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WAVELETS

Wavelets have been found to be very useful in many scientific
and engineering applications, including signal processing,
communication, video and image compression, medical im-
aging, and scientific visualization. The concept of wavelets
can be viewed as a synthesis of ideas that originated during
the last several decades in engineering, physics, and pure
mathematics. Although wavelets are a rather simple mathe-
matical tool with a great variety of possible applications, the
subject of wavelets is often introduced at a high level of math-
ematical sophistication. The goal of this article is to develop
a basic understanding of wavelets, their origin, and their rela-
tion to scaling functions, using the theory of multiresolution
analysis.

HISTORICAL PERSPECTIVE (1–14)

Prior to the 1930s, the main tools of mathematics for solving
scientific and engineering problems traced back to Joseph
Fourier (1807) with his theory of frequency analysis. He pro-
posed that any 2�-periodic function f (t) can be represented by
a linear combination of cosines and sines:

f (t) = a0 +
∞∑

k=1

(ak cos kt + bk sin kt) (1)

The coefficients a0, ak, bk are the Fourier coefficients of the
series and are given by

a0 = 1
2π

∫ 2π

0
f (t) dt (2a)

ak = 1
2π

∫ 2π

0
f (t) cos kt dt (2b)

bk = 1
2π

∫ 2π

0
f (t) sin kt dt (2c)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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After 1807, mathematicians gradually were led from the The future of wavelets depends on the possibility of appli-
cations. Wavelets have so far been limited in practical appli-notion of frequency analysis to the notion of scale analysis—
cations by their lack of compact support.that is, analyzing f (t) by creating a mathematical structure

that varies in scale. A. Haar, in his thesis (1909), was the
first to mention using wavelets. An important property of the FOURIER ANALYSIS
wavelets he used is that they have compact support, which
means that the function vanishes outside a finite interval. Time-series data have traditionally been analyzed in either
Unfortunately, Haar wavelets are not continuously differenti- the time or the frequency domain. Fourier analysis is quite
able, which limits their application. useful in identifying frequency components of a signal, but it

From the 1930s to the 1960s, several groups, working inde- cannot describe when those frequency components occurred,
pendently, researched the representation of functions using since it lacks time resolution. This is particularly important
scale-varying basis functions. By using one such function, the for signals with time-varying frequency content, as in human
Haar basis function, Paul Levy investigated Brownian motion speech and video images.
and thereby laid the foundation for the modern theory of ran- The Fourier transform is characterized by the ability to
dom processes. He found that the Haar basis function is supe- analyze a signal in the time domain for its frequency content.
rior to the Fourier basis functions for studying small and com- The transform works by first translating a function in the
plicated details in Brownian motion. time-domain into a function in the frequency domain. The sig-

Also during the 1930s, research was done by Littlewood, nal can then be analyzed for its frequency content, because
Paley, and Stein on computing the energy of a function f (t): the Fourier coefficients of the transformed function represent

the contribution of each sine and cosine function at each fre-
quency. An Inverse transform does the opposite by trans-
forming data from the frequency domain into the time do-energy = 1

2

∫ 2π

0
| f (t)|2 dt (3)

main. Although the time-series data can have infinitely many
sample points, in practice one deals with a finite time interval

Their computation produced different results when the en- using a sampling mechanism. The discrete Fourier transform
ergy was concentrated around a few points and when it was (DFT) estimates the Fourier transform of a function from a
distributed over a larger interval. This observation disturbed finite number of its sampled points. The sampled points are
many scientists, because it indicated that energy might not supposed to be typical of what the signal looks like at all other
be conserved. Later on, they discovered a function that can times. The DFT has symmetry properties almost exactly the
both vary in scale and conserve energy at the same time, same as the continuous Fourier transform. To approximate a
when computing the functional energy. David Marr applied function by samples, and to approximate the Fourier integral
this work in developing an efficient algorithm for numerical by the DFT, requires multiplication by a matrix which in-
image processing using wavelets in the early 1980s. volves on the order of n2 arithmetic operations. However, if

Between 1960 and 1980, the mathematicians Guido Weiss the samples are uniformly spaced, then the Fourier matrix
and Ronald Coifman studied the simplest elements of a func- can be factored into a product of just a few sparse matrices,
tion space, called atoms, with the goals of finding the atoms and the resulting factors can be applied to a vector in a total
for a common function and finding the construction rules that on the order of n log n arithmetic operations. This technique
allow the reconstruction of all the elements of the function is the so-called fast Fourier transform (FFT).
space using these atoms. In 1980, Grossman and Morlet re-
cast the study of quantum physics in the context of wavelets

WAVELET VERSUS FOURIER TRANSFORMusing the concept of frames. Morlet introduced the term
‘‘wavelet’’ as an abbreviation of ‘‘wavelet of constant shape.’’

The FFT and the discrete wavelet transform (DWT) are both
These new insights into using wavelets provided a totally new linear operations that generate a data structure containing
way of thinking about physical reality. log2 n segments of various lengths, usually filling it and trans-

In the summer of 1985, Stephane Mallat applied wavelets forming it into a different data vector of length 2n.
to his work in digital signal processing. He discovered a rela- The mathematical properties of the matrices involved in
tionship between quadrature mirror filters, the pyramid algo- the transforms are similar as well. The inverse transform ma-
rithm, and orthonormal wavelet bases. Inspired by these re- trix for both the FFT and the DWT is the transpose of the
sults, Y. Meyer constructed the first nontrivial wavelets. original. As a result, both transforms can be viewed as a rota-
Unlike the Haar wavelets, the Meyer wavelets are continu- tion in function space to a different domain (1). For the FFT,
ously differentiable; however, they do not have compact sup- this new domain contains basis functions that are sines and
port. In the early 1990s, Ingrid Daubechies used Mallat’s cosines. For the wavelet transform, this new domain contains
work to construct a set of orthonormal wavelet basis functions more complicated basis functions called wavelets, mother
that are perhaps the most elegant, and have become the cor- wavelets, or analyzing wavelets.
nerstone of wavelet applications today. The two transforms have another similarity. The basis

The development of wavelets is an emerging field compris- functions are localized in frequency, making mathematical
ing ideas from many different fields. The foundations of wave- tools such as power spectra (how much power is contained in
let theory have been completed, and current research is in a frequency interval) and scalegrams useful at picking out
the refinement stage. The refinement involves generalizations frequencies and calculating power distributions.
and extensions of wavelets, such as extending wavelet The most interesting dissimilarity between these two

kinds of transforms is that individual wavelet functions arepacket techniques.
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localized in space. Fourier sine and cosine functions are not.
This localization in space, along with wavelets’ localization in
frequency, makes many functions and operators using Wave-
lets sparse when transformed into the wavelet domain. This
sparseness, in turn, makes wavelets useful for a number of
applications such as data compression, feature detection in
images, and noise removal from time series.

One way to see the time–frequency resolution difference
between the two transforms is to look at the basis–function
coverage of the time–frequency plane (7,14). Figure 1 shows
a windowed Fourier transform, where the window is simply a
square wave. The square-wave window truncates the sine or
cosine function to particular width. Because a single window
is used for all frequencies in the WFT, the resolution of the
analysis is the same at all locations in the time–frequency
plane. An advantage of wavelet transforms is that the win-
dows vary. In order to isolate signal discontinuities, one
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would like to have some very short basis functions. At the
Figure 2. Daubechies wavelet basis functions, time–frequency tiles,same time, in order to obtain detailed frequency analysis, one
and coverage of the frequency plane (1).would like to have some very long basis functions. A way to

achieve this is to have short high-frequency basis functions
and long low-frequency ones. This happy medium is exactly

More precisely, it can be written as a linear combination ofwhat you get with wavelet transforms. Figure 2 shows the
scaling functions �(2 jt 	 k), which are 2	j-scaled and k/2 j-coverage in the time–frequency plane with one wavelet func-
translated version of �(t), as follows:tion, the Daubechies wavelet.

WAVELET ANALYSIS φ[ j,k](t) =
∞∑

k=−∞
pkφ(2 jt − k) (6)

Wavelets are a class of functions used to localize a given func-
tion in both space and scaling. The basic construction of wave- This is often referred to as the two-scale function for the scal-
lets is based on the family of mother wavelets �, consisting ing functions, and the sequence �pk� is called the two-scale
of almost any function defined in a finite interval. Daughter sequence of �.
wavelets are then formed by translation (b) and scaled con- Given a scaling function �, the basic assumption of multi-
traction (a). An individual wavelet can be defined by resolution analysis is that there exists another function �,

called a wavelet, such that � forms a basis for the reconstruc-
tion of �, analogously to the relation for a scaling function.φ[a,b](t) = |a|−1/2φ

�t − b
a

�
(4)

The reconstruction of the wavelet can be expressed as follows:

An example of a typical Wavelet is a � 2	j and b � ak:
ψ[ j,k](t) =

∞∑
k=−∞

qkφ(2 jt − k) (7)
φ[ j,k](t) = 2 j/2φ(2 jt − k) (5)

The two-scale relations in Eqs. (6) and (7) together are called
the reconstruction relations. Since both �(2x) and �(2x 	 1)
are in the subspace of the analyzing function, Eqs. (6) and (7)
can be combined to form the reconstruction relations:

φ(2t − l) =
∞∑

k=−∞
[al−2kφ(t − k) + bl−2kψ(t − k)] (8)

Although many classes of wavelets exist, there are two main
typical classes:

1. The wavelets defined on the real line, such as the Haar
wavelet, the Daubechies Wavelet, and B-spline wavelets
in general. Linear, quadratic, and cubic wavelets have
been studied.

2. Multiwavelets, or waveletlike functions defined on finite
intervals, such as Legendre wavelets and flatlet
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wavelets.
Figure 1. Fourier basis functions, time–frequency tiles, and cover-
age of the frequency plane (1). The interested reader is referred to Refs. 11–14.
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Haar Wavelet In general, the two-scale sequence for any scaling functions
has the property

The Haar scaling function and Haar wavelet are a very sim-
ple example to illustrated many nice properties of scaling
functions and wavelets, and are of practical use as well. The

∑
k

p2k =
∑

k

p2k+1 = 1 (17)

Haar scaling function is defined by

There is no closed form for �D
3 ; however, one can use numeri-

cal computation to draw the graph of �D
3 (1,2).

The Haar wavelet is the simplest one. It has found many
φ(t) =

{
1 for 0 ≤ x ≤ 1

0 otherwise
(9)

applications. However, it has the drawback of discontinuity.
The two-scale relation can be expressed in a summation as It consists entirely of rectangular functions and cannot repro-
shown below: duce even linear functions smoothly in finite series for practi-

cal use. On the other hand, B-spline wavelets have higher
continuity than Haar wavelets. They are more suitable for
representing any continuous function. However, the complica-

φH
2 (t) =

2∑
k=0

pkφ(2t − k) (10a)

tions of calculating its wavelet decomposition and reconstruc-
or tion relation coefficients have limited its usefulness.

φ(t) = φ(2t) + φ(2t − 1) (10b)
SUBBAND CODING (7,12–15)

The Haar wavelet corresponding to the Haar scaling function
is given by One of the main applications of subband coding is compres-

sion. A key concept in signal analysis is that of localization in
time and frequency. Another important intuitive concept is
that of multiresolution, or the idea that one can consider a
signal at different levels of resolution. These notions are par-
ticularly evident in image processing and computer vision,

ψ(t) =




1 for 0 ≤ x ≤ 1
2

−1 for 1
2 ≤ x ≤ 1

0 otherwise

(11)

where coarse versions of images are often used as a first ap-
We can easily construct the two-scale relation for the Haar proximation in computational algorithms. In signal pro-
wavelet as cessing, a low-pass and subsampled version is often a good

coarse approximation for many real-life signals. This intuitive
ψ(2t) = φ(2t) − φ(2t − 1) (12)

paradigm leads to the mathematical framework for wavelet
constructions (12). The wavelet decomposition is a successiveThe two-scale relations in Eq. (10b) express �(t) in terms
approximation method that adds more and more projectionsof �(2t) and �(2t) 	 1), while the two-scale relations in Eq.
onto detail spaces, or spaces spanned by wavelets and their(12) for Haar wavelets express �(t) in terms of �(2t) and
shifts at different scales.

�(2t) 	 1). The reconstruction relations can be written in the
In addition, this multiresolution approximation is wellmatrix form

suited to many applications. That is true in cases where suc-
cessive approximation is useful, for example, in browsing
through image databases, as is done for instance on the
World-Wide Web. Rather than downloading each full image,

[
φ(t)
ψ(t)

]
=

[
1 1
1 −1

][
φ(2t)

φ(2t − 1)

]
(13)

which would be time-consuming, one only needs to download
The decomposition relations are easily derived by just in- a coarse version, which can be done relatively fast. Then, one
verting the reconstruction relations as follows: can fetch the rest, if the image seems of interest. Similarly,

for communication applications, multiresolution approxima-
tion leads to transmission methods where a coarse version of
a signal is better protected against transmission errors than

[
φ(2t)

π(2t − 1)

]
=

[
1
2

1
2

1
2 − 1

2

][
φ(t)
ψ(t)

]
(14)

the detailed information. The assumption is that the coarse
version is probably more useful than the detail.

Daubechies Wavelets There are many techniques for image coding. Subband cod-
ing is the most successful today. Pyramid coding is effectiveAnother example of wavelets defined on the real line is
for high-bit-rate compression, and transform coding based onDaubechies wavelets. The Daubechies scaling function �D

3 is
the discrete cosine transform has become the JPEG standard.defined by the following relation:
Subband coding using wavelets (the tree-structured filter-
bank approach) avoids blocking at medium bit rates, because
its basis functions have variable length. It uses an adaptedφD

3 (t) =
3∑

k=0

pkφ(2t − k) (15)

basis (the transformation depends on the signal). Long basis
functions represent flat background (low frequency), andwhere two-scale sequence �pk� are
short basis functions represent regions with texture. This fea-
ture is good for image enhancement, image edge detection,
image classification, videoconferencing, video on demand, tis-
sue and cancer cell detection (16), and so on. And due to its

{p1, p2, p3, p4} =
{

1 + √
3

4
,

3 + √
3

4
,

3 − √
3

4
,

1 − √
3

4

}
(16)
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adapted basis functions, one can also develop a set of algo- cessing gain equals the composite impulse response length,
that is,rithms for adaptive filtering systems (7).

G = (2J − 1)(L − 1) − 1 (19)
WAVELET APPLICATIONS

This wavelet-based SS technique is equivalent to a single-
This section discusses the applications of wavelets in digital scale covert communication waveform.
communication systems and in image and video compression.
We will present a brief description of how wavelets can be

Multiple-Scale Covert Communications Waveform. A multi-used (1) to improve communication efficiency in digital com-
ple-scale covert waveform employing a wavelet-transform-do-munication systems, and (2) to remove redundant information
main SS was proposed in Ref. 19. This technique is summa-(e.g., spatial redundancy, spectral redundancy, and temporal
rized as follows:redundancy) in image and video compression for an FBI fin-

gerprint application. Other applications in computer and hu-
• Encode the data into an M-ary alphabet.man vision and for denoising noisy data are also described.
• Apply the PN code to the encoded data.
• Serial-to-parallel demultiplex the resultant into scaleWavelets in Digital Communications

streams.
The channel coding that follows source coding is designed to

• Represent the SS chips as wavelet coefficients.reintroduce—in a controlled manner—a prescribed level of
• Create a waveform by IDWT.redundancy into the source-coded streams to mitigate the an-

ticipated effects of the channel, and best performance is • Receiver reverses the above steps.
achieved when the redundancy is tailored to the specific char-
acteristics of the channel. Although channel coding and mod- Figure 3 (20, p. RO-72) illustrates the multiple-scale SS
ulation applications have received comparatively little atten- system.
tion to date, wavelet theory has an important complementary
role to play in this aspect of the communications problem. Wavelets for Code Division Multiplexing Access. The above
Wavelet representation can be exploited to develop systems waveforms are suitable for multiple users where each user
for reliable transmission over specific channels such as satel- has the same waveform algorithm with fixed system parame-
lite or mobile wireless channels or a combination of both. The ters and independent PN drivers for the pseudorandom pa-
problem of multiple-user communication over a wireless rameters. The design of a CDMA using wavelets has been
channel is of greatest interest in practice. A wireless commu- addressed in Ref. 21, which concerns itself with the three
nication channel is subject to mutual interference among us- key issues:
ers and fading due to time-varying multipath propagation. To
combat the interference and fading effects, a popular • Channel Capacity. The number of supportable users per
multirate modulation technique, referred to as spread-spec- unit bandwidth at a fixed bit error rate (BER) and bit
trum code division multiplexing access (SS CDMA) has been signal-to-noise ratio (SNR), Eb/N0
used widely in the industry (17–22). This subsection focuses

• Near–Far Problem. The effect of large interference due
on the use of wavelets for SS CDMA digital communication to a nearby user (this problem is discussed in another
systems. In addition, a brief description of fractal modulation article in this encyclopedia)
using wavelets is described.

• Implementation. Computational complexity

Single-Scale Covert Communication Waveform. The idea of
Regarding the channel capacity, the use of wavelets willwavelet-based SS CDMA was proposed in Ref. 18. The pro-

lower the required bit SNR. This means that the multiple-posed algorithm is summarized below:
access (MA) noise decreases on using a proper wavelet trans-
form. Since the wavelet transform is chosen to allow the user• k information bits are grouped together to form an M-ary
to operate at smaller bandwidth, one can impose tighterset of sequences, where

M = 2k (18)

• A pseudonoise (PN) code selects a sequence (out of 2k se-
quences) for each input information bit generated by the
inverse discrete wavelet transform (IDWT).

• The coded data are sent as binary phase-shift keying
(BPSK).

• The receiver reverses the above steps, that is, it performs
BPSK demodulation, DWT, and data extraction.

Note that only one of 2J wavelet coefficients is used for BPSK

Bits in

Bits out

Data
modulator

Data
modulator

Pseudo-
noise

modulator

MJ + 1

J + 1

C
ha

nn
el

Pseudo-
noise

demod

Parallel
to-

serial mux

IDWT
Serial to-
parallel
demux

IDWT

data and the remaining coefficients are unused, where J de-
notes the number of stages in the wavelet transform. If we let Figure 3. An illustration of a multiple-scale covert communications

system using wavelet transforms (4, p. RO-72).L be the length of the filter band of the DWT, then the pro-
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bandpass filtering at the transmitter. This means improved The total number of supportable users for unfiltered QPSK is
found to be (21)bandwidth efficiency. In addition to these features, modula-

tion using wavelets occupies all available degrees of freedom
in amplitude and phase.

Concerning the near–far problem, the Gaussian character
U = 3(1 − α−1)G

4(Eb/N0)nom
+ 1 (24)

of wavelet-based waveform makes the interference noiselike
at all levels, and the near–far effects are perfectly predictable whereas for filtered QPSK and a wavelet-based waveform it
based on power levels. is

Finally, the construction of a wavelet-based signal uses a
finite number of subsequences, which allows the transmitter
to be implemented with only load operations. U = (1 − α−1)G

(Eb/N0)nom
+ 1 (25)

This sub-subsection briefly explains the use of the single-
scale and multiple-scale waveforms in CDMA. A plot of Eqs. (24) and (25) is shown in Fig. 4 (20, p. RO-90)

Single-Scale CDMA. According to the sub-subsection ‘‘Sin- for a QPSK signal with 16-ary simplex. This figure shows that
gle-Scale Covert Communication Waveform’’ above, the sin- the wavelet SS can support more users than the filtered
gle-scale CDMA waveform is generated using the following al- QPSK.
gorithm: Multiple-Scale CDMA. According to the sub-subsection

‘‘Multiple-Scale Covert Communications Waveform’’ above,
• For each input k information bits we send one of the M the multiple-scale CDMA waveform uses the wavelet trans-

complex-valued sequences an, where the index n denotes form domain structure shown in Fig. 3. In this figure, each
the nth of the M sequences, and M is given in Eq. (18). user signal is driven by an independent PN modulator. The

• M complex-valued sequences are derived from the M-ary resulting signals will be statistically orthogonal (as good as
wavelet coefficient matrix. Note that these sequences the PN sequence orthogonality). The performance of the mul-
have approximately Gaussian distribution. tiple-scale CDMA is as good as that of the single-scale, that

is, it has the same channel capacity, BER, interference toler-• The set of sequences changes pseudorandomly for each
ance, and so on. However, the computational complexity fortransmission.
multiple-scale CDMA is less than for single-scale CDMA.
Multiple-scale systems can acquire the signal without a train-If we let the transform length N be k times the alphabet size
ing sequence (20,21), and they can be used for low probabilityM,
of interception (LPI) and low probability of detection (LPD)
networks.N = kM (20)

Fractal Modulation. There are some noisy channels whoseand the chip pulse with duration T be P(t), then the signal
key characteristic is that the channel is open for some finitemodel for the single-scale CDMA can be written as
but unknown time interval, during which it has some finite
but unknown bandwidth. Such models are useful for a range
of wireless and secure communications applications, as wellS(t) =

N(M−1)∑
n=1

anP(t − nT ) (21)
as for broadcast applications in which information is being

For unfiltered BPSK or quaternary PSK (QPSK), the pulse
shape is square. For filter BPSK/QPSK or wavelet use, the
pulse shape is equivalent to the truncated approximation of a
sinc pulse, defined as follows:

sinc(t) = sin t
t

(22)

It should be noted here that the multiple user waveforms
described above possess the following properties:

• Common structure with independent pseudorandom
drivers

• Statistical orthogonality

Let us define U as the number of supportable users, G as
the processing gain given by Eq. (19), (Eb/N0)nom as the nomi-
nal bit SNR without MA noise, (Eb/N0)aci as the actual bit SNR
with MA noise and intersymbol interference, and

Wavelet spread
 spectrum

QPSK spread spectrum-
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Figure 4. Supportable number of users per unit bandwidth as a
function of bit SNR for various QPSK waveforms (4, p. RO-90).

α = (Eb/N0)act

(Eb/N0)nom
(23)
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transmitted to receivers whose front ends have different • How is it possible to sense depth?
bandwidths and processing capabilities. A wavelet-based • How is motion sensed?
modulation model, referred to as fractal modulation, which
makes efficient use of iterated multirate filter banks, has He then developed working algorithmic solutions to answer
been shown to provide a novel diversity strategy for communi- each of these questions. Marr’s theory was that the human
cation over such channels (23). The essence of this scale diver- visual system has a complicated hierarchical structure that
sity involves dividing the available transmit spectrum into involves several layers of processing. At each processing level,
multiple adjacent octave-spaced bands, and modulating peri- the retinal system provides a visual representation that
odic extensions of the symbol stream into these bands at cor- scales progressively in a geometrical manner. His arguments
responding rates. That is, the information stream is present hinged on the detection of intensity changes. He theorized
on all time scales, providing a novel and efficient form of di- that intensity changes occur at different scales in an image,
versity for such applications. so that their optimal detection requires the use of operators

of different sizes. He also theorized that sudden intensity
changes produce a peak or trough in the first derivative of theFBI Fingerprint Compression
image. These two hypotheses require that a vision filter have

Between 1924 and today, the U.S. Federal Bureau of Investi- two characteristics: it should be a differential operator, and it
gation has collected about 30 million sets of fingerprints (24). should be capable of being tuned to act at any desired scale.
The archive consists mainly of inked impressions on paper Marr’s operator is referred to today as a Marr wavelet.
cards. Facsimile scans of the impressions are distributed
among law enforcement agencies, but the digitization quality Denoising Noisy Data
is often low. Because a number of jurisdictions are experi-

In diverse fields, from planetary science to molecular spec-menting with digital storage of the prints, incompatibilities
troscopy, scientists are faced with the problem of recoveringbetween data formats have recently become a problem. This
a true signal from incomplete, indirect, or noisy data. Canproblem led to a demand in the criminal-justice community
wavelets help solve this problem? The answer is certainly yes,for a digitization and compression standard. In 1993, the
through a technique, called wavelet shrinkage and thresh-FBI’s Criminal Justice Information Services Division devel-
olding, that David Donoho of Stanford University has workedoped standards for fingerprint digitization and compression
on for a number of years (26). The technique works in thein cooperation with the National Institute of Standards and
following way. When you decompose a data set using wave-Technology, Los Alamos National Laboratory, commercial
lets, you use filters that act as averaging filters, and othersvendors, and criminal-justice agencies (25).
that produce details. Some of the resulting wavelet coeffi-Let us put the problem of storing the data of digital fin-
cients correspond to details in the data set. If the details aregerprints in perspective. Fingerprint images are digitized at
small, they might be omitted without substantially affectinga resolution of 500 pixels/in. (200 pixels/cm) with 256 levels of
the main features of the data set. The idea of thresholding,gray-scale information per pixel. A single fingerprint is about
then, is to set to zero all coefficients that are less than a par-700,000 pixels and needs about 0.6 Mbyte of storage. A pair
ticular threshold. The remaining coefficients are used in anof hands, then, requires about 6 Mbytes of storage. So digitiz-
inverse wavelet transformation to reconstruct the data set.ing the FBI’s current archive would result in about 200 tera-

bytes of data. Obviously, data compression is important to
bring these numbers down. The data compression standard REMARKS
wavelet/scalar quantization (WSQ) implements a hand-tuned
custom wavelet basis developed after extensive testing on a There are many applications waiting for wavelet techniques
collection of fingerprints. The best compression ratio achieved to improve their usefulness beside those mentioned above.
with these wavelets is 26 : 1. Examples are speech compression in mobile communication

and digital answering machines; audio compression in digital
broadcasting, HDTV, VSAT, storage devices, multimedia,Computer and Human Vision
high-fidelity audio, and music; and ECG heart waveform

In the early 1980s, David Marr began work at MIT’s Artificial monitoring systems and archives for cardiologists.
Intelligence Laboratory on artificial vision for robots. He is an In signal processing, wavelets make it possible to recover
expert on the human visual system, and his goal was to learn weak signals from noise. This has proven useful especially
why the first attempts to construct a robot capable of under- in the processing of X-ray and magnetic resonance images in
standing its surroundings were unsuccessful. Marr believed medical applications. Images processed in this way can be
that it was important to establish scientific foundations for cleaned up without blurring or muddling the details (16).
vision, and that while doing so, one must limit the scope of In Internet communications, wavelets have been used to
investigation by excluding everything that depends on train- compress images to a greater extent than is generally possible
ing, culture, and so on, and focus on the mechanical or invol- with other methods. In some cases, a wavelet-compressed im-
untary aspects of vision. This low-level vision is the part that age can be as small as about 25% of the size of similar-quality
enables us to recreate the three-dimensional organization of images using the more familiar JPEG method. Thus, for ex-
the physical world around us from the excitations that stimu- ample, a photograph that requires 200 kbyte and takes a mi-
late the retina. Marr asked these questions: nute to download in JPEG format might require only 50 kbyte

and take 15 s to download in wavelet-compressed format.
Wavelet compression works by analyzing an image and• How is it possible to determine the contours of objects

from variations in their light intensity? converting it into a set of mathematical expressions that can
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24. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Soft-then be decoded by the receiver. Wavelet compression is not
ware, Boston: A. K. Peters, 1994, pp. 213–214.yet widely used on the Web. The most common compressed

25. J. Bradley, C. Brislawn, and T. Hopper, The FBI wavelet/scalarimage formats remain the GIF, used mainly for drawings, and
quantization standard for gray-scale fingerprint image compres-JPEG, used mainly for photographs.
sion, Tech. Rep. LA-UR-93-1659, Los Alamos, NM: Los Alamos
Ntl. Lab., 1993.
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