector w̃ = R1/2

nw. This duality encountered between
steering vectors and weight vectors arises frequently in
mathematics, physics, and engineering, where the oppo-
site conventions for transforming coordinates (whitening)
are called covariant and contravariant. The appearance of
R−1

n is now explained by the sequence of whitening the
steering vector v, then unwhitening the adaptive weight
vector w̃ = ṽ:

Preprocessing for Adaptive Filtering

The adaptive weight vector w = R−1v is derived above us-
ing direct measurements from radar elements and/or radar
pulses according to the model Eq. (81). However, it is of-
tentimes desirable to perform adaptivity on a subset of
the elements or pulses, or the outputs of radar’s beams
and/or Doppler filters. There are several important reasons
for preprocessing before adaptive filtering (26a–c) [parker
(66)]:

� It is desirable in general to eliminate as much inter-
ference as possible nonadaptively because of the extra
system complexity required for adaptive processing.
Beamformers and Doppler filters are designed to mit-
igate sidelobe interference with low sidelobes; there-
fore, it is reasonable to consider using them before

adaptive nulling. The engineering wisdom here is “do
not eliminate adaptively what you can eliminate non-
adaptively.”

� There is a loss associated with estimating the
unknown interference-plus-noise covariance matrix.
This loss, quantified explicitly in the subsection “SINR
Loss Factors” below, is essentially a ratio between the
number of adaptive degrees of freedom and the num-
ber of samples used to estimate the covariance—the
more samples, the smaller the loss. For many radar
environments, the sample support for covariance ma-
trix estimation is limited; therefore, the only way to
decrease estimation loss is to reduce the dimension
of the adaptive weight vector. This reduction can be
accomplished by adapting on a limited number of an-
tenna elements, pulses, beams, or Doppler bins.

� Radars must provide target information in real time
for all rangegates, beams, and Doppler bins. Because
the steering vector v changes for each beam and
Doppler filter (and possibly each rangegate), adaptive
radars must solve many, many matrix inverse prob-
lems in real time to computer all the different adap-
tive weight vectors. To avoid a potentially large and
infeasible computational expense, quantified in the
section “Adaptive Weight Computation” below, the di-
mensionality of the adaptive weight vector may need
to be reduced.

� Because the number of adaptive degrees of freedom
for STAP algorithms is the number of antenna ele-
ments multiplied by the number of radar pulses (po-
tentially a very large number), reduced-dimension al-
gorithms are a necessity for STAP. Fortunately, as dis-
cussed in the next section, such suboptimum STAP al-
gorithms can achieve near-optimum performance due
to the special structure of jamming and clutter inter-
ference.

Given an N-dimensional vector of radar data z, a prepro-
cessor for adaptive nulling is defined by an N-by-d matrix
T, and the d-dimensional vector z̃ of preprocessor outputs
is determined by the linear transformation

The columns of T may represent beamformers, Doppler fil-
ters, unit vectors of the form (0, . . . , 1, 0, . . . , 0)T that select
certain elements or pulses, or a space–time combination of
two of these. Given that a preprocessor T is to be used, the
adaptive weight vector w must be of the form

for some vector w̃ i.e., the weight vector must be con-
strained to lie in the subspace spanned by the columns
of T. From Eq. (101), the constrained SINR is

As in the unconstrained case, the SINR is optimized by the
vector
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Equations (123) and (125) imply that the optimum con-
strained adaptive weight vector is

The computation of this weight vector is interpreted as con-
sisting of the following three steps:

whereby a preprocessing steering vector is formed, an
adaptive weight vector is formed in the preprocessor space,
and a constrained adaptive weight vector is formed in the
full space.

Note that the constrained weight vector is in general
suboptimum compared with the fully adaptive weight vec-
tor w = R−1v. Nevertheless, one important consequence of
Eq. (126) is that any preprocessor T satisfying the property

yields a reduced dimension adaptive weight vector achiev-
ing the same performance as the fully optimum adaptive
weight vector w = R−1v (e.g., take T = R−1v). In particular,
Eq. (119) imples that

yielding the important fact that fully optimum perfor-
mance is achieved using the reduced-dimension preproces-
sor

Recall that C is any matrix whose columns span the in-
terference subspace Ui. The engineering interpretation of
these facts is that one should design a preprocessor whose
columns point to as much of the steering-vector direction
and interference directions as possible.

Adaptive Degrees of Freedom and Nulling Performance

The number of adaptive degrees of freedom, that is, the
number N of elements in the adaptive weight vector w =
(w1, w2, . . . , wN )T, sets a fundamental limit on the perfor-
mance of adaptive processing. Because the dimension of
the space of vectors perpendicular to w,

has dimension N − 1, a weight vector with N adaptive de-
grees of freedom may null completely at most N − 1 inde-
pendent interference sources. Equivalently, if the interfer-
ence rank is equal to N, there will be unnulled interference
for any adaptive weight vector of dimension N.

Constrained Adaptive Weights

In addition to the adaptive weights constrained to lie in a
given subspace, considered in the subsection “Preprocess-
ing for Adaptive Filtering” above, it is also often desirable

to either constrain the gain of w on a particular steering
vector t (52), i.e.,

or to constrain the output interference-plus-noise power,
i.e.,

or to constrain the output noise power of the weight vector,
i.e.,

Satisfying the gain constraint of Eq. (134) is trivial: for
any weight vector w, use instead the weight vector

The weight vector of Eq. (137) with w = R−1t is often called
the minimum-variance distortionless response (MVDR)
beamformer because it provides unit (“distortionless”) gain
on the target steering vector and minimizes the variance
of its output.

Constraining the output interference-plus-noise power
to unity is similarly trivial; for any weight vector w, use
instead the weight vector

A weight vector optimizing the SINR and satisfying the
output noise power constraint of Eq. (136) may be obtained
by applying the method of Lagrange multipliers to the
problem

The augmented function to be optimized may be expressed
as

where λ and λδ are Lagrange multipliers and an equivalent
expression for |wHv|2 has been used. Differentiating F with
respect to wH yields the generalized eigenvalue problem

The only nontrivial solution to Eq. (141) is

To satisfy both the interference-plus-noise and the noise
output power constraint, this weight vector must be scaled
similarly to Eq. (138) and an appropriate value for δ must
be found.

Diagonal Loading

In practice the sample covariance matrix R̂ is used to form
the adaptive weight vector as in Eq. (74). The eignevalue
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decomposition of R̂ is

[cf. Eq. (114)], where it assumed that the noise covariance
Rn is known and that the eigenvalues are sorted so that λ̂1

≥ λ̂2 ≥ ··· ≥ λ̂N . In terms of these estimated eigenvalues λ̂i

and estimated eigenvectors ûi , the adaptive weight vector
ŵ = R̂−1v is

It is a fact that for sample covariance matrices formed
with K Gaussian random vectors [such matrices are said to
be Wishart-distributed (27)], the smallest noise eigenvalue
is approximated by the value (28)

for large N and K ≥ N. Equation (145) indicates how a small
sample support may yield poor adaptive performance. Ide-
ally, the noise eigenvalues are all unity as in Eq. (113);
however, for K = 2N, say, the smallest noise eigenvalue will
be approximately − ≈ −11 dB. When this noise eigen-
value is inverted in Eq. (195), the component of the steering
vector in the direction of the corresponding noise eigenvec-
tor is erroneously scaled by 11 dB, instead of the correct
scaling of 0 dB. Similarly, the component of the steering
vector in the entire noise subspace is scaled incorrectly.
The result is an adaptive weight vector possessing very
high sidelobes.

To correct this problem and the high sidelobes it causes,
an adaptive weight vector with diagonal loading

is formed. This procedure is so called because the diagonal
of the whitened sample covariance matrix R−1/2

nR̂R−1/2
n

is “loaded” by the term δI. Diagonal loading adds the con-
stant δ to all the eigenvalues, so that the diagonally loaded
adaptive weight vector becomes

If the typical δ = 5 dB to 10 dB of diagonal loading is used
(29), the small (less than 0 dB) noise eigenvalues become
unimportant, and the component of the steering vector in
the noise subspace is scaled almost uniformly by 1/δ. In ef-
fect, diagonal loading raises the noise floor by the factor 1 +
δ. While an adaptive weight vector formed using diagonal
loading will yield good performance against strong inter-
ference (large interference eigenvalues), its performance
against weaker interference (small interference eigenval-
ues) will be degraded (30) [Li 2003 ].

Diagonal loading (DL) may also be viewed in the follow-
ing ways:

� DL incorporates prior knowledge about the noise co-
variance to improve the quiescent (interference-free)

adaptive weight response.
� DL provides a tradeoff between nonadaptive steering

vectors (δ large) and fully adaptive weight vectors (δ
small).

� DL constrains the length of the adaptive weight vec-
tor as in Eq. (142) to counteract the effects of poorly
estimated noise eigenvalues.

Figure 7 illustrates the clutter eigenvalues found in
the PRI-staggered post-Doppler STAP algorithm described
in the sub-subsection “Element-Space Post-Doppler STAP”
below for the Mountaintop (31) scenario. The clutter sub-
space dimension is seen to be about 20, which is above the
rank of about 16 predicted by Brennan’s rule (Eqs. (56) and
(151) for N = 14,Kt = 16,andβ = 0.93) because the array axis
is not aligned with the velocity vector, violating a key as-
sumption. Sample support of twice the number of degrees
of freedom was used for the sample covariance matrix; the
smallest eigenvalue is above the −11 dB predicted by Eq.
(145) because the ideal covariance matrix is not white.

SPACE–TIME ADAPTIVE PROCESSING

Introduction

Space–time adaptive processing (STAP) (3,4,11–13),
[Guerci 2003], [Steinhardt 2000] is used to mitigate clut-
ter and jammer interference in airborne radar. Because
ground clutter has a spatiotemporal dependence—clutter
to the front of the aircraft has a positive Doppler shift and
clutter to the rear has a negative shift—a two-dimensional
filter utilizing both these dimensions is required. Such a fil-
ter is obtained from the adaptive weight vector w = R−1v
of Eq. (72) if v is a space–time steering vector of the form
described above in the sub-subsection on that subject and
R is a space–time covariance matrix of the form described
in the subsection “Noise, Jammer, and Clutter Covariance
Matrices” above. However, this full space–time dimension
approach is impractical for several reasons:

� Inverting the (estimated) covariance matrix requires
on the order of (MN)3 real-time floating-point opera-
tions, where M is the number of radar pulses and N is
the number of independent antenna elements. This is
prohibitively expensive for real-time operations even
for modestly sized radars that use tens of pulses and
tens of elements.

� Estimating the covariance matrix introduces an SINR
loss proportional to the ratio of the number of adap-
tive degrees of freedom to the sample support (see the
next section). The large number of degrees of freedom
found in full-dimension STAP requires a correspond-
ingly large number of samples to achieve low estima-
tion losses, and the sample support is typically lim-
ited.

� As will be seen in this section, the special struc-
ture of clutter interference allows for a family of
reduced-dimension STAP algorithms that achieve
near-optimum performance using a small fraction of
the full-dimension degrees of freedom. Reducing the
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Figure 7. Clutter eigenvalues of the ideal, sample, and diagonally loaded covariance matrices from the PRI-staggered post-Doppler STAP
algorithm described in the sub-subsection “Element-Space Post-Doppler STAP” for the Mountaintop (31) scenario.

dimension of adaptive algorithms reduces the cost and
complexity of the processor used to implement them.

� Preprocessing with Doppler filters or beamformers
eliminates some interference nonadaptively, which
may simplify the system complexity required for the
adaptive processor.

Practical STAP algorithms are based upon the prepro-
cessor approach described in the subsection “Preprocess-
ing for Adaptive Filtering” above for a specific choice of a
space–time preprocessor matrix T. In all cases, the choice of
this matrix is based upon a generalization of the straight-
forward physical principle that the angle- and Doppler-
dependent clutter may be canceled by taking the differ-
ence between clutter measurements at two separate points
in space and time. The block diagram for the STAP radar
signal-processing chain is illustrated in Fig. 8. Real-time
implementation of STAP methods demands high perfor-
mance front-end signal processing and computing archi-
tectures [Martinez (64)], [Martinez (63)], [Martinez (62)].

STAP algorithms are compared by examining the SINR
loss they achieve (see the sub-subsection “SINR and SINR
Loss” above). Because pulse–Doppler radars operate by
transmitting a beam of energy in a given direction, then
examining the radar echoes for the presence of targets at
any speed, the SINR loss is plotted as a function of tar-
get Doppler frequency at a fixed direction of interest. The
minimum detectable velocity is then derived from this plot.

Sample support for covariance matrix estimation is ob-
tained from the radar’s rangegates. The operating assump-
tion is that the interference-plus-noise statistics are in-
dependent and identically distributed over these ranges,
so that the corresponding sample covariance matrix accu-
rately represents the ideal covariance. Of course, ground
clutter is not so ideally homogeneous, and modified train-
ing strategies are necessary to solve the problems intro-
duced by this fact (32, 33). The data available to the STAP
processor are conveniently represented as a cube (Fig. 9)
whose dimensions represent the independent antenna ele-
ment outputs, the radar pulses, and the radar range gates
to be used for covariance matrix estimation.

STAP Algorithm Taxonomy

STAP algorithms may be classified using Ward’s taxon-
omy (12) by the dimension in which adaptivity occurs. The
natural choices for adaptive degrees of freedom in a pulse
Doppler radar are pre-Doppler versus post-Doppler (adapt-
ing on pulses versus adapting on Doppler bin outputs) and
element space versus beam space (adapting on elements
versus adapting on beamformer outputs). All four combi-
nations of these two choices are possible (Fig. 10).

Each STAP algorithm is defined by choosing one of these
quadrants and the subset of elements or beams and pulses
or Doppler filter banks used for adaptivity (i.e., the choice
of a space–time preprocessor matrix T), as well as choice
of beamformers and Doppler filters. This design flexibility
allows for many different STAP algorithms, each of whose
performance is dependent upon specific radar system pa-
rameters. Oftentimes, the radar’s entire spatial aperture is
used for adaptive degrees of freedom, and temporal adap-
tivity is introduced using time-varying sub-CPIs. We shall
describe one representative algorithm per quadrant; re-
sults are shown in Figs. 11 and 12. Ward (12) provides a
more complete compilation.

Element-Space Pre-Doppler STAP. Element-space pre-
Doppler STAP adapts over a sequence of time-dependent
sub-CPIs. Given an M-pulse CPI, space–time adaptive fil-
ter outputs are computed for all elements over a sliding
window of sub-CPIs with length-Kt pulses, resulting in M′ =
M − Kt + 1 adaptive filters. These M′ adaptive filter outputs
are then coherently combined using an M′-pulse Doppler
filter. Adaptation over sub-CPIs can mitigate interference
that varies faster than the CPI length.

Expressed using matrices, the adaptive weight vector
for this STAP algorithm is
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Figure 8. STAP radar signal-processing chain.

Figure 9. STAP radar data cube.

Figure 10. STAP algorithm taxonomy (12).

Figure 11. SINR loss for the STAP algorithms considered.

where
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Figure 12. Adaptive weight response for the STAP algorithms considered. Compare these response patterns with those shown in Figs. 1
and 5.

vt′ (fd) is a tapered Doppler filter of the form of Eq. (26),
vs(φ, θ) is a beamformer of the form of Eq. (21) (both may be
tapered for sidelobe control as described in the subsection
“Tapered Steering Vectors” above), and ek represents the
kth canonical unit vector (0, . . . , 0, 1, 0, . . . , 0)T (unity in
the kth element, zeros elsewhere), IN represents an N-by-N
identify matrix, and each boldface zero represents an N-by-
1 block of zeros. The sub-CPI steering vector ṽt is given by
the equation

where t = tt(fd) ⊗ ts(φ, θ) is the true target steering vector,
which assures that in the absence of interference, the sig-
nal power |wHt|2 is maximized over all possible sub-CPI
steering vectors. There are several other choices for ṽt: a
binomial taper (12) [e.g., t = (1 −2 1)T for Kt = 3] that is
independent of Doppler frequency, or a Doppler-dependent
optimized adaptive taper (34). Experience indicates that
diagonal loading must be used with this algorithm when
the sample covariance matrix R̂ is used, to avoid a prob-
lem associated with coherently combining the M′ adaptive
filters whose null positions are not colocated.

Note that this pre-Doppler STAP algorithm does not
take the form of the optimum constrained adaptive weight
vector in Eq. (126). Its adaptive weight vector is a coher-
ent combination of the outputs of many suboptimum adap-
tive weight vectors. These outputs are not statistically in-
dependent, because they are formed using sub-CPI data
with overlapping pulses; therefore, this pre-Doppler STAP
algorithm does not satisfy the assumptions of the subsec-
tion “Adaptive Radar Hypothesis (Unknown Covariance)”
above and the next section on adaptive detection.

If R is a Toeplitz–block-Toeplitz clutter covariance ma-
trix with rank N + β(M − 1), then the reduced dimension
covariance TH

kRTk is also Toeplitz–block-Toeplitz and has

rank

Element-Space Post-Doppler STAP. Element-space post-
Doppler STAP adapts over all elements and a subset of
Doppler filter outputs. In this class of STAP algorithms,
the order of “adapt, then filter” used in pre-Doppler algo-
rithms is reversed. In the case of the PRI-staggered post-
Doppler (or multiwindow post-Doppler) STAP algorithm, a
time-dependent series of Doppler filter outputs are formed
from a sequence of sub-CPIs, then space–time adaptivity
is performed using these Doppler outputs at every an-
tenna element. Because pulse Doppler radars generally
have very good pulse-to-pulse stability,Doppler filter banks
with very low sidelobes (typically 60 dB or better) may
be constructed, allowing post-Doppler STAP approaches
to nonadaptively eliminate clutter interference away from
the Doppler cell of interest.

This “filter, then adapt” procedure may be formulated
using the preprocessing approach described in the sub-
section “Preprocessing for Adaptive Filtering” above. The
adaptive weight vector

is determined by the space–time preprocessing matrix

The Doppler filter vt′ used to construct the preprocessor T
uses M′ = M − Kt + 1 PRI taps, where Kt is the number of
PRI staggers; T is an M N-by-KtN matrix. The vector vt′

is a tapered temporal steering vector of the form of Eqs.
(26) and (34). The space–time steering vector v(fd, φ, θ) is
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given by Eq. (31) and may also have a space–time taper for
sidelobe control.

If R is a Toeplitz–block-Toeplitz clutter covariance ma-
trix with rank N + β(M − 1), then the reduced dimension
covariance THRT is also Toeplitz–block-Toeplitz and has
rank

Beam-Space Pre-Doppler STAP. Beam-space pre-Doppler
STAP algorithms are a generalization of the earliest non-
adaptive space–time technique used to mitigate clutter
interference—an airborne MTI (AMTI) technique called
displaced phase-center antenna, or DPCA (3). DPCA works
by forming a right beam along the platform’s velocity vec-
tor, then forming a left beam one PRI later, and subtracting
the left beam from the right beam. If the PRF is chosen
correctly, the phase centers of the two beams will coincide
because the platform is moving from left to right, and the
resulting filter places a space–time null along the clutter
interference.

In the general adaptive case, a time sequence of multiple
independent beams are focused on the clutter. For example,
the displaced phase center pre-Doppler STAP algorithm
uses a sliding subaperture of beamformers. As with the
PRI-staggered post-Doppler algorithm, it may be formu-
lated using the preprocessing approach of the subsection
“Preprocessing for Adaptive Filtering” above. Its adaptive
weight vector is given by Eq. (155) using the preprocessing
matrix

The beamformer vs′ used to construct the preprocessor T
uses a subaperture of length N′ = N − Ks + 1, where Ks is
the number of beams; T is an M N-by-M Ks matrix. The
vector vs′ is in general a tapered spatial steering vector
of the form of Eqs. (21) and (34). The space–time steering
vector v(fd,φ, θ) is given by Eq. (31) and may also be tapered
for sidelobe control.

Note that the displaced phase-center pre-Doppler STAP
algorithm is the spatial dual of the PRI staggered post-
Doppler algorithm of the preceding sub-subsection. Unlike
post-Doppler algorithms, which can exploit low Doppler
sidelobes before adaptation, this pre-Doppler algorithm
may have to contend with higher clutter levels because it
is difficult to construct antennas whose beamformers’ side-
lobes are comparable to those of Doppler filter banks.

Finally, if R is a Toeplitz–block-Toeplitz clutter covari-
ance matrix with rank N + β(M − 1), then the reduced-
dimension covariance THRT is also Toeplitz–block-Toeplitz
and has rank

Beam-Space Post-Doppler STAP. Beam-space post-
Doppler STAP algorithms combine beamformer and
Doppler filter outputs adaptively. Because adaptation is
typically accomplished with just a few beams and Doppler
filter banks, these algorithms have the potential to greatly
reduce the adaptive degrees of freedom. One straightfor-
ward method for constructing a beam-space post-Doppler
algorithm is to combine a beamspace pre-Doppler al-
gorithm with a element-space post-Doppler algorithm.
For example, if the displaced phase center algorithm
of the preceding sub-subsection and the PRI-staggered
post-Doppler algorithm of the sub-subsection before that
are combined, the resulting preprocessor has the form

[cf. Eqs. 156 and 158]. The adaptive weight vector is then
given by Eq. (155).

If R is a Toeplitz–block-Toeplitz clutter covariance ma-
trix with rank N + β(M − 1), then the reduced dimension
covariance THRT is also Toeplitz–block-Toeplitz and has
rank

ADAPTIVE DETECTION

Radar detection performance is measured by the probabil-
ity of detecting a target given a fixed probability of false
alarm. In the subsection “Detection Optimality” above it is
seen for the case of known covariance matrix R that max-
imizing the PD yields the likelihood ratio detection test of
Eq. (91) involving the adaptive weight vector w = R−1v.
In practice, the covariance matrix is unknown and must
be estimated. In Neyman–Pearson theory, the PD is max-
imized if the likelihood ratio test is used; however, as this
test involves the unknown covariance matrix, we do not
have an optimum detection criterion for practical scenar-
ios. The difference between detection tests involving esti-
mates of the unknown covariance matrix and the optimum
test of Eq. (91) is viewed as an estimation loss due to the
unknown covariance. This estimation loss is comparable to
the CFAR loss encountered in nonadaptive radars (14–53).
Because we do not have an optimality criterion to drive our
choice of adaptive detector, the selection is done with the
following goals in mind:

� Low Estimation Loss The estimation loss, compared
to the optimum known covariance detection perfor-
mance, should be small, say a few decibels or less.

� CFAR Property The detection performance should be
independent of the interference and noise scenario,
that is, it should be independent of the underlying
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covariance matrix R.
� Robustness to Model Mismatch The detection perfor-

mance should be robust to modeling errors such as
steering vector mismatches to the true target, inclu-
sion of targets in the covariance matrix estimate, and
non-Gaussian interference.

The estimation loss may be approximated indepen-
dently of a specific adaptive detector by computing the
average SINR obtained from using the sample covariance
matrix; this approach is presented in the following subsec-
tion. The detection performance of two important adaptive
detectors—the generalized likelihood ratio test (GLRT)
and the adaptive matched filter (AMF)—is presented in
the subsection after.

SINR Loss Factors

In their influential paper on adaptive filtering, Reed et al.
(36) derived the distribution of the amount of SNR lost
when an adaptive filter is constructed using a sample co-
variance matrix. Boroson (37) generalized this loss factor
to include the effects of steering vector mismatch and tar-
gets in the training data. A related loss factor will also be
seen to play an essential role in the GLRT and AMF adap-
tive detectors discussed below.

Mismatched Steering Vectors. Let t be the true target
steering vector and v be the assumed steering vector. A
mismatch can arise from modeling errors, insufficient in-
formation about the target’s angle or velocity, or the use of
tapered steering vectors for sidelobe control in the adaptive
filter design. If a matched filter w = R−1v is formed with
the assumed steering vector v and the (given) covariance
matrix R, then SINR of the matched filter as a function of
v and t is

Let t denote the maximum achievable SINR, i.e., SINR(t,
t). For a mismatched steering vector v, t is decomposed via
the Pythagorean theorem into the SINR in the direction of
v and its orthogonal complement. That is,

The steering vector mismatch is measured by the angle

The SINRs x, y, and t will be important in the characteri-
zation of the adaptive detector’s performance.

The RMB–Boroson Loss Factor. The SINR of an adaptive
weight vector ŵ = R̂−1v is [by Eq. (101)]

where R̂ is the sample covariance matrix of Eq. (73). Be-
cause the sample covariance matrix is assumed to be de-
rived from random data, this SINR is also a random vari-
able. If this random SINR is normalized by its maximum
value |a|2tHR−1t [obtained from the Cauchy–Schwartz in-
equality; cf. Eq. (102)], we obtain the random variable

that takes values between zero and unity. The random vari-
able ρ is called the SINR loss factor. It indicates the random
SINR loss due to target mismatch and estimation. As the
sample support K becomes large, R̂ approaches R, and ρ
approaches cos2 θ = x/t.

The estimation loss may be approximated by the aver-
age value of ρ (37, 38),

In the case of perfectly matched steering vectors (θ = 0),
the average loss factor is

This is the well-known RMB estimation loss (36) and yields
the standard rules of thumb that a sample support of K =
2N yields about a 3 dB loss (Fig. 13), and a sample support
of K = 5N yields about a 1 dB loss. In this matched case, ρ
has the central beta distribution

where

is an integer parameter introduced for convenience. There
is a comparable factor for the estimation loss using the
sample covariance matrix [Smith (75)].

The Kelly Loss Factor and Its Distribution

In analyzing the performance of the GLRT detector dis-
cussed in the sub-subsection “GLRT Test” below, Kelly (39–
41) introduced the loss factor

where z̃ and R̃ represent the whitened primary data vector
z and whitened sample covariance matrix R̂ projected into
the space perpendicular to the whitened steering vector v.
The loss factor has a noncentral beta distribution, given by
the expression

f P(α) = fB(α; L+ 1, N − 1)e−y1F1(K + 1; N − 1; (1 − α)y)(169)

where fB is defined in Eq. (171), and
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Figure 13. The probability of detection versus SNR for the MF, AMF, and GLRT adaptive detectors (N = 42, K = 2N, mismatch = 22◦, PFA
= 10−6). The SINR loss of about 4 dB is approximately consistent with the SINR loss of 3.5 dB predicted by Eq. (169).

is the confluent hypergeometric function. Note that in the
case of matched steering vectors (noncentrality parameter
y = 0), Kelly’s loss factor � and the RMB loss-factor ρ are
identically distributed.

Adaptive Detectors

Generalized Likelihood Ratio. Using the generalized
likelihood ratio test (GLRT) approach (24) under a mul-
tivariate complex Gaussian assumption, Kelly (39, 40) de-
rived the equivalent GLRTs

where

The random variable � lies in the range [1, ∞), and � lies
in the range [0, 1). Whitening these equations shows that
the GLRT is independent of the covariance matrix R, i.e., it
has a constant false alarm rate (CFAR property). The tests
are equivalent—the random variables � and � are related
by the equation

it is the distributions of these random variables that deter-
mine the performance of the GLRT detector.

By a sequence of whitening, unitary, and other transfor-
mations, it can be shown (39–41) that the GLRT test of Eq.
(176) reduces to the test

where ϒ is a complex Gaussian random variable condi-
tioned on the loss factor � discussed in the sub-subsection
“The Kelly Loss Factor and Its Distribution” above, λ is the

threshold used in Eq. (176), and T is a chi-squared random
variable with L = K − N + 1 complex degrees of freedom.
The conditional distribution of ϒ is CN(0, 1) under H0 and
CN((a/|a|)(x�)1/2, 1) under H1, given the loss factor �. There-
fore, the GLRT test is equivalent to the test

which yields a noncentral F distribution (27) conditioned
on the loss factor �. This test is comparable to a classical
CFAR detector (42).

The conditional density of the GLRT is given by the non-
central F distribution

where

The GLRT’s probability of detection,

may be obtained numerically by series methods (39, 40)
or by moment methods (43). The GLRT’s PFA, however, is
given by the closed-form expression

Adaptive Matched Filter. The AMF test (44) [Pulsone
(68)], [Pulsone (67)] is obtained by the ad hoc procedure
of replacing the known covariance matrix R with the sam-
ple covariance matrix R̂ in the Neyman–Pearson test of Eq.
(91). The AMF test takes the form
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By a similar procedure to the GLRT test, the AMF test may
be recast in the form

where the random variables ϒ, T, and the loss-factor � are
distributed identically to those in Eq. (180). Therefore, the
AMF test is equivalent to the test

which yields a noncentral F distribution (27) conditioned
on the loss factor �. As with the GLRT, this test is compa-
rable to a classical CFAR detector.

The conditional density of the AMF test is given by the
noncentral F distribution

where f�(1 + α|�) is the GLRT’s conditional density given
in Eq. (182). The AMF’s probability of detection

may be obtained numerically by integration methods (44)
or by moment methods (43). The AMF’s probability of false
alarm, however, is given by the closed-form expression

where

is the Gauss hypergeometric function and Pochammer’s
symbol (a)k is defined in Eq. (175).

TheAMF test is seen in Fig. 12 to slightly outperform the
GLRT for high SNRs. Furthermore, if there is a large side-
lobe target present in the primary data vector z (which has
not been modeled here), the term zHŜ−1z in the denomina-
tor of the GLRT test of Eq. (172) will also be large, desensi-
tizing the GLRT and providing robustness against detect-
ing strong sidelobe targets.TheAMF test does not have this
robustness. These detectors also retain near-optimality for
certain classes of non-Gaussian interference, as well as
other non-ideal assumptions [Richmond (71)], [Sangston
(72)], [Kraut (61)].

ADAPTIVE WEIGHT COMPUTATION

Adaptive weight computation requires inverting a sam-
ple covariance matrix into a steering vector as shown in
Eq. (74). Because radars must operate in real time while
searching over a large combination of ranges, Doppler fre-
quencies, and angles, and because many radar platforms
can support only limited weight and power demands, the
cost, accuracy, and stability the algorithm used for adap-
tive weight computation are all important issues, as well

as the size of the processor used to implement the algo-
rithm. In the past, the limited speeds and large weight and
power requirements of digital processors forced implemen-
tors of real-time adaptive weight computation to use analog
methods such as Widrow’s LMS algorithm (4–6,8). Modern
processor developments allow this computation to be per-
formed digitally [Martinez (64)], [Martinez (63)] (45a–45g).

Voltage-Domain versus Power-Domain Methods

The adaptive weight computation can be performed using
either the radar data themselves (the preferred choice) or
the square of the radar data. The sample covariance matrix
of Eq. (73) may be written in two different ways:

where Z = (z1 z2 ··· zK ) is an N-by-K matrix whose columns
zk (k = 1, . . . , K) are independent measurements of the
interference in the absence of target returns. The direct
approach for adaptive weight computation—forming the
sample covariance matrix R̂ explicitly, then solving the lin-
ear system R̂ŵ = v—is undesirable for two reasons. First
and most importantly, the radar data must be squared;
therefore, the processor must accommodate computations
involving twice the dynamic range of the data themselves.
Second, the numerical error associated with this compu-
tation is proportional to the square of the radar data’s
dynamic range—typically a large number. The direct ap-
proach is said to be a power-domain algorithm because it
is computed by squaring the radar data. The radar data
themselves are said to exist in the voltage domain because
they represent a sampled matched filter output.

Algorithms that use the radar data in the matrix Z di-
rectly are said to be voltage-domain algorithms. Voltage-
domain approaches are highly preferred because the pro-
cessor’s dynamic range need only match that of the data,
and the numerical error associated with these approaches
is proportional to this dynamic range.

QR Decomposition

The QR decomposition is a voltage-domain method for solv-
ing many adaptive weight vectors. It relies on the fact that
any N-by-K (N ≤ K) matrix Z may be written

where L is an N-by-N lower triangular matrix and Q is
an N-by-K matrix with orthonormal rows such that QQH

= IN . [The QR decomposition is named for its traditional
form A = QR, where A is an arbitrary matrix, Q is a unitary
matrix, and R is an upper triangular matrix. We use the
lower triangular form of Eq. (194) for consistency with Eq.
(193).] This decomposition may be computed using numer-
ically stable methods such as Householder reflections or
Givens rotations (26) and costs about 8N2K real floating-
point adds and multiplies. It is amenable to parallel imple-
mentation on a multiprocessor computer architecture.

Expressed using the QR decomposition of Eq. (194), the
sample covariance matrix of Eq. (193) is given by the equa-
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tion

and the adaptive weight vector of Equation (74) is given by

Note that the Q part of the QR decomposition is not re-
quired; all information about the sample covariance ma-
trix is stored in the matrix L. Because L is lower triangu-
lar, each matrix inversion may be performed using forward
substitution, and only costs about 4N2 real floating-point
adds and multiplies. Furthermore, this low-cost operation
may be repeated for many steering vectors v pointed at
different angles or Doppler frequencies.

Updated QR Decomposition

Given the QR decomposition Z = LQ of the radar data ma-
trix Z = (z1 z2 ··· zK ), it is sometimes necessary to update
the matrix L if another measurement zK+1 is appended to
Z, or if the measurement z1 is deleted. This need arises
when the trainig data are collected from a sliding range
window around the rangegate of interest, perhaps with a
few guard ranges deleted near this target range. As the
radar steps through each rangegate looking for the pres-
ence of a target, radar data are added to the front of the
training window and deleted from the rear. In this case ef-
ficient updating algorithms for the QR decomposition are
used (26, 46) that cost on the order of N2 operations per
addition or deletion.

Voltage-Domain Diagonal Loading

The benefits of diagonal loading (see the above subsection
with that title) may be realized with a straightforward trick
in the voltage domain. Instead of computing the QR decom-
position of the radar data matrix Z as in Eq. (194), compute
the QR decomposition of the matrix

where δ is the diagonal loading level and C is any matrix
such that CCH = Rn, i.e., a Cholesky decomposition of the
noise covariance matrix. Equation (197) implies that

so that using this L in Eq. (196) yields the diagonally loaded
weight vector of Eq. (146). Note that in many instances the
noise covariance is white, so that C = I may be used. In
cases where the noise covariance is white and the prepro-
cessing matrix T is used, as discussed above in the subsec-
tion “Preprocessing for Adaptive Filtering” and the section
“Space–Time Adaptive Processing,” in the matrix C = TH

may be used, or the L part of the QR decomposition of TH

[as defined in Eq. (194)].

ADAPTIVE RADAR ESTIMATION

The final step of the adaptive radar signal-processing chain
is the determination of a target’s position and velocity. If

the target SINR is high, these parameters may be esti-
mated accurately; if it is low, then our estimates will be less
accurate. The Cramér–Rao bound (47–49) [Van Trees (76)],
[Dogandzĭć (56)], [Smith (74)]. provides the best accuracy
achievable by any unbiased estimator of the signal param-
eters and therefore provides a fundamental limit on radar
accuracy. At lower SINRs, resolution of closely-spaced tar-
gets affects estimation accuracy [Smith (74)], [Richmond
(70)], [Richmond (69)].

Cramér–Rao Bounds for Estimation Accuracy

Given the probability distribution f(z|a, p) of the radar
measurements z that depends upon an unknown complex
amplitude a and the P-vector of real parameters p = (p1,
p2, . . . , pP )T, the Cramér–Rao bound of the parameter pk is
given by the inequality

where p̂k is any unbiased estimator of pk and Cp is the
lower right P-by-P block from the inverse of the Fisher in-
formation matrix

corresponding to the unknown parameters in p. The
derivatives with respect to the complex amplitude a and its
conjugate are defined below Eq. (105). Assume the known-
covariance statistical model for adaptive radar of Eq. (82)
for a space–time steering vector v(p) where p = (fd, φ, θ)T

is a parameter vector containing the target parameters.
Given this model, Equation (200) yields

[cf. Equation (110)] where

and vp is the N-by-3 matrix of derivatives

Computing the block of G−1 corresponding to p yields

where

Bounds on the variances of any unbiased estimators of fd,
φ, or θ are given by the diagonal elements of Cp. In gen-
eral any real target parameters may be used in Eq. (205)
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without modification of the other formulae provided above.
Furthermore, given the change of variables

Cramér–Rao bounds on the estimates of qk are given by
the diagonal of the matrix

where

is the Jacobian of the given change of variables. Typically,
the one-dimensional case of Eq. (209) required for chang-
ing the units of an estimate is the most frequently encoun-
tered.

If the target amplitude a were known, then these vari-
ances would simply be bounded by the diagonal elements
of the matrix � in Eq. (202). However, the fact that the
target amplitude is unknown causes a loss in estimation
accuracy represented by the matrix M in Eq. (207). For the
standard case of a uniform linear array [Eq. (24)] in white
noise with known Doppler and elevation angle, Eq. (206)
reduces to the well-known result

If one desires a bound on the angular standard deviation
in beamwidths, σu must be divided by 2π, resulting in the
rule-of-thumb that a 12 dB SNR is required for 10-to-1
beamsplitting. If one desires a bound on the angular stan-
dard deviation in degrees, Eq. (209) and the change of vari-
able u = sin φ′ from Eq. (24) must be used, resulting in the
relationship σφ′ = (180◦/π)|sec φ′|σu.

These bounds must be evaluated for a particular choice
of amplitude a whose magnitude is determined by a desired
signal-to-noise ratio

and the parameter vector p set at some nominal values of
interest. The SNR is specified instead of SINR = |a|2vHR−1v
because we wish to compute bounds that represent noise-
limited performance. If, on the other hand, the SINR were
specified (at, say, a detection threshold of 12.5 dB), and the
signals were very close to an interference source, then we
would be forced to scale |a| by a large amount to achieve
the desired SINR, resulting in an unrealistically high SNR
and unrealistic bounds.

Joint Angle–Doppler Estimation

Nonadaptive radars typically estimate a target’s angle and
Doppler parameters using the monopulse method (50),
which works by forming a sum beam [analogous to the stan-
dard steering vectors of Eq. (24) or (26)] and a difference
beam [analogous to the derivatives of these steering vec-
tors as in Eq. (205)]. The sum beam, which has full coher-
ent gain in the hypothesized target direction, is sensitive
to the target’s presence but insensitive to its position. The
difference beam, which places a null in the hypothesized

target direction, is sensitive to the target’s position but in-
sensitive to its presence. Therefore, using both the sum and
difference channels provides information about a target’s
presence and position.

In general, angle and Doppler estimation is accom-
plished by forming a dense grid of (adaptive) beams, then
choosing the angle–Doppler beam combination with the
largest output power. Estimation performance is deter-
mined by the log likelihood surface of Eq. (91) parametrized
using fd, φ, and θ. The maximum likelihood estimator is

For actual radar problems when the covariance R is un-
known, the sample covariance matrix R̂ may be used, as in
the AMF detector.

If the likelihoods of a target’s angle and Doppler were
independent of each other (Fig. 14, left-hand side), then
these parameters could be estimated independently using
a monopulse-like method. However, space–time adaptivity
for clutter nulling yields distorted space–time likelihood
surfaces for targets near the interference (Fig. 14, right-
hand side). Angle and Doppler estimation performed inde-
pendently of each other will yield inaccurate, biased esti-
mates; therefore, joint estimation algorithms (51) must be
considered. See also Ref. (54).

CONCLUSIONS

For effective surveillance against modern targets, radars
must operate near their noise-limited performance and
cannot be blinded by electromagnetic interference caused
by jamming or clutter. Space–time adaptivity provides an
effective method for robustly mitigating such interference.
Incorporating adaptivity into the radar’s signal processing
chain affects all its traditional tasks of receiving signals,
examining them for the presence of targets, and estimat-
ing the speeds and position of targets. Predictions of radar
performance must also include adaptivity. These predic-
tions may be made using simple physical and statistical
assumptions about the radar and its environment. Based
upon such assumptions, this article describes the perfor-
mance of adaptive algorithms used to detect and estimate
targets in the presence of jamming and radar ground clut-
ter. Both the best possible performance and that achieved
by practical algorithms is provided. The results provided
are general and allow for the analysis of a very broad class
of radar parameters.

With the goal of improving system performance in cir-
cumstances beyond the relatively simple scenarios as-
sumed within this article, adaptive methods are being used
to address increasingly challenging applications and envi-
ronments. Current areas of research focus on the possibil-
ity of exploiting a prior knowledge, compiled databases,
and a Bayesian framework when faced with the chal-
lenge of rapidly varying interference environments [Guerci
(58)], [Haykin (60)]. In applications where there is mul-
tipath propagation, the spatial diversity of the multiple-
input multiple-output (MIMO) channel may provide per-
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Figure 14. The log likelihood surface [Eq. (213)] for quiescent and clutter environments (SNR = 20 dB). Space–time adaptivity distorts
the mainlobe seen on the right.

formance advantages in terms of additional sampling and
resolution [Bliss (55)], [Fishler (57)].

NOTATION

1. CN

2. Re
3. Im
4. a*
5. xT

6. zH

7. tr A
8. x ⊗ y
9. x � y

10. v
11. t
12. w
13. R
14. N
15. M
16. fd

17. PRI or Tr

18. PRF
19. CPI
20. SNR
21. CNR
22. JNR
23. SINR
24. PD
25. PFA
26. Complex N-space
27. Real part
28. Imaginary part
29. Complex conjugation of a
30. Transpose of x
31. Hermitian transpose of z
32. Trace of the square matrix A
33. Tensor (Kronecker) product of x and y
34. Schur–Hadamard product of x and y
35. Steering vector

36. Target steering vector
37. Adaptive weight vector
38. Interference-plus-noise covariance matrix
39. Number of adaptive degrees of freedom or antenna

elements
40. Number of radar pulses
41. Doppler frequency
42. Pulse repetition interval
43. Pulse repetition frequency
44. Coherent processing interval
45. Signal-to-noise ratio
46. Clutter-to-noise ratio
47. Jammer-to-noise ratio
48. Signal-to-interference-plus-noise ratio
49. Probability of detection
50. Probability of false alarm
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